Cognitive function and cardiometabolic disease risk factors in rural South Africa: baseline evidence from the HAALSI study

Evidence on cognitive function in older South Africans is limited, with few population-based studies. We aimed to estimate baseline associations between cognitive function and cardiometabolic disease risk factors in rural South Africa. We use baseline data from "Health and Aging in Africa: A Lo...

Full description

Saved in:
Bibliographic Details
Published inBMC public health Vol. 19; no. 1; pp. 1579 - 11
Main Authors Houle, Brian, Gaziano, Thomas, Farrell, Meagan, Gómez-Olivé, F Xavier, Kobayashi, Lindsay C, Crowther, Nigel J, Wade, Alisha N, Montana, Livia, Wagner, Ryan G, Berkman, Lisa, Tollman, Stephen M
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 27.11.2019
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Evidence on cognitive function in older South Africans is limited, with few population-based studies. We aimed to estimate baseline associations between cognitive function and cardiometabolic disease risk factors in rural South Africa. We use baseline data from "Health and Aging in Africa: A Longitudinal Study of an INDEPTH Community in South Africa" (HAALSI), a population-based study of adults aged 40 and above in rural South Africa in 2015. Cognitive function was measured using measures of time orientation, immediate and delayed recall, and numeracy adapted from the Health and Retirement Study cognitive battery (overall total cognitive score range 0-26). We used multiple linear regression to estimate associations between cardiometabolic risk factors (including BMI, hypertension, dyslipidemia, diabetes, history of stroke, alcohol frequency, and smoking status) and the overall cognitive function score, adjusted for potential confounders. In multivariable-adjusted analyses (n = 3018; male = 1520; female = 1498; median age 59 (interquartile range 50-67)), cardiometabolic risk factors associated with lower cognitive function scores included: diabetes (b = - 1.11 [95% confidence interval: - 2.01, - 0.20] for controlled diabetes vs. no diabetes); underweight BMI (b = - 0.87 [CI: - 1.48, - 0.26] vs. normal BMI); and current and past smoking history compared to never smokers. Factors associated with higher cognitive function scores included: obese BMI (b = 0.74 [CI: 0.39, 1.10] vs. normal BMI); and controlled hypertension (b = 0.53 [CI: 0.11, 0.96] vs. normotensive). We provide an important baseline from rural South Africa on the associations between cardiometabolic disease risk factors and cognitive function in an older, rural South African population using standardized clinical measurements and cut-offs and widely used cognitive assessments. Future studies are needed to clarify temporal associations as well as patterns between the onset and duration of cardiometabolic conditions and cognitive function. As the South African population ages, effective management of cardiometabolic risk factors may be key to lasting cognitive health.
AbstractList Evidence on cognitive function in older South Africans is limited, with few population-based studies. We aimed to estimate baseline associations between cognitive function and cardiometabolic disease risk factors in rural South Africa. We use baseline data from "Health and Aging in Africa: A Longitudinal Study of an INDEPTH Community in South Africa" (HAALSI), a population-based study of adults aged 40 and above in rural South Africa in 2015. Cognitive function was measured using measures of time orientation, immediate and delayed recall, and numeracy adapted from the Health and Retirement Study cognitive battery (overall total cognitive score range 0-26). We used multiple linear regression to estimate associations between cardiometabolic risk factors (including BMI, hypertension, dyslipidemia, diabetes, history of stroke, alcohol frequency, and smoking status) and the overall cognitive function score, adjusted for potential confounders. In multivariable-adjusted analyses (n = 3018; male = 1520; female = 1498; median age 59 (interquartile range 50-67)), cardiometabolic risk factors associated with lower cognitive function scores included: diabetes (b = - 1.11 [95% confidence interval: - 2.01, - 0.20] for controlled diabetes vs. no diabetes); underweight BMI (b = - 0.87 [CI: - 1.48, - 0.26] vs. normal BMI); and current and past smoking history compared to never smokers. Factors associated with higher cognitive function scores included: obese BMI (b = 0.74 [CI: 0.39, 1.10] vs. normal BMI); and controlled hypertension (b = 0.53 [CI: 0.11, 0.96] vs. normotensive). We provide an important baseline from rural South Africa on the associations between cardiometabolic disease risk factors and cognitive function in an older, rural South African population using standardized clinical measurements and cut-offs and widely used cognitive assessments. Future studies are needed to clarify temporal associations as well as patterns between the onset and duration of cardiometabolic conditions and cognitive function. As the South African population ages, effective management of cardiometabolic risk factors may be key to lasting cognitive health.
Background Evidence on cognitive function in older South Africans is limited, with few population-based studies. We aimed to estimate baseline associations between cognitive function and cardiometabolic disease risk factors in rural South Africa. Methods We use baseline data from "Health and Aging in Africa: A Longitudinal Study of an INDEPTH Community in South Africa" (HAALSI), a population-based study of adults aged 40 and above in rural South Africa in 2015. Cognitive function was measured using measures of time orientation, immediate and delayed recall, and numeracy adapted from the Health and Retirement Study cognitive battery (overall total cognitive score range 0-26). We used multiple linear regression to estimate associations between cardiometabolic risk factors (including BMI, hypertension, dyslipidemia, diabetes, history of stroke, alcohol frequency, and smoking status) and the overall cognitive function score, adjusted for potential confounders. Results In multivariable-adjusted analyses (n = 3018; male = 1520; female = 1498; median age 59 (interquartile range 50-67)), cardiometabolic risk factors associated with lower cognitive function scores included: diabetes (b = - 1.11 [95% confidence interval: - 2.01, - 0.20] for controlled diabetes vs. no diabetes); underweight BMI (b = - 0.87 [CI: - 1.48, - 0.26] vs. normal BMI); and current and past smoking history compared to never smokers. Factors associated with higher cognitive function scores included: obese BMI (b = 0.74 [CI: 0.39, 1.10] vs. normal BMI); and controlled hypertension (b = 0.53 [CI: 0.11, 0.96] vs. normotensive). Conclusions We provide an important baseline from rural South Africa on the associations between cardiometabolic disease risk factors and cognitive function in an older, rural South African population using standardized clinical measurements and cut-offs and widely used cognitive assessments. Future studies are needed to clarify temporal associations as well as patterns between the onset and duration of cardiometabolic conditions and cognitive function. As the South African population ages, effective management of cardiometabolic risk factors may be key to lasting cognitive health. Keywords: Africa, Cognitive function, Cross-sectional studies, Epidemiology, Noncommunicable disease, Cardiometabolic disease
Evidence on cognitive function in older South Africans is limited, with few population-based studies. We aimed to estimate baseline associations between cognitive function and cardiometabolic disease risk factors in rural South Africa.BACKGROUNDEvidence on cognitive function in older South Africans is limited, with few population-based studies. We aimed to estimate baseline associations between cognitive function and cardiometabolic disease risk factors in rural South Africa.We use baseline data from "Health and Aging in Africa: A Longitudinal Study of an INDEPTH Community in South Africa" (HAALSI), a population-based study of adults aged 40 and above in rural South Africa in 2015. Cognitive function was measured using measures of time orientation, immediate and delayed recall, and numeracy adapted from the Health and Retirement Study cognitive battery (overall total cognitive score range 0-26). We used multiple linear regression to estimate associations between cardiometabolic risk factors (including BMI, hypertension, dyslipidemia, diabetes, history of stroke, alcohol frequency, and smoking status) and the overall cognitive function score, adjusted for potential confounders.METHODSWe use baseline data from "Health and Aging in Africa: A Longitudinal Study of an INDEPTH Community in South Africa" (HAALSI), a population-based study of adults aged 40 and above in rural South Africa in 2015. Cognitive function was measured using measures of time orientation, immediate and delayed recall, and numeracy adapted from the Health and Retirement Study cognitive battery (overall total cognitive score range 0-26). We used multiple linear regression to estimate associations between cardiometabolic risk factors (including BMI, hypertension, dyslipidemia, diabetes, history of stroke, alcohol frequency, and smoking status) and the overall cognitive function score, adjusted for potential confounders.In multivariable-adjusted analyses (n = 3018; male = 1520; female = 1498; median age 59 (interquartile range 50-67)), cardiometabolic risk factors associated with lower cognitive function scores included: diabetes (b = - 1.11 [95% confidence interval: - 2.01, - 0.20] for controlled diabetes vs. no diabetes); underweight BMI (b = - 0.87 [CI: - 1.48, - 0.26] vs. normal BMI); and current and past smoking history compared to never smokers. Factors associated with higher cognitive function scores included: obese BMI (b = 0.74 [CI: 0.39, 1.10] vs. normal BMI); and controlled hypertension (b = 0.53 [CI: 0.11, 0.96] vs. normotensive).RESULTSIn multivariable-adjusted analyses (n = 3018; male = 1520; female = 1498; median age 59 (interquartile range 50-67)), cardiometabolic risk factors associated with lower cognitive function scores included: diabetes (b = - 1.11 [95% confidence interval: - 2.01, - 0.20] for controlled diabetes vs. no diabetes); underweight BMI (b = - 0.87 [CI: - 1.48, - 0.26] vs. normal BMI); and current and past smoking history compared to never smokers. Factors associated with higher cognitive function scores included: obese BMI (b = 0.74 [CI: 0.39, 1.10] vs. normal BMI); and controlled hypertension (b = 0.53 [CI: 0.11, 0.96] vs. normotensive).We provide an important baseline from rural South Africa on the associations between cardiometabolic disease risk factors and cognitive function in an older, rural South African population using standardized clinical measurements and cut-offs and widely used cognitive assessments. Future studies are needed to clarify temporal associations as well as patterns between the onset and duration of cardiometabolic conditions and cognitive function. As the South African population ages, effective management of cardiometabolic risk factors may be key to lasting cognitive health.CONCLUSIONSWe provide an important baseline from rural South Africa on the associations between cardiometabolic disease risk factors and cognitive function in an older, rural South African population using standardized clinical measurements and cut-offs and widely used cognitive assessments. Future studies are needed to clarify temporal associations as well as patterns between the onset and duration of cardiometabolic conditions and cognitive function. As the South African population ages, effective management of cardiometabolic risk factors may be key to lasting cognitive health.
Abstract Background Evidence on cognitive function in older South Africans is limited, with few population-based studies. We aimed to estimate baseline associations between cognitive function and cardiometabolic disease risk factors in rural South Africa. Methods We use baseline data from “Health and Aging in Africa: A Longitudinal Study of an INDEPTH Community in South Africa” (HAALSI), a population-based study of adults aged 40 and above in rural South Africa in 2015. Cognitive function was measured using measures of time orientation, immediate and delayed recall, and numeracy adapted from the Health and Retirement Study cognitive battery (overall total cognitive score range 0–26). We used multiple linear regression to estimate associations between cardiometabolic risk factors (including BMI, hypertension, dyslipidemia, diabetes, history of stroke, alcohol frequency, and smoking status) and the overall cognitive function score, adjusted for potential confounders. Results In multivariable-adjusted analyses (n = 3018; male = 1520; female = 1498; median age 59 (interquartile range 50–67)), cardiometabolic risk factors associated with lower cognitive function scores included: diabetes (b = − 1.11 [95% confidence interval: − 2.01, − 0.20] for controlled diabetes vs. no diabetes); underweight BMI (b = − 0.87 [CI: − 1.48, − 0.26] vs. normal BMI); and current and past smoking history compared to never smokers. Factors associated with higher cognitive function scores included: obese BMI (b = 0.74 [CI: 0.39, 1.10] vs. normal BMI); and controlled hypertension (b = 0.53 [CI: 0.11, 0.96] vs. normotensive). Conclusions We provide an important baseline from rural South Africa on the associations between cardiometabolic disease risk factors and cognitive function in an older, rural South African population using standardized clinical measurements and cut-offs and widely used cognitive assessments. Future studies are needed to clarify temporal associations as well as patterns between the onset and duration of cardiometabolic conditions and cognitive function. As the South African population ages, effective management of cardiometabolic risk factors may be key to lasting cognitive health.
Background: Evidence on cognitive function in older South Africans is limited, with few population-based studies. We aimed to estimate baseline associations between cognitive function and cardiometabolic disease risk factors in rural South Africa. Methods: We use baseline data from "Health and Aging in Africa: A Longitudinal Study of an INDEPTH Community in South Africa" (HAALSI), a population-based study of adults aged 40 and above in rural South Africa in 2015. Cognitive function was measured using measures of time orientation, immediate and delayed recall, and numeracy adapted from the Health and Retirement Study cognitive battery (overall total cognitive score range 0-26). We used multiple linear regression to estimate associations between cardiometabolic risk factors (including BMI, hypertension, dyslipidemia, diabetes, history of stroke, alcohol frequency, and smoking status) and the overall cognitive function score, adjusted for potential confounders. Results: In multivariable-adjusted analyses (n = 3018; male = 1520; female = 1498; median age 59 (interquartile range 50-67)), cardiometabolic risk factors associated with lower cognitive function scores included: diabetes (b = - 1.11 [95% confidence interval: - 2.01, - 0.20] for controlled diabetes vs. no diabetes); underweight BMI (b = - 0.87 [CI: - 1.48, - 0.26] vs. normal BMI); and current and past smoking history compared to never smokers. Factors associated with higher cognitive function scores included: obese BMI (b = 0.74 [CI: 0.39, 1.10] vs. normal BMI); and controlled hypertension (b = 0.53 [CI: 0.11, 0.96] vs. normotensive). Conclusions: We provide an important baseline from rural South Africa on the associations between cardiometabolic disease risk factors and cognitive function in an older, rural South African population using standardized clinical measurements and cut-offs and widely used cognitive assessments. Future studies are needed to clarify temporal associations as well as patterns between the onset and duration of cardiometabolic conditions and cognitive function. As the South African population ages, effective management of cardiometabolic risk factors may be key to lasting cognitive health.
Background Evidence on cognitive function in older South Africans is limited, with few population-based studies. We aimed to estimate baseline associations between cognitive function and cardiometabolic disease risk factors in rural South Africa. Methods We use baseline data from “Health and Aging in Africa: A Longitudinal Study of an INDEPTH Community in South Africa” (HAALSI), a population-based study of adults aged 40 and above in rural South Africa in 2015. Cognitive function was measured using measures of time orientation, immediate and delayed recall, and numeracy adapted from the Health and Retirement Study cognitive battery (overall total cognitive score range 0–26). We used multiple linear regression to estimate associations between cardiometabolic risk factors (including BMI, hypertension, dyslipidemia, diabetes, history of stroke, alcohol frequency, and smoking status) and the overall cognitive function score, adjusted for potential confounders. Results In multivariable-adjusted analyses (n = 3018; male = 1520; female = 1498; median age 59 (interquartile range 50–67)), cardiometabolic risk factors associated with lower cognitive function scores included: diabetes (b = − 1.11 [95% confidence interval: − 2.01, − 0.20] for controlled diabetes vs. no diabetes); underweight BMI (b = − 0.87 [CI: − 1.48, − 0.26] vs. normal BMI); and current and past smoking history compared to never smokers. Factors associated with higher cognitive function scores included: obese BMI (b = 0.74 [CI: 0.39, 1.10] vs. normal BMI); and controlled hypertension (b = 0.53 [CI: 0.11, 0.96] vs. normotensive). Conclusions We provide an important baseline from rural South Africa on the associations between cardiometabolic disease risk factors and cognitive function in an older, rural South African population using standardized clinical measurements and cut-offs and widely used cognitive assessments. Future studies are needed to clarify temporal associations as well as patterns between the onset and duration of cardiometabolic conditions and cognitive function. As the South African population ages, effective management of cardiometabolic risk factors may be key to lasting cognitive health.
Evidence on cognitive function in older South Africans is limited, with few population-based studies. We aimed to estimate baseline associations between cognitive function and cardiometabolic disease risk factors in rural South Africa. We use baseline data from "Health and Aging in Africa: A Longitudinal Study of an INDEPTH Community in South Africa" (HAALSI), a population-based study of adults aged 40 and above in rural South Africa in 2015. Cognitive function was measured using measures of time orientation, immediate and delayed recall, and numeracy adapted from the Health and Retirement Study cognitive battery (overall total cognitive score range 0-26). We used multiple linear regression to estimate associations between cardiometabolic risk factors (including BMI, hypertension, dyslipidemia, diabetes, history of stroke, alcohol frequency, and smoking status) and the overall cognitive function score, adjusted for potential confounders. In multivariable-adjusted analyses (n = 3018; male = 1520; female = 1498; median age 59 (interquartile range 50-67)), cardiometabolic risk factors associated with lower cognitive function scores included: diabetes (b = - 1.11 [95% confidence interval: - 2.01, - 0.20] for controlled diabetes vs. no diabetes); underweight BMI (b = - 0.87 [CI: - 1.48, - 0.26] vs. normal BMI); and current and past smoking history compared to never smokers. Factors associated with higher cognitive function scores included: obese BMI (b = 0.74 [CI: 0.39, 1.10] vs. normal BMI); and controlled hypertension (b = 0.53 [CI: 0.11, 0.96] vs. normotensive). We provide an important baseline from rural South Africa on the associations between cardiometabolic disease risk factors and cognitive function in an older, rural South African population using standardized clinical measurements and cut-offs and widely used cognitive assessments. Future studies are needed to clarify temporal associations as well as patterns between the onset and duration of cardiometabolic conditions and cognitive function. As the South African population ages, effective management of cardiometabolic risk factors may be key to lasting cognitive health.
ArticleNumber 1579
Audience Academic
Author Houle, Brian
Crowther, Nigel J
Tollman, Stephen M
Gaziano, Thomas
Kobayashi, Lindsay C
Farrell, Meagan
Gómez-Olivé, F Xavier
Montana, Livia
Wagner, Ryan G
Wade, Alisha N
Berkman, Lisa
Author_xml – sequence: 1
  givenname: Brian
  surname: Houle
  fullname: Houle, Brian
  organization: Institute of Behavioral Science, University of Colorado Boulder, Boulder, CO, USA
– sequence: 2
  givenname: Thomas
  surname: Gaziano
  fullname: Gaziano, Thomas
  organization: Harvard Medical School, Harvard University, Boston, MA, USA
– sequence: 3
  givenname: Meagan
  surname: Farrell
  fullname: Farrell, Meagan
  organization: Harvard Center for Population and Development Studies, Harvard University, Cambridge, MA, USA
– sequence: 4
  givenname: F Xavier
  surname: Gómez-Olivé
  fullname: Gómez-Olivé, F Xavier
  organization: INDEPTH Network, East Legon, Accra, Ghana
– sequence: 5
  givenname: Lindsay C
  surname: Kobayashi
  fullname: Kobayashi, Lindsay C
  organization: Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
– sequence: 6
  givenname: Nigel J
  surname: Crowther
  fullname: Crowther, Nigel J
  organization: Department of Chemical Pathology, National Health Laboratory Service, University of the Witwatersrand Faculty of Health Sciences, Johannesburg, South Africa
– sequence: 7
  givenname: Alisha N
  surname: Wade
  fullname: Wade, Alisha N
  organization: MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
– sequence: 8
  givenname: Livia
  surname: Montana
  fullname: Montana, Livia
  organization: Harvard Center for Population and Development Studies, Harvard University, Cambridge, MA, USA
– sequence: 9
  givenname: Ryan G
  surname: Wagner
  fullname: Wagner, Ryan G
  organization: Centre for Global Health Research, Umeå University, Umeå, Sweden
– sequence: 10
  givenname: Lisa
  surname: Berkman
  fullname: Berkman, Lisa
  organization: Departments of Social and Behavioral Sciences and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
– sequence: 11
  givenname: Stephen M
  orcidid: 0000-0003-0744-7588
  surname: Tollman
  fullname: Tollman, Stephen M
  email: stephen.tollman@wits.ac.za, stephen.tollman@wits.ac.za, stephen.tollman@wits.ac.za
  organization: Centre for Global Health Research, Umeå University, Umeå, Sweden. stephen.tollman@wits.ac.za
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31775713$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-167080$$DView record from Swedish Publication Index
BookMark eNptks1u1DAUhSNURH_gAdggS2zYpNiJHTsskKLhpyONxKLA1nLsmxkPiV3sZFDn6fE0pXQQysKR_Z0v8dU5z06cd5BlLwm-JERUbyMphKhzTOqc16XI90-yM0I5yQvKxMmj99PsPMYtxoQLVjzLTkvCOeOkPMv2C792drQ7QN3k9Gi9Q8oZpFUw1g8wqtb3ViNjI6gIKNj4A3VKjz5EZB0KU1A9uvbTuEFNF6xW71CbwN46QLCzBpxO6uAHNG4AXTXN6nqJ4jiZ2-fZ0071EV7crxfZt08fvy6u8tWXz8tFs8o1q8WY6xaYKjvcGkxKQusWCBO4pVzgCrqOK0oBE8w5F7rCBdMYc4MNFhhIy5UqL7Ll7DVebeVNsIMKt9IrK-82fFhLFUare5Ca6oqYkkBXATU1FbogSosqzZFhVdTJlc-u-AtupvbI9sF-b-5s0zBJUvH0B4l_P_MJHsBocGOa11Hs-MTZjVz7nayEKAitkuDNvSD4nxPEUQ42auh75cBPURYlqWnNBGUJff0PuvVTcGm0iSpEzTDD5V9qrdKFret8-q4-SGVTYU5xlZSJuvwPlR4Dg9WphZ1N-0cBMgd08DEG6B7uSLA8lFXOZZWprPJQVrlPmVePh_OQ-NPO8jceOeZu
CitedBy_id crossref_primary_10_1016_j_jpolmod_2023_03_005
crossref_primary_10_1007_s11357_023_00755_z
crossref_primary_10_3389_fpubh_2023_1011439
crossref_primary_10_3389_fcvm_2020_560947
crossref_primary_10_3389_fgene_2021_689756
crossref_primary_10_3390_neurosci3030027
crossref_primary_10_1161_CIRCOUTCOMES_122_009046
crossref_primary_10_3390_nu14040914
Cites_doi 10.1016/S0140-6736(12)61728-0
10.1080/13607860600736182
10.1097/WAD.0b013e31826cfe90
10.12659/MSMBR.891278
10.1155/2010/742523
10.1056/NEJMra041811
10.1016/S2214-109X(16)30113-9
10.1210/er.2007-0034
10.1016/S1474-4422(11)70188-0
10.1093/ije/dyu067
10.1007/s11883-012-0307-3
10.4239/wjd.v7.i17.412
10.1111/ijcp.12626
10.1097/MD.0000000000001959
10.1093/ije/dyx247
10.1136/bmj.38446.466238.E0
10.1007/s10461-016-1591-7
10.1371/journal.pone.0157281
10.1111/j.1600-0404.2011.01491.x
10.1186/s12889-015-1467-1
10.1073/pnas.1511593112
10.2174/156720507780362065
10.1016/S0140-6736(15)60692-4
10.3233/JAD-170238
10.1186/1471-2458-9-355
10.1186/s12889-017-4312-x
10.1159/000493483
10.2174/15672050113109990037
10.1093/arclin/acx045
10.7196/SAMJ.8904
10.1212/WNL.0b013e3181f4d7f8
10.1016/j.socscimed.2017.08.009
10.1007/s11205-016-1397-z
10.1177/014662167700100306
10.1186/s12889-016-2805-7
10.1038/emm.2015.3
10.1001/archinte.164.12.1327
10.1111/nyas.12807
10.1016/j.neulet.2016.05.003
10.1186/1471-2318-9-23
10.2471/BLT.08.058982
10.1126/science.1230413
10.3389/fcvm.2018.00185
10.1186/1471-2458-14-653
10.1186/s12981-015-0083-6
10.1093/gerona/56.4.M217
10.1016/S0140-6736(05)67889-0
10.1001/archinte.160.13.2050
10.1371/journal.pone.0148908
10.2337/dc07-2013
10.1093/ije/dys115
10.2471/BLT.13.118422
10.1093/ije/dyt198
10.1017/S0007114515001749
10.3233/JAD-2011-111364
10.1212/WNL.0b013e3181a60a58
10.3389/fnins.2014.00375
10.1001/archneurol.2008.582
10.1007/s11906-013-0398-4
10.1017/S1041610210001390
10.1212/WNL.56.1.42
10.1037/0735-7044.117.6.1169
10.1212/01.WNL.0000038910.46217.AA
ContentType Journal Article
Copyright COPYRIGHT 2019 BioMed Central Ltd.
2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s). 2019
Copyright_xml – notice: COPYRIGHT 2019 BioMed Central Ltd.
– notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s). 2019
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7T2
7X7
7XB
88E
8C1
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AN0
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
M0S
M1P
M7S
PATMY
PIMPY
PQEST
PQQKQ
PQUKI
PTHSS
PYCSY
7X8
5PM
ADHXS
ADTPV
AOWAS
D8T
D93
ZZAVC
DOA
DOI 10.1186/s12889-019-7938-z
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Health and Safety Science Abstracts (Full archive)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Public Health Database (Proquest)
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
British Nursing Database
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Engineering Database
Environmental Science Database
Publicly Available Content (ProQuest)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
SWEPUB Umeå universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Umeå universitet
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Health & Safety Science Abstracts
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Public Health
ProQuest One Academic Eastern Edition
British Nursing Index with Full Text
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic


Publicly Available Content Database
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1471-2458
EndPage 11
ExternalDocumentID oai_doaj_org_article_c4c61d31ef6e4d948c21ac8647150a29
oai_DiVA_org_umu_167080
A607406231
10_1186_s12889_019_7938_z
31775713
Genre Journal Article
GeographicLocations South Africa
Sub-Saharan Africa
Africa
GeographicLocations_xml – name: South Africa
– name: Sub-Saharan Africa
– name: Africa
GrantInformation_xml – fundername: Wellcome Trust (GB)
  grantid: 069683/Z/02/Z
– fundername: NHGRI NIH HHS
  grantid: U54 HG006938
– fundername: Wellcome Trust
– fundername: National Institute on Aging (US)
  grantid: 3U54HG006938
– fundername: FIC NIH HHS
  grantid: K43 TW010698
– fundername: Wellcome Trust (GB)
  grantid: 58893/Z/99/A
– fundername: Wellcome Trust (GB)
  grantid: 085477/B/08/Z
– fundername: Fogarty International Center (US)
  grantid: K43TW010698
– fundername: National Institute on Aging (US)
  grantid: P01AG041710
– fundername: National Institute on Aging (US)
  grantid: 1R01AG051144
– fundername: ;
  grantid: K43TW010698
– fundername: ;
  grantid: 58893/Z/99/A; 069683/Z/02/Z; 085477/B/08/Z
– fundername: ;
  grantid: P01AG041710; 1R01AG051144; 3U54HG006938
GroupedDBID ---
-A0
0R~
23N
2WC
2XV
3V.
44B
53G
5VS
6J9
6PF
7X7
7XC
88E
8C1
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAJSJ
AAWTL
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACRMQ
ADBBV
ADINQ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AN0
AOIJS
ATCPS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BNQBC
BPHCQ
BVXVI
C24
C6C
CCPQU
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
ECM
EIF
EMB
EMK
EMOBN
ESTFP
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
L6V
M1P
M48
M7S
M~E
NPM
O5R
O5S
OK1
P2P
PATMY
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
7T2
7XB
8FK
AZQEC
C1K
DWQXO
EJD
GNUQQ
K9.
PQEST
PQUKI
7X8
5PM
2VQ
4.4
ADHXS
ADRAZ
ADTPV
AHSBF
AOWAS
C1A
D8T
D93
H13
IPNFZ
RIG
ZZAVC
ID FETCH-LOGICAL-c598t-cbe5a3f0bd013149be1580b47806eff7a44e0107778c6025c007d0d080e1b7aa3
IEDL.DBID RPM
ISSN 1471-2458
IngestDate Tue Oct 22 15:13:09 EDT 2024
Tue Oct 01 22:20:21 EDT 2024
Tue Sep 17 21:19:05 EDT 2024
Sat Oct 26 04:40:01 EDT 2024
Sat Nov 09 08:45:43 EST 2024
Tue Nov 19 21:06:02 EST 2024
Tue Nov 12 22:50:09 EST 2024
Thu Nov 21 22:18:40 EST 2024
Sat Nov 02 12:13:58 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Cardiometabolic disease
Noncommunicable disease
Cross-sectional studies
Cognitive function
Epidemiology
Africa
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c598t-cbe5a3f0bd013149be1580b47806eff7a44e0107778c6025c007d0d080e1b7aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0744-7588
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6882146/
PMID 31775713
PQID 2328950503
PQPubID 44782
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_c4c61d31ef6e4d948c21ac8647150a29
swepub_primary_oai_DiVA_org_umu_167080
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6882146
proquest_miscellaneous_2319495845
proquest_journals_2328950503
gale_infotracmisc_A607406231
gale_infotracacademiconefile_A607406231
crossref_primary_10_1186_s12889_019_7938_z
pubmed_primary_31775713
PublicationCentury 2000
PublicationDate 2019-11-27
PublicationDateYYYYMMDD 2019-11-27
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-27
  day: 27
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC public health
PublicationTitleAlternate BMC Public Health
PublicationYear 2019
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References KM Langa (7938_CR11) 2009; 9
AJ Herbst (7938_CR21) 2009; 87
AR Anand (7938_CR30) 2018; 5
S Tsiodras (7938_CR27) 2000; 160
Q Wu (7938_CR66) 2013; 27
Statistics South Africa (7938_CR65) 2017
D Gąsecki (7938_CR9) 2013; 15
K Kahn (7938_CR31) 2006
F Nourhashémi (7938_CR53) 2003; 60
FX Gómez-Olivé (7938_CR43) 2018; 47
AA Sastre (7938_CR60) 2017; 6
CW Kabudula (7938_CR1) 2017; 17
TF Hughes (7938_CR48) 2009; 72
A-S Rigaud (7938_CR32) 2001; 56A
AL Fitzpatrick (7938_CR52) 2009; 66
A Bawah (7938_CR2) 2016; 11
RA Whitmer (7938_CR51) 2007; 4
ME Bocarsly (7938_CR8) 2015; 112
J Bor (7938_CR22) 2013; 339
LC Kobayashi (7938_CR67) 2017; 190
M Guerchet (7938_CR35) 2017
T Vos (7938_CR18) 2015; 386
AM Sarki (7938_CR3) 2015; 94
S Pilleron (7938_CR42) 2015; 114
K Kahn (7938_CR44) 2012; 41
SJ Clark (7938_CR4) 2015; 15
CA de Jager (7938_CR33) 2015; 105
RA Whitmer (7938_CR50) 2005; 330
S Kim (7938_CR49) 2016; 11
C Reitz (7938_CR13) 2013; 15
LS Radloff (7938_CR47) 1977; 1
A Ogunniyi (7938_CR39) 2011; 124
D Knopman (7938_CR56) 2001; 56
S Ahtiluoto (7938_CR54) 2010; 75
LJ Launer (7938_CR59) 2011; 10
SB Murthy (7938_CR58) 2010; 23
B Kim (7938_CR16) 2015; 47
7938_CR6
S Zhuang (7938_CR63) 2016; 624
CP Ferri (7938_CR20) 2006; 366
A Moheet (7938_CR57) 2015; 1353
A Ogunniyi (7938_CR40) 2011; 23
S De Wit (7938_CR26) 2008; 31
JD Edwards (7938_CR61) 2017; 59
AM Kanaya (7938_CR55) 2004; 164
W VP-v (7938_CR23) 2016; 4
LC Kobayashi (7938_CR36) 2019; 52
A Sonnega (7938_CR46) 2014; 43
R Lozano (7938_CR5) 2012; 380
CT Kodl (7938_CR10) 2008; 29
C Kabudula (7938_CR45) 2016; 133
RO Akinyemi (7938_CR15) 2013; 10
A Lekoubou (7938_CR37) 2014; 14
B Ochayi (7938_CR38) 2006; 10
D Maher (7938_CR7) 2009; 9
F Mashinya (7938_CR25) 2015; 12
A Mavrodaris (7938_CR19) 2013; 91
OO Olayinka (7938_CR41) 2014; 2014
E Saedi (7938_CR14) 2016; 7
RP Fellows (7938_CR68) 2018; 33
F Wang (7938_CR17) 2014; 20
7938_CR28
S Grinspoon (7938_CR29) 2005; 352
7938_CR24
M Maredza (7938_CR64) 2016; 16
JC Nguyen (7938_CR12) 2014; 8
R Ye (7938_CR62) 2015; 69
N Raz (7938_CR69) 2003; 117
M Guerchet (7938_CR34) 2012; 29
References_xml – volume: 380
  start-page: 2095
  year: 2012
  ident: 7938_CR5
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)61728-0
  contributor:
    fullname: R Lozano
– volume: 10
  start-page: 616
  year: 2006
  ident: 7938_CR38
  publication-title: Aging Ment Health
  doi: 10.1080/13607860600736182
  contributor:
    fullname: B Ochayi
– volume: 27
  start-page: 207
  year: 2013
  ident: 7938_CR66
  publication-title: Alzheimer Dis Assoc Disord
  doi: 10.1097/WAD.0b013e31826cfe90
  contributor:
    fullname: Q Wu
– volume: 20
  start-page: 118
  year: 2014
  ident: 7938_CR17
  publication-title: Med Sci Monit Basic Res
  doi: 10.12659/MSMBR.891278
  contributor:
    fullname: F Wang
– volume: 23
  start-page: 145
  year: 2010
  ident: 7938_CR58
  publication-title: Behav Neurol
  doi: 10.1155/2010/742523
  contributor:
    fullname: SB Murthy
– volume: 352
  start-page: 48
  year: 2005
  ident: 7938_CR29
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra041811
  contributor:
    fullname: S Grinspoon
– volume: 4
  start-page: e642
  year: 2016
  ident: 7938_CR23
  publication-title: Lancet Glob Health
  doi: 10.1016/S2214-109X(16)30113-9
  contributor:
    fullname: W VP-v
– start-page: 112
  volume-title: Vulnerable Groups Series II: The Social Profile of Older Persons, 2011–2015
  year: 2017
  ident: 7938_CR65
  contributor:
    fullname: Statistics South Africa
– ident: 7938_CR6
– volume: 29
  start-page: 494
  year: 2008
  ident: 7938_CR10
  publication-title: Endocr Rev
  doi: 10.1210/er.2007-0034
  contributor:
    fullname: CT Kodl
– volume: 10
  start-page: 969
  year: 2011
  ident: 7938_CR59
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(11)70188-0
  contributor:
    fullname: LJ Launer
– volume: 43
  start-page: 576
  year: 2014
  ident: 7938_CR46
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dyu067
  contributor:
    fullname: A Sonnega
– volume: 15
  start-page: 307
  year: 2013
  ident: 7938_CR13
  publication-title: Curr Atheroscler Rep
  doi: 10.1007/s11883-012-0307-3
  contributor:
    fullname: C Reitz
– volume: 7
  start-page: 412
  year: 2016
  ident: 7938_CR14
  publication-title: World J Diabetes
  doi: 10.4239/wjd.v7.i17.412
  contributor:
    fullname: E Saedi
– volume: 69
  start-page: 674
  year: 2015
  ident: 7938_CR62
  publication-title: Int J Clin Pract
  doi: 10.1111/ijcp.12626
  contributor:
    fullname: R Ye
– volume: 94
  start-page: e1959
  year: 2015
  ident: 7938_CR3
  publication-title: Medicine
  doi: 10.1097/MD.0000000000001959
  contributor:
    fullname: AM Sarki
– volume: 47
  start-page: 689
  year: 2018
  ident: 7938_CR43
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dyx247
  contributor:
    fullname: FX Gómez-Olivé
– volume: 330
  start-page: 1360
  year: 2005
  ident: 7938_CR50
  publication-title: BMJ
  doi: 10.1136/bmj.38446.466238.E0
  contributor:
    fullname: RA Whitmer
– ident: 7938_CR24
  doi: 10.1007/s10461-016-1591-7
– volume: 2014
  start-page: 195750
  year: 2014
  ident: 7938_CR41
  publication-title: Int J Alzheimers Dis
  contributor:
    fullname: OO Olayinka
– volume: 11
  start-page: e0157281
  year: 2016
  ident: 7938_CR2
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0157281
  contributor:
    fullname: A Bawah
– volume: 124
  start-page: 396
  year: 2011
  ident: 7938_CR39
  publication-title: Acta Neurol Scand
  doi: 10.1111/j.1600-0404.2011.01491.x
  contributor:
    fullname: A Ogunniyi
– volume: 15
  start-page: 372
  year: 2015
  ident: 7938_CR4
  publication-title: BMC Public Health
  doi: 10.1186/s12889-015-1467-1
  contributor:
    fullname: SJ Clark
– volume: 112
  start-page: 15731
  year: 2015
  ident: 7938_CR8
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1511593112
  contributor:
    fullname: ME Bocarsly
– volume: 4
  start-page: 117
  year: 2007
  ident: 7938_CR51
  publication-title: Curr Alzheimer Res
  doi: 10.2174/156720507780362065
  contributor:
    fullname: RA Whitmer
– volume: 386
  start-page: 743
  year: 2015
  ident: 7938_CR18
  publication-title: Lancet
  doi: 10.1016/S0140-6736(15)60692-4
  contributor:
    fullname: T Vos
– volume: 59
  start-page: 1113
  year: 2017
  ident: 7938_CR61
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-170238
  contributor:
    fullname: JD Edwards
– volume: 9
  start-page: 355
  year: 2009
  ident: 7938_CR7
  publication-title: BMC Public Health
  doi: 10.1186/1471-2458-9-355
  contributor:
    fullname: D Maher
– volume: 17
  start-page: 424
  year: 2017
  ident: 7938_CR1
  publication-title: BMC Public Health
  doi: 10.1186/s12889-017-4312-x
  contributor:
    fullname: CW Kabudula
– volume: 52
  start-page: 32
  year: 2019
  ident: 7938_CR36
  publication-title: Neuroepidemiology
  doi: 10.1159/000493483
  contributor:
    fullname: LC Kobayashi
– volume: 10
  start-page: 642
  year: 2013
  ident: 7938_CR15
  publication-title: Curr Alzheimer Res
  doi: 10.2174/15672050113109990037
  contributor:
    fullname: RO Akinyemi
– volume: 33
  start-page: 24
  year: 2018
  ident: 7938_CR68
  publication-title: Arch Clin Neuropsychol
  doi: 10.1093/arclin/acx045
  contributor:
    fullname: RP Fellows
– volume-title: London: Alzheimer’s disease international
  year: 2017
  ident: 7938_CR35
  contributor:
    fullname: M Guerchet
– volume: 105
  start-page: 189
  year: 2015
  ident: 7938_CR33
  publication-title: S Afr Med J
  doi: 10.7196/SAMJ.8904
  contributor:
    fullname: CA de Jager
– volume: 75
  start-page: 1195
  year: 2010
  ident: 7938_CR54
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181f4d7f8
  contributor:
    fullname: S Ahtiluoto
– volume: 190
  start-page: 20
  year: 2017
  ident: 7938_CR67
  publication-title: Soc Sci Med
  doi: 10.1016/j.socscimed.2017.08.009
  contributor:
    fullname: LC Kobayashi
– volume: 133
  start-page: 1047
  year: 2016
  ident: 7938_CR45
  publication-title: Soc Indic Res
  doi: 10.1007/s11205-016-1397-z
  contributor:
    fullname: C Kabudula
– volume: 1
  start-page: 385
  year: 1977
  ident: 7938_CR47
  publication-title: Appl Psychol Meas
  doi: 10.1177/014662167700100306
  contributor:
    fullname: LS Radloff
– volume: 16
  start-page: 143
  year: 2016
  ident: 7938_CR64
  publication-title: BMC Public Health
  doi: 10.1186/s12889-016-2805-7
  contributor:
    fullname: M Maredza
– volume: 47
  start-page: e149
  year: 2015
  ident: 7938_CR16
  publication-title: Exp Mol Med
  doi: 10.1038/emm.2015.3
  contributor:
    fullname: B Kim
– start-page: 166
  volume-title: Older adults and the health transition in Agincourt, rural South Africa: New understanding, growing complexity. Aging in Sub-Saharan Africa: Recommendations for Furthering Research
  year: 2006
  ident: 7938_CR31
  contributor:
    fullname: K Kahn
– volume: 164
  start-page: 1327
  year: 2004
  ident: 7938_CR55
  publication-title: Arch Intern Med
  doi: 10.1001/archinte.164.12.1327
  contributor:
    fullname: AM Kanaya
– volume: 1353
  start-page: 60
  year: 2015
  ident: 7938_CR57
  publication-title: Ann N Y Acad Sci
  doi: 10.1111/nyas.12807
  contributor:
    fullname: A Moheet
– volume: 624
  start-page: 53
  year: 2016
  ident: 7938_CR63
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2016.05.003
  contributor:
    fullname: S Zhuang
– volume: 9
  start-page: 23
  year: 2009
  ident: 7938_CR11
  publication-title: BMC Geriatr
  doi: 10.1186/1471-2318-9-23
  contributor:
    fullname: KM Langa
– volume: 87
  start-page: 754
  year: 2009
  ident: 7938_CR21
  publication-title: Bull World Health Organ
  doi: 10.2471/BLT.08.058982
  contributor:
    fullname: AJ Herbst
– volume: 339
  start-page: 961
  year: 2013
  ident: 7938_CR22
  publication-title: Science
  doi: 10.1126/science.1230413
  contributor:
    fullname: J Bor
– volume: 5
  start-page: 185
  year: 2018
  ident: 7938_CR30
  publication-title: Front Cardiovasc Med
  doi: 10.3389/fcvm.2018.00185
  contributor:
    fullname: AR Anand
– volume: 14
  start-page: 653
  year: 2014
  ident: 7938_CR37
  publication-title: BMC Public Health
  doi: 10.1186/1471-2458-14-653
  contributor:
    fullname: A Lekoubou
– volume: 12
  start-page: 42
  year: 2015
  ident: 7938_CR25
  publication-title: AIDS Res Ther
  doi: 10.1186/s12981-015-0083-6
  contributor:
    fullname: F Mashinya
– volume: 56A
  start-page: M217
  year: 2001
  ident: 7938_CR32
  publication-title: J Gerontol
  doi: 10.1093/gerona/56.4.M217
  contributor:
    fullname: A-S Rigaud
– volume: 366
  start-page: 2112
  year: 2006
  ident: 7938_CR20
  publication-title: Lancet
  doi: 10.1016/S0140-6736(05)67889-0
  contributor:
    fullname: CP Ferri
– volume: 160
  start-page: 2050
  year: 2000
  ident: 7938_CR27
  publication-title: Arch Intern Med
  doi: 10.1001/archinte.160.13.2050
  contributor:
    fullname: S Tsiodras
– volume: 11
  start-page: e0148908
  year: 2016
  ident: 7938_CR49
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0148908
  contributor:
    fullname: S Kim
– volume: 31
  start-page: 1224
  year: 2008
  ident: 7938_CR26
  publication-title: Diabetes Care
  doi: 10.2337/dc07-2013
  contributor:
    fullname: S De Wit
– volume: 41
  start-page: 988
  year: 2012
  ident: 7938_CR44
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dys115
  contributor:
    fullname: K Kahn
– volume: 91
  start-page: 773
  year: 2013
  ident: 7938_CR19
  publication-title: Bull World Health Organ
  doi: 10.2471/BLT.13.118422
  contributor:
    fullname: A Mavrodaris
– ident: 7938_CR28
  doi: 10.1093/ije/dyt198
– volume: 114
  start-page: 306
  year: 2015
  ident: 7938_CR42
  publication-title: Br J Nutr
  doi: 10.1017/S0007114515001749
  contributor:
    fullname: S Pilleron
– volume: 29
  start-page: 15
  year: 2012
  ident: 7938_CR34
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-2011-111364
  contributor:
    fullname: M Guerchet
– volume: 6
  start-page: CD003804
  year: 2017
  ident: 7938_CR60
  publication-title: Cochrane Database Syst Rev
  contributor:
    fullname: AA Sastre
– volume: 72
  start-page: 1741
  year: 2009
  ident: 7938_CR48
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181a60a58
  contributor:
    fullname: TF Hughes
– volume: 8
  start-page: 375
  year: 2014
  ident: 7938_CR12
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2014.00375
  contributor:
    fullname: JC Nguyen
– volume: 66
  start-page: 336
  year: 2009
  ident: 7938_CR52
  publication-title: Arch Neurol
  doi: 10.1001/archneurol.2008.582
  contributor:
    fullname: AL Fitzpatrick
– volume: 15
  start-page: 547
  year: 2013
  ident: 7938_CR9
  publication-title: Curr Hypertens Rep
  doi: 10.1007/s11906-013-0398-4
  contributor:
    fullname: D Gąsecki
– volume: 23
  start-page: 387
  year: 2011
  ident: 7938_CR40
  publication-title: Int Psychogeriatr
  doi: 10.1017/S1041610210001390
  contributor:
    fullname: A Ogunniyi
– volume: 56
  start-page: 42
  year: 2001
  ident: 7938_CR56
  publication-title: Neurology
  doi: 10.1212/WNL.56.1.42
  contributor:
    fullname: D Knopman
– volume: 117
  start-page: 1169
  year: 2003
  ident: 7938_CR69
  publication-title: Behav Neurosci
  doi: 10.1037/0735-7044.117.6.1169
  contributor:
    fullname: N Raz
– volume: 60
  start-page: 117
  year: 2003
  ident: 7938_CR53
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000038910.46217.AA
  contributor:
    fullname: F Nourhashémi
SSID ssj0017852
Score 2.391684
Snippet Evidence on cognitive function in older South Africans is limited, with few population-based studies. We aimed to estimate baseline associations between...
Background Evidence on cognitive function in older South Africans is limited, with few population-based studies. We aimed to estimate baseline associations...
Background: Evidence on cognitive function in older South Africans is limited, with few population-based studies. We aimed to estimate baseline associations...
Abstract Background Evidence on cognitive function in older South Africans is limited, with few population-based studies. We aimed to estimate baseline...
SourceID doaj
swepub
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1579
SubjectTerms Acquired immune deficiency syndrome
Africa
Aged
Aging
AIDS
Blood pressure
Body mass index
Cardiometabolic disease
Cardiovascular Diseases - epidemiology
Cardiovascular Diseases - psychology
Cognition
Cognitive ability
Cognitive function
Confidence intervals
Correlation analysis
Cross-sectional studies
Diabetes
Diabetes mellitus
Dyslipidemia
Emtricitabine
Epidemiology
Female
Future predictions
Health
Health risks
HIV
Human immunodeficiency virus
Humans
Hypertension
Life expectancy
Longitudinal Studies
Male
Medical research
Metabolic Diseases - epidemiology
Metabolic Diseases - psychology
Middle Aged
Mortality
Noncommunicable disease
Numeracy
Obesity
Older people
Population
Population studies
Public health
Regression analysis
Retirement
Risk analysis
Risk Factors
Rural areas
Rural Population - statistics & numerical data
Smoking
Sociodemographics
South Africa - epidemiology
Statistical analysis
Studies
Underweight
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yJ0HEt72uEkEUhLCddF7tbVxdRhEvurK3kKTTOIftld2Zy_x6q5LMsK0HLx5nkkB3PVJfdSpfEfLKxnEMygsWOpGY1IIz-GlZkt60IppuCLna4qtensnP5-r8RqsvrAkr9MBFcMdRRs2HjqdRJzn00kbBfbQaNlXVelGu7rVil0zV8wNjlahnmNzq42vYhbE0iPcM7NGy7SwKZbL-v7fkGzHpz3rJGatojkSn98jdCiHpojz6fXIrTQ_InfL9jZZrRQ_J9mRXF0QxdKH4qZ8GGnP96UVag_Jxfj2goVhiTmvzHbqa6BXScdDcYI-WXkLvKEY8RKU01VakFC-nUICQdLlYfPn2iWay2kfk7PTj95Mlq30WWFS9XbMYkvLd2IYByXdkHxJXtg3S2FancTReygRpmzHGRg0YKQKuGNoBsGbiwXjfPSYH0-WUnhLqeafH4AE19D1AsxRMTL4DFYYxtiF2DXm7k7v7Veg0XE5DrHZFSQ6U5FBJbtuQ96iZ_URkws5_gH24ah_uX_bRkDeoV4f-CsqLvl47gOdF5iu30ACiWgCBvCFHs5ngZ3E-vLMMV_382gEetb1CTp2GvNwP40qsXZvS5Qbn8B7SUCtVQ54UQ9q_EqA3owyH1WZmYrN3no9Mq5-ZBVxDbgRhriGvizHOlnxY_VhkMW0uNo5rA7o6_B_SfEZuC_QizpkwR-RgfbVJzwGVrcOL7IC_AWPINc4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXJAQ4k3agoyEQEKyGid-hQtaCsuCEBco6s2yHafsodmyj8v-emYc70JA4pjYjmLPjOezPf6GkOcmdJ2XrmK-riITquIMHg2LwumyCrpufYq2-KJmZ-LTuTzPG26rHFa5mxPTRN0uAu6Rn4DnN41E9pI3Vz8ZZo3C09WcQuM6ucErrTCkz0w_7E8RtJFVPsnkRp2sYC7GACHeMNBKw7YjX5Qo-_-dmP_wTH9HTY64RZM_mt4htzOQpJNB8nfJtdjfI7eGXTg6XC66T7anu-ggig4MhUBd39KQolAv4xpUAOvnYxqKgeY0p-Ch854ukZSDpjR7dMgo9Jqi30NsSmNOSErxigoFIElnk8nnrx9poqx9QM6m77-dzljOtsCCbMyaBR-lq7vSt0jBIxofuTSlF9qUKnaddkJEWLxprU1QgJQCoIu2bAFxRu61c_VDctAv-viYUMdr1XkH2KFpAKBFr0N0tQjKd6H0oS7Iq92426uBVMOmxYhRdhCSBSFZFJLdFuQtSmZfEfmw04vF8sJm87IBPs7bmsdORdE2woSKu2AUuF5ZuqopyEuUq0WrBeEFly8fwP8i_5WdKIBSJUBBXpDjUU2wtjAu3mmGzda-sr91syDP9sXYEiPY-rjYYB3ewGLUCFmQR4Mi7bsEGE5LzaG1HqnYqM_jkn7-I3GBK1ghgbMryItBGUdN3s2_T9IwbS43lisNsjr8__8fkZsV2gfnrNLH5GC93MQngLrW_mkyrV9sAi2T
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3fi9QwEB7OE-RAxN9WT4kgCkK9pk2TVBBZT49V1BddubeQpKkueF3d2wXdv96ZtF2tno_bJN1t5pvOl83kG4AH2jeNK22euiIPqZA5T_GjToOwKsu9KmoXsy3ey-lMvDkuj3dgKG_VT-DpmUs7qic1W3598uP7z-fo8M-iw2t5cIrvWEr84VWKaNPp5hyczzEwUobXO_F7U0HpMu83Ns8ctgcXMJqqUvFiFKWimP-_r-w_Ytbf-ZQj1dEYqY4uw6WeYrJJh4krsBPaq3Cx-3-OdceOrsHmcMgbYhTayDzMtjXzMT_1JKwQHNS_38BhlILO-uI8bN6yJcl1sFiAj3W1hp4yiojEWlnoS5UyOrzCkGKy6WTy9sNrFsVsr8Ps6NXHw2na12FIfVnpVepdKG3RZK4mcR5RucBLnTmhdCZD0ygrRMBlnVJKe4kcyiPvqLMauWjgTllb3IDddtGGW8AsL2TjLLKKqkLqFpzywRbCS9f4zPkigcfDvJtvndyGicsULU1nL4P2MmQvs0ngBVlm25GUsuOFxfKz6R3PeLw5rwseGhlEXQntc269lhiUy8zmVQKPyK6GEIbG87Y_loC_l5SxzEQiycqQJPIE9kc90Q_9uHlAhhlgbJCv6qokzZ0E7m-baSTltrVhsaY-vMJlqhZlAjc7IG0facBjAmoEsdEzj1va-ZeoEi5x7YRhMIGHHRhHQ17OP03iNK1P1oZLhba6_d8vvwN7OXkJ52mu9mF3tVyHu0jFVu5edLBf6fgw0A
  priority: 102
  providerName: Scholars Portal
Title Cognitive function and cardiometabolic disease risk factors in rural South Africa: baseline evidence from the HAALSI study
URI https://www.ncbi.nlm.nih.gov/pubmed/31775713
https://www.proquest.com/docview/2328950503
https://www.proquest.com/docview/2319495845
https://pubmed.ncbi.nlm.nih.gov/PMC6882146
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-167080
https://doaj.org/article/c4c61d31ef6e4d948c21ac8647150a29
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELa2IaFJCPGbwKiMhEBCyhonju3w1paVgtg0DYYmXizbcaASTaeufelfz52TVATeeLHU2mmT3F3uc_z5O0JeKVdVNjdpbLPUx1ykLIaPKvbcyCR1MittYFucidkl_3SVX-2RvNsLE0j7zs6P61-L43r-M3Arrxdu2PHEhuenEwGwECu17JN9SL_dFL1dOpAqT9vlS6bE8AYewMgKYkUMrqji7SG5DTlT5pJlvVwUJPv_fTD_kZn-Zk32tEVDPpreI3dbIElHzQnfJ3u-fkDuNG_haLO56CHZTjp2EMUEhkagpi6pCyzUhV-DC-D4dpmGItGctiV46LymKxTloKHMHm0qCr2jmPcQm1LfFiSluEWFApCks9Ho85ePNEjWPiKX05Ovk1ncVluIXV6odeysz01WJbZECR5eWM9ylVguVSJ8VUnDuYfJm5RSOQFIyQG6KJMSEKdnVhqTPSYH9bL2Twk1LBOVNYAdigIAmrfSeZNxJ2zlEuuyiLzt7ru-bkQ1dJiMKKEbe2mwl0Z76W1ExmiZ3UDUww5fLFc_dOsV2sGPszJjvhKelwVXLmXGKQGpN09MWkTkDdpVY9SC8ZxpNx_A-aL-lR4JgFIJQEEWkaPeSIg21-_uPEO30X6jAZWqIkdlnYi83HXjkchgq_1yg2NYAZNRxfOIPGkcaXdJnT9GRPZcrHfN_R4IjaAF3oZCRF43ztg75P382yjcps1io5mQYKtn__0Xz8lhilHEWJzKI3KwXm38CwBkazuAMLyS0KoJw3b6YUBujU_Ozi8G4RUHtKdcQXsx_j4IwfobCvM9sA
link.rule.ids 230,314,727,780,784,864,885,2102,2221,12056,12223,12765,21388,24318,27924,27925,31719,31720,33266,33267,33373,33374,33744,33745,43310,43579,43600,43805,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZgewAJIZ4lUMBICCQkq3EetsMFbUurLSwrBC3qzbIdp91Ds2Ufl_31zDjehYDEMbEdxZ4Zz2d7_A0hr5VrGluajNk886wQGWfwqJgvjEwzJ_PahmiLiRidFZ_Oy_O44baIYZWbOTFM1PXM4R75Pnh-VZXIXvLh-ifDrFF4uhpTaNwkO8icXg7IzsHR5Ou37TmCVGUWzzK5EvsLmI0xRIhXDPRSsXXPGwXS_n-n5j98099xkz120eCRju-RuxFK0mEn-_vkhm8fkDvdPhztrhc9JOvDTXwQRReGYqCmrakLcahXfglKgPXjQQ3FUHMak_DQaUvnSMtBQ6I92uUUek_R8yE6pT6mJKV4SYUClKSj4XD8_YQG0tpH5Oz46PRwxGK-BebKSi2Zs740eZPaGkl4isp6XqrUFlKlwjeNNEXhYfkmpVROAFZygC_qtAbM6bmVxuSPyaCdtf4JoYbnorEG0ENVAUTzVjpv8sIJ27jUujwh7zbjrq87Wg0dliNK6E5IGoSkUUh6nZADlMy2IjJihxez-YWOBqYdfJzXOfeN8EVdFcpl3DglwPmWqcmqhLxFuWq0WxCeM_H6AfwvMmDpoQAwlQIY5AnZ69UEe3P94o1m6GjvC_1bOxPyaluMLTGGrfWzFdbhFSxHVVEmZLdTpG2XAMXJUnJoLXsq1utzv6SdXgY2cAFrJHB3CXnTKWOvycfpj2EYptXVSnMhQVZP____L8mt0emXsR6fTD4_I7cztBXOWSb3yGA5X_nngMGW9kU0tF_AyjHk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgSNMkhPg5AgOMhEBCyhon_hXeQkfVwZgmwdDeLNtxoBJNq6596V_P2XGqBd54bH1pk9xd7nP8-TuE3kjbNIbpPDVF7lLKc5LCR5k6qkWWW1HUJrAtzvn0kn6-Ylc3Wn0F0r41s-P29_y4nf0K3Mrl3I56ntjo4uuYAyz0nVqWdTO6je6wAoKsn6jHBQQhWR4XMYnko2t4DHtuEClTsJXp9gDtQ-UUTJBiUJGCcP-_j-cb9elv7uRAYTRUpcl9dC_CSVx1p_0A3XLtQ3S3exeHuy1Gj9B23HOEsC9j3hVYtzW2gYs6d2sIBG8fF2uwp5vj2IgHz1q88tIcODTbw11foQ_YVz-PULGLbUmx36iCAU7iaVWdfTvFQbj2MbqcfPo-nqax50JqWSnXqTWO6aLJTO2FeGhpHGEyM1TIjLumEZpSB1M4IYS0HPCSBYxRZzXgTkeM0Lp4gvbaReueIqxJwRujAUGUJcA0Z4R1uqCWm8ZmxhYJet_fd7XspDVUmJJIrjp_KfCX8v5S2wR99J7ZGXpV7PDFYvVTxdhQFn6c1AVxDXe0Lqm0OdFWcijALNN5maB33q_K5y44z-q4BQHO16tgqYoDoMoAEJIEHQ0sIefscLiPDBVz_loBNpUl8_o6CXq9G_ZHeh5b6xYbb0NKmJJKyhJ02AXS7pL6eEyQGITY4JqHI5AgQRE8JkSC3nbBODjkZPajCrdpM98owgX46tl__8UrtH9xMlFnp-dfnqOD3CcUIWkujtDeerVxLwChrc3LkIt_APCVOwY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cognitive+function+and+cardiometabolic+disease+risk+factors+in+rural+South+Africa%3A+baseline+evidence+from+the+HAALSI+study&rft.jtitle=BMC+public+health&rft.au=Houle%2C+Brian&rft.au=Gaziano%2C+Thomas&rft.au=Farrell%2C+Meagan&rft.au=G%C3%B3mez-Oliv%C3%A9%2C+F+Xavier&rft.date=2019-11-27&rft.eissn=1471-2458&rft.volume=19&rft.issue=1&rft.spage=1579&rft_id=info:doi/10.1186%2Fs12889-019-7938-z&rft_id=info%3Apmid%2F31775713&rft.externalDocID=31775713
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2458&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2458&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2458&client=summon