High-fat diet in early life triggers both reversible and persistent epigenetic changes in the medaka fish (Oryzias latipes)
The nutritional status during early life can have enduring effects on an animal's metabolism, although the mechanisms underlying these long-term effects are still unclear. Epigenetic modifications are considered a prime candidate mechanism for encoding early-life nutritional memories during thi...
Saved in:
Published in | BMC genomics Vol. 24; no. 1; pp. 472 - 19 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
21.08.2023
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The nutritional status during early life can have enduring effects on an animal's metabolism, although the mechanisms underlying these long-term effects are still unclear. Epigenetic modifications are considered a prime candidate mechanism for encoding early-life nutritional memories during this critical developmental period. However, the extent to which these epigenetic changes occur and persist over time remains uncertain, in part due to challenges associated with directly stimulating the fetus with specific nutrients in viviparous mammalian systems.
In this study, we used medaka as an oviparous vertebrate model to establish an early-life high-fat diet (HFD) model. Larvae were fed with HFD from the hatching stages (one week after fertilization) for six weeks, followed by normal chow (NC) for eight weeks until the adult stage. We examined the changes in the transcriptomic and epigenetic state of the liver over this period. We found that HFD induces simple liver steatosis, accompanied by drastic changes in the hepatic transcriptome, chromatin accessibility, and histone modifications, especially in metabolic genes. These changes were largely reversed after the long-term NC, demonstrating the high plasticity of the epigenetic state in hepatocytes. However, we found a certain number of genomic loci showing non-reversible epigenetic changes, especially around genes related to cell signaling, liver fibrosis, and hepatocellular carcinoma, implying persistent changes in the cellular state of the liver triggered by early-life HFD feeding.
In summary, our data show that early-life HFD feeding triggers both reversible and persistent epigenetic changes in medaka hepatocytes. Our data provide novel insights into the epigenetic mechanism of nutritional programming and a comprehensive atlas of the long-term epigenetic state in an early-life HFD model of non-mammalian vertebrates. |
---|---|
AbstractList | The nutritional status during early life can have enduring effects on an animal's metabolism, although the mechanisms underlying these long-term effects are still unclear. Epigenetic modifications are considered a prime candidate mechanism for encoding early-life nutritional memories during this critical developmental period. However, the extent to which these epigenetic changes occur and persist over time remains uncertain, in part due to challenges associated with directly stimulating the fetus with specific nutrients in viviparous mammalian systems. In this study, we used medaka as an oviparous vertebrate model to establish an early-life high-fat diet (HFD) model. Larvae were fed with HFD from the hatching stages (one week after fertilization) for six weeks, followed by normal chow (NC) for eight weeks until the adult stage. We examined the changes in the transcriptomic and epigenetic state of the liver over this period. We found that HFD induces simple liver steatosis, accompanied by drastic changes in the hepatic transcriptome, chromatin accessibility, and histone modifications, especially in metabolic genes. These changes were largely reversed after the long-term NC, demonstrating the high plasticity of the epigenetic state in hepatocytes. However, we found a certain number of genomic loci showing non-reversible epigenetic changes, especially around genes related to cell signaling, liver fibrosis, and hepatocellular carcinoma, implying persistent changes in the cellular state of the liver triggered by early-life HFD feeding. In summary, our data show that early-life HFD feeding triggers both reversible and persistent epigenetic changes in medaka hepatocytes. Our data provide novel insights into the epigenetic mechanism of nutritional programming and a comprehensive atlas of the long-term epigenetic state in an early-life HFD model of non-mammalian vertebrates. The nutritional status during early life can have enduring effects on an animal's metabolism, although the mechanisms underlying these long-term effects are still unclear. Epigenetic modifications are considered a prime candidate mechanism for encoding early-life nutritional memories during this critical developmental period. However, the extent to which these epigenetic changes occur and persist over time remains uncertain, in part due to challenges associated with directly stimulating the fetus with specific nutrients in viviparous mammalian systems. In this study, we used medaka as an oviparous vertebrate model to establish an early-life high-fat diet (HFD) model. Larvae were fed with HFD from the hatching stages (one week after fertilization) for six weeks, followed by normal chow (NC) for eight weeks until the adult stage. We examined the changes in the transcriptomic and epigenetic state of the liver over this period. We found that HFD induces simple liver steatosis, accompanied by drastic changes in the hepatic transcriptome, chromatin accessibility, and histone modifications, especially in metabolic genes. These changes were largely reversed after the long-term NC, demonstrating the high plasticity of the epigenetic state in hepatocytes. However, we found a certain number of genomic loci showing non-reversible epigenetic changes, especially around genes related to cell signaling, liver fibrosis, and hepatocellular carcinoma, implying persistent changes in the cellular state of the liver triggered by early-life HFD feeding. In summary, our data show that early-life HFD feeding triggers both reversible and persistent epigenetic changes in medaka hepatocytes. Our data provide novel insights into the epigenetic mechanism of nutritional programming and a comprehensive atlas of the long-term epigenetic state in an early-life HFD model of non-mammalian vertebrates. BackgroundThe nutritional status during early life can have enduring effects on an animal’s metabolism, although the mechanisms underlying these long-term effects are still unclear. Epigenetic modifications are considered a prime candidate mechanism for encoding early-life nutritional memories during this critical developmental period. However, the extent to which these epigenetic changes occur and persist over time remains uncertain, in part due to challenges associated with directly stimulating the fetus with specific nutrients in viviparous mammalian systems.ResultsIn this study, we used medaka as an oviparous vertebrate model to establish an early-life high-fat diet (HFD) model. Larvae were fed with HFD from the hatching stages (one week after fertilization) for six weeks, followed by normal chow (NC) for eight weeks until the adult stage. We examined the changes in the transcriptomic and epigenetic state of the liver over this period. We found that HFD induces simple liver steatosis, accompanied by drastic changes in the hepatic transcriptome, chromatin accessibility, and histone modifications, especially in metabolic genes. These changes were largely reversed after the long-term NC, demonstrating the high plasticity of the epigenetic state in hepatocytes. However, we found a certain number of genomic loci showing non-reversible epigenetic changes, especially around genes related to cell signaling, liver fibrosis, and hepatocellular carcinoma, implying persistent changes in the cellular state of the liver triggered by early-life HFD feeding.ConclusionIn summary, our data show that early-life HFD feeding triggers both reversible and persistent epigenetic changes in medaka hepatocytes. Our data provide novel insights into the epigenetic mechanism of nutritional programming and a comprehensive atlas of the long-term epigenetic state in an early-life HFD model of non-mammalian vertebrates. The nutritional status during early life can have enduring effects on an animal's metabolism, although the mechanisms underlying these long-term effects are still unclear. Epigenetic modifications are considered a prime candidate mechanism for encoding early-life nutritional memories during this critical developmental period. However, the extent to which these epigenetic changes occur and persist over time remains uncertain, in part due to challenges associated with directly stimulating the fetus with specific nutrients in viviparous mammalian systems.BACKGROUNDThe nutritional status during early life can have enduring effects on an animal's metabolism, although the mechanisms underlying these long-term effects are still unclear. Epigenetic modifications are considered a prime candidate mechanism for encoding early-life nutritional memories during this critical developmental period. However, the extent to which these epigenetic changes occur and persist over time remains uncertain, in part due to challenges associated with directly stimulating the fetus with specific nutrients in viviparous mammalian systems.In this study, we used medaka as an oviparous vertebrate model to establish an early-life high-fat diet (HFD) model. Larvae were fed with HFD from the hatching stages (one week after fertilization) for six weeks, followed by normal chow (NC) for eight weeks until the adult stage. We examined the changes in the transcriptomic and epigenetic state of the liver over this period. We found that HFD induces simple liver steatosis, accompanied by drastic changes in the hepatic transcriptome, chromatin accessibility, and histone modifications, especially in metabolic genes. These changes were largely reversed after the long-term NC, demonstrating the high plasticity of the epigenetic state in hepatocytes. However, we found a certain number of genomic loci showing non-reversible epigenetic changes, especially around genes related to cell signaling, liver fibrosis, and hepatocellular carcinoma, implying persistent changes in the cellular state of the liver triggered by early-life HFD feeding.RESULTSIn this study, we used medaka as an oviparous vertebrate model to establish an early-life high-fat diet (HFD) model. Larvae were fed with HFD from the hatching stages (one week after fertilization) for six weeks, followed by normal chow (NC) for eight weeks until the adult stage. We examined the changes in the transcriptomic and epigenetic state of the liver over this period. We found that HFD induces simple liver steatosis, accompanied by drastic changes in the hepatic transcriptome, chromatin accessibility, and histone modifications, especially in metabolic genes. These changes were largely reversed after the long-term NC, demonstrating the high plasticity of the epigenetic state in hepatocytes. However, we found a certain number of genomic loci showing non-reversible epigenetic changes, especially around genes related to cell signaling, liver fibrosis, and hepatocellular carcinoma, implying persistent changes in the cellular state of the liver triggered by early-life HFD feeding.In summary, our data show that early-life HFD feeding triggers both reversible and persistent epigenetic changes in medaka hepatocytes. Our data provide novel insights into the epigenetic mechanism of nutritional programming and a comprehensive atlas of the long-term epigenetic state in an early-life HFD model of non-mammalian vertebrates.CONCLUSIONIn summary, our data show that early-life HFD feeding triggers both reversible and persistent epigenetic changes in medaka hepatocytes. Our data provide novel insights into the epigenetic mechanism of nutritional programming and a comprehensive atlas of the long-term epigenetic state in an early-life HFD model of non-mammalian vertebrates. Background The nutritional status during early life can have enduring effects on an animal's metabolism, although the mechanisms underlying these long-term effects are still unclear. Epigenetic modifications are considered a prime candidate mechanism for encoding early-life nutritional memories during this critical developmental period. However, the extent to which these epigenetic changes occur and persist over time remains uncertain, in part due to challenges associated with directly stimulating the fetus with specific nutrients in viviparous mammalian systems. Results In this study, we used medaka as an oviparous vertebrate model to establish an early-life high-fat diet (HFD) model. Larvae were fed with HFD from the hatching stages (one week after fertilization) for six weeks, followed by normal chow (NC) for eight weeks until the adult stage. We examined the changes in the transcriptomic and epigenetic state of the liver over this period. We found that HFD induces simple liver steatosis, accompanied by drastic changes in the hepatic transcriptome, chromatin accessibility, and histone modifications, especially in metabolic genes. These changes were largely reversed after the long-term NC, demonstrating the high plasticity of the epigenetic state in hepatocytes. However, we found a certain number of genomic loci showing non-reversible epigenetic changes, especially around genes related to cell signaling, liver fibrosis, and hepatocellular carcinoma, implying persistent changes in the cellular state of the liver triggered by early-life HFD feeding. Conclusion In summary, our data show that early-life HFD feeding triggers both reversible and persistent epigenetic changes in medaka hepatocytes. Our data provide novel insights into the epigenetic mechanism of nutritional programming and a comprehensive atlas of the long-term epigenetic state in an early-life HFD model of non-mammalian vertebrates. Keywords: Nutritional programming, High-fat diet, Fatty liver, Chromatin accessibility, Histone modifications, Medaka Abstract Background The nutritional status during early life can have enduring effects on an animal’s metabolism, although the mechanisms underlying these long-term effects are still unclear. Epigenetic modifications are considered a prime candidate mechanism for encoding early-life nutritional memories during this critical developmental period. However, the extent to which these epigenetic changes occur and persist over time remains uncertain, in part due to challenges associated with directly stimulating the fetus with specific nutrients in viviparous mammalian systems. Results In this study, we used medaka as an oviparous vertebrate model to establish an early-life high-fat diet (HFD) model. Larvae were fed with HFD from the hatching stages (one week after fertilization) for six weeks, followed by normal chow (NC) for eight weeks until the adult stage. We examined the changes in the transcriptomic and epigenetic state of the liver over this period. We found that HFD induces simple liver steatosis, accompanied by drastic changes in the hepatic transcriptome, chromatin accessibility, and histone modifications, especially in metabolic genes. These changes were largely reversed after the long-term NC, demonstrating the high plasticity of the epigenetic state in hepatocytes. However, we found a certain number of genomic loci showing non-reversible epigenetic changes, especially around genes related to cell signaling, liver fibrosis, and hepatocellular carcinoma, implying persistent changes in the cellular state of the liver triggered by early-life HFD feeding. Conclusion In summary, our data show that early-life HFD feeding triggers both reversible and persistent epigenetic changes in medaka hepatocytes. Our data provide novel insights into the epigenetic mechanism of nutritional programming and a comprehensive atlas of the long-term epigenetic state in an early-life HFD model of non-mammalian vertebrates. |
ArticleNumber | 472 |
Audience | Academic |
Author | Kunishima, Yoshimi Morishita, Shinichi Inoue, Yusuke Suzuki, Yuta Washio, Terumi Takeda, Hiroyuki |
Author_xml | – sequence: 1 givenname: Yusuke surname: Inoue fullname: Inoue, Yusuke – sequence: 2 givenname: Yuta surname: Suzuki fullname: Suzuki, Yuta – sequence: 3 givenname: Yoshimi surname: Kunishima fullname: Kunishima, Yoshimi – sequence: 4 givenname: Terumi surname: Washio fullname: Washio, Terumi – sequence: 5 givenname: Shinichi surname: Morishita fullname: Morishita, Shinichi – sequence: 6 givenname: Hiroyuki surname: Takeda fullname: Takeda, Hiroyuki |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37605229$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhSNURB_wB1ggS2zaRUrs-DUrVFVAR6pUicfasp3rjEsmHmxPxcCfx-m0aKZCKIvYzneOc4_OcXUwhhGq6jVuzjGW_F3CRHJaN6StmxljosbPqiNMBa4J5vRgZ31YHad02zRYSMJeVIet4A0jZHZU_b7y_aJ2OqPOQ0Z-RKDjsEGDd4By9H0PMSET8gJFuCtrbwZAeuzQatqkDGNGsPI9jJC9RXahxx7SZJQXgJbQ6e8aOZ8W6PQmbn55ndCgs19BOntZPXd6SPDq4X1Sffv44evlVX1982l-eXFdWzaTuTbcdC3gzkrOHMaupQQDFgy6htpZK1pJCiCNoVgTZwBrJ5hpgJMip6JpT6r51rcL-latol_quFFBe3V_EGKvdCw_P4AymnVEtsRYZqkw1ECHpXROUlkiM1C83m-9VmtThrNl_KiHPdP9L6NfqD7cKdxQigXHxeH0wSGGH2tIWS19sjAMeoSwTopIRmdc4FYW9O0T9Das41iyKhRnLcec7VC9LhP40YVysZ1M1UW5UDSSc1Go839Q5elg6W0plvPlfE9wticoTIafudfrlNT8y-d99s1uKn_jeOxZAeQWsDGkFMEp63OpQZhC8kNJR02VVttKq1JpdV9pNeVFnkgf3f8j-gOCT_dn |
CitedBy_id | crossref_primary_10_1016_j_ejim_2025_03_017 crossref_primary_10_1210_endocr_bqae006 crossref_primary_10_1038_s41416_025_02969_8 crossref_primary_10_3389_fimmu_2024_1412821 crossref_primary_10_3390_nu17010127 crossref_primary_10_1038_s41392_024_01755_x crossref_primary_10_3390_metabo14060325 |
Cites_doi | 10.1016/j.celrep.2017.11.059 10.1172/JCI63539 10.1016/j.bbadis.2017.08.017 10.32604/oncologie.2022.023248 10.1093/bioinformatics/btu170 10.1242/dmm.002311 10.1016/j.molcel.2019.10.007 10.1016/j.ymeth.2009.03.001 10.1186/s12885-015-1025-3 10.1002/hep.27030 10.1016/j.abb.2020.108588 10.1371/journal.pone.0083162 10.1038/nrm.2015.16 10.1074/jbc.M115.711028 10.1002/wsbm.1416 10.1016/j.cell.2014.10.022 10.1016/j.ajog.2014.01.045 10.1126/science.abn9886 10.1172/JCI127502 10.1016/j.ajog.2010.06.042 10.3390/ijms232214009 10.1152/ajpregu.00444.2006 10.1210/en.2012-1877 10.1016/j.aquaculture.2014.10.044 10.1038/nrdp.2015.80 10.1038/s41419-021-03704-w 10.1371/journal.pone.0124633 10.1126/science.aaf1098 10.1111/j.1365-2796.2007.01809.x 10.1038/nrg3941 10.1016/j.cmet.2013.07.004 10.1016/j.mod.2004.03.012 10.1016/j.cell.2018.06.031 10.1146/annurev-animal-020518-115250 10.3389/fendo.2021.681356 10.1038/s41586-022-04756-4 10.1038/nrgastro.2016.160 10.3390/ijms24054996 10.1242/jeb.106062 10.1093/bioinformatics/bts635 10.1038/nm.4350 10.1016/j.stem.2021.07.001 10.1038/s41467-017-01982-7 10.1186/s12864-016-2804-1 10.1016/j.aquaculture.2017.04.006 10.1016/j.molcel.2010.05.004 10.3390/fishes3040045 10.3892/or.2014.3578 10.1111/j.1469-7580.2008.00977.x 10.1038/srep40220 10.1074/jbc.M709717200 10.1002/pro.4218 10.1186/s40851-017-0086-3 10.1016/j.jnutbio.2013.09.016 10.1186/s12864-017-4264-7 10.1016/j.aquaculture.2016.02.007 10.1007/s12038-017-9675-8 10.1038/s41598-017-05349-2 10.1038/nature05846 10.1016/j.tree.2010.05.006 10.1016/j.cell.2011.07.013 10.1017/S0007114517001842 10.1007/s00018-019-03114-4 10.1186/gb-2008-9-9-r137 10.1016/j.jhep.2009.12.042 10.1101/gad.348340.121 10.1007/s00335-019-09816-1 10.3390/metabo6040044 10.1016/j.jhep.2018.06.008 10.1002/hep.29792 10.1186/s13059-014-0550-8 10.1017/S0007114513003243 10.1371/journal.pbio.2006249 10.1016/j.cbpa.2016.07.016 10.1371/journal.pone.0175675 10.1093/emboj/cdg293 10.1093/bioinformatics/btp324 10.21608/asmj.2019.111197 10.1146/annurev-genet-051710-151001 10.1186/s12967-022-03689-w 10.1002/hep4.1578 10.1038/s41576-018-0089-8 10.1016/j.celrep.2015.04.015 10.1038/nature24271 10.3389/fimmu.2019.02490 10.2147/JIR.S324336 |
ContentType | Journal Article |
Copyright | 2023. BioMed Central Ltd., part of Springer Nature. COPYRIGHT 2023 BioMed Central Ltd. 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. BioMed Central Ltd., part of Springer Nature 2023 |
Copyright_xml | – notice: 2023. BioMed Central Ltd., part of Springer Nature. – notice: COPYRIGHT 2023 BioMed Central Ltd. – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: BioMed Central Ltd., part of Springer Nature 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QP 7QR 7SS 7TK 7U7 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM DOA |
DOI | 10.1186/s12864-023-09557-1 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Toxicology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2164 |
EndPage | 19 |
ExternalDocumentID | oai_doaj_org_article_ba5d2832bc5c47b4bed188ff848760be PMC10441761 A761708667 37605229 10_1186_s12864_023_09557_1 |
Genre | Journal Article |
GeographicLocations | Japan |
GeographicLocations_xml | – name: Japan |
GrantInformation_xml | – fundername: AMED CREST, JST grantid: JP23gm1110007 – fundername: ; grantid: JP23gm1110007; JP23gm1110007; JP23gm1110007; JP23gm1110007; JP23gm1110007; JP23gm1110007 |
GroupedDBID | --- 0R~ 23N 2WC 2XV 53G 5VS 6J9 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK IAO IGS IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB PMFND 3V. 7QP 7QR 7SS 7TK 7U7 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c598t-b6bd3e1dc865f11f3421e175ed04c937382bd38bb41a2fbe1af75b0e625984703 |
IEDL.DBID | M48 |
ISSN | 1471-2164 |
IngestDate | Wed Aug 27 01:31:24 EDT 2025 Thu Aug 21 18:40:07 EDT 2025 Fri Jul 11 05:23:51 EDT 2025 Fri Jul 25 19:13:36 EDT 2025 Tue Jun 17 21:54:23 EDT 2025 Tue Jun 10 21:27:35 EDT 2025 Fri Jun 27 05:46:21 EDT 2025 Sat Aug 02 01:41:21 EDT 2025 Thu Apr 24 23:03:29 EDT 2025 Tue Jul 01 00:39:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Medaka Chromatin accessibility Histone modifications Fatty liver Nutritional programming High-fat diet |
Language | English |
License | 2023. BioMed Central Ltd., part of Springer Nature. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c598t-b6bd3e1dc865f11f3421e175ed04c937382bd38bb41a2fbe1af75b0e625984703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12864-023-09557-1 |
PMID | 37605229 |
PQID | 2865361658 |
PQPubID | 44682 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ba5d2832bc5c47b4bed188ff848760be pubmedcentral_primary_oai_pubmedcentral_nih_gov_10441761 proquest_miscellaneous_2854967138 proquest_journals_2865361658 gale_infotracmisc_A761708667 gale_infotracacademiconefile_A761708667 gale_incontextgauss_ISR_A761708667 pubmed_primary_37605229 crossref_citationtrail_10_1186_s12864_023_09557_1 crossref_primary_10_1186_s12864_023_09557_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-21 |
PublicationDateYYYYMMDD | 2023-08-21 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC genomics |
PublicationTitleAlternate | BMC Genomics |
PublicationYear | 2023 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | H Li (9557_CR88) 2009; 25 I Geurden (9557_CR48) 2014; 217 M Matsumoto (9557_CR63) 2016; 4 HJ Abu-ToamihAtamni (9557_CR35) 2019; 30 HJ Yun (9557_CR65) 2022; 23 L Bideyan (9557_CR4) 2021; 35 M Ahrens (9557_CR26) 2013; 18 A Kania (9557_CR60) 2016; 17 J Zhao (9557_CR70) 2022; 20 A Lempradl (9557_CR5) 2015; 16 SC Michl (9557_CR56) 2017; 476 DW Pfennig (9557_CR2) 2010; 25 MD Thompson (9557_CR8) 2020; 4 MG Netea (9557_CR16) 2016; 352 SR Wesolowski (9557_CR23) 2017; 14 KR Costello (9557_CR14) 2018; 10 BS Kamalam (9557_CR51) 2017; 467 D Schmidt (9557_CR83) 2009; 48 BJ Reading (9557_CR43) 2018; 3 LH Vi (9557_CR73) 2008; 283 S Li (9557_CR58) 2015; 15 A Kalvisa (9557_CR77) 2018; 16 JD Buenrostro (9557_CR82) 2015; 2015 SC Langley-Evans (9557_CR1) 2009; 215 H Takeda (9557_CR30) 2010; 44 M Stemmer (9557_CR81) 2015; 10 PD Thomas (9557_CR87) 2022; 31 S Flamini (9557_CR67) 2021; 12 H Maude (9557_CR21) 2021; 12 MA Suter (9557_CR20) 2014; 210 K Saeki (9557_CR64) 2003; 22 EM Brunt (9557_CR6) 2015; 1 G Gong (9557_CR49) 2015; 436 AM Bolger (9557_CR84) 2014; 30 A Dobin (9557_CR85) 2013; 29 M Kruse (9557_CR10) 2013; 154 MS Boshra (9557_CR62) 2019; 70 J Nikkanen (9557_CR41) 2022; 378 T Gao (9557_CR69) 2023; 24 M Siersbæk (9557_CR24) 2017; 7 MI Love (9557_CR86) 2014; 15 AWH Hui (9557_CR74) 2015; 33 H Kim (9557_CR40) 2019; 76 CO dos Santos (9557_CR19) 2015; 11 T Matsumoto (9557_CR29) 2010; 3 Y Zhang (9557_CR89) 2008; 9 M Li (9557_CR7) 2015; 2015 T Iwamatsu (9557_CR31) 2004; 121 JA Oben (9557_CR12) 2010; 52 L Fang (9557_CR46) 2014; 111 I Geurden (9557_CR53) 2013; 8 X Wang (9557_CR59) 2019; 69 R Bera (9557_CR71) 2014; 59 F Rocha (9557_CR50) 2016; 201 L Feng (9557_CR72) 2020; 693 Y Huang (9557_CR11) 2017; 42 Y Asaoka (9557_CR28) 2013; 6 SH Hsu (9557_CR68) 2012; 122 B Chen (9557_CR22) 2022; 605 UD Wankhade (9557_CR76) 2017; 12 DJP Barker (9557_CR3) 2007; 261 K Ichikawa (9557_CR33) 2017; 8 D Guan (9557_CR37) 2018; 174 F Quagliarini (9557_CR78) 2019; 76 X Shu (9557_CR61) 2022; 24 BM Gregorio (9557_CR9) 2010; 203 S Panserat (9557_CR45) 2019; 7 S Naik (9557_CR17) 2017; 550 AR Soltis (9557_CR36) 2017; 21 SL Klemm (9557_CR57) 2019; 20 N Tanaka (9557_CR66) 2017; 1863 SB Larsen (9557_CR18) 2021; 28 I Watakabe (9557_CR34) 2018; 4 M Kasahara (9557_CR32) 2007; 447 B Fang (9557_CR44) 2014; 159 D Moazed (9557_CR15) 2011; 146 MN Balasubramanian (9557_CR54) 2016; 17 R Xue (9557_CR80) 2019; 10 M Luo (9557_CR75) 2021; 14 DF de Jesus (9557_CR13) 2020; 130 J Du (9557_CR27) 2017; 7 I Geurden (9557_CR47) 2007; 292 C Lebeaupin (9557_CR39) 2018; 69 S Heinz (9557_CR90) 2010; 38 MP Czech (9557_CR38) 2017; 23 A Leung (9557_CR25) 2016; 291 M Clarkson (9557_CR52) 2017; 118 LM Vera (9557_CR55) 2017; 18 RS Strakovsky (9557_CR42) 2014; 25 EC Dunford (9557_CR79) 2016; 6 |
References_xml | – volume: 21 start-page: 3317 year: 2017 ident: 9557_CR36 publication-title: Cell Rep doi: 10.1016/j.celrep.2017.11.059 – volume: 122 start-page: 2871 year: 2012 ident: 9557_CR68 publication-title: J Clin Investig doi: 10.1172/JCI63539 – volume: 1863 start-page: 3170 year: 2017 ident: 9557_CR66 publication-title: Biochim Biophys Acta Mol Basis Dis doi: 10.1016/j.bbadis.2017.08.017 – volume: 24 start-page: 427 year: 2022 ident: 9557_CR61 publication-title: Oncologie doi: 10.32604/oncologie.2022.023248 – volume: 30 start-page: 2114 year: 2014 ident: 9557_CR84 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu170 – volume: 3 start-page: 431 year: 2010 ident: 9557_CR29 publication-title: Dis Models Mech doi: 10.1242/dmm.002311 – volume: 4 start-page: e1326 year: 2016 ident: 9557_CR63 publication-title: Inflamm Cell Signal – volume: 76 start-page: 531 year: 2019 ident: 9557_CR78 publication-title: Mol Cell doi: 10.1016/j.molcel.2019.10.007 – volume: 48 start-page: 240 year: 2009 ident: 9557_CR83 publication-title: Methods doi: 10.1016/j.ymeth.2009.03.001 – volume: 15 start-page: 18 year: 2015 ident: 9557_CR58 publication-title: BMC Cancer doi: 10.1186/s12885-015-1025-3 – volume: 59 start-page: 2238 year: 2014 ident: 9557_CR71 publication-title: Hepatology doi: 10.1002/hep.27030 – volume: 693 start-page: 108588 year: 2020 ident: 9557_CR72 publication-title: Arch Biochem Biophys doi: 10.1016/j.abb.2020.108588 – volume: 8 start-page: e83162 year: 2013 ident: 9557_CR53 publication-title: PLoS ONE doi: 10.1371/journal.pone.0083162 – volume: 17 start-page: 240 year: 2016 ident: 9557_CR60 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm.2015.16 – volume: 291 start-page: 10446 year: 2016 ident: 9557_CR25 publication-title: J Biol Chem doi: 10.1074/jbc.M115.711028 – volume: 10 start-page: e1416 year: 2018 ident: 9557_CR14 publication-title: Wiley Interdiscip Rev Syst Biol Med doi: 10.1002/wsbm.1416 – volume: 159 start-page: 1140 year: 2014 ident: 9557_CR44 publication-title: Cell doi: 10.1016/j.cell.2014.10.022 – volume: 210 start-page: 463.e1 year: 2014 ident: 9557_CR20 publication-title: Am J Obstet Gynecol doi: 10.1016/j.ajog.2014.01.045 – volume: 378 start-page: 290 year: 2022 ident: 9557_CR41 publication-title: Science doi: 10.1126/science.abn9886 – volume: 130 start-page: 2391 year: 2020 ident: 9557_CR13 publication-title: J Clin Investig doi: 10.1172/JCI127502 – volume: 203 start-page: 495.e1 year: 2010 ident: 9557_CR9 publication-title: Am J Obstet Gynecol doi: 10.1016/j.ajog.2010.06.042 – volume: 23 start-page: 14009 year: 2022 ident: 9557_CR65 publication-title: Int J Mol Sci doi: 10.3390/ijms232214009 – volume: 292 start-page: 2275 year: 2007 ident: 9557_CR47 publication-title: Am J Physiol Regul Integr Comp Physiol doi: 10.1152/ajpregu.00444.2006 – volume: 154 start-page: 3565 year: 2013 ident: 9557_CR10 publication-title: Endocrinology doi: 10.1210/en.2012-1877 – volume: 436 start-page: 127 year: 2015 ident: 9557_CR49 publication-title: Aquaculture doi: 10.1016/j.aquaculture.2014.10.044 – volume: 1 start-page: 15080 year: 2015 ident: 9557_CR6 publication-title: Nat Rev Dis Primers doi: 10.1038/nrdp.2015.80 – volume: 12 start-page: 421 year: 2021 ident: 9557_CR67 publication-title: Cell Death Dis doi: 10.1038/s41419-021-03704-w – volume: 10 start-page: e0124633 year: 2015 ident: 9557_CR81 publication-title: PLoS ONE doi: 10.1371/journal.pone.0124633 – volume: 2015 start-page: 21.29.1 year: 2015 ident: 9557_CR82 publication-title: Curr Protoc Mol Biol – volume: 352 start-page: 427 year: 2016 ident: 9557_CR16 publication-title: Science doi: 10.1126/science.aaf1098 – volume: 261 start-page: 412 year: 2007 ident: 9557_CR3 publication-title: J Intern Med doi: 10.1111/j.1365-2796.2007.01809.x – volume: 16 start-page: 665 year: 2015 ident: 9557_CR5 publication-title: Nat Rev Genet doi: 10.1038/nrg3941 – volume: 18 start-page: 296 year: 2013 ident: 9557_CR26 publication-title: Cell Metab doi: 10.1016/j.cmet.2013.07.004 – volume: 121 start-page: 605 year: 2004 ident: 9557_CR31 publication-title: Mech Dev doi: 10.1016/j.mod.2004.03.012 – volume: 174 start-page: 831 year: 2018 ident: 9557_CR37 publication-title: Cell doi: 10.1016/j.cell.2018.06.031 – volume: 7 start-page: 195 year: 2019 ident: 9557_CR45 publication-title: Annu Rev Anim Biosci doi: 10.1146/annurev-animal-020518-115250 – volume: 12 start-page: 681356 year: 2021 ident: 9557_CR21 publication-title: Front Endocrinol doi: 10.3389/fendo.2021.681356 – volume: 605 start-page: 761 year: 2022 ident: 9557_CR22 publication-title: Nature doi: 10.1038/s41586-022-04756-4 – volume: 14 start-page: 81 year: 2017 ident: 9557_CR23 publication-title: Nat Rev Gastroenterol Hepatol doi: 10.1038/nrgastro.2016.160 – volume: 24 start-page: 4996 year: 2023 ident: 9557_CR69 publication-title: Int J Mol Sci doi: 10.3390/ijms24054996 – volume: 217 start-page: 3396 year: 2014 ident: 9557_CR48 publication-title: J Exp Biol doi: 10.1242/jeb.106062 – volume: 29 start-page: 15 year: 2013 ident: 9557_CR85 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 – volume: 23 start-page: 804 year: 2017 ident: 9557_CR38 publication-title: Nat Med doi: 10.1038/nm.4350 – volume: 28 start-page: 1758 year: 2021 ident: 9557_CR18 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2021.07.001 – volume: 8 start-page: 1833 year: 2017 ident: 9557_CR33 publication-title: Nat Commun doi: 10.1038/s41467-017-01982-7 – volume: 17 start-page: 449 year: 2016 ident: 9557_CR54 publication-title: BMC Genomics doi: 10.1186/s12864-016-2804-1 – volume: 476 start-page: 19 year: 2017 ident: 9557_CR56 publication-title: Aquaculture doi: 10.1016/j.aquaculture.2017.04.006 – volume: 38 start-page: 576 year: 2010 ident: 9557_CR90 publication-title: Mol Cell doi: 10.1016/j.molcel.2010.05.004 – volume: 3 start-page: 45 year: 2018 ident: 9557_CR43 publication-title: Fishes doi: 10.3390/fishes3040045 – volume: 33 start-page: 397 year: 2015 ident: 9557_CR74 publication-title: Oncol Rep doi: 10.3892/or.2014.3578 – volume: 215 start-page: 36 year: 2009 ident: 9557_CR1 publication-title: J Anat doi: 10.1111/j.1469-7580.2008.00977.x – volume: 7 start-page: 40220 year: 2017 ident: 9557_CR24 publication-title: Sci Rep doi: 10.1038/srep40220 – volume: 283 start-page: 14915 year: 2008 ident: 9557_CR73 publication-title: J Biol Chem doi: 10.1074/jbc.M709717200 – volume: 31 start-page: 8 year: 2022 ident: 9557_CR87 publication-title: Protein Sci doi: 10.1002/pro.4218 – volume: 4 start-page: 3 year: 2018 ident: 9557_CR34 publication-title: Zoological Lett doi: 10.1186/s40851-017-0086-3 – volume: 25 start-page: 170 year: 2014 ident: 9557_CR42 publication-title: J Nutr Biochem doi: 10.1016/j.jnutbio.2013.09.016 – volume: 18 start-page: 886 year: 2017 ident: 9557_CR55 publication-title: BMC Genomics doi: 10.1186/s12864-017-4264-7 – volume: 467 start-page: 3 year: 2017 ident: 9557_CR51 publication-title: Aquaculture doi: 10.1016/j.aquaculture.2016.02.007 – volume: 42 start-page: 311 year: 2017 ident: 9557_CR11 publication-title: J Biosci doi: 10.1007/s12038-017-9675-8 – volume: 7 start-page: 5274 year: 2017 ident: 9557_CR27 publication-title: Sci Rep doi: 10.1038/s41598-017-05349-2 – volume: 447 start-page: 714 year: 2007 ident: 9557_CR32 publication-title: Nature doi: 10.1038/nature05846 – volume: 25 start-page: 459 year: 2010 ident: 9557_CR2 publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2010.05.006 – volume: 146 start-page: 510 year: 2011 ident: 9557_CR15 publication-title: Cell doi: 10.1016/j.cell.2011.07.013 – volume: 118 start-page: 17 year: 2017 ident: 9557_CR52 publication-title: Br J Nutr doi: 10.1017/S0007114517001842 – volume: 76 start-page: 4341 year: 2019 ident: 9557_CR40 publication-title: Cell Mol Life Sci doi: 10.1007/s00018-019-03114-4 – volume: 2015 start-page: 437107 year: 2015 ident: 9557_CR7 publication-title: Biomed Res Int – volume: 9 start-page: R137 year: 2008 ident: 9557_CR89 publication-title: Genome Biol doi: 10.1186/gb-2008-9-9-r137 – volume: 52 start-page: 913 year: 2010 ident: 9557_CR12 publication-title: J Hepatol doi: 10.1016/j.jhep.2009.12.042 – volume: 35 start-page: 635 issue: 9–10 year: 2021 ident: 9557_CR4 publication-title: Genes Dev doi: 10.1101/gad.348340.121 – volume: 30 start-page: 260 year: 2019 ident: 9557_CR35 publication-title: Mamm Genome doi: 10.1007/s00335-019-09816-1 – volume: 6 start-page: 44 year: 2016 ident: 9557_CR79 publication-title: Metabolites doi: 10.3390/metabo6040044 – volume: 6 start-page: 905 year: 2013 ident: 9557_CR28 publication-title: Dis Models Mech – volume: 69 start-page: 927 year: 2018 ident: 9557_CR39 publication-title: J Hepatol doi: 10.1016/j.jhep.2018.06.008 – volume: 69 start-page: 573 year: 2019 ident: 9557_CR59 publication-title: Hepatology doi: 10.1002/hep.29792 – volume: 15 start-page: 550 year: 2014 ident: 9557_CR86 publication-title: Genome Biol doi: 10.1186/s13059-014-0550-8 – volume: 111 start-page: 808 year: 2014 ident: 9557_CR46 publication-title: Br J Nutr doi: 10.1017/S0007114513003243 – volume: 16 start-page: e2006249 year: 2018 ident: 9557_CR77 publication-title: PLoS Biol doi: 10.1371/journal.pbio.2006249 – volume: 201 start-page: 189 year: 2016 ident: 9557_CR50 publication-title: Comp Biochem Physiol A Mol Integr Physiol doi: 10.1016/j.cbpa.2016.07.016 – volume: 12 start-page: e0175675 year: 2017 ident: 9557_CR76 publication-title: PLoS ONE doi: 10.1371/journal.pone.0175675 – volume: 22 start-page: 3015 year: 2003 ident: 9557_CR64 publication-title: EMBO J doi: 10.1093/emboj/cdg293 – volume: 25 start-page: 1754 year: 2009 ident: 9557_CR88 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp324 – volume: 70 start-page: 5 year: 2019 ident: 9557_CR62 publication-title: Ain Shams Med J doi: 10.21608/asmj.2019.111197 – volume: 44 start-page: 217 year: 2010 ident: 9557_CR30 publication-title: Annu Rev Genet doi: 10.1146/annurev-genet-051710-151001 – volume: 20 start-page: 520 year: 2022 ident: 9557_CR70 publication-title: J Transl Med doi: 10.1186/s12967-022-03689-w – volume: 4 start-page: 1392 year: 2020 ident: 9557_CR8 publication-title: Hepatol Commun doi: 10.1002/hep4.1578 – volume: 20 start-page: 207 year: 2019 ident: 9557_CR57 publication-title: Nat Rev Genet doi: 10.1038/s41576-018-0089-8 – volume: 11 start-page: 1102 year: 2015 ident: 9557_CR19 publication-title: Cell Rep doi: 10.1016/j.celrep.2015.04.015 – volume: 550 start-page: 475 year: 2017 ident: 9557_CR17 publication-title: Nature doi: 10.1038/nature24271 – volume: 10 start-page: 2490 year: 2019 ident: 9557_CR80 publication-title: Front Immunol doi: 10.3389/fimmu.2019.02490 – volume: 14 start-page: 4217 year: 2021 ident: 9557_CR75 publication-title: J Inflamm Res doi: 10.2147/JIR.S324336 |
SSID | ssj0017825 |
Score | 2.4499636 |
Snippet | The nutritional status during early life can have enduring effects on an animal's metabolism, although the mechanisms underlying these long-term effects are... Background The nutritional status during early life can have enduring effects on an animal's metabolism, although the mechanisms underlying these long-term... BackgroundThe nutritional status during early life can have enduring effects on an animal’s metabolism, although the mechanisms underlying these long-term... Abstract Background The nutritional status during early life can have enduring effects on an animal’s metabolism, although the mechanisms underlying these... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 472 |
SubjectTerms | Analysis Animals Cell signaling Chromatin Chromatin accessibility Developmental stages Diabetes Diet Diet, High-Fat DNA methylation Epigenesis, Genetic Epigenetic inheritance Epigenetics Fatty liver Fertilization Fetuses Fibrosis Gastrointestinal surgery Gene expression Gene Expression Regulation, Developmental Genes Genetic Loci Genomes Genomics Hatching Health aspects Hepatocellular carcinoma Hepatocytes High fat diet Histone modifications Histones Larvae Lipids Liver Liver cancer Liver diseases Long-term effects Mammals Medaka Metabolism Nutrients Nutrition Nutritional programming Nutritional status Oryzias - genetics Oryzias - growth & development Physiological aspects Steatosis Transcriptomes Transcriptomics Type 2 diabetes Vertebrates |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kIPgifhutsoqgIqHZ7Ef2HtvSUgUV1ELflv1sg0fuuOQeqv-8M0nuuCDYFx-TnYTNzOx8kJnfEPKmdDFq4ULOeeVykQqPzcqQqvDAuLTKJofNyZ-_qLNz8elCXuyM-sKasAEeeGDcgbMy4Dgd56UXlRMuBqZ1ShoibVW4iNYXfN4mmRr_H4Dfk5sWGa0OWrDCSuTgn3KEXKtyNnFDPVr_3zZ5xylNCyZ3PNDpPXJ3DB3p4bDl--RWbB6Q28MwyeuH5DeWbOTJdjTUsaN1QyOCF9N5nSLtIAm_hEiPOpAMRdimFZyFeaS2CXSJFyDtpqNxieic2NhIh5bgFl8EQSKFfdmflqa6vaLvvq6uf9W2pVhIt4zt-0fk_PTkx_FZPo5WyL2c6S53ygUeWfBaycRY4qJkESKJGArhZ4h2VAKBdk4wWyYXmU2VdEXEbAn8WcEfk71m0cSnhHJbeMmL5JgCaggopSsTV8ziD8ZUqYywDaeNH3HHcfzF3PT5h1ZmkI4B6ZheOoZl5MP2meWAuvFP6iMU4JYSEbP7G6BHZtQjc5MeZeQ1it8gJkaDRTeXdt225uP3b-awQtR6rVSVkbcjUVrAN3g79jAAJxBGa0K5P6GEQ-unyxstM6PRaA02CQPjICbMyKvtMj6JhXBNXKyRBhJ6VTEONE8Gpdx-N9Y3QTg9y4ieqOuEMdOVpr7qIcUhKRcMdvfsf7DyOblT9kcNbDDbJ3vdah1fQOjWuZf9Kf0D7glAbg priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96Ivgiftu7U6IIKlKuadK0-ySneJyCCurBvoUkTfaKS1u33YfTf96ZNluvCPfYZlqSTOarnfkNIS9S41whTBlznptY-MRisTKEKrxkPNNSe4PFyZ-_yNMz8WmZLcMHty6kVe504qCoy8biN_IjrKDkkoHBfNv-irFrFP5dDS00rpMbCF2GKV35cgq4GFi_bFcoU8ijDnSxFDFYqRiB1_KYzYzRgNn_v2a-ZJrmaZOX7NDJHXI7OJD0eOT4XXLN1ffIzbGl5MV98gcTN2Kve1pWrqdVTR1CGNN15R3tYT0r8PeoAf5QBG_agESsHdV1SVu8AJ7XPXUtYnRieSMdC4M7fBG4ihTmpX9q6qvunL76urn4XemOYjpd67rXD8jZyYcf70_j0GAhttmi6GMjTckdKy3srWfMc5EyB_6EKxNhF4h5lAJBYYxgOvXGMe3zzCQOYyawagl_SPbqpnaPCeU6sRlPvGESqMGtzEzqgV8afzP6XEaE7XZa2YA-jk0w1mqIQgqpRu4o4I4auKNYRN5Mz7Qj9saV1O-QgRMl4mYPN5rNSgUxBNcgK7E5k7GZFbkRxpWsKLwvIG6TiXEReY7sV4iMUWPqzUpvu059_P5NHeeIXV9ImUfkZSDyDazB6lDJADuBYFozysMZJYiunQ_vTpkKqqNT_w56RJ5Nw_gkpsPVrtkiDYT1MmccaB6Nh3JaN2Y5gVO9iEgxO66zjZmP1NX5ACwOoblgMLv9q-d1QG6lgxCBjmWHZK_fbN0TcM1683SQv78UsTcb priority: 102 providerName: ProQuest |
Title | High-fat diet in early life triggers both reversible and persistent epigenetic changes in the medaka fish (Oryzias latipes) |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37605229 https://www.proquest.com/docview/2865361658 https://www.proquest.com/docview/2854967138 https://pubmed.ncbi.nlm.nih.gov/PMC10441761 https://doaj.org/article/ba5d2832bc5c47b4bed188ff848760be |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbGJiReEL_JNiqDkHhAgThObPcBoQ1tGkib0KBS3yw7sbuIKi1NKrH_njsnLYuYEI-tL1Fz5_Pd19x9R8jr1DqnMlvGnEsbZz4psFkZoAovGc-NMN5ic_L5hTibZF-m-XSHbMYd9QpsboV2OE9qspq_-_Xz-iM4_Ifg8Eq8b-CMFVkM0SdGQjUZAxrag8gk0VHPsz9vFSAa5qHbSLI4BZywaaK59R6DQBX4_P8-tW-ErWFJ5Y0YdfqA3O-TS3rU7YaHZMfVj8jdbtzk9WNSYVFH7E1Ly8q1tKqpQ3pjOq-8oy3A9BnkgtSC7SgSO63AW-aOmrqkS_wA-6FuqVsifye2PtKuabjBG0EaSeF3mR-G-qq5ekImpyffP53F_aiFuMjHqo2tsCV3rCyUyD1jnmcpc5BZuDLJijGyH6UgoKzNmEm9dcx4mdvEIXqC-Jbwp2S3XtTuOaHcJEXOE2-ZAGlIMHObei6YwReOXoqIsI1eddHzkOM4jLkOeEQJ3dlCgy10sIVmEXm7vWbZsXD8U_oYzbWVRAbt8MViNdO9Q0KSkJc4pskWeZFJm1lXMqW8V4DgRGJdRF6hsTVyZNRYhDMz66bRn79d6iOJLPZKCBmRN72QX8AzFKbvaQBNIK3WQPJwIAlOXAyXN3tKb3xAY9MwKA5yxIi83C7jlVgYV7vFGmUA4AvJOMg867bg9rmx3gnS63FE1GBzDhQzXKmrq0AxDiAd_Eew_f_RwgG5lwbHgTOXHZLddrV2LyBVa-2I3JFTOSJ7xycXXy9H4Q-PUfDJ38h0OxE |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJ8ReEN8EBhgEAoSixXHipA8IbbCpZVtBY5P2ZuzE7qJVaWlSocL_xN_IXT7KIqS97THxxUp85_uI735HyEtfGxMHOnU5j7QbWC_BYmUIVXjKeKiEshqLkw9HYnASfD4NT9fIn7YWBtMqW51YKep0muA_8i2soOSCgcH8MPvhYtcoPF1tW2jUYrFvlj8hZCveDz8Bf1_5_t7u8ceB23QVcJOwH5euFjrlhqUJTGgZszzwmQEjalIvSPoI9OMDQax1wJRvtWHKRqH2DAYKoMo9DvNeI-sBh1CmR9Z3dkdfj1bnFmBvw7Y0JxZbBWh_EbhgF12Eeotc1jF_VZeA_23BBWPYTdS8YPn2bpGbjctKt2sZu03WTH6HXK-bWC7vkt-YKuJaVdI0MyXNcmoQNJlOMmtoCSs4Bg-TapAIinBRc9iDE0NVntIZXoCU5SU1M0QFxYJKWpciFzgROKcU3kudK2qz4oy--TJf_spUQTGBb2aKt_fIyZUs_n3Sy6e5eUgoV14Scs9qJoAaHNlQ-xYkROHBpo2EQ1i70jJp8M6x7cZEVnFPLGTNHQnckRV3JHPIu9Uzsxrt41LqHWTgihKRuqsb0_lYNhsfnJEwxXZQOgmTINKBNimLY2tjiBSFp41DXiD7JWJx5JjsM1aLopDDb0dyO0K0_FiIyCGvGyI7hW9IVFM7ASuB8F0dys0OJSiLpDvcSplslFUh_20thzxfDeOTmICXm-kCacKgLyLGgeZBLZSr78a8KnDj-w6JO-LaWZjuSJ6dVVDmzMMWeII9uvy9npEbg-PDA3kwHO0_Jht-taFAw7NN0ivnC_MEHMNSP212IyXfr1oB_AXTXnUc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-fat+diet+in+early+life+triggers+both+reversible+and+persistent+epigenetic+changes+in+the+medaka+fish&rft.jtitle=BMC+genomics&rft.au=Inoue%2C+Yusuke&rft.au=Suzuki%2C+Yuta&rft.au=Kunishima%2C+Yoshimi&rft.au=Washio%2C+Terumi&rft.date=2023-08-21&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=24&rft.issue=1&rft_id=info:doi/10.1186%2Fs12864-023-09557-1&rft.externalDBID=ISR&rft.externalDocID=A761708667 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon |