High-fat diet in early life triggers both reversible and persistent epigenetic changes in the medaka fish (Oryzias latipes)

The nutritional status during early life can have enduring effects on an animal's metabolism, although the mechanisms underlying these long-term effects are still unclear. Epigenetic modifications are considered a prime candidate mechanism for encoding early-life nutritional memories during thi...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 24; no. 1; pp. 472 - 19
Main Authors Inoue, Yusuke, Suzuki, Yuta, Kunishima, Yoshimi, Washio, Terumi, Morishita, Shinichi, Takeda, Hiroyuki
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 21.08.2023
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The nutritional status during early life can have enduring effects on an animal's metabolism, although the mechanisms underlying these long-term effects are still unclear. Epigenetic modifications are considered a prime candidate mechanism for encoding early-life nutritional memories during this critical developmental period. However, the extent to which these epigenetic changes occur and persist over time remains uncertain, in part due to challenges associated with directly stimulating the fetus with specific nutrients in viviparous mammalian systems. In this study, we used medaka as an oviparous vertebrate model to establish an early-life high-fat diet (HFD) model. Larvae were fed with HFD from the hatching stages (one week after fertilization) for six weeks, followed by normal chow (NC) for eight weeks until the adult stage. We examined the changes in the transcriptomic and epigenetic state of the liver over this period. We found that HFD induces simple liver steatosis, accompanied by drastic changes in the hepatic transcriptome, chromatin accessibility, and histone modifications, especially in metabolic genes. These changes were largely reversed after the long-term NC, demonstrating the high plasticity of the epigenetic state in hepatocytes. However, we found a certain number of genomic loci showing non-reversible epigenetic changes, especially around genes related to cell signaling, liver fibrosis, and hepatocellular carcinoma, implying persistent changes in the cellular state of the liver triggered by early-life HFD feeding. In summary, our data show that early-life HFD feeding triggers both reversible and persistent epigenetic changes in medaka hepatocytes. Our data provide novel insights into the epigenetic mechanism of nutritional programming and a comprehensive atlas of the long-term epigenetic state in an early-life HFD model of non-mammalian vertebrates.
AbstractList The nutritional status during early life can have enduring effects on an animal's metabolism, although the mechanisms underlying these long-term effects are still unclear. Epigenetic modifications are considered a prime candidate mechanism for encoding early-life nutritional memories during this critical developmental period. However, the extent to which these epigenetic changes occur and persist over time remains uncertain, in part due to challenges associated with directly stimulating the fetus with specific nutrients in viviparous mammalian systems. In this study, we used medaka as an oviparous vertebrate model to establish an early-life high-fat diet (HFD) model. Larvae were fed with HFD from the hatching stages (one week after fertilization) for six weeks, followed by normal chow (NC) for eight weeks until the adult stage. We examined the changes in the transcriptomic and epigenetic state of the liver over this period. We found that HFD induces simple liver steatosis, accompanied by drastic changes in the hepatic transcriptome, chromatin accessibility, and histone modifications, especially in metabolic genes. These changes were largely reversed after the long-term NC, demonstrating the high plasticity of the epigenetic state in hepatocytes. However, we found a certain number of genomic loci showing non-reversible epigenetic changes, especially around genes related to cell signaling, liver fibrosis, and hepatocellular carcinoma, implying persistent changes in the cellular state of the liver triggered by early-life HFD feeding. In summary, our data show that early-life HFD feeding triggers both reversible and persistent epigenetic changes in medaka hepatocytes. Our data provide novel insights into the epigenetic mechanism of nutritional programming and a comprehensive atlas of the long-term epigenetic state in an early-life HFD model of non-mammalian vertebrates.
The nutritional status during early life can have enduring effects on an animal's metabolism, although the mechanisms underlying these long-term effects are still unclear. Epigenetic modifications are considered a prime candidate mechanism for encoding early-life nutritional memories during this critical developmental period. However, the extent to which these epigenetic changes occur and persist over time remains uncertain, in part due to challenges associated with directly stimulating the fetus with specific nutrients in viviparous mammalian systems. In this study, we used medaka as an oviparous vertebrate model to establish an early-life high-fat diet (HFD) model. Larvae were fed with HFD from the hatching stages (one week after fertilization) for six weeks, followed by normal chow (NC) for eight weeks until the adult stage. We examined the changes in the transcriptomic and epigenetic state of the liver over this period. We found that HFD induces simple liver steatosis, accompanied by drastic changes in the hepatic transcriptome, chromatin accessibility, and histone modifications, especially in metabolic genes. These changes were largely reversed after the long-term NC, demonstrating the high plasticity of the epigenetic state in hepatocytes. However, we found a certain number of genomic loci showing non-reversible epigenetic changes, especially around genes related to cell signaling, liver fibrosis, and hepatocellular carcinoma, implying persistent changes in the cellular state of the liver triggered by early-life HFD feeding. In summary, our data show that early-life HFD feeding triggers both reversible and persistent epigenetic changes in medaka hepatocytes. Our data provide novel insights into the epigenetic mechanism of nutritional programming and a comprehensive atlas of the long-term epigenetic state in an early-life HFD model of non-mammalian vertebrates.
BackgroundThe nutritional status during early life can have enduring effects on an animal’s metabolism, although the mechanisms underlying these long-term effects are still unclear. Epigenetic modifications are considered a prime candidate mechanism for encoding early-life nutritional memories during this critical developmental period. However, the extent to which these epigenetic changes occur and persist over time remains uncertain, in part due to challenges associated with directly stimulating the fetus with specific nutrients in viviparous mammalian systems.ResultsIn this study, we used medaka as an oviparous vertebrate model to establish an early-life high-fat diet (HFD) model. Larvae were fed with HFD from the hatching stages (one week after fertilization) for six weeks, followed by normal chow (NC) for eight weeks until the adult stage. We examined the changes in the transcriptomic and epigenetic state of the liver over this period. We found that HFD induces simple liver steatosis, accompanied by drastic changes in the hepatic transcriptome, chromatin accessibility, and histone modifications, especially in metabolic genes. These changes were largely reversed after the long-term NC, demonstrating the high plasticity of the epigenetic state in hepatocytes. However, we found a certain number of genomic loci showing non-reversible epigenetic changes, especially around genes related to cell signaling, liver fibrosis, and hepatocellular carcinoma, implying persistent changes in the cellular state of the liver triggered by early-life HFD feeding.ConclusionIn summary, our data show that early-life HFD feeding triggers both reversible and persistent epigenetic changes in medaka hepatocytes. Our data provide novel insights into the epigenetic mechanism of nutritional programming and a comprehensive atlas of the long-term epigenetic state in an early-life HFD model of non-mammalian vertebrates.
The nutritional status during early life can have enduring effects on an animal's metabolism, although the mechanisms underlying these long-term effects are still unclear. Epigenetic modifications are considered a prime candidate mechanism for encoding early-life nutritional memories during this critical developmental period. However, the extent to which these epigenetic changes occur and persist over time remains uncertain, in part due to challenges associated with directly stimulating the fetus with specific nutrients in viviparous mammalian systems.BACKGROUNDThe nutritional status during early life can have enduring effects on an animal's metabolism, although the mechanisms underlying these long-term effects are still unclear. Epigenetic modifications are considered a prime candidate mechanism for encoding early-life nutritional memories during this critical developmental period. However, the extent to which these epigenetic changes occur and persist over time remains uncertain, in part due to challenges associated with directly stimulating the fetus with specific nutrients in viviparous mammalian systems.In this study, we used medaka as an oviparous vertebrate model to establish an early-life high-fat diet (HFD) model. Larvae were fed with HFD from the hatching stages (one week after fertilization) for six weeks, followed by normal chow (NC) for eight weeks until the adult stage. We examined the changes in the transcriptomic and epigenetic state of the liver over this period. We found that HFD induces simple liver steatosis, accompanied by drastic changes in the hepatic transcriptome, chromatin accessibility, and histone modifications, especially in metabolic genes. These changes were largely reversed after the long-term NC, demonstrating the high plasticity of the epigenetic state in hepatocytes. However, we found a certain number of genomic loci showing non-reversible epigenetic changes, especially around genes related to cell signaling, liver fibrosis, and hepatocellular carcinoma, implying persistent changes in the cellular state of the liver triggered by early-life HFD feeding.RESULTSIn this study, we used medaka as an oviparous vertebrate model to establish an early-life high-fat diet (HFD) model. Larvae were fed with HFD from the hatching stages (one week after fertilization) for six weeks, followed by normal chow (NC) for eight weeks until the adult stage. We examined the changes in the transcriptomic and epigenetic state of the liver over this period. We found that HFD induces simple liver steatosis, accompanied by drastic changes in the hepatic transcriptome, chromatin accessibility, and histone modifications, especially in metabolic genes. These changes were largely reversed after the long-term NC, demonstrating the high plasticity of the epigenetic state in hepatocytes. However, we found a certain number of genomic loci showing non-reversible epigenetic changes, especially around genes related to cell signaling, liver fibrosis, and hepatocellular carcinoma, implying persistent changes in the cellular state of the liver triggered by early-life HFD feeding.In summary, our data show that early-life HFD feeding triggers both reversible and persistent epigenetic changes in medaka hepatocytes. Our data provide novel insights into the epigenetic mechanism of nutritional programming and a comprehensive atlas of the long-term epigenetic state in an early-life HFD model of non-mammalian vertebrates.CONCLUSIONIn summary, our data show that early-life HFD feeding triggers both reversible and persistent epigenetic changes in medaka hepatocytes. Our data provide novel insights into the epigenetic mechanism of nutritional programming and a comprehensive atlas of the long-term epigenetic state in an early-life HFD model of non-mammalian vertebrates.
Background The nutritional status during early life can have enduring effects on an animal's metabolism, although the mechanisms underlying these long-term effects are still unclear. Epigenetic modifications are considered a prime candidate mechanism for encoding early-life nutritional memories during this critical developmental period. However, the extent to which these epigenetic changes occur and persist over time remains uncertain, in part due to challenges associated with directly stimulating the fetus with specific nutrients in viviparous mammalian systems. Results In this study, we used medaka as an oviparous vertebrate model to establish an early-life high-fat diet (HFD) model. Larvae were fed with HFD from the hatching stages (one week after fertilization) for six weeks, followed by normal chow (NC) for eight weeks until the adult stage. We examined the changes in the transcriptomic and epigenetic state of the liver over this period. We found that HFD induces simple liver steatosis, accompanied by drastic changes in the hepatic transcriptome, chromatin accessibility, and histone modifications, especially in metabolic genes. These changes were largely reversed after the long-term NC, demonstrating the high plasticity of the epigenetic state in hepatocytes. However, we found a certain number of genomic loci showing non-reversible epigenetic changes, especially around genes related to cell signaling, liver fibrosis, and hepatocellular carcinoma, implying persistent changes in the cellular state of the liver triggered by early-life HFD feeding. Conclusion In summary, our data show that early-life HFD feeding triggers both reversible and persistent epigenetic changes in medaka hepatocytes. Our data provide novel insights into the epigenetic mechanism of nutritional programming and a comprehensive atlas of the long-term epigenetic state in an early-life HFD model of non-mammalian vertebrates. Keywords: Nutritional programming, High-fat diet, Fatty liver, Chromatin accessibility, Histone modifications, Medaka
Abstract Background The nutritional status during early life can have enduring effects on an animal’s metabolism, although the mechanisms underlying these long-term effects are still unclear. Epigenetic modifications are considered a prime candidate mechanism for encoding early-life nutritional memories during this critical developmental period. However, the extent to which these epigenetic changes occur and persist over time remains uncertain, in part due to challenges associated with directly stimulating the fetus with specific nutrients in viviparous mammalian systems. Results In this study, we used medaka as an oviparous vertebrate model to establish an early-life high-fat diet (HFD) model. Larvae were fed with HFD from the hatching stages (one week after fertilization) for six weeks, followed by normal chow (NC) for eight weeks until the adult stage. We examined the changes in the transcriptomic and epigenetic state of the liver over this period. We found that HFD induces simple liver steatosis, accompanied by drastic changes in the hepatic transcriptome, chromatin accessibility, and histone modifications, especially in metabolic genes. These changes were largely reversed after the long-term NC, demonstrating the high plasticity of the epigenetic state in hepatocytes. However, we found a certain number of genomic loci showing non-reversible epigenetic changes, especially around genes related to cell signaling, liver fibrosis, and hepatocellular carcinoma, implying persistent changes in the cellular state of the liver triggered by early-life HFD feeding. Conclusion In summary, our data show that early-life HFD feeding triggers both reversible and persistent epigenetic changes in medaka hepatocytes. Our data provide novel insights into the epigenetic mechanism of nutritional programming and a comprehensive atlas of the long-term epigenetic state in an early-life HFD model of non-mammalian vertebrates.
ArticleNumber 472
Audience Academic
Author Kunishima, Yoshimi
Morishita, Shinichi
Inoue, Yusuke
Suzuki, Yuta
Washio, Terumi
Takeda, Hiroyuki
Author_xml – sequence: 1
  givenname: Yusuke
  surname: Inoue
  fullname: Inoue, Yusuke
– sequence: 2
  givenname: Yuta
  surname: Suzuki
  fullname: Suzuki, Yuta
– sequence: 3
  givenname: Yoshimi
  surname: Kunishima
  fullname: Kunishima, Yoshimi
– sequence: 4
  givenname: Terumi
  surname: Washio
  fullname: Washio, Terumi
– sequence: 5
  givenname: Shinichi
  surname: Morishita
  fullname: Morishita, Shinichi
– sequence: 6
  givenname: Hiroyuki
  surname: Takeda
  fullname: Takeda, Hiroyuki
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37605229$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURB_wB1ggS2zaRUrs-DUrVFVAR6pUicfasp3rjEsmHmxPxcCfx-m0aKZCKIvYzneOc4_OcXUwhhGq6jVuzjGW_F3CRHJaN6StmxljosbPqiNMBa4J5vRgZ31YHad02zRYSMJeVIet4A0jZHZU_b7y_aJ2OqPOQ0Z-RKDjsEGDd4By9H0PMSET8gJFuCtrbwZAeuzQatqkDGNGsPI9jJC9RXahxx7SZJQXgJbQ6e8aOZ8W6PQmbn55ndCgs19BOntZPXd6SPDq4X1Sffv44evlVX1982l-eXFdWzaTuTbcdC3gzkrOHMaupQQDFgy6htpZK1pJCiCNoVgTZwBrJ5hpgJMip6JpT6r51rcL-latol_quFFBe3V_EGKvdCw_P4AymnVEtsRYZqkw1ECHpXROUlkiM1C83m-9VmtThrNl_KiHPdP9L6NfqD7cKdxQigXHxeH0wSGGH2tIWS19sjAMeoSwTopIRmdc4FYW9O0T9Das41iyKhRnLcec7VC9LhP40YVysZ1M1UW5UDSSc1Go839Q5elg6W0plvPlfE9wticoTIafudfrlNT8y-d99s1uKn_jeOxZAeQWsDGkFMEp63OpQZhC8kNJR02VVttKq1JpdV9pNeVFnkgf3f8j-gOCT_dn
CitedBy_id crossref_primary_10_1016_j_ejim_2025_03_017
crossref_primary_10_1210_endocr_bqae006
crossref_primary_10_1038_s41416_025_02969_8
crossref_primary_10_3389_fimmu_2024_1412821
crossref_primary_10_3390_nu17010127
crossref_primary_10_1038_s41392_024_01755_x
crossref_primary_10_3390_metabo14060325
Cites_doi 10.1016/j.celrep.2017.11.059
10.1172/JCI63539
10.1016/j.bbadis.2017.08.017
10.32604/oncologie.2022.023248
10.1093/bioinformatics/btu170
10.1242/dmm.002311
10.1016/j.molcel.2019.10.007
10.1016/j.ymeth.2009.03.001
10.1186/s12885-015-1025-3
10.1002/hep.27030
10.1016/j.abb.2020.108588
10.1371/journal.pone.0083162
10.1038/nrm.2015.16
10.1074/jbc.M115.711028
10.1002/wsbm.1416
10.1016/j.cell.2014.10.022
10.1016/j.ajog.2014.01.045
10.1126/science.abn9886
10.1172/JCI127502
10.1016/j.ajog.2010.06.042
10.3390/ijms232214009
10.1152/ajpregu.00444.2006
10.1210/en.2012-1877
10.1016/j.aquaculture.2014.10.044
10.1038/nrdp.2015.80
10.1038/s41419-021-03704-w
10.1371/journal.pone.0124633
10.1126/science.aaf1098
10.1111/j.1365-2796.2007.01809.x
10.1038/nrg3941
10.1016/j.cmet.2013.07.004
10.1016/j.mod.2004.03.012
10.1016/j.cell.2018.06.031
10.1146/annurev-animal-020518-115250
10.3389/fendo.2021.681356
10.1038/s41586-022-04756-4
10.1038/nrgastro.2016.160
10.3390/ijms24054996
10.1242/jeb.106062
10.1093/bioinformatics/bts635
10.1038/nm.4350
10.1016/j.stem.2021.07.001
10.1038/s41467-017-01982-7
10.1186/s12864-016-2804-1
10.1016/j.aquaculture.2017.04.006
10.1016/j.molcel.2010.05.004
10.3390/fishes3040045
10.3892/or.2014.3578
10.1111/j.1469-7580.2008.00977.x
10.1038/srep40220
10.1074/jbc.M709717200
10.1002/pro.4218
10.1186/s40851-017-0086-3
10.1016/j.jnutbio.2013.09.016
10.1186/s12864-017-4264-7
10.1016/j.aquaculture.2016.02.007
10.1007/s12038-017-9675-8
10.1038/s41598-017-05349-2
10.1038/nature05846
10.1016/j.tree.2010.05.006
10.1016/j.cell.2011.07.013
10.1017/S0007114517001842
10.1007/s00018-019-03114-4
10.1186/gb-2008-9-9-r137
10.1016/j.jhep.2009.12.042
10.1101/gad.348340.121
10.1007/s00335-019-09816-1
10.3390/metabo6040044
10.1016/j.jhep.2018.06.008
10.1002/hep.29792
10.1186/s13059-014-0550-8
10.1017/S0007114513003243
10.1371/journal.pbio.2006249
10.1016/j.cbpa.2016.07.016
10.1371/journal.pone.0175675
10.1093/emboj/cdg293
10.1093/bioinformatics/btp324
10.21608/asmj.2019.111197
10.1146/annurev-genet-051710-151001
10.1186/s12967-022-03689-w
10.1002/hep4.1578
10.1038/s41576-018-0089-8
10.1016/j.celrep.2015.04.015
10.1038/nature24271
10.3389/fimmu.2019.02490
10.2147/JIR.S324336
ContentType Journal Article
Copyright 2023. BioMed Central Ltd., part of Springer Nature.
COPYRIGHT 2023 BioMed Central Ltd.
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
BioMed Central Ltd., part of Springer Nature 2023
Copyright_xml – notice: 2023. BioMed Central Ltd., part of Springer Nature.
– notice: COPYRIGHT 2023 BioMed Central Ltd.
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: BioMed Central Ltd., part of Springer Nature 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QP
7QR
7SS
7TK
7U7
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOA
DOI 10.1186/s12864-023-09557-1
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
Publicly Available Content Database
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
EndPage 19
ExternalDocumentID oai_doaj_org_article_ba5d2832bc5c47b4bed188ff848760be
PMC10441761
A761708667
37605229
10_1186_s12864_023_09557_1
Genre Journal Article
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GrantInformation_xml – fundername: AMED CREST, JST
  grantid: JP23gm1110007
– fundername: ;
  grantid: JP23gm1110007; JP23gm1110007; JP23gm1110007; JP23gm1110007; JP23gm1110007; JP23gm1110007
GroupedDBID ---
0R~
23N
2WC
2XV
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PMFND
3V.
7QP
7QR
7SS
7TK
7U7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c598t-b6bd3e1dc865f11f3421e175ed04c937382bd38bb41a2fbe1af75b0e625984703
IEDL.DBID M48
ISSN 1471-2164
IngestDate Wed Aug 27 01:31:24 EDT 2025
Thu Aug 21 18:40:07 EDT 2025
Fri Jul 11 05:23:51 EDT 2025
Fri Jul 25 19:13:36 EDT 2025
Tue Jun 17 21:54:23 EDT 2025
Tue Jun 10 21:27:35 EDT 2025
Fri Jun 27 05:46:21 EDT 2025
Sat Aug 02 01:41:21 EDT 2025
Thu Apr 24 23:03:29 EDT 2025
Tue Jul 01 00:39:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Medaka
Chromatin accessibility
Histone modifications
Fatty liver
Nutritional programming
High-fat diet
Language English
License 2023. BioMed Central Ltd., part of Springer Nature.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c598t-b6bd3e1dc865f11f3421e175ed04c937382bd38bb41a2fbe1af75b0e625984703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12864-023-09557-1
PMID 37605229
PQID 2865361658
PQPubID 44682
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_ba5d2832bc5c47b4bed188ff848760be
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10441761
proquest_miscellaneous_2854967138
proquest_journals_2865361658
gale_infotracmisc_A761708667
gale_infotracacademiconefile_A761708667
gale_incontextgauss_ISR_A761708667
pubmed_primary_37605229
crossref_citationtrail_10_1186_s12864_023_09557_1
crossref_primary_10_1186_s12864_023_09557_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-21
PublicationDateYYYYMMDD 2023-08-21
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-21
  day: 21
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2023
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References H Li (9557_CR88) 2009; 25
I Geurden (9557_CR48) 2014; 217
M Matsumoto (9557_CR63) 2016; 4
HJ Abu-ToamihAtamni (9557_CR35) 2019; 30
HJ Yun (9557_CR65) 2022; 23
L Bideyan (9557_CR4) 2021; 35
M Ahrens (9557_CR26) 2013; 18
A Kania (9557_CR60) 2016; 17
J Zhao (9557_CR70) 2022; 20
A Lempradl (9557_CR5) 2015; 16
SC Michl (9557_CR56) 2017; 476
DW Pfennig (9557_CR2) 2010; 25
MD Thompson (9557_CR8) 2020; 4
MG Netea (9557_CR16) 2016; 352
SR Wesolowski (9557_CR23) 2017; 14
KR Costello (9557_CR14) 2018; 10
BS Kamalam (9557_CR51) 2017; 467
D Schmidt (9557_CR83) 2009; 48
BJ Reading (9557_CR43) 2018; 3
LH Vi (9557_CR73) 2008; 283
S Li (9557_CR58) 2015; 15
A Kalvisa (9557_CR77) 2018; 16
JD Buenrostro (9557_CR82) 2015; 2015
SC Langley-Evans (9557_CR1) 2009; 215
H Takeda (9557_CR30) 2010; 44
M Stemmer (9557_CR81) 2015; 10
PD Thomas (9557_CR87) 2022; 31
S Flamini (9557_CR67) 2021; 12
H Maude (9557_CR21) 2021; 12
MA Suter (9557_CR20) 2014; 210
K Saeki (9557_CR64) 2003; 22
EM Brunt (9557_CR6) 2015; 1
G Gong (9557_CR49) 2015; 436
AM Bolger (9557_CR84) 2014; 30
A Dobin (9557_CR85) 2013; 29
M Kruse (9557_CR10) 2013; 154
MS Boshra (9557_CR62) 2019; 70
J Nikkanen (9557_CR41) 2022; 378
T Gao (9557_CR69) 2023; 24
M Siersbæk (9557_CR24) 2017; 7
MI Love (9557_CR86) 2014; 15
AWH Hui (9557_CR74) 2015; 33
H Kim (9557_CR40) 2019; 76
CO dos Santos (9557_CR19) 2015; 11
T Matsumoto (9557_CR29) 2010; 3
Y Zhang (9557_CR89) 2008; 9
M Li (9557_CR7) 2015; 2015
T Iwamatsu (9557_CR31) 2004; 121
JA Oben (9557_CR12) 2010; 52
L Fang (9557_CR46) 2014; 111
I Geurden (9557_CR53) 2013; 8
X Wang (9557_CR59) 2019; 69
R Bera (9557_CR71) 2014; 59
F Rocha (9557_CR50) 2016; 201
L Feng (9557_CR72) 2020; 693
Y Huang (9557_CR11) 2017; 42
Y Asaoka (9557_CR28) 2013; 6
SH Hsu (9557_CR68) 2012; 122
B Chen (9557_CR22) 2022; 605
UD Wankhade (9557_CR76) 2017; 12
DJP Barker (9557_CR3) 2007; 261
K Ichikawa (9557_CR33) 2017; 8
D Guan (9557_CR37) 2018; 174
F Quagliarini (9557_CR78) 2019; 76
X Shu (9557_CR61) 2022; 24
BM Gregorio (9557_CR9) 2010; 203
S Panserat (9557_CR45) 2019; 7
S Naik (9557_CR17) 2017; 550
AR Soltis (9557_CR36) 2017; 21
SL Klemm (9557_CR57) 2019; 20
N Tanaka (9557_CR66) 2017; 1863
SB Larsen (9557_CR18) 2021; 28
I Watakabe (9557_CR34) 2018; 4
M Kasahara (9557_CR32) 2007; 447
B Fang (9557_CR44) 2014; 159
D Moazed (9557_CR15) 2011; 146
MN Balasubramanian (9557_CR54) 2016; 17
R Xue (9557_CR80) 2019; 10
M Luo (9557_CR75) 2021; 14
DF de Jesus (9557_CR13) 2020; 130
J Du (9557_CR27) 2017; 7
I Geurden (9557_CR47) 2007; 292
C Lebeaupin (9557_CR39) 2018; 69
S Heinz (9557_CR90) 2010; 38
MP Czech (9557_CR38) 2017; 23
A Leung (9557_CR25) 2016; 291
M Clarkson (9557_CR52) 2017; 118
LM Vera (9557_CR55) 2017; 18
RS Strakovsky (9557_CR42) 2014; 25
EC Dunford (9557_CR79) 2016; 6
References_xml – volume: 21
  start-page: 3317
  year: 2017
  ident: 9557_CR36
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2017.11.059
– volume: 122
  start-page: 2871
  year: 2012
  ident: 9557_CR68
  publication-title: J Clin Investig
  doi: 10.1172/JCI63539
– volume: 1863
  start-page: 3170
  year: 2017
  ident: 9557_CR66
  publication-title: Biochim Biophys Acta Mol Basis Dis
  doi: 10.1016/j.bbadis.2017.08.017
– volume: 24
  start-page: 427
  year: 2022
  ident: 9557_CR61
  publication-title: Oncologie
  doi: 10.32604/oncologie.2022.023248
– volume: 30
  start-page: 2114
  year: 2014
  ident: 9557_CR84
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu170
– volume: 3
  start-page: 431
  year: 2010
  ident: 9557_CR29
  publication-title: Dis Models Mech
  doi: 10.1242/dmm.002311
– volume: 4
  start-page: e1326
  year: 2016
  ident: 9557_CR63
  publication-title: Inflamm Cell Signal
– volume: 76
  start-page: 531
  year: 2019
  ident: 9557_CR78
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2019.10.007
– volume: 48
  start-page: 240
  year: 2009
  ident: 9557_CR83
  publication-title: Methods
  doi: 10.1016/j.ymeth.2009.03.001
– volume: 15
  start-page: 18
  year: 2015
  ident: 9557_CR58
  publication-title: BMC Cancer
  doi: 10.1186/s12885-015-1025-3
– volume: 59
  start-page: 2238
  year: 2014
  ident: 9557_CR71
  publication-title: Hepatology
  doi: 10.1002/hep.27030
– volume: 693
  start-page: 108588
  year: 2020
  ident: 9557_CR72
  publication-title: Arch Biochem Biophys
  doi: 10.1016/j.abb.2020.108588
– volume: 8
  start-page: e83162
  year: 2013
  ident: 9557_CR53
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0083162
– volume: 17
  start-page: 240
  year: 2016
  ident: 9557_CR60
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm.2015.16
– volume: 291
  start-page: 10446
  year: 2016
  ident: 9557_CR25
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M115.711028
– volume: 10
  start-page: e1416
  year: 2018
  ident: 9557_CR14
  publication-title: Wiley Interdiscip Rev Syst Biol Med
  doi: 10.1002/wsbm.1416
– volume: 159
  start-page: 1140
  year: 2014
  ident: 9557_CR44
  publication-title: Cell
  doi: 10.1016/j.cell.2014.10.022
– volume: 210
  start-page: 463.e1
  year: 2014
  ident: 9557_CR20
  publication-title: Am J Obstet Gynecol
  doi: 10.1016/j.ajog.2014.01.045
– volume: 378
  start-page: 290
  year: 2022
  ident: 9557_CR41
  publication-title: Science
  doi: 10.1126/science.abn9886
– volume: 130
  start-page: 2391
  year: 2020
  ident: 9557_CR13
  publication-title: J Clin Investig
  doi: 10.1172/JCI127502
– volume: 203
  start-page: 495.e1
  year: 2010
  ident: 9557_CR9
  publication-title: Am J Obstet Gynecol
  doi: 10.1016/j.ajog.2010.06.042
– volume: 23
  start-page: 14009
  year: 2022
  ident: 9557_CR65
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms232214009
– volume: 292
  start-page: 2275
  year: 2007
  ident: 9557_CR47
  publication-title: Am J Physiol Regul Integr Comp Physiol
  doi: 10.1152/ajpregu.00444.2006
– volume: 154
  start-page: 3565
  year: 2013
  ident: 9557_CR10
  publication-title: Endocrinology
  doi: 10.1210/en.2012-1877
– volume: 436
  start-page: 127
  year: 2015
  ident: 9557_CR49
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2014.10.044
– volume: 1
  start-page: 15080
  year: 2015
  ident: 9557_CR6
  publication-title: Nat Rev Dis Primers
  doi: 10.1038/nrdp.2015.80
– volume: 12
  start-page: 421
  year: 2021
  ident: 9557_CR67
  publication-title: Cell Death Dis
  doi: 10.1038/s41419-021-03704-w
– volume: 10
  start-page: e0124633
  year: 2015
  ident: 9557_CR81
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0124633
– volume: 2015
  start-page: 21.29.1
  year: 2015
  ident: 9557_CR82
  publication-title: Curr Protoc Mol Biol
– volume: 352
  start-page: 427
  year: 2016
  ident: 9557_CR16
  publication-title: Science
  doi: 10.1126/science.aaf1098
– volume: 261
  start-page: 412
  year: 2007
  ident: 9557_CR3
  publication-title: J Intern Med
  doi: 10.1111/j.1365-2796.2007.01809.x
– volume: 16
  start-page: 665
  year: 2015
  ident: 9557_CR5
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3941
– volume: 18
  start-page: 296
  year: 2013
  ident: 9557_CR26
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2013.07.004
– volume: 121
  start-page: 605
  year: 2004
  ident: 9557_CR31
  publication-title: Mech Dev
  doi: 10.1016/j.mod.2004.03.012
– volume: 174
  start-page: 831
  year: 2018
  ident: 9557_CR37
  publication-title: Cell
  doi: 10.1016/j.cell.2018.06.031
– volume: 7
  start-page: 195
  year: 2019
  ident: 9557_CR45
  publication-title: Annu Rev Anim Biosci
  doi: 10.1146/annurev-animal-020518-115250
– volume: 12
  start-page: 681356
  year: 2021
  ident: 9557_CR21
  publication-title: Front Endocrinol
  doi: 10.3389/fendo.2021.681356
– volume: 605
  start-page: 761
  year: 2022
  ident: 9557_CR22
  publication-title: Nature
  doi: 10.1038/s41586-022-04756-4
– volume: 14
  start-page: 81
  year: 2017
  ident: 9557_CR23
  publication-title: Nat Rev Gastroenterol Hepatol
  doi: 10.1038/nrgastro.2016.160
– volume: 24
  start-page: 4996
  year: 2023
  ident: 9557_CR69
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms24054996
– volume: 217
  start-page: 3396
  year: 2014
  ident: 9557_CR48
  publication-title: J Exp Biol
  doi: 10.1242/jeb.106062
– volume: 29
  start-page: 15
  year: 2013
  ident: 9557_CR85
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
– volume: 23
  start-page: 804
  year: 2017
  ident: 9557_CR38
  publication-title: Nat Med
  doi: 10.1038/nm.4350
– volume: 28
  start-page: 1758
  year: 2021
  ident: 9557_CR18
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2021.07.001
– volume: 8
  start-page: 1833
  year: 2017
  ident: 9557_CR33
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-01982-7
– volume: 17
  start-page: 449
  year: 2016
  ident: 9557_CR54
  publication-title: BMC Genomics
  doi: 10.1186/s12864-016-2804-1
– volume: 476
  start-page: 19
  year: 2017
  ident: 9557_CR56
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2017.04.006
– volume: 38
  start-page: 576
  year: 2010
  ident: 9557_CR90
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2010.05.004
– volume: 3
  start-page: 45
  year: 2018
  ident: 9557_CR43
  publication-title: Fishes
  doi: 10.3390/fishes3040045
– volume: 33
  start-page: 397
  year: 2015
  ident: 9557_CR74
  publication-title: Oncol Rep
  doi: 10.3892/or.2014.3578
– volume: 215
  start-page: 36
  year: 2009
  ident: 9557_CR1
  publication-title: J Anat
  doi: 10.1111/j.1469-7580.2008.00977.x
– volume: 7
  start-page: 40220
  year: 2017
  ident: 9557_CR24
  publication-title: Sci Rep
  doi: 10.1038/srep40220
– volume: 283
  start-page: 14915
  year: 2008
  ident: 9557_CR73
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M709717200
– volume: 31
  start-page: 8
  year: 2022
  ident: 9557_CR87
  publication-title: Protein Sci
  doi: 10.1002/pro.4218
– volume: 4
  start-page: 3
  year: 2018
  ident: 9557_CR34
  publication-title: Zoological Lett
  doi: 10.1186/s40851-017-0086-3
– volume: 25
  start-page: 170
  year: 2014
  ident: 9557_CR42
  publication-title: J Nutr Biochem
  doi: 10.1016/j.jnutbio.2013.09.016
– volume: 18
  start-page: 886
  year: 2017
  ident: 9557_CR55
  publication-title: BMC Genomics
  doi: 10.1186/s12864-017-4264-7
– volume: 467
  start-page: 3
  year: 2017
  ident: 9557_CR51
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2016.02.007
– volume: 42
  start-page: 311
  year: 2017
  ident: 9557_CR11
  publication-title: J Biosci
  doi: 10.1007/s12038-017-9675-8
– volume: 7
  start-page: 5274
  year: 2017
  ident: 9557_CR27
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-05349-2
– volume: 447
  start-page: 714
  year: 2007
  ident: 9557_CR32
  publication-title: Nature
  doi: 10.1038/nature05846
– volume: 25
  start-page: 459
  year: 2010
  ident: 9557_CR2
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2010.05.006
– volume: 146
  start-page: 510
  year: 2011
  ident: 9557_CR15
  publication-title: Cell
  doi: 10.1016/j.cell.2011.07.013
– volume: 118
  start-page: 17
  year: 2017
  ident: 9557_CR52
  publication-title: Br J Nutr
  doi: 10.1017/S0007114517001842
– volume: 76
  start-page: 4341
  year: 2019
  ident: 9557_CR40
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-019-03114-4
– volume: 2015
  start-page: 437107
  year: 2015
  ident: 9557_CR7
  publication-title: Biomed Res Int
– volume: 9
  start-page: R137
  year: 2008
  ident: 9557_CR89
  publication-title: Genome Biol
  doi: 10.1186/gb-2008-9-9-r137
– volume: 52
  start-page: 913
  year: 2010
  ident: 9557_CR12
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2009.12.042
– volume: 35
  start-page: 635
  issue: 9–10
  year: 2021
  ident: 9557_CR4
  publication-title: Genes Dev
  doi: 10.1101/gad.348340.121
– volume: 30
  start-page: 260
  year: 2019
  ident: 9557_CR35
  publication-title: Mamm Genome
  doi: 10.1007/s00335-019-09816-1
– volume: 6
  start-page: 44
  year: 2016
  ident: 9557_CR79
  publication-title: Metabolites
  doi: 10.3390/metabo6040044
– volume: 6
  start-page: 905
  year: 2013
  ident: 9557_CR28
  publication-title: Dis Models Mech
– volume: 69
  start-page: 927
  year: 2018
  ident: 9557_CR39
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2018.06.008
– volume: 69
  start-page: 573
  year: 2019
  ident: 9557_CR59
  publication-title: Hepatology
  doi: 10.1002/hep.29792
– volume: 15
  start-page: 550
  year: 2014
  ident: 9557_CR86
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0550-8
– volume: 111
  start-page: 808
  year: 2014
  ident: 9557_CR46
  publication-title: Br J Nutr
  doi: 10.1017/S0007114513003243
– volume: 16
  start-page: e2006249
  year: 2018
  ident: 9557_CR77
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.2006249
– volume: 201
  start-page: 189
  year: 2016
  ident: 9557_CR50
  publication-title: Comp Biochem Physiol A Mol Integr Physiol
  doi: 10.1016/j.cbpa.2016.07.016
– volume: 12
  start-page: e0175675
  year: 2017
  ident: 9557_CR76
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0175675
– volume: 22
  start-page: 3015
  year: 2003
  ident: 9557_CR64
  publication-title: EMBO J
  doi: 10.1093/emboj/cdg293
– volume: 25
  start-page: 1754
  year: 2009
  ident: 9557_CR88
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp324
– volume: 70
  start-page: 5
  year: 2019
  ident: 9557_CR62
  publication-title: Ain Shams Med J
  doi: 10.21608/asmj.2019.111197
– volume: 44
  start-page: 217
  year: 2010
  ident: 9557_CR30
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev-genet-051710-151001
– volume: 20
  start-page: 520
  year: 2022
  ident: 9557_CR70
  publication-title: J Transl Med
  doi: 10.1186/s12967-022-03689-w
– volume: 4
  start-page: 1392
  year: 2020
  ident: 9557_CR8
  publication-title: Hepatol Commun
  doi: 10.1002/hep4.1578
– volume: 20
  start-page: 207
  year: 2019
  ident: 9557_CR57
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-018-0089-8
– volume: 11
  start-page: 1102
  year: 2015
  ident: 9557_CR19
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2015.04.015
– volume: 550
  start-page: 475
  year: 2017
  ident: 9557_CR17
  publication-title: Nature
  doi: 10.1038/nature24271
– volume: 10
  start-page: 2490
  year: 2019
  ident: 9557_CR80
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2019.02490
– volume: 14
  start-page: 4217
  year: 2021
  ident: 9557_CR75
  publication-title: J Inflamm Res
  doi: 10.2147/JIR.S324336
SSID ssj0017825
Score 2.4499636
Snippet The nutritional status during early life can have enduring effects on an animal's metabolism, although the mechanisms underlying these long-term effects are...
Background The nutritional status during early life can have enduring effects on an animal's metabolism, although the mechanisms underlying these long-term...
BackgroundThe nutritional status during early life can have enduring effects on an animal’s metabolism, although the mechanisms underlying these long-term...
Abstract Background The nutritional status during early life can have enduring effects on an animal’s metabolism, although the mechanisms underlying these...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 472
SubjectTerms Analysis
Animals
Cell signaling
Chromatin
Chromatin accessibility
Developmental stages
Diabetes
Diet
Diet, High-Fat
DNA methylation
Epigenesis, Genetic
Epigenetic inheritance
Epigenetics
Fatty liver
Fertilization
Fetuses
Fibrosis
Gastrointestinal surgery
Gene expression
Gene Expression Regulation, Developmental
Genes
Genetic Loci
Genomes
Genomics
Hatching
Health aspects
Hepatocellular carcinoma
Hepatocytes
High fat diet
Histone modifications
Histones
Larvae
Lipids
Liver
Liver cancer
Liver diseases
Long-term effects
Mammals
Medaka
Metabolism
Nutrients
Nutrition
Nutritional programming
Nutritional status
Oryzias - genetics
Oryzias - growth & development
Physiological aspects
Steatosis
Transcriptomes
Transcriptomics
Type 2 diabetes
Vertebrates
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kIPgifhutsoqgIqHZ7Ef2HtvSUgUV1ELflv1sg0fuuOQeqv-8M0nuuCDYFx-TnYTNzOx8kJnfEPKmdDFq4ULOeeVykQqPzcqQqvDAuLTKJofNyZ-_qLNz8elCXuyM-sKasAEeeGDcgbMy4Dgd56UXlRMuBqZ1ShoibVW4iNYXfN4mmRr_H4Dfk5sWGa0OWrDCSuTgn3KEXKtyNnFDPVr_3zZ5xylNCyZ3PNDpPXJ3DB3p4bDl--RWbB6Q28MwyeuH5DeWbOTJdjTUsaN1QyOCF9N5nSLtIAm_hEiPOpAMRdimFZyFeaS2CXSJFyDtpqNxieic2NhIh5bgFl8EQSKFfdmflqa6vaLvvq6uf9W2pVhIt4zt-0fk_PTkx_FZPo5WyL2c6S53ygUeWfBaycRY4qJkESKJGArhZ4h2VAKBdk4wWyYXmU2VdEXEbAn8WcEfk71m0cSnhHJbeMmL5JgCaggopSsTV8ziD8ZUqYywDaeNH3HHcfzF3PT5h1ZmkI4B6ZheOoZl5MP2meWAuvFP6iMU4JYSEbP7G6BHZtQjc5MeZeQ1it8gJkaDRTeXdt225uP3b-awQtR6rVSVkbcjUVrAN3g79jAAJxBGa0K5P6GEQ-unyxstM6PRaA02CQPjICbMyKvtMj6JhXBNXKyRBhJ6VTEONE8Gpdx-N9Y3QTg9y4ieqOuEMdOVpr7qIcUhKRcMdvfsf7DyOblT9kcNbDDbJ3vdah1fQOjWuZf9Kf0D7glAbg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96Ivgiftu7U6IIKlKuadK0-ySneJyCCurBvoUkTfaKS1u33YfTf96ZNluvCPfYZlqSTOarnfkNIS9S41whTBlznptY-MRisTKEKrxkPNNSe4PFyZ-_yNMz8WmZLcMHty6kVe504qCoy8biN_IjrKDkkoHBfNv-irFrFP5dDS00rpMbCF2GKV35cgq4GFi_bFcoU8ijDnSxFDFYqRiB1_KYzYzRgNn_v2a-ZJrmaZOX7NDJHXI7OJD0eOT4XXLN1ffIzbGl5MV98gcTN2Kve1pWrqdVTR1CGNN15R3tYT0r8PeoAf5QBG_agESsHdV1SVu8AJ7XPXUtYnRieSMdC4M7fBG4ihTmpX9q6qvunL76urn4XemOYjpd67rXD8jZyYcf70_j0GAhttmi6GMjTckdKy3srWfMc5EyB_6EKxNhF4h5lAJBYYxgOvXGMe3zzCQOYyawagl_SPbqpnaPCeU6sRlPvGESqMGtzEzqgV8afzP6XEaE7XZa2YA-jk0w1mqIQgqpRu4o4I4auKNYRN5Mz7Qj9saV1O-QgRMl4mYPN5rNSgUxBNcgK7E5k7GZFbkRxpWsKLwvIG6TiXEReY7sV4iMUWPqzUpvu059_P5NHeeIXV9ImUfkZSDyDazB6lDJADuBYFozysMZJYiunQ_vTpkKqqNT_w56RJ5Nw_gkpsPVrtkiDYT1MmccaB6Nh3JaN2Y5gVO9iEgxO66zjZmP1NX5ACwOoblgMLv9q-d1QG6lgxCBjmWHZK_fbN0TcM1683SQv78UsTcb
  priority: 102
  providerName: ProQuest
Title High-fat diet in early life triggers both reversible and persistent epigenetic changes in the medaka fish (Oryzias latipes)
URI https://www.ncbi.nlm.nih.gov/pubmed/37605229
https://www.proquest.com/docview/2865361658
https://www.proquest.com/docview/2854967138
https://pubmed.ncbi.nlm.nih.gov/PMC10441761
https://doaj.org/article/ba5d2832bc5c47b4bed188ff848760be
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbGJiReEL_JNiqDkHhAgThObPcBoQ1tGkib0KBS3yw7sbuIKi1NKrH_njsnLYuYEI-tL1Fz5_Pd19x9R8jr1DqnMlvGnEsbZz4psFkZoAovGc-NMN5ic_L5hTibZF-m-XSHbMYd9QpsboV2OE9qspq_-_Xz-iM4_Ifg8Eq8b-CMFVkM0SdGQjUZAxrag8gk0VHPsz9vFSAa5qHbSLI4BZywaaK59R6DQBX4_P8-tW-ErWFJ5Y0YdfqA3O-TS3rU7YaHZMfVj8jdbtzk9WNSYVFH7E1Ly8q1tKqpQ3pjOq-8oy3A9BnkgtSC7SgSO63AW-aOmrqkS_wA-6FuqVsifye2PtKuabjBG0EaSeF3mR-G-qq5ekImpyffP53F_aiFuMjHqo2tsCV3rCyUyD1jnmcpc5BZuDLJijGyH6UgoKzNmEm9dcx4mdvEIXqC-Jbwp2S3XtTuOaHcJEXOE2-ZAGlIMHObei6YwReOXoqIsI1eddHzkOM4jLkOeEQJ3dlCgy10sIVmEXm7vWbZsXD8U_oYzbWVRAbt8MViNdO9Q0KSkJc4pskWeZFJm1lXMqW8V4DgRGJdRF6hsTVyZNRYhDMz66bRn79d6iOJLPZKCBmRN72QX8AzFKbvaQBNIK3WQPJwIAlOXAyXN3tKb3xAY9MwKA5yxIi83C7jlVgYV7vFGmUA4AvJOMg867bg9rmx3gnS63FE1GBzDhQzXKmrq0AxDiAd_Eew_f_RwgG5lwbHgTOXHZLddrV2LyBVa-2I3JFTOSJ7xycXXy9H4Q-PUfDJ38h0OxE
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJ8ReEN8EBhgEAoSixXHipA8IbbCpZVtBY5P2ZuzE7qJVaWlSocL_xN_IXT7KIqS97THxxUp85_uI735HyEtfGxMHOnU5j7QbWC_BYmUIVXjKeKiEshqLkw9HYnASfD4NT9fIn7YWBtMqW51YKep0muA_8i2soOSCgcH8MPvhYtcoPF1tW2jUYrFvlj8hZCveDz8Bf1_5_t7u8ceB23QVcJOwH5euFjrlhqUJTGgZszzwmQEjalIvSPoI9OMDQax1wJRvtWHKRqH2DAYKoMo9DvNeI-sBh1CmR9Z3dkdfj1bnFmBvw7Y0JxZbBWh_EbhgF12Eeotc1jF_VZeA_23BBWPYTdS8YPn2bpGbjctKt2sZu03WTH6HXK-bWC7vkt-YKuJaVdI0MyXNcmoQNJlOMmtoCSs4Bg-TapAIinBRc9iDE0NVntIZXoCU5SU1M0QFxYJKWpciFzgROKcU3kudK2qz4oy--TJf_spUQTGBb2aKt_fIyZUs_n3Sy6e5eUgoV14Scs9qJoAaHNlQ-xYkROHBpo2EQ1i70jJp8M6x7cZEVnFPLGTNHQnckRV3JHPIu9Uzsxrt41LqHWTgihKRuqsb0_lYNhsfnJEwxXZQOgmTINKBNimLY2tjiBSFp41DXiD7JWJx5JjsM1aLopDDb0dyO0K0_FiIyCGvGyI7hW9IVFM7ASuB8F0dys0OJSiLpDvcSplslFUh_20thzxfDeOTmICXm-kCacKgLyLGgeZBLZSr78a8KnDj-w6JO-LaWZjuSJ6dVVDmzMMWeII9uvy9npEbg-PDA3kwHO0_Jht-taFAw7NN0ivnC_MEHMNSP212IyXfr1oB_AXTXnUc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-fat+diet+in+early+life+triggers+both+reversible+and+persistent+epigenetic+changes+in+the+medaka+fish&rft.jtitle=BMC+genomics&rft.au=Inoue%2C+Yusuke&rft.au=Suzuki%2C+Yuta&rft.au=Kunishima%2C+Yoshimi&rft.au=Washio%2C+Terumi&rft.date=2023-08-21&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=24&rft.issue=1&rft_id=info:doi/10.1186%2Fs12864-023-09557-1&rft.externalDBID=ISR&rft.externalDocID=A761708667
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon