Disruption of PHO13 improves ethanol production via the xylose isomerase pathway

Xylose is the second most abundant sugar in lignocellulosic materials and can be converted to ethanol by recombinant Saccharomyces cerevisiae yeast strains expressing heterologous genes involved in xylose assimilation pathways. Recent research demonstrated that disruption of the alkaline phosphatase...

Full description

Saved in:
Bibliographic Details
Published inAMB Express Vol. 6; no. 1; pp. 4 - 10
Main Authors Bamba, Takahiro, Hasunuma, Tomohisa, Kondo, Akihiko
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Science and Business Media LLC 14.01.2016
Springer Berlin Heidelberg
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Xylose is the second most abundant sugar in lignocellulosic materials and can be converted to ethanol by recombinant Saccharomyces cerevisiae yeast strains expressing heterologous genes involved in xylose assimilation pathways. Recent research demonstrated that disruption of the alkaline phosphatase gene, PHO13 , enhances ethanol production from xylose by a strain expressing the xylose reductase (XR) and xylitol dehydrogenase (XDH) genes; however, the yield of ethanol is poor. In this study, PHO13 was disrupted in a recombinant strain harboring multiple copies of the xylose isomerase (XI) gene derived from Orpinomyces sp., coupled with overexpression of the endogenous xylulokinase (XK) gene and disruption of GRE3 , which encodes aldose reductase. The resulting YΔGP/XK/XI strain consumed 2.08 g/L/h of xylose and produced 0.88 g/L/h of volumetric ethanol, for an 86.8 % theoretical ethanol yield, and only YΔGP/XK/XI demonstrated increase in cell concentration. Transcriptome analysis indicated that expression of genes involved in the pentose phosphate pathway ( GND1 , SOL3 , TAL1 , RKI1 , and TKL1 ) and TCA cycle and respiratory chain ( NDE1 , ACO1 , ACO2 , SDH2 , IDH1 , IDH2 , ATP7 , ATP19 , SDH4 , SDH3 , CMC2 , and ATP15 ) was upregulated in the YΔGP/XK/XI strain. And the expression levels of 125 cell cycle genes were changed by deletion of PHO13 .
AbstractList Xylose is the second most abundant sugar in lignocellulosic materials and can be converted to ethanol by recombinant Saccharomyces cerevisiae yeast strains expressing heterologous genes involved in xylose assimilation pathways. Recent research demonstrated that disruption of the alkaline phosphatase gene, PHO13, enhances ethanol production from xylose by a strain expressing the xylose reductase (XR) and xylitol dehydrogenase (XDH) genes; however, the yield of ethanol is poor. In this study, PHO13 was disrupted in a recombinant strain harboring multiple copies of the xylose isomerase (XI) gene derived from Orpinomyces sp., coupled with overexpression of the endogenous xylulokinase (XK) gene and disruption of GRE3, which encodes aldose reductase. The resulting Y Delta GP/XK/XI strain consumed 2.08 g/L/h of xylose and produced 0.88 g/L/h of volumetric ethanol, for an 86.8 % theoretical ethanol yield, and only Y Delta GP/XK/XI demonstrated increase in cell concentration. Transcriptome analysis indicated that expression of genes involved in the pentose phosphate pathway (GND1, SOL3, TAL1, RKI1, and TKL1) and TCA cycle and respiratory chain (NDE1, ACO1, ACO2, SDH2, IDH1, IDH2, ATP7, ATP19, SDH4, SDH3, CMC2, and ATP15) was upregulated in the Y Delta GP/XK/XI strain. And the expression levels of 125 cell cycle genes were changed by deletion of PHO13.
Xylose is the second most abundant sugar in lignocellulosic materials and can be converted to ethanol by recombinant Saccharomyces cerevisiae yeast strains expressing heterologous genes involved in xylose assimilation pathways. Recent research demonstrated that disruption of the alkaline phosphatase gene, PHO13, enhances ethanol production from xylose by a strain expressing the xylose reductase (XR) and xylitol dehydrogenase (XDH) genes; however, the yield of ethanol is poor. In this study, PHO13 was disrupted in a recombinant strain harboring multiple copies of the xylose isomerase (XI) gene derived from Orpinomyces sp., coupled with overexpression of the endogenous xylulokinase (XK) gene and disruption of GRE3, which encodes aldose reductase. The resulting YΔGP/XK/XI strain consumed 2.08 g/L/h of xylose and produced 0.88 g/L/h of volumetric ethanol, for an 86.8 % theoretical ethanol yield, and only YΔGP/XK/XI demonstrated increase in cell concentration. Transcriptome analysis indicated that expression of genes involved in the pentose phosphate pathway (GND1, SOL3, TAL1, RKI1, and TKL1) and TCA cycle and respiratory chain (NDE1, ACO1, ACO2, SDH2, IDH1, IDH2, ATP7, ATP19, SDH4, SDH3, CMC2, and ATP15) was upregulated in the YΔGP/XK/XI strain. And the expression levels of 125 cell cycle genes were changed by deletion of PHO13.Xylose is the second most abundant sugar in lignocellulosic materials and can be converted to ethanol by recombinant Saccharomyces cerevisiae yeast strains expressing heterologous genes involved in xylose assimilation pathways. Recent research demonstrated that disruption of the alkaline phosphatase gene, PHO13, enhances ethanol production from xylose by a strain expressing the xylose reductase (XR) and xylitol dehydrogenase (XDH) genes; however, the yield of ethanol is poor. In this study, PHO13 was disrupted in a recombinant strain harboring multiple copies of the xylose isomerase (XI) gene derived from Orpinomyces sp., coupled with overexpression of the endogenous xylulokinase (XK) gene and disruption of GRE3, which encodes aldose reductase. The resulting YΔGP/XK/XI strain consumed 2.08 g/L/h of xylose and produced 0.88 g/L/h of volumetric ethanol, for an 86.8 % theoretical ethanol yield, and only YΔGP/XK/XI demonstrated increase in cell concentration. Transcriptome analysis indicated that expression of genes involved in the pentose phosphate pathway (GND1, SOL3, TAL1, RKI1, and TKL1) and TCA cycle and respiratory chain (NDE1, ACO1, ACO2, SDH2, IDH1, IDH2, ATP7, ATP19, SDH4, SDH3, CMC2, and ATP15) was upregulated in the YΔGP/XK/XI strain. And the expression levels of 125 cell cycle genes were changed by deletion of PHO13.
Xylose is the second most abundant sugar in lignocellulosic materials and can be converted to ethanol by recombinant Saccharomyces cerevisiae yeast strains expressing heterologous genes involved in xylose assimilation pathways. Recent research demonstrated that disruption of the alkaline phosphatase gene, PHO13, enhances ethanol production from xylose by a strain expressing the xylose reductase (XR) and xylitol dehydrogenase (XDH) genes; however, the yield of ethanol is poor. In this study, PHO13 was disrupted in a recombinant strain harboring multiple copies of the xylose isomerase (XI) gene derived from Orpinomyces sp., coupled with overexpression of the endogenous xylulokinase (XK) gene and disruption of GRE3, which encodes aldose reductase. The resulting YΔGP/XK/XI strain consumed 2.08 g/L/h of xylose and produced 0.88 g/L/h of volumetric ethanol, for an 86.8 % theoretical ethanol yield, and only YΔGP/XK/XI demonstrated increase in cell concentration. Transcriptome analysis indicated that expression of genes involved in the pentose phosphate pathway (GND1, SOL3, TAL1, RKI1, and TKL1) and TCA cycle and respiratory chain (NDE1, ACO1, ACO2, SDH2, IDH1, IDH2, ATP7, ATP19, SDH4, SDH3, CMC2, and ATP15) was upregulated in the YΔGP/XK/XI strain. And the expression levels of 125 cell cycle genes were changed by deletion of PHO13.
Xylose is the second most abundant sugar in lignocellulosic materials and can be converted to ethanol by recombinant Saccharomyces cerevisiae yeast strains expressing heterologous genes involved in xylose assimilation pathways. Recent research demonstrated that disruption of the alkaline phosphatase gene, PHO13 , enhances ethanol production from xylose by a strain expressing the xylose reductase (XR) and xylitol dehydrogenase (XDH) genes; however, the yield of ethanol is poor. In this study, PHO13 was disrupted in a recombinant strain harboring multiple copies of the xylose isomerase (XI) gene derived from Orpinomyces sp., coupled with overexpression of the endogenous xylulokinase (XK) gene and disruption of GRE3 , which encodes aldose reductase. The resulting YΔGP/XK/XI strain consumed 2.08 g/L/h of xylose and produced 0.88 g/L/h of volumetric ethanol, for an 86.8 % theoretical ethanol yield, and only YΔGP/XK/XI demonstrated increase in cell concentration. Transcriptome analysis indicated that expression of genes involved in the pentose phosphate pathway ( GND1 , SOL3 , TAL1 , RKI1 , and TKL1 ) and TCA cycle and respiratory chain ( NDE1 , ACO1 , ACO2 , SDH2 , IDH1 , IDH2 , ATP7 , ATP19 , SDH4 , SDH3 , CMC2 , and ATP15 ) was upregulated in the YΔGP/XK/XI strain. And the expression levels of 125 cell cycle genes were changed by deletion of PHO13 .
ArticleNumber 4
Author Tomohisa Hasunuma
Takahiro Bamba
Akihiko Kondo
Author_xml – sequence: 1
  givenname: Takahiro
  surname: Bamba
  fullname: Bamba, Takahiro
  organization: Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University
– sequence: 2
  givenname: Tomohisa
  surname: Hasunuma
  fullname: Hasunuma, Tomohisa
  organization: Organization of Advanced Science and Technology, Kobe University
– sequence: 3
  givenname: Akihiko
  surname: Kondo
  fullname: Kondo, Akihiko
  email: akondo@kobe-u.ac.jp
  organization: Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Biomass Engineering Program, RIKEN
BackLink https://cir.nii.ac.jp/crid/1871428068039597568$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/26769491$$D View this record in MEDLINE/PubMed
BookMark eNqNUlFP3SAYJYtmOucP2MvSZHvYSx0flAIvS4xz08REH7ZnwqXUi2mhg_Zu999LV12uPpiRAB_hnJPzwXmD9nzwFqF3gE8ARP05AWW1KDGwPDkr-St0SEBCiQVjezv1ATpO6Q7nwTCWNXuNDkjNa1lJOEQ3X12K0zC64IvQFjcX10AL1w8xbGwq7LjWPnRFPjaT-QvaOF2Ma1v82XYh2cKl0NuoczXocf1bb9-i_VZ3yR4_7Efo57fzH2cX5dX198uz06vSMCnGUhNBiJGWNXVNKmLA2EZSCQ1vSculobyVK91y0tCKkmolmqZtKk4FcEkoWdEj9GXRHaZVbxtj_Rh1p4boeh23Kminnt54t1a3YaMqDrTCNAt8ehCI4ddk06h6l4ztOu1tmJICLjAjlFXyP6A1FpxIOUM_PIPehSn6_BIKBFSEAcMko97vmv_n-vFfMoAvABNDStG2yrhRzx-Qe3GdAqzmEKglBCqHQM0hUDwz4RnzUfwlDlk4KWP9rY07pl8gfVxI3rnsbl5B8NyiwLXAVDLJM4PeA2opzQA
CitedBy_id crossref_primary_10_1016_j_ymben_2017_02_006
crossref_primary_10_3389_fbioe_2020_00435
crossref_primary_10_7717_peerj_16340
crossref_primary_10_1007_s10295_019_02242_x
crossref_primary_10_1371_journal_pgen_1006372
crossref_primary_10_1093_femsyr_fox044
crossref_primary_10_1002_yea_3429
crossref_primary_10_1016_j_ymben_2021_09_008
crossref_primary_10_1002_biot_201800704
crossref_primary_10_1016_j_engmic_2023_100084
crossref_primary_10_1016_j_ymben_2019_08_012
crossref_primary_10_1021_acs_jafc_8b04916
crossref_primary_10_1186_s13068_018_1018_y
crossref_primary_10_1021_acs_jafc_9b05095
crossref_primary_10_1016_j_ygeno_2024_110811
crossref_primary_10_1021_acssynbio_1c00535
crossref_primary_10_1007_s00253_016_7879_8
crossref_primary_10_1186_s13568_018_0670_8
crossref_primary_10_1371_journal_pone_0236294
crossref_primary_10_1002_bit_27560
crossref_primary_10_3390_fermentation4030059
crossref_primary_10_1007_s00253_018_9493_4
crossref_primary_10_1016_j_biortech_2022_127105
crossref_primary_10_1007_s12155_021_10340_x
crossref_primary_10_1016_j_ymben_2024_05_003
crossref_primary_10_3390_fermentation8120669
crossref_primary_10_7124_FEEO_v22_970
crossref_primary_10_1016_j_ymben_2017_09_008
crossref_primary_10_1016_j_ymben_2016_08_001
crossref_primary_10_1007_s13399_021_01824_z
crossref_primary_10_1093_femsyr_fox034
crossref_primary_10_1534_g3_117_039610
crossref_primary_10_1186_s40643_016_0126_4
Cites_doi 10.1002/yea.1365
10.1016/j.femsyr.2004.09.008
10.1016/j.femsyr.2005.04.004
10.1186/1475-2859-10-2
10.1016/j.ymben.2007.12.002
10.1128/AEM.03474-14
10.1016/j.ymben.2012.07.011
10.1016/j.jbiosc.2011.12.013
10.1016/j.biortech.2012.01.161
10.1038/modpathol.3880508
10.1016/j.biortech.2004.06.025
10.1007/s00253-012-4418-0
10.1371/journal.pone.0057048
10.1093/jb/mvp028
10.1007/s00253-008-1818-2
10.1128/AEM.67.9.4249-4255.2001
10.1007/BF00167144
10.1007/BF00318659
10.1186/1475-2859-6-5
10.1128/MCB.02450-05
10.1002/bit.25447
10.1016/j.biotechadv.2007.04.001
10.1007/s00253-008-1794-6
10.1128/AEM.69.1.495-503.2003
10.1128/AEM.00955-07
10.1128/AEM.02564-06
10.1002/yea.1216
10.1007/s00253-009-2198-y
10.1016/j.copbio.2009.06.001
10.1016/j.ymben.2005.07.003
10.1128/AEM.71.12.8249-8256.2005
10.1016/j.femsyr.2004.09.010
10.1007/s00253-009-2101-x
10.1016/j.nbt.2009.08.008
10.1128/EC.2.1.170-180.2003
10.1007/s10529-014-1581-7
ContentType Journal Article
Copyright Bamba et al. 2016
The Author(s) 2016
Copyright_xml – notice: Bamba et al. 2016
– notice: The Author(s) 2016
DBID RYH
C6C
AAYXX
CITATION
NPM
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
7T7
8FD
C1K
FR3
P64
5PM
DOI 10.1186/s13568-015-0175-7
DatabaseName CiNii Complete
SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
Proquest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Biological Sciences
Biological Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
Engineering Research Database
Technology Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Engineering Research Database
MEDLINE - Academic
PubMed
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (WRLC)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2191-0855
EndPage 10
ExternalDocumentID PMC4713403
4160386331
26769491
10_1186_s13568_015_0175_7
Genre Journal Article
GroupedDBID ---
0R~
4.4
40G
53G
5VS
8FE
8FG
8FH
AAFWJ
AAJSJ
AAKKN
AASML
ABDBF
ABEEZ
ABJCF
ACACY
ACGFS
ACIWK
ACPRK
ACUHS
ACULB
ADBBV
ADDVE
ADRAZ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
C24
C6C
CCPQU
DIK
EBLON
EBS
EJD
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
HYE
IAO
ITC
KQ8
L6V
LK8
M48
M7P
M7S
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RNS
RPM
RYH
SCM
SOJ
TSV
U2A
-A0
ADINQ
RBZ
RSV
AAYXX
CITATION
2VQ
HZ~
NPM
O9-
PQGLB
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
7T7
8FD
C1K
FR3
P64
5PM
ID FETCH-LOGICAL-c598t-a2822c9e5d66242c1ced9391d7f2f79c37f9baf72d34324b8ddfd4738179232b3
IEDL.DBID M48
ISSN 2191-0855
IngestDate Thu Aug 21 18:32:05 EDT 2025
Fri Jul 11 07:09:53 EDT 2025
Fri Jul 11 15:16:58 EDT 2025
Fri Jul 25 11:12:33 EDT 2025
Mon Jul 21 06:07:39 EDT 2025
Thu Apr 24 22:53:44 EDT 2025
Tue Jul 01 01:16:03 EDT 2025
Fri Feb 21 02:31:43 EST 2025
Thu Jun 26 23:58:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords PHO13
Xylose fermentation
Bioethanol
Xylose isomerase
Saccharomyces cerevisiae
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c598t-a2822c9e5d66242c1ced9391d7f2f79c37f9baf72d34324b8ddfd4738179232b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8382-2362
0000-0003-1527-5288
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13568-015-0175-7
PMID 26769491
PQID 1814251502
PQPubID 2034805
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4713403
proquest_miscellaneous_1780523549
proquest_miscellaneous_1760872999
proquest_journals_1814251502
pubmed_primary_26769491
crossref_citationtrail_10_1186_s13568_015_0175_7
crossref_primary_10_1186_s13568_015_0175_7
springer_journals_10_1186_s13568_015_0175_7
nii_cinii_1871428068039597568
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-14
PublicationDateYYYYMMDD 2016-01-14
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-14
  day: 14
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle AMB Express
PublicationTitleAbbrev AMB Expr
PublicationTitleAlternate AMB Express
PublicationYear 2016
Publisher Springer Science and Business Media LLC
Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Science and Business Media LLC
– name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Kuyper, Hartog, Toirkens, Almering, Winkler, Van Dijken, Pronk (CR22) 2005; 5
Madhavan, Tamalampudi, Ushida, Kanai, Katahira, Srivastava, Fukuda, Bisaria, Kondo (CR28) 2009; 82
Madhavan, Tamalampudi, Srivastava, Fukuda, Bisaria, Kondo (CR29) 2009; 82
Van Vleet, Jeffries (CR36) 2009; 20
De Preter, Speleman, Combaret, Lunec, Laureys, Eussen, Francotte, Board, Pearson, De Paepe, Van Roy, Vandesompele (CR5) 2002; 15
Ishii, Izawa, Matsumura, Wakamura, Tanino, Tanaka, Ogino, Fukuda, Kondo (CR11) 2009; 145
Kim, Xu, Lesmana, Kuzmanovic, Au, Florencia, Oh, Zhang, Kim, Jin (CR20) 2015; 81
Larochelle, Drouin, Robert, Turcotte (CR24) 2006; 26
Hasunuma, Sanda, Yamada, Yoshimura, Ishii, Kondo (CR9) 2011; 10
Ni, Laplaza, Jeffries (CR32) 2007; 73
Matsushika, Inoue, Kodaki, Sawayama (CR30) 2009; 84
Johansson, Hahn-Hägerdal (CR15) 2002; 2
Karhumaa, Garcia Sanchez, Hahn-Hägerdal, Gorwa-Grauslund (CR17) 2007; 6
Zhou, Cheng, Wang, Fink, Stephanopoulos (CR39) 2012; 14
Yamada, Tanaka, Ogino, Fukuda, Kondo (CR38) 2010; 85
Chen, Yang, Kuo (CR3) 1992; 21
Chu, Lee (CR4) 2007; 25
Fiaux, Cakar, Sonderegger, Wüthrich, Szyperski, Sauer (CR6) 2003; 2
Karhumaa, Hahn-Hägerdal, Gorwa-Grauslund (CR16) 2005; 22
Kato, Izumi, Hasunuma, Matsuda, Kondo (CR18) 2012; 113
Wasylenko, Stephanopoulos (CR37) 2015; 112
Blank, Lehmbeck, Sauer (CR2) 2005; 5
Hector, Bowman, Skory, Cotta (CR10) 2009; 26
CR26
Mosier, Wyman, Dale, Elander, Lee, Holtzapple, Ladisch (CR31) 2005; 96
Akada, Kitagawa, Kaneko, Toyonaga, Ito, Kakihara, Hoshida, Morimura, Kondo, Kida (CR1) 2006; 23
Shen, Chen, Peng, Chen, Hou, Bao (CR33) 2012; 96
Lee, Jellison, Alper (CR25) 2014; 7
Johansson, Christensson, Hobley, Hahn-Hägerdal (CR14) 2001; 67
Jin, Ni, Laplaza, Jeffries (CR12) 2003; 69
Kuyper, Toirkens, Diderich, Winkler, Van Dijken, Pronk (CR23) 2005; 5
Fujitomi, Sanda, Hasunuma, Kondo (CR7) 2012; 111
Kötter, Ciriacy (CR21) 1993; 38
Grotkjær, Christakopoulos, Nielsen, Olsson (CR8) 2005; 7
Van Maris, Winkler, Kuyper, De Laat, Van Dijken, Pronk (CR34) 2007; 108
Lu, Jeffries (CR27) 2007; 73
Jin, Alper, Yang, Stephanopoulos (CR13) 2005; 71
Van Vleet, Jeffries, Olsson (CR35) 2008; 10
Kim, Skerker, Kang, Lesmana, Wei, Arkin, Jin (CR19) 2013; 8
B Johansson (175_CR14) 2001; 67
K Karhumaa (175_CR17) 2007; 6
DC Chen (175_CR3) 1992; 21
J Ishii (175_CR11) 2009; 145
B Johansson (175_CR15) 2002; 2
M Kuyper (175_CR23) 2005; 5
M Larochelle (175_CR24) 2006; 26
A Madhavan (175_CR29) 2009; 82
H Kato (175_CR18) 2012; 113
H Zhou (175_CR39) 2012; 14
JH Vleet Van (175_CR35) 2008; 10
Y Jin (175_CR12) 2003; 69
LM Blank (175_CR2) 2005; 5
R Akada (175_CR1) 2006; 23
T Hasunuma (175_CR9) 2011; 10
N Mosier (175_CR31) 2005; 96
T Grotkjær (175_CR8) 2005; 7
A Matsushika (175_CR30) 2009; 84
J Fiaux (175_CR6) 2003; 2
K Fujitomi (175_CR7) 2012; 111
JH Vleet Van (175_CR36) 2009; 20
H Ni (175_CR32) 2007; 73
Y Shen (175_CR33) 2012; 96
A Madhavan (175_CR28) 2009; 82
P Kötter (175_CR21) 1993; 38
AJA Maris Van (175_CR34) 2007; 108
BCH Chu (175_CR4) 2007; 25
K Karhumaa (175_CR16) 2005; 22
SR Kim (175_CR19) 2013; 8
TM Wasylenko (175_CR37) 2015; 112
Y Jin (175_CR13) 2005; 71
M Kuyper (175_CR22) 2005; 5
SR Kim (175_CR20) 2015; 81
R Yamada (175_CR38) 2010; 85
K Preter De (175_CR5) 2002; 15
RE Hector (175_CR10) 2009; 26
175_CR26
S-M Lee (175_CR25) 2014; 7
C Lu (175_CR27) 2007; 73
15806613 - Yeast. 2005 Apr 15;22(5):359-68
19572128 - Appl Microbiol Biotechnol. 2009 Aug;84(1):37-53
11850545 - Mod Pathol. 2002 Feb;15(2):159-66
19050860 - Appl Microbiol Biotechnol. 2009 Apr;82(6):1067-78
23468911 - PLoS One. 2013;8(2):e57048
16598691 - Yeast. 2006 Apr 15;23(5):399-405
12514033 - Appl Environ Microbiol. 2003 Jan;69(1):495-503
12702276 - FEMS Yeast Res. 2002 Aug;2(3):277-82
17846724 - Adv Biochem Eng Biotechnol. 2007;108:179-204
22357292 - Bioresour Technol. 2012 May;111:161-6
15949975 - FEMS Yeast Res. 2005 Jul;5(10):925-34
11526030 - Appl Environ Microbiol. 2001 Sep;67(9):4249-55
15780654 - FEMS Yeast Res. 2005 Apr;5(6-7):545-58
21219616 - Microb Cell Fact. 2011 Jan 10;10 (1):2
23053078 - Appl Microbiol Biotechnol. 2012 Nov;96(4):1079-91
25527558 - Appl Environ Microbiol. 2015 Mar;81(5):1601-9
16140032 - Metab Eng. 2005 Sep-Nov;7(5-6):437-44
19545992 - Curr Opin Biotechnol. 2009 Jun;20(3):300-6
17277207 - Appl Environ Microbiol. 2007 Apr;73(7):2061-6
25311863 - Biotechnol Bioeng. 2015 Mar;112(3):470-83
25170344 - Biotechnol Biofuels. 2014 Aug 20;7(1):122
22921355 - Metab Eng. 2012 Nov;14(6):611-22
17524590 - Biotechnol Adv. 2007 Sep-Oct;25(5):425-41
22280965 - J Biosci Bioeng. 2012 May;113(5):665-73
19707752 - Appl Microbiol Biotechnol. 2010 Feb;85(5):1491-8
19237442 - J Biochem. 2009 Jun;145(6):701-8
15691745 - FEMS Yeast Res. 2005 Feb;5(4-5):399-409
12582134 - Eukaryot Cell. 2003 Feb;2(1):170-80
16914749 - Mol Cell Biol. 2006 Sep;26(17):6690-701
17693563 - Appl Environ Microbiol. 2007 Oct;73(19):6072-7
24966040 - Biotechnol Lett. 2014 Oct;36(10 ):2011-21
19712762 - N Biotechnol. 2009 Oct 31;26(3-4):171-80
18249574 - Metab Eng. 2008 Nov;10(6):360-9
19125247 - Appl Microbiol Biotechnol. 2009 Apr;82(6):1037-47
16332810 - Appl Environ Microbiol. 2005 Dec;71(12):8249-56
1735128 - Curr Genet. 1992 Jan;21(1):83-4
17280608 - Microb Cell Fact. 2007 Feb 05;6:5
15588770 - Bioresour Technol. 2005 Apr;96(6):673-86
References_xml – volume: 23
  start-page: 399
  year: 2006
  end-page: 405
  ident: CR1
  article-title: PCR-mediated seamless gene deletion and marker recycling in
  publication-title: Yeast
  doi: 10.1002/yea.1365
– volume: 5
  start-page: 545
  year: 2005
  end-page: 558
  ident: CR2
  article-title: Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts
  publication-title: FEMS Yeast Res
  doi: 10.1016/j.femsyr.2004.09.008
– volume: 5
  start-page: 925
  year: 2005
  end-page: 934
  ident: CR23
  article-title: Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting strain
  publication-title: FEMS Yeast Res
  doi: 10.1016/j.femsyr.2005.04.004
– volume: 10
  start-page: 2
  year: 2011
  ident: CR9
  article-title: Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of
  publication-title: Microb Cell Fact
  doi: 10.1186/1475-2859-10-2
– volume: 2
  start-page: 277
  year: 2002
  end-page: 282
  ident: CR15
  article-title: The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in TMB3001
  publication-title: FEMS Yeast Res
– volume: 10
  start-page: 360
  year: 2008
  end-page: 369
  ident: CR35
  article-title: Deleting the para-nitrophenyl phosphatase (pNPPase), , in recombinant improves growth and ethanol production on -xylose
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2007.12.002
– volume: 81
  start-page: 1601
  year: 2015
  end-page: 1609
  ident: CR20
  article-title: Deletion of , encoding haloacid dehalogenase type IIA phosphatase, results in upregulation of the pentose phosphate pathway in
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.03474-14
– volume: 14
  start-page: 611
  year: 2012
  end-page: 622
  ident: CR39
  article-title: Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2012.07.011
– volume: 113
  start-page: 665
  year: 2012
  end-page: 673
  ident: CR18
  article-title: Widely targeted metabolic profiling analysis of yeast central metabolites
  publication-title: J Biosci Bioeng
  doi: 10.1016/j.jbiosc.2011.12.013
– volume: 111
  start-page: 161
  year: 2012
  end-page: 166
  ident: CR7
  article-title: Deletion of the gene in improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2012.01.161
– volume: 15
  start-page: 159
  year: 2002
  end-page: 166
  ident: CR5
  article-title: Quantification of , , and gene copy number in neuroblastoma using a real-time quantitative PCR assay
  publication-title: Mod Pathol
  doi: 10.1038/modpathol.3880508
– volume: 96
  start-page: 673
  year: 2005
  end-page: 686
  ident: CR31
  article-title: Features of promising technologies for pretreatment of lignocellulosic biomass
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2004.06.025
– volume: 96
  start-page: 1079
  year: 2012
  end-page: 1091
  ident: CR33
  article-title: An efficient xylose-fermenting recombinant strain obtained through adaptive evolution and its global transcription profile
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-012-4418-0
– volume: 8
  start-page: e57048
  year: 2013
  ident: CR19
  article-title: Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0057048
– volume: 145
  start-page: 701
  year: 2009
  end-page: 708
  ident: CR11
  article-title: A simple and immediate method for simultaneously evaluating expression level and plasmid maintenance in yeast
  publication-title: J Biochem
  doi: 10.1093/jb/mvp028
– volume: 82
  start-page: 1037
  year: 2009
  end-page: 1047
  ident: CR29
  article-title: Alcoholic fermentation of xylose and mixed sugars using recombinant engineered for xylose utilization
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-008-1818-2
– volume: 67
  start-page: 4249
  year: 2001
  end-page: 4255
  ident: CR14
  article-title: Xylulokinase overexpression in two strains of also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.67.9.4249-4255.2001
– volume: 38
  start-page: 776
  year: 1993
  end-page: 783
  ident: CR21
  article-title: Xylose fermentation by
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/BF00167144
– volume: 21
  start-page: 83
  year: 1992
  end-page: 84
  ident: CR3
  article-title: One-step transformation of yeast in stationary phase
  publication-title: Curr Genet
  doi: 10.1007/BF00318659
– volume: 6
  start-page: 5
  year: 2007
  ident: CR17
  article-title: Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant
  publication-title: Microb Cell Fact
  doi: 10.1186/1475-2859-6-5
– volume: 26
  start-page: 6690
  year: 2006
  end-page: 6701
  ident: CR24
  article-title: Oxidative stress-activated zinc cluster protein Stb5 has dual activator/repressor functions required for pentose phosphate pathway regulation and NADPH production
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.02450-05
– volume: 112
  start-page: 470
  year: 2015
  end-page: 483
  ident: CR37
  article-title: Metabolomic and C-metabolic flux analysis of a xylose-consuming strain expressing xylose isomerase
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.25447
– volume: 25
  start-page: 425
  year: 2007
  end-page: 441
  ident: CR4
  article-title: Genetic improvement of for xylose fermentation
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2007.04.001
– volume: 82
  start-page: 1067
  year: 2009
  end-page: 1078
  ident: CR28
  article-title: Xylose isomerase from polycentric fungus : gene sequencing, cloning, and expression in for bioconversion of xylose to ethanol
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-008-1794-6
– volume: 69
  start-page: 495
  year: 2003
  end-page: 503
  ident: CR12
  article-title: Optimal growth and ethanol production from xylose by recombinant S require moderate d-xylulokinase activity
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.69.1.495-503.2003
– volume: 7
  start-page: 122
  year: 2014
  ident: CR25
  article-title: Systematic and evolutionary engineering of a xylose isomerase-based pathway in for efficient conversion yields
  publication-title: Biotechnol Biofuels
– volume: 73
  start-page: 6072
  year: 2007
  end-page: 6077
  ident: CR27
  article-title: Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered strain
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00955-07
– volume: 73
  start-page: 2061
  year: 2007
  end-page: 2066
  ident: CR32
  article-title: Transposon mutagenesis to improve the growth of recombinant on -xylose
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02564-06
– volume: 22
  start-page: 359
  year: 2005
  end-page: 368
  ident: CR16
  article-title: Investigation of limiting metabolic steps in the utilization of xylose by recombinant using metabolic engineering
  publication-title: Yeast
  doi: 10.1002/yea.1216
– volume: 85
  start-page: 1491
  year: 2010
  end-page: 1498
  ident: CR38
  article-title: Novel strategy for yeast construction using δ-integration and cell fusion to efficiently produce ethanol from raw starch
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-009-2198-y
– volume: 20
  start-page: 300
  year: 2009
  end-page: 306
  ident: CR36
  article-title: Yeast metabolic engineering for hemicellulosic ethanol production
  publication-title: Curr Opin Biotechnol
  doi: 10.1016/j.copbio.2009.06.001
– volume: 7
  start-page: 437
  year: 2005
  end-page: 444
  ident: CR8
  article-title: Comparative metabolic network analysis of two xylose fermenting recombinant strains
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2005.07.003
– volume: 71
  start-page: 8249
  year: 2005
  end-page: 8256
  ident: CR13
  article-title: Improvement of xylose uptake and ethanol production in recombinant through an inverse metabolic engineering approach
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.71.12.8249-8256.2005
– volume: 108
  start-page: 179
  year: 2007
  end-page: 204
  ident: CR34
  article-title: Development of efficient xylose fermentation in : xylose isomerase as a key component
  publication-title: Adv Biochem Eng Biotechnol
– volume: 5
  start-page: 399
  year: 2005
  end-page: 409
  ident: CR22
  article-title: Metabolic engineering of a xylose-isomerase-expressing strain for rapid anaerobic xylose fermentation
  publication-title: FEMS Yeast Res
  doi: 10.1016/j.femsyr.2004.09.010
– volume: 84
  start-page: 37
  year: 2009
  end-page: 53
  ident: CR30
  article-title: Ethanol production from xylose in engineered strains: current state and perspectives
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-009-2101-x
– ident: CR26
– volume: 26
  start-page: 171
  year: 2009
  end-page: 180
  ident: CR10
  article-title: The   gene encodes an NADP(H)-specific oxidoreductase regulated by the transcription factor Stb5p in response to NADPH limitation
  publication-title: N Biotechnol
  doi: 10.1016/j.nbt.2009.08.008
– volume: 2
  start-page: 170
  year: 2003
  end-page: 180
  ident: CR6
  article-title: Metabolic-flux profiling of the yeasts and
  publication-title: Eukaryot Cell
  doi: 10.1128/EC.2.1.170-180.2003
– volume: 10
  start-page: 2
  year: 2011
  ident: 175_CR9
  publication-title: Microb Cell Fact
  doi: 10.1186/1475-2859-10-2
– ident: 175_CR26
  doi: 10.1007/s10529-014-1581-7
– volume: 111
  start-page: 161
  year: 2012
  ident: 175_CR7
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2012.01.161
– volume: 145
  start-page: 701
  year: 2009
  ident: 175_CR11
  publication-title: J Biochem
  doi: 10.1093/jb/mvp028
– volume: 69
  start-page: 495
  year: 2003
  ident: 175_CR12
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.69.1.495-503.2003
– volume: 22
  start-page: 359
  year: 2005
  ident: 175_CR16
  publication-title: Yeast
  doi: 10.1002/yea.1216
– volume: 5
  start-page: 545
  year: 2005
  ident: 175_CR2
  publication-title: FEMS Yeast Res
  doi: 10.1016/j.femsyr.2004.09.008
– volume: 96
  start-page: 673
  year: 2005
  ident: 175_CR31
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2004.06.025
– volume: 25
  start-page: 425
  year: 2007
  ident: 175_CR4
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2007.04.001
– volume: 6
  start-page: 5
  year: 2007
  ident: 175_CR17
  publication-title: Microb Cell Fact
  doi: 10.1186/1475-2859-6-5
– volume: 23
  start-page: 399
  year: 2006
  ident: 175_CR1
  publication-title: Yeast
  doi: 10.1002/yea.1365
– volume: 67
  start-page: 4249
  year: 2001
  ident: 175_CR14
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.67.9.4249-4255.2001
– volume: 81
  start-page: 1601
  year: 2015
  ident: 175_CR20
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.03474-14
– volume: 8
  start-page: e57048
  year: 2013
  ident: 175_CR19
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0057048
– volume: 96
  start-page: 1079
  year: 2012
  ident: 175_CR33
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-012-4418-0
– volume: 71
  start-page: 8249
  year: 2005
  ident: 175_CR13
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.71.12.8249-8256.2005
– volume: 26
  start-page: 171
  year: 2009
  ident: 175_CR10
  publication-title: N Biotechnol
  doi: 10.1016/j.nbt.2009.08.008
– volume: 38
  start-page: 776
  year: 1993
  ident: 175_CR21
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/BF00167144
– volume: 82
  start-page: 1067
  year: 2009
  ident: 175_CR28
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-008-1794-6
– volume: 73
  start-page: 2061
  year: 2007
  ident: 175_CR32
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02564-06
– volume: 10
  start-page: 360
  year: 2008
  ident: 175_CR35
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2007.12.002
– volume: 15
  start-page: 159
  year: 2002
  ident: 175_CR5
  publication-title: Mod Pathol
  doi: 10.1038/modpathol.3880508
– volume: 14
  start-page: 611
  year: 2012
  ident: 175_CR39
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2012.07.011
– volume: 82
  start-page: 1037
  year: 2009
  ident: 175_CR29
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-008-1818-2
– volume: 21
  start-page: 83
  year: 1992
  ident: 175_CR3
  publication-title: Curr Genet
  doi: 10.1007/BF00318659
– volume: 2
  start-page: 277
  year: 2002
  ident: 175_CR15
  publication-title: FEMS Yeast Res
– volume: 85
  start-page: 1491
  year: 2010
  ident: 175_CR38
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-009-2198-y
– volume: 26
  start-page: 6690
  year: 2006
  ident: 175_CR24
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.02450-05
– volume: 73
  start-page: 6072
  year: 2007
  ident: 175_CR27
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00955-07
– volume: 20
  start-page: 300
  year: 2009
  ident: 175_CR36
  publication-title: Curr Opin Biotechnol
  doi: 10.1016/j.copbio.2009.06.001
– volume: 7
  start-page: 437
  year: 2005
  ident: 175_CR8
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2005.07.003
– volume: 84
  start-page: 37
  year: 2009
  ident: 175_CR30
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-009-2101-x
– volume: 112
  start-page: 470
  year: 2015
  ident: 175_CR37
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.25447
– volume: 113
  start-page: 665
  year: 2012
  ident: 175_CR18
  publication-title: J Biosci Bioeng
  doi: 10.1016/j.jbiosc.2011.12.013
– volume: 2
  start-page: 170
  year: 2003
  ident: 175_CR6
  publication-title: Eukaryot Cell
  doi: 10.1128/EC.2.1.170-180.2003
– volume: 5
  start-page: 925
  year: 2005
  ident: 175_CR23
  publication-title: FEMS Yeast Res
  doi: 10.1016/j.femsyr.2005.04.004
– volume: 7
  start-page: 122
  year: 2014
  ident: 175_CR25
  publication-title: Biotechnol Biofuels
– volume: 108
  start-page: 179
  year: 2007
  ident: 175_CR34
  publication-title: Adv Biochem Eng Biotechnol
– volume: 5
  start-page: 399
  year: 2005
  ident: 175_CR22
  publication-title: FEMS Yeast Res
  doi: 10.1016/j.femsyr.2004.09.010
– reference: 22357292 - Bioresour Technol. 2012 May;111:161-6
– reference: 21219616 - Microb Cell Fact. 2011 Jan 10;10 (1):2
– reference: 19707752 - Appl Microbiol Biotechnol. 2010 Feb;85(5):1491-8
– reference: 19237442 - J Biochem. 2009 Jun;145(6):701-8
– reference: 15588770 - Bioresour Technol. 2005 Apr;96(6):673-86
– reference: 16914749 - Mol Cell Biol. 2006 Sep;26(17):6690-701
– reference: 17846724 - Adv Biochem Eng Biotechnol. 2007;108:179-204
– reference: 11526030 - Appl Environ Microbiol. 2001 Sep;67(9):4249-55
– reference: 15949975 - FEMS Yeast Res. 2005 Jul;5(10):925-34
– reference: 23053078 - Appl Microbiol Biotechnol. 2012 Nov;96(4):1079-91
– reference: 23468911 - PLoS One. 2013;8(2):e57048
– reference: 15806613 - Yeast. 2005 Apr 15;22(5):359-68
– reference: 12514033 - Appl Environ Microbiol. 2003 Jan;69(1):495-503
– reference: 17524590 - Biotechnol Adv. 2007 Sep-Oct;25(5):425-41
– reference: 19572128 - Appl Microbiol Biotechnol. 2009 Aug;84(1):37-53
– reference: 16598691 - Yeast. 2006 Apr 15;23(5):399-405
– reference: 25527558 - Appl Environ Microbiol. 2015 Mar;81(5):1601-9
– reference: 16140032 - Metab Eng. 2005 Sep-Nov;7(5-6):437-44
– reference: 16332810 - Appl Environ Microbiol. 2005 Dec;71(12):8249-56
– reference: 11850545 - Mod Pathol. 2002 Feb;15(2):159-66
– reference: 19125247 - Appl Microbiol Biotechnol. 2009 Apr;82(6):1037-47
– reference: 17280608 - Microb Cell Fact. 2007 Feb 05;6:5
– reference: 22921355 - Metab Eng. 2012 Nov;14(6):611-22
– reference: 25311863 - Biotechnol Bioeng. 2015 Mar;112(3):470-83
– reference: 19545992 - Curr Opin Biotechnol. 2009 Jun;20(3):300-6
– reference: 24966040 - Biotechnol Lett. 2014 Oct;36(10 ):2011-21
– reference: 1735128 - Curr Genet. 1992 Jan;21(1):83-4
– reference: 18249574 - Metab Eng. 2008 Nov;10(6):360-9
– reference: 19050860 - Appl Microbiol Biotechnol. 2009 Apr;82(6):1067-78
– reference: 12702276 - FEMS Yeast Res. 2002 Aug;2(3):277-82
– reference: 15691745 - FEMS Yeast Res. 2005 Feb;5(4-5):399-409
– reference: 12582134 - Eukaryot Cell. 2003 Feb;2(1):170-80
– reference: 25170344 - Biotechnol Biofuels. 2014 Aug 20;7(1):122
– reference: 17277207 - Appl Environ Microbiol. 2007 Apr;73(7):2061-6
– reference: 19712762 - N Biotechnol. 2009 Oct 31;26(3-4):171-80
– reference: 22280965 - J Biosci Bioeng. 2012 May;113(5):665-73
– reference: 15780654 - FEMS Yeast Res. 2005 Apr;5(6-7):545-58
– reference: 17693563 - Appl Environ Microbiol. 2007 Oct;73(19):6072-7
SSID ssj0000500965
Score 2.1834512
Snippet Xylose is the second most abundant sugar in lignocellulosic materials and can be converted to ethanol by recombinant Saccharomyces cerevisiae yeast strains...
Xylose is the second most abundant sugar in lignocellulosic materials and can be converted to ethanol by recombinant Saccharomyces cerevisiae yeast strains...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
nii
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4
SubjectTerms Biomedical and Life Sciences
Biotechnology
Life Sciences
Microbial Genetics and Genomics
Microbiology
Original
Original Article
Orpinomyces
Saccharomyces cerevisiae
SummonAdditionalLinks – databaseName: Proquest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEB-8PQRfxG-rdxLBJ6Vc0qRN8yR-3LEInot4cG8lTVKucLTrdVe9_96ZtltdP_alFDIt7WQy-c1HZgBeeMOVQxwaowJOY-UVrjnheMxLQdWldKYr8kN-PM3mZ-rDeXo-Oty6Ma1yoxN7Re1bRz7yI9yJULwQviSvl19j6hpF0dWxhcYe7KMKzvMZ7L89Pl18nrwsPCWMno7hTJFnR52QaUb5W5SzptNYb21Ie01d_wtr_p0y-UfctN-OTu7A7RFHsjfDxN-FG6G5BzeHzpLX92Hxvu6u1r06YG3FFvNPQrK6dyCEjgXyl7eXbDmUeyWib7VliAXZDzTgu8DqriVvFd5Ry-Lv9voBnJ0cf3k3j8fmCbFLTb6KLeWHOhNSn9ERECdc8EYa4XWVVNo4qStT2konno6WqjL3vvJKU8E-xHxJKR_CrGmb8BiY1NZmSCfKCo2nilsrgrQmp9o1Buc0Ar7hYOHGyuLU4OKy6C2MPCsGphfI9IKYXugIXk6PLIeyGruID3Fa8NV0FWjhKQoH51watIaQNIKDzYQV4wrsil_yEsHzaRjXDgVEbBPaNdLojOdoXRizi4aaPkg0oyN4NMjA9MUJ5QcrIyLQW9IxEVDt7u2Rpr7oa3grOsPLZQSvNnL026f_jxFPdv_oU7iFcK53EAl1ALPV1TocImRalc_GdfETRVgQlw
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLINK
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFD-4ieCLuPnVfUgEn5Ri0qRN8yi6cRH28eBgbyVtEiyMdqz3qvvvPSdtL16dA18uhf56KSc56fn8HYC3znDVoB2a4gGcp8op1DnR8JTXgtildKEDxSFPTovFhfpymV9OfdzDXO0-pyTjSR3Vuiw-DELmBRVeUbGZzlO9BQ9zct0pQzu1OIyE3mSW51MG884nN75BW13b3mVe_l0l-UeqNH6Bjp_Ck8l0ZB_Htd6BB77bhUfjMMnbZ3D-uR1uVvEEYH1g54szIVkbYwZ-YJ5C5P0Vux4ZXgn0vbUMzT_2E332wbN26ClAhVc0pfiHvX0OF8dHXz8t0mleQtrkplymlkpCG-NzV1DXRyMa74w0wumQBW0aqYOpbdCZo25SVZfOBac0cfShmZfV8gVsd33nXwGT2toCcaIO6C8Fbq3w0pqS6GoMLmMCfJZg1Uxk4jTT4qqKTkVZVKPQKxR6RUKvdALv1o9cj0wa94EPcVnwr-lXoFOnKANccmnQAUJoAgfzglWT0g2IQxjaZzxL4M36NqoL5UBs5_sVYnTBS3QojLkPQ3MeJHrOCbwc98D6jTMqCVZGJKA3dscaQHTdm3e69luk7VbUtstlAu_nffTbq_9LEHv_hd6Hx2jQxRCRUAewvbxZ-UM0mpb166gkvwBVRgut
  priority: 102
  providerName: Springer Nature
Title Disruption of PHO13 improves ethanol production via the xylose isomerase pathway
URI https://cir.nii.ac.jp/crid/1871428068039597568
https://link.springer.com/article/10.1186/s13568-015-0175-7
https://www.ncbi.nlm.nih.gov/pubmed/26769491
https://www.proquest.com/docview/1814251502
https://www.proquest.com/docview/1760872999
https://www.proquest.com/docview/1780523549
https://pubmed.ncbi.nlm.nih.gov/PMC4713403
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-tm5B4QXwT2Coj8QQK2LETxw8IjbJSIW1UiEp7i5zEEZGqdDQtrP89d_moKJQ98GK1yqWNznfx787n3wG8yA1XGeJQH1_Aoa9yhT4nMu7zVBC7lI50QXnI84toMlOfLsPLA-jbW3UKrPeGdtRParacv77-vnmHDv-2cfg4elMLGUZUkkVlaDr09QCOcGHS1NDgvEP7LdU3Afaw29vceydxA1PRpzJiZ6EaVGW5D4P-XUr5x35qs0yN78KdDl-y09Yg7sGBq-7Drbbj5OYBTD-U9XLdvCbYomDTyWchWdkkFlzNHOXRF3N21dLAktCP0jLEiOwaA_vasbJeUBYLP1Er45928xBm47Ovo4nfNVXws9DEK99S3WhmXJhHdDQkE5nLjTQi10VQaJNJXZjUFjrI6cipSuM8L3KlicgPsWCQykdwWC0q9wSY1NZGKCfSAoOqglsrnLQmJk4bg3PtAe81mGQd4zg1vpgnTeQRR0mr_wT1n5D-E-3By-0tVy3dxk3CJzgt-NM0Coz8FG0Tx1wajJJQ1IPjfsKS3rBQDsUQxPHAg-fby-hTtFFiK7dYo4yOeIxRhzE3yVAzCInhtQePWxvYPnFvQh7oHevYChCn9-6VqvzWcHsrOtvLpQevejv67dH_pYin__0_z-A2IsAmpyTUMRyulmt3gihrlQ5hoPhHHOMxjkfvzy6mX_DbKFA0RqNhk70YNh6G4yw4_QWnvyZu
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcNQWIbgg3qS0YCS4gKLGsRPHB4QQZdnSBz20Um9pEjsi0irZNruU_Sm-kZm8YHnsrZcokieWM56x5z0AL432ZIZyqIsHcOBKI5HneOa5XsqpupQKVU52yMOjcHwqP58FZ2vwo8-FobDK_kxsDmpTZWQj38GbCMkLxRf_3fTCpa5R5F3tW2i0ZLFvF1eostVv93Zxf1_5_ujjyYex23UVcLNARzM3ocDJTNvAhJQbkfHMGi00Nyr3c6UzoXKdJrnyDeVcyjQyJjdSUSU7FIb8VOC863BDCrzJKTN99Gmw6XgBaQRB5zzlUbhTcxGEFC1GEXIqcNXS9bdeFsW_JNu_AzT_8NI2l9_oLtzppFb2viWze7Bmy_tws-1juXgAx7tFfTlvDh9W5ex4_IULVjTmClszS9b5asKmbXFZAvpWJAwlT_Z9Malqy4q6ItsYvlGD5Ktk8RBOrwWpj2CjrEr7BJhQSRIiHE9zVNVyL0m4FYmOqFKORgpywOsxGGddHXNqpzGJG30mCuMW6TEiPSakx8qB18Mn07aIxyrgbdwWnJqeHPVJSc7nyBMadS8EdWCr37C44_c6_kWdDrwYhpFTyf2SlLaaI4wKvQh1Ga1XwVCLCYFKuwOPWxoYVuxTNLLU3AG1RB0DAFUKXx4pi69NxXBJGcOecOBNT0e_Lf1_iNhc_aPP4db45PAgPtg72n8Kt1GQbExTXG7BxuxybrdRWJulzxoOYXB-3Sz5EyU3S7s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9NADLe2TiBeEN8ENjgkeAFFzSWXXO4BIaCrOgalQkzaW3ZJLiJSlZSlZfRf46_DzheUj77tJYoU55T47Dv_bJ8N8DRVjkjQDrVxAfZtkQrUOZ44thNzqi4lA5mRH_LDNJiciHen_ukO_OjOwlBaZbcm1gt1WibkIx_iToTiheaLO8zatIjZaPxq8dWmDlIUae3aaTQicmzWFwjfqpdHI5zrZ647Pvz8dmK3HQbsxFfh0taURJko46cBnZNIeGJS5SmeyszNpEo8malYZ9JN6fyliMM0zVIhqaodGkZu7OG4u7AnCRUNYO_N4XT2qffwOD7hA78NpfIwGFbc8wPKHaN8OenbcmMz3C3y_F927t_pmn_EbOutcHwDrrc2LHvdCN1N2DHFLbjSdLVc34bZKK_OV_VSxMqMzSYfucfy2nlhKmbIV1_O2aIpNUtE33LN0A5l39fzsjIsr0rylOEdtUu-0Os7cHIpbL0Lg6IszH1gntQ6QDoeZwjcMkdrbjytQqqbo1CeLHA6DkZJW9WcmmvMoxrdhEHUMD1CpkfE9Eha8Lx_ZdGU9NhGfIDTgkPTlSO6FBSKDh1PIRJDUgv2uwmLWu2vol-yasGT_jHqLQVjdGHKFdLIwAkR2Si1jYYaTngI4S2418hA_8Uu5SYLxS2QG9LRE1Dd8M0nRf6lrh8u6Pyw41nwopOj3z79f4x4sP1HH8NVVMfo_dH0-CFcQ6uy9lNxsQ-D5fnKHKDltowftSrC4OyytfInbT1RTQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disruption+of+PHO13+improves+ethanol+production+via+the+xylose+isomerase+pathway&rft.jtitle=AMB+Express&rft.au=Bamba%2C+Takahiro&rft.au=Hasunuma%2C+Tomohisa&rft.au=Kondo%2C+Akihiko&rft.date=2016-01-14&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=2191-0855&rft.volume=6&rft_id=info:doi/10.1186%2Fs13568-015-0175-7&rft_id=info%3Apmid%2F26769491&rft.externalDocID=PMC4713403
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2191-0855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2191-0855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2191-0855&client=summon