Disruption of PHO13 improves ethanol production via the xylose isomerase pathway
Xylose is the second most abundant sugar in lignocellulosic materials and can be converted to ethanol by recombinant Saccharomyces cerevisiae yeast strains expressing heterologous genes involved in xylose assimilation pathways. Recent research demonstrated that disruption of the alkaline phosphatase...
Saved in:
Published in | AMB Express Vol. 6; no. 1; pp. 4 - 10 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Science and Business Media LLC
14.01.2016
Springer Berlin Heidelberg Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Xylose is the second most abundant sugar in lignocellulosic materials and can be converted to ethanol by recombinant
Saccharomyces cerevisiae
yeast strains expressing heterologous genes involved in xylose assimilation pathways. Recent research demonstrated that disruption of the alkaline phosphatase gene,
PHO13
, enhances ethanol production from xylose by a strain expressing the xylose reductase (XR) and xylitol dehydrogenase (XDH) genes; however, the yield of ethanol is poor. In this study,
PHO13
was disrupted in a recombinant strain harboring multiple copies of the xylose isomerase (XI) gene derived from
Orpinomyces
sp., coupled with overexpression of the endogenous xylulokinase (XK) gene and disruption of
GRE3
, which encodes aldose reductase. The resulting YΔGP/XK/XI strain consumed 2.08 g/L/h of xylose and produced 0.88 g/L/h of volumetric ethanol, for an 86.8 % theoretical ethanol yield, and only YΔGP/XK/XI demonstrated increase in cell concentration. Transcriptome analysis indicated that expression of genes involved in the pentose phosphate pathway (
GND1
,
SOL3
,
TAL1
,
RKI1
, and
TKL1
) and TCA cycle and respiratory chain (
NDE1
,
ACO1
,
ACO2
,
SDH2
,
IDH1
,
IDH2
,
ATP7
,
ATP19
,
SDH4
,
SDH3
,
CMC2
, and
ATP15
) was upregulated in the YΔGP/XK/XI strain. And the expression levels of 125 cell cycle genes were changed by deletion of
PHO13
. |
---|---|
AbstractList | Xylose is the second most abundant sugar in lignocellulosic materials and can be converted to ethanol by recombinant Saccharomyces cerevisiae yeast strains expressing heterologous genes involved in xylose assimilation pathways. Recent research demonstrated that disruption of the alkaline phosphatase gene, PHO13, enhances ethanol production from xylose by a strain expressing the xylose reductase (XR) and xylitol dehydrogenase (XDH) genes; however, the yield of ethanol is poor. In this study, PHO13 was disrupted in a recombinant strain harboring multiple copies of the xylose isomerase (XI) gene derived from Orpinomyces sp., coupled with overexpression of the endogenous xylulokinase (XK) gene and disruption of GRE3, which encodes aldose reductase. The resulting Y Delta GP/XK/XI strain consumed 2.08 g/L/h of xylose and produced 0.88 g/L/h of volumetric ethanol, for an 86.8 % theoretical ethanol yield, and only Y Delta GP/XK/XI demonstrated increase in cell concentration. Transcriptome analysis indicated that expression of genes involved in the pentose phosphate pathway (GND1, SOL3, TAL1, RKI1, and TKL1) and TCA cycle and respiratory chain (NDE1, ACO1, ACO2, SDH2, IDH1, IDH2, ATP7, ATP19, SDH4, SDH3, CMC2, and ATP15) was upregulated in the Y Delta GP/XK/XI strain. And the expression levels of 125 cell cycle genes were changed by deletion of PHO13. Xylose is the second most abundant sugar in lignocellulosic materials and can be converted to ethanol by recombinant Saccharomyces cerevisiae yeast strains expressing heterologous genes involved in xylose assimilation pathways. Recent research demonstrated that disruption of the alkaline phosphatase gene, PHO13, enhances ethanol production from xylose by a strain expressing the xylose reductase (XR) and xylitol dehydrogenase (XDH) genes; however, the yield of ethanol is poor. In this study, PHO13 was disrupted in a recombinant strain harboring multiple copies of the xylose isomerase (XI) gene derived from Orpinomyces sp., coupled with overexpression of the endogenous xylulokinase (XK) gene and disruption of GRE3, which encodes aldose reductase. The resulting YΔGP/XK/XI strain consumed 2.08 g/L/h of xylose and produced 0.88 g/L/h of volumetric ethanol, for an 86.8 % theoretical ethanol yield, and only YΔGP/XK/XI demonstrated increase in cell concentration. Transcriptome analysis indicated that expression of genes involved in the pentose phosphate pathway (GND1, SOL3, TAL1, RKI1, and TKL1) and TCA cycle and respiratory chain (NDE1, ACO1, ACO2, SDH2, IDH1, IDH2, ATP7, ATP19, SDH4, SDH3, CMC2, and ATP15) was upregulated in the YΔGP/XK/XI strain. And the expression levels of 125 cell cycle genes were changed by deletion of PHO13.Xylose is the second most abundant sugar in lignocellulosic materials and can be converted to ethanol by recombinant Saccharomyces cerevisiae yeast strains expressing heterologous genes involved in xylose assimilation pathways. Recent research demonstrated that disruption of the alkaline phosphatase gene, PHO13, enhances ethanol production from xylose by a strain expressing the xylose reductase (XR) and xylitol dehydrogenase (XDH) genes; however, the yield of ethanol is poor. In this study, PHO13 was disrupted in a recombinant strain harboring multiple copies of the xylose isomerase (XI) gene derived from Orpinomyces sp., coupled with overexpression of the endogenous xylulokinase (XK) gene and disruption of GRE3, which encodes aldose reductase. The resulting YΔGP/XK/XI strain consumed 2.08 g/L/h of xylose and produced 0.88 g/L/h of volumetric ethanol, for an 86.8 % theoretical ethanol yield, and only YΔGP/XK/XI demonstrated increase in cell concentration. Transcriptome analysis indicated that expression of genes involved in the pentose phosphate pathway (GND1, SOL3, TAL1, RKI1, and TKL1) and TCA cycle and respiratory chain (NDE1, ACO1, ACO2, SDH2, IDH1, IDH2, ATP7, ATP19, SDH4, SDH3, CMC2, and ATP15) was upregulated in the YΔGP/XK/XI strain. And the expression levels of 125 cell cycle genes were changed by deletion of PHO13. Xylose is the second most abundant sugar in lignocellulosic materials and can be converted to ethanol by recombinant Saccharomyces cerevisiae yeast strains expressing heterologous genes involved in xylose assimilation pathways. Recent research demonstrated that disruption of the alkaline phosphatase gene, PHO13, enhances ethanol production from xylose by a strain expressing the xylose reductase (XR) and xylitol dehydrogenase (XDH) genes; however, the yield of ethanol is poor. In this study, PHO13 was disrupted in a recombinant strain harboring multiple copies of the xylose isomerase (XI) gene derived from Orpinomyces sp., coupled with overexpression of the endogenous xylulokinase (XK) gene and disruption of GRE3, which encodes aldose reductase. The resulting YΔGP/XK/XI strain consumed 2.08 g/L/h of xylose and produced 0.88 g/L/h of volumetric ethanol, for an 86.8 % theoretical ethanol yield, and only YΔGP/XK/XI demonstrated increase in cell concentration. Transcriptome analysis indicated that expression of genes involved in the pentose phosphate pathway (GND1, SOL3, TAL1, RKI1, and TKL1) and TCA cycle and respiratory chain (NDE1, ACO1, ACO2, SDH2, IDH1, IDH2, ATP7, ATP19, SDH4, SDH3, CMC2, and ATP15) was upregulated in the YΔGP/XK/XI strain. And the expression levels of 125 cell cycle genes were changed by deletion of PHO13. Xylose is the second most abundant sugar in lignocellulosic materials and can be converted to ethanol by recombinant Saccharomyces cerevisiae yeast strains expressing heterologous genes involved in xylose assimilation pathways. Recent research demonstrated that disruption of the alkaline phosphatase gene, PHO13 , enhances ethanol production from xylose by a strain expressing the xylose reductase (XR) and xylitol dehydrogenase (XDH) genes; however, the yield of ethanol is poor. In this study, PHO13 was disrupted in a recombinant strain harboring multiple copies of the xylose isomerase (XI) gene derived from Orpinomyces sp., coupled with overexpression of the endogenous xylulokinase (XK) gene and disruption of GRE3 , which encodes aldose reductase. The resulting YΔGP/XK/XI strain consumed 2.08 g/L/h of xylose and produced 0.88 g/L/h of volumetric ethanol, for an 86.8 % theoretical ethanol yield, and only YΔGP/XK/XI demonstrated increase in cell concentration. Transcriptome analysis indicated that expression of genes involved in the pentose phosphate pathway ( GND1 , SOL3 , TAL1 , RKI1 , and TKL1 ) and TCA cycle and respiratory chain ( NDE1 , ACO1 , ACO2 , SDH2 , IDH1 , IDH2 , ATP7 , ATP19 , SDH4 , SDH3 , CMC2 , and ATP15 ) was upregulated in the YΔGP/XK/XI strain. And the expression levels of 125 cell cycle genes were changed by deletion of PHO13 . |
ArticleNumber | 4 |
Author | Tomohisa Hasunuma Takahiro Bamba Akihiko Kondo |
Author_xml | – sequence: 1 givenname: Takahiro surname: Bamba fullname: Bamba, Takahiro organization: Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University – sequence: 2 givenname: Tomohisa surname: Hasunuma fullname: Hasunuma, Tomohisa organization: Organization of Advanced Science and Technology, Kobe University – sequence: 3 givenname: Akihiko surname: Kondo fullname: Kondo, Akihiko email: akondo@kobe-u.ac.jp organization: Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Biomass Engineering Program, RIKEN |
BackLink | https://cir.nii.ac.jp/crid/1871428068039597568$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/26769491$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUlFP3SAYJYtmOucP2MvSZHvYSx0flAIvS4xz08REH7ZnwqXUi2mhg_Zu999LV12uPpiRAB_hnJPzwXmD9nzwFqF3gE8ARP05AWW1KDGwPDkr-St0SEBCiQVjezv1ATpO6Q7nwTCWNXuNDkjNa1lJOEQ3X12K0zC64IvQFjcX10AL1w8xbGwq7LjWPnRFPjaT-QvaOF2Ma1v82XYh2cKl0NuoczXocf1bb9-i_VZ3yR4_7Efo57fzH2cX5dX198uz06vSMCnGUhNBiJGWNXVNKmLA2EZSCQ1vSculobyVK91y0tCKkmolmqZtKk4FcEkoWdEj9GXRHaZVbxtj_Rh1p4boeh23Kminnt54t1a3YaMqDrTCNAt8ehCI4ddk06h6l4ztOu1tmJICLjAjlFXyP6A1FpxIOUM_PIPehSn6_BIKBFSEAcMko97vmv_n-vFfMoAvABNDStG2yrhRzx-Qe3GdAqzmEKglBCqHQM0hUDwz4RnzUfwlDlk4KWP9rY07pl8gfVxI3rnsbl5B8NyiwLXAVDLJM4PeA2opzQA |
CitedBy_id | crossref_primary_10_1016_j_ymben_2017_02_006 crossref_primary_10_3389_fbioe_2020_00435 crossref_primary_10_7717_peerj_16340 crossref_primary_10_1007_s10295_019_02242_x crossref_primary_10_1371_journal_pgen_1006372 crossref_primary_10_1093_femsyr_fox044 crossref_primary_10_1002_yea_3429 crossref_primary_10_1016_j_ymben_2021_09_008 crossref_primary_10_1002_biot_201800704 crossref_primary_10_1016_j_engmic_2023_100084 crossref_primary_10_1016_j_ymben_2019_08_012 crossref_primary_10_1021_acs_jafc_8b04916 crossref_primary_10_1186_s13068_018_1018_y crossref_primary_10_1021_acs_jafc_9b05095 crossref_primary_10_1016_j_ygeno_2024_110811 crossref_primary_10_1021_acssynbio_1c00535 crossref_primary_10_1007_s00253_016_7879_8 crossref_primary_10_1186_s13568_018_0670_8 crossref_primary_10_1371_journal_pone_0236294 crossref_primary_10_1002_bit_27560 crossref_primary_10_3390_fermentation4030059 crossref_primary_10_1007_s00253_018_9493_4 crossref_primary_10_1016_j_biortech_2022_127105 crossref_primary_10_1007_s12155_021_10340_x crossref_primary_10_1016_j_ymben_2024_05_003 crossref_primary_10_3390_fermentation8120669 crossref_primary_10_7124_FEEO_v22_970 crossref_primary_10_1016_j_ymben_2017_09_008 crossref_primary_10_1016_j_ymben_2016_08_001 crossref_primary_10_1007_s13399_021_01824_z crossref_primary_10_1093_femsyr_fox034 crossref_primary_10_1534_g3_117_039610 crossref_primary_10_1186_s40643_016_0126_4 |
Cites_doi | 10.1002/yea.1365 10.1016/j.femsyr.2004.09.008 10.1016/j.femsyr.2005.04.004 10.1186/1475-2859-10-2 10.1016/j.ymben.2007.12.002 10.1128/AEM.03474-14 10.1016/j.ymben.2012.07.011 10.1016/j.jbiosc.2011.12.013 10.1016/j.biortech.2012.01.161 10.1038/modpathol.3880508 10.1016/j.biortech.2004.06.025 10.1007/s00253-012-4418-0 10.1371/journal.pone.0057048 10.1093/jb/mvp028 10.1007/s00253-008-1818-2 10.1128/AEM.67.9.4249-4255.2001 10.1007/BF00167144 10.1007/BF00318659 10.1186/1475-2859-6-5 10.1128/MCB.02450-05 10.1002/bit.25447 10.1016/j.biotechadv.2007.04.001 10.1007/s00253-008-1794-6 10.1128/AEM.69.1.495-503.2003 10.1128/AEM.00955-07 10.1128/AEM.02564-06 10.1002/yea.1216 10.1007/s00253-009-2198-y 10.1016/j.copbio.2009.06.001 10.1016/j.ymben.2005.07.003 10.1128/AEM.71.12.8249-8256.2005 10.1016/j.femsyr.2004.09.010 10.1007/s00253-009-2101-x 10.1016/j.nbt.2009.08.008 10.1128/EC.2.1.170-180.2003 10.1007/s10529-014-1581-7 |
ContentType | Journal Article |
Copyright | Bamba et al. 2016 The Author(s) 2016 |
Copyright_xml | – notice: Bamba et al. 2016 – notice: The Author(s) 2016 |
DBID | RYH C6C AAYXX CITATION NPM 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ L6V LK8 M7P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 7T7 8FD C1K FR3 P64 5PM |
DOI | 10.1186/s13568-015-0175-7 |
DatabaseName | CiNii Complete SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection Proquest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Biological Sciences Biological Science Database Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic Engineering Research Database Technology Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Engineering Research Database MEDLINE - Academic PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (WRLC) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2191-0855 |
EndPage | 10 |
ExternalDocumentID | PMC4713403 4160386331 26769491 10_1186_s13568_015_0175_7 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 4.4 40G 53G 5VS 8FE 8FG 8FH AAFWJ AAJSJ AAKKN AASML ABDBF ABEEZ ABJCF ACACY ACGFS ACIWK ACPRK ACUHS ACULB ADBBV ADDVE ADRAZ AEGXH AENEX AFGXO AFKRA AFPKN AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI C24 C6C CCPQU DIK EBLON EBS EJD GROUPED_DOAJ GX1 H13 HCIFZ HH5 HYE IAO ITC KQ8 L6V LK8 M48 M7P M7S M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC PTHSS RNS RPM RYH SCM SOJ TSV U2A -A0 ADINQ RBZ RSV AAYXX CITATION 2VQ HZ~ NPM O9- PQGLB ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 7T7 8FD C1K FR3 P64 5PM |
ID | FETCH-LOGICAL-c598t-a2822c9e5d66242c1ced9391d7f2f79c37f9baf72d34324b8ddfd4738179232b3 |
IEDL.DBID | M48 |
ISSN | 2191-0855 |
IngestDate | Thu Aug 21 18:32:05 EDT 2025 Fri Jul 11 07:09:53 EDT 2025 Fri Jul 11 15:16:58 EDT 2025 Fri Jul 25 11:12:33 EDT 2025 Mon Jul 21 06:07:39 EDT 2025 Thu Apr 24 22:53:44 EDT 2025 Tue Jul 01 01:16:03 EDT 2025 Fri Feb 21 02:31:43 EST 2025 Thu Jun 26 23:58:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | PHO13 Xylose fermentation Bioethanol Xylose isomerase Saccharomyces cerevisiae |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c598t-a2822c9e5d66242c1ced9391d7f2f79c37f9baf72d34324b8ddfd4738179232b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8382-2362 0000-0003-1527-5288 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13568-015-0175-7 |
PMID | 26769491 |
PQID | 1814251502 |
PQPubID | 2034805 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4713403 proquest_miscellaneous_1780523549 proquest_miscellaneous_1760872999 proquest_journals_1814251502 pubmed_primary_26769491 crossref_citationtrail_10_1186_s13568_015_0175_7 crossref_primary_10_1186_s13568_015_0175_7 springer_journals_10_1186_s13568_015_0175_7 nii_cinii_1871428068039597568 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-14 |
PublicationDateYYYYMMDD | 2016-01-14 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | AMB Express |
PublicationTitleAbbrev | AMB Expr |
PublicationTitleAlternate | AMB Express |
PublicationYear | 2016 |
Publisher | Springer Science and Business Media LLC Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Science and Business Media LLC – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Kuyper, Hartog, Toirkens, Almering, Winkler, Van Dijken, Pronk (CR22) 2005; 5 Madhavan, Tamalampudi, Ushida, Kanai, Katahira, Srivastava, Fukuda, Bisaria, Kondo (CR28) 2009; 82 Madhavan, Tamalampudi, Srivastava, Fukuda, Bisaria, Kondo (CR29) 2009; 82 Van Vleet, Jeffries (CR36) 2009; 20 De Preter, Speleman, Combaret, Lunec, Laureys, Eussen, Francotte, Board, Pearson, De Paepe, Van Roy, Vandesompele (CR5) 2002; 15 Ishii, Izawa, Matsumura, Wakamura, Tanino, Tanaka, Ogino, Fukuda, Kondo (CR11) 2009; 145 Kim, Xu, Lesmana, Kuzmanovic, Au, Florencia, Oh, Zhang, Kim, Jin (CR20) 2015; 81 Larochelle, Drouin, Robert, Turcotte (CR24) 2006; 26 Hasunuma, Sanda, Yamada, Yoshimura, Ishii, Kondo (CR9) 2011; 10 Ni, Laplaza, Jeffries (CR32) 2007; 73 Matsushika, Inoue, Kodaki, Sawayama (CR30) 2009; 84 Johansson, Hahn-Hägerdal (CR15) 2002; 2 Karhumaa, Garcia Sanchez, Hahn-Hägerdal, Gorwa-Grauslund (CR17) 2007; 6 Zhou, Cheng, Wang, Fink, Stephanopoulos (CR39) 2012; 14 Yamada, Tanaka, Ogino, Fukuda, Kondo (CR38) 2010; 85 Chen, Yang, Kuo (CR3) 1992; 21 Chu, Lee (CR4) 2007; 25 Fiaux, Cakar, Sonderegger, Wüthrich, Szyperski, Sauer (CR6) 2003; 2 Karhumaa, Hahn-Hägerdal, Gorwa-Grauslund (CR16) 2005; 22 Kato, Izumi, Hasunuma, Matsuda, Kondo (CR18) 2012; 113 Wasylenko, Stephanopoulos (CR37) 2015; 112 Blank, Lehmbeck, Sauer (CR2) 2005; 5 Hector, Bowman, Skory, Cotta (CR10) 2009; 26 CR26 Mosier, Wyman, Dale, Elander, Lee, Holtzapple, Ladisch (CR31) 2005; 96 Akada, Kitagawa, Kaneko, Toyonaga, Ito, Kakihara, Hoshida, Morimura, Kondo, Kida (CR1) 2006; 23 Shen, Chen, Peng, Chen, Hou, Bao (CR33) 2012; 96 Lee, Jellison, Alper (CR25) 2014; 7 Johansson, Christensson, Hobley, Hahn-Hägerdal (CR14) 2001; 67 Jin, Ni, Laplaza, Jeffries (CR12) 2003; 69 Kuyper, Toirkens, Diderich, Winkler, Van Dijken, Pronk (CR23) 2005; 5 Fujitomi, Sanda, Hasunuma, Kondo (CR7) 2012; 111 Kötter, Ciriacy (CR21) 1993; 38 Grotkjær, Christakopoulos, Nielsen, Olsson (CR8) 2005; 7 Van Maris, Winkler, Kuyper, De Laat, Van Dijken, Pronk (CR34) 2007; 108 Lu, Jeffries (CR27) 2007; 73 Jin, Alper, Yang, Stephanopoulos (CR13) 2005; 71 Van Vleet, Jeffries, Olsson (CR35) 2008; 10 Kim, Skerker, Kang, Lesmana, Wei, Arkin, Jin (CR19) 2013; 8 B Johansson (175_CR14) 2001; 67 K Karhumaa (175_CR17) 2007; 6 DC Chen (175_CR3) 1992; 21 J Ishii (175_CR11) 2009; 145 B Johansson (175_CR15) 2002; 2 M Kuyper (175_CR23) 2005; 5 M Larochelle (175_CR24) 2006; 26 A Madhavan (175_CR29) 2009; 82 H Kato (175_CR18) 2012; 113 H Zhou (175_CR39) 2012; 14 JH Vleet Van (175_CR35) 2008; 10 Y Jin (175_CR12) 2003; 69 LM Blank (175_CR2) 2005; 5 R Akada (175_CR1) 2006; 23 T Hasunuma (175_CR9) 2011; 10 N Mosier (175_CR31) 2005; 96 T Grotkjær (175_CR8) 2005; 7 A Matsushika (175_CR30) 2009; 84 J Fiaux (175_CR6) 2003; 2 K Fujitomi (175_CR7) 2012; 111 JH Vleet Van (175_CR36) 2009; 20 H Ni (175_CR32) 2007; 73 Y Shen (175_CR33) 2012; 96 A Madhavan (175_CR28) 2009; 82 P Kötter (175_CR21) 1993; 38 AJA Maris Van (175_CR34) 2007; 108 BCH Chu (175_CR4) 2007; 25 K Karhumaa (175_CR16) 2005; 22 SR Kim (175_CR19) 2013; 8 TM Wasylenko (175_CR37) 2015; 112 Y Jin (175_CR13) 2005; 71 M Kuyper (175_CR22) 2005; 5 SR Kim (175_CR20) 2015; 81 R Yamada (175_CR38) 2010; 85 K Preter De (175_CR5) 2002; 15 RE Hector (175_CR10) 2009; 26 175_CR26 S-M Lee (175_CR25) 2014; 7 C Lu (175_CR27) 2007; 73 15806613 - Yeast. 2005 Apr 15;22(5):359-68 19572128 - Appl Microbiol Biotechnol. 2009 Aug;84(1):37-53 11850545 - Mod Pathol. 2002 Feb;15(2):159-66 19050860 - Appl Microbiol Biotechnol. 2009 Apr;82(6):1067-78 23468911 - PLoS One. 2013;8(2):e57048 16598691 - Yeast. 2006 Apr 15;23(5):399-405 12514033 - Appl Environ Microbiol. 2003 Jan;69(1):495-503 12702276 - FEMS Yeast Res. 2002 Aug;2(3):277-82 17846724 - Adv Biochem Eng Biotechnol. 2007;108:179-204 22357292 - Bioresour Technol. 2012 May;111:161-6 15949975 - FEMS Yeast Res. 2005 Jul;5(10):925-34 11526030 - Appl Environ Microbiol. 2001 Sep;67(9):4249-55 15780654 - FEMS Yeast Res. 2005 Apr;5(6-7):545-58 21219616 - Microb Cell Fact. 2011 Jan 10;10 (1):2 23053078 - Appl Microbiol Biotechnol. 2012 Nov;96(4):1079-91 25527558 - Appl Environ Microbiol. 2015 Mar;81(5):1601-9 16140032 - Metab Eng. 2005 Sep-Nov;7(5-6):437-44 19545992 - Curr Opin Biotechnol. 2009 Jun;20(3):300-6 17277207 - Appl Environ Microbiol. 2007 Apr;73(7):2061-6 25311863 - Biotechnol Bioeng. 2015 Mar;112(3):470-83 25170344 - Biotechnol Biofuels. 2014 Aug 20;7(1):122 22921355 - Metab Eng. 2012 Nov;14(6):611-22 17524590 - Biotechnol Adv. 2007 Sep-Oct;25(5):425-41 22280965 - J Biosci Bioeng. 2012 May;113(5):665-73 19707752 - Appl Microbiol Biotechnol. 2010 Feb;85(5):1491-8 19237442 - J Biochem. 2009 Jun;145(6):701-8 15691745 - FEMS Yeast Res. 2005 Feb;5(4-5):399-409 12582134 - Eukaryot Cell. 2003 Feb;2(1):170-80 16914749 - Mol Cell Biol. 2006 Sep;26(17):6690-701 17693563 - Appl Environ Microbiol. 2007 Oct;73(19):6072-7 24966040 - Biotechnol Lett. 2014 Oct;36(10 ):2011-21 19712762 - N Biotechnol. 2009 Oct 31;26(3-4):171-80 18249574 - Metab Eng. 2008 Nov;10(6):360-9 19125247 - Appl Microbiol Biotechnol. 2009 Apr;82(6):1037-47 16332810 - Appl Environ Microbiol. 2005 Dec;71(12):8249-56 1735128 - Curr Genet. 1992 Jan;21(1):83-4 17280608 - Microb Cell Fact. 2007 Feb 05;6:5 15588770 - Bioresour Technol. 2005 Apr;96(6):673-86 |
References_xml | – volume: 23 start-page: 399 year: 2006 end-page: 405 ident: CR1 article-title: PCR-mediated seamless gene deletion and marker recycling in publication-title: Yeast doi: 10.1002/yea.1365 – volume: 5 start-page: 545 year: 2005 end-page: 558 ident: CR2 article-title: Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts publication-title: FEMS Yeast Res doi: 10.1016/j.femsyr.2004.09.008 – volume: 5 start-page: 925 year: 2005 end-page: 934 ident: CR23 article-title: Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting strain publication-title: FEMS Yeast Res doi: 10.1016/j.femsyr.2005.04.004 – volume: 10 start-page: 2 year: 2011 ident: CR9 article-title: Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of publication-title: Microb Cell Fact doi: 10.1186/1475-2859-10-2 – volume: 2 start-page: 277 year: 2002 end-page: 282 ident: CR15 article-title: The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in TMB3001 publication-title: FEMS Yeast Res – volume: 10 start-page: 360 year: 2008 end-page: 369 ident: CR35 article-title: Deleting the para-nitrophenyl phosphatase (pNPPase), , in recombinant improves growth and ethanol production on -xylose publication-title: Metab Eng doi: 10.1016/j.ymben.2007.12.002 – volume: 81 start-page: 1601 year: 2015 end-page: 1609 ident: CR20 article-title: Deletion of , encoding haloacid dehalogenase type IIA phosphatase, results in upregulation of the pentose phosphate pathway in publication-title: Appl Environ Microbiol doi: 10.1128/AEM.03474-14 – volume: 14 start-page: 611 year: 2012 end-page: 622 ident: CR39 article-title: Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by publication-title: Metab Eng doi: 10.1016/j.ymben.2012.07.011 – volume: 113 start-page: 665 year: 2012 end-page: 673 ident: CR18 article-title: Widely targeted metabolic profiling analysis of yeast central metabolites publication-title: J Biosci Bioeng doi: 10.1016/j.jbiosc.2011.12.013 – volume: 111 start-page: 161 year: 2012 end-page: 166 ident: CR7 article-title: Deletion of the gene in improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural publication-title: Bioresour Technol doi: 10.1016/j.biortech.2012.01.161 – volume: 15 start-page: 159 year: 2002 end-page: 166 ident: CR5 article-title: Quantification of , , and gene copy number in neuroblastoma using a real-time quantitative PCR assay publication-title: Mod Pathol doi: 10.1038/modpathol.3880508 – volume: 96 start-page: 673 year: 2005 end-page: 686 ident: CR31 article-title: Features of promising technologies for pretreatment of lignocellulosic biomass publication-title: Bioresour Technol doi: 10.1016/j.biortech.2004.06.025 – volume: 96 start-page: 1079 year: 2012 end-page: 1091 ident: CR33 article-title: An efficient xylose-fermenting recombinant strain obtained through adaptive evolution and its global transcription profile publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-012-4418-0 – volume: 8 start-page: e57048 year: 2013 ident: CR19 article-title: Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in publication-title: PLoS One doi: 10.1371/journal.pone.0057048 – volume: 145 start-page: 701 year: 2009 end-page: 708 ident: CR11 article-title: A simple and immediate method for simultaneously evaluating expression level and plasmid maintenance in yeast publication-title: J Biochem doi: 10.1093/jb/mvp028 – volume: 82 start-page: 1037 year: 2009 end-page: 1047 ident: CR29 article-title: Alcoholic fermentation of xylose and mixed sugars using recombinant engineered for xylose utilization publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-008-1818-2 – volume: 67 start-page: 4249 year: 2001 end-page: 4255 ident: CR14 article-title: Xylulokinase overexpression in two strains of also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate publication-title: Appl Environ Microbiol doi: 10.1128/AEM.67.9.4249-4255.2001 – volume: 38 start-page: 776 year: 1993 end-page: 783 ident: CR21 article-title: Xylose fermentation by publication-title: Appl Microbiol Biotechnol doi: 10.1007/BF00167144 – volume: 21 start-page: 83 year: 1992 end-page: 84 ident: CR3 article-title: One-step transformation of yeast in stationary phase publication-title: Curr Genet doi: 10.1007/BF00318659 – volume: 6 start-page: 5 year: 2007 ident: CR17 article-title: Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant publication-title: Microb Cell Fact doi: 10.1186/1475-2859-6-5 – volume: 26 start-page: 6690 year: 2006 end-page: 6701 ident: CR24 article-title: Oxidative stress-activated zinc cluster protein Stb5 has dual activator/repressor functions required for pentose phosphate pathway regulation and NADPH production publication-title: Mol Cell Biol doi: 10.1128/MCB.02450-05 – volume: 112 start-page: 470 year: 2015 end-page: 483 ident: CR37 article-title: Metabolomic and C-metabolic flux analysis of a xylose-consuming strain expressing xylose isomerase publication-title: Biotechnol Bioeng doi: 10.1002/bit.25447 – volume: 25 start-page: 425 year: 2007 end-page: 441 ident: CR4 article-title: Genetic improvement of for xylose fermentation publication-title: Biotechnol Adv doi: 10.1016/j.biotechadv.2007.04.001 – volume: 82 start-page: 1067 year: 2009 end-page: 1078 ident: CR28 article-title: Xylose isomerase from polycentric fungus : gene sequencing, cloning, and expression in for bioconversion of xylose to ethanol publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-008-1794-6 – volume: 69 start-page: 495 year: 2003 end-page: 503 ident: CR12 article-title: Optimal growth and ethanol production from xylose by recombinant S require moderate d-xylulokinase activity publication-title: Appl Environ Microbiol doi: 10.1128/AEM.69.1.495-503.2003 – volume: 7 start-page: 122 year: 2014 ident: CR25 article-title: Systematic and evolutionary engineering of a xylose isomerase-based pathway in for efficient conversion yields publication-title: Biotechnol Biofuels – volume: 73 start-page: 6072 year: 2007 end-page: 6077 ident: CR27 article-title: Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered strain publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00955-07 – volume: 73 start-page: 2061 year: 2007 end-page: 2066 ident: CR32 article-title: Transposon mutagenesis to improve the growth of recombinant on -xylose publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02564-06 – volume: 22 start-page: 359 year: 2005 end-page: 368 ident: CR16 article-title: Investigation of limiting metabolic steps in the utilization of xylose by recombinant using metabolic engineering publication-title: Yeast doi: 10.1002/yea.1216 – volume: 85 start-page: 1491 year: 2010 end-page: 1498 ident: CR38 article-title: Novel strategy for yeast construction using δ-integration and cell fusion to efficiently produce ethanol from raw starch publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-009-2198-y – volume: 20 start-page: 300 year: 2009 end-page: 306 ident: CR36 article-title: Yeast metabolic engineering for hemicellulosic ethanol production publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2009.06.001 – volume: 7 start-page: 437 year: 2005 end-page: 444 ident: CR8 article-title: Comparative metabolic network analysis of two xylose fermenting recombinant strains publication-title: Metab Eng doi: 10.1016/j.ymben.2005.07.003 – volume: 71 start-page: 8249 year: 2005 end-page: 8256 ident: CR13 article-title: Improvement of xylose uptake and ethanol production in recombinant through an inverse metabolic engineering approach publication-title: Appl Environ Microbiol doi: 10.1128/AEM.71.12.8249-8256.2005 – volume: 108 start-page: 179 year: 2007 end-page: 204 ident: CR34 article-title: Development of efficient xylose fermentation in : xylose isomerase as a key component publication-title: Adv Biochem Eng Biotechnol – volume: 5 start-page: 399 year: 2005 end-page: 409 ident: CR22 article-title: Metabolic engineering of a xylose-isomerase-expressing strain for rapid anaerobic xylose fermentation publication-title: FEMS Yeast Res doi: 10.1016/j.femsyr.2004.09.010 – volume: 84 start-page: 37 year: 2009 end-page: 53 ident: CR30 article-title: Ethanol production from xylose in engineered strains: current state and perspectives publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-009-2101-x – ident: CR26 – volume: 26 start-page: 171 year: 2009 end-page: 180 ident: CR10 article-title: The gene encodes an NADP(H)-specific oxidoreductase regulated by the transcription factor Stb5p in response to NADPH limitation publication-title: N Biotechnol doi: 10.1016/j.nbt.2009.08.008 – volume: 2 start-page: 170 year: 2003 end-page: 180 ident: CR6 article-title: Metabolic-flux profiling of the yeasts and publication-title: Eukaryot Cell doi: 10.1128/EC.2.1.170-180.2003 – volume: 10 start-page: 2 year: 2011 ident: 175_CR9 publication-title: Microb Cell Fact doi: 10.1186/1475-2859-10-2 – ident: 175_CR26 doi: 10.1007/s10529-014-1581-7 – volume: 111 start-page: 161 year: 2012 ident: 175_CR7 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2012.01.161 – volume: 145 start-page: 701 year: 2009 ident: 175_CR11 publication-title: J Biochem doi: 10.1093/jb/mvp028 – volume: 69 start-page: 495 year: 2003 ident: 175_CR12 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.69.1.495-503.2003 – volume: 22 start-page: 359 year: 2005 ident: 175_CR16 publication-title: Yeast doi: 10.1002/yea.1216 – volume: 5 start-page: 545 year: 2005 ident: 175_CR2 publication-title: FEMS Yeast Res doi: 10.1016/j.femsyr.2004.09.008 – volume: 96 start-page: 673 year: 2005 ident: 175_CR31 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2004.06.025 – volume: 25 start-page: 425 year: 2007 ident: 175_CR4 publication-title: Biotechnol Adv doi: 10.1016/j.biotechadv.2007.04.001 – volume: 6 start-page: 5 year: 2007 ident: 175_CR17 publication-title: Microb Cell Fact doi: 10.1186/1475-2859-6-5 – volume: 23 start-page: 399 year: 2006 ident: 175_CR1 publication-title: Yeast doi: 10.1002/yea.1365 – volume: 67 start-page: 4249 year: 2001 ident: 175_CR14 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.67.9.4249-4255.2001 – volume: 81 start-page: 1601 year: 2015 ident: 175_CR20 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.03474-14 – volume: 8 start-page: e57048 year: 2013 ident: 175_CR19 publication-title: PLoS One doi: 10.1371/journal.pone.0057048 – volume: 96 start-page: 1079 year: 2012 ident: 175_CR33 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-012-4418-0 – volume: 71 start-page: 8249 year: 2005 ident: 175_CR13 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.71.12.8249-8256.2005 – volume: 26 start-page: 171 year: 2009 ident: 175_CR10 publication-title: N Biotechnol doi: 10.1016/j.nbt.2009.08.008 – volume: 38 start-page: 776 year: 1993 ident: 175_CR21 publication-title: Appl Microbiol Biotechnol doi: 10.1007/BF00167144 – volume: 82 start-page: 1067 year: 2009 ident: 175_CR28 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-008-1794-6 – volume: 73 start-page: 2061 year: 2007 ident: 175_CR32 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02564-06 – volume: 10 start-page: 360 year: 2008 ident: 175_CR35 publication-title: Metab Eng doi: 10.1016/j.ymben.2007.12.002 – volume: 15 start-page: 159 year: 2002 ident: 175_CR5 publication-title: Mod Pathol doi: 10.1038/modpathol.3880508 – volume: 14 start-page: 611 year: 2012 ident: 175_CR39 publication-title: Metab Eng doi: 10.1016/j.ymben.2012.07.011 – volume: 82 start-page: 1037 year: 2009 ident: 175_CR29 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-008-1818-2 – volume: 21 start-page: 83 year: 1992 ident: 175_CR3 publication-title: Curr Genet doi: 10.1007/BF00318659 – volume: 2 start-page: 277 year: 2002 ident: 175_CR15 publication-title: FEMS Yeast Res – volume: 85 start-page: 1491 year: 2010 ident: 175_CR38 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-009-2198-y – volume: 26 start-page: 6690 year: 2006 ident: 175_CR24 publication-title: Mol Cell Biol doi: 10.1128/MCB.02450-05 – volume: 73 start-page: 6072 year: 2007 ident: 175_CR27 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00955-07 – volume: 20 start-page: 300 year: 2009 ident: 175_CR36 publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2009.06.001 – volume: 7 start-page: 437 year: 2005 ident: 175_CR8 publication-title: Metab Eng doi: 10.1016/j.ymben.2005.07.003 – volume: 84 start-page: 37 year: 2009 ident: 175_CR30 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-009-2101-x – volume: 112 start-page: 470 year: 2015 ident: 175_CR37 publication-title: Biotechnol Bioeng doi: 10.1002/bit.25447 – volume: 113 start-page: 665 year: 2012 ident: 175_CR18 publication-title: J Biosci Bioeng doi: 10.1016/j.jbiosc.2011.12.013 – volume: 2 start-page: 170 year: 2003 ident: 175_CR6 publication-title: Eukaryot Cell doi: 10.1128/EC.2.1.170-180.2003 – volume: 5 start-page: 925 year: 2005 ident: 175_CR23 publication-title: FEMS Yeast Res doi: 10.1016/j.femsyr.2005.04.004 – volume: 7 start-page: 122 year: 2014 ident: 175_CR25 publication-title: Biotechnol Biofuels – volume: 108 start-page: 179 year: 2007 ident: 175_CR34 publication-title: Adv Biochem Eng Biotechnol – volume: 5 start-page: 399 year: 2005 ident: 175_CR22 publication-title: FEMS Yeast Res doi: 10.1016/j.femsyr.2004.09.010 – reference: 22357292 - Bioresour Technol. 2012 May;111:161-6 – reference: 21219616 - Microb Cell Fact. 2011 Jan 10;10 (1):2 – reference: 19707752 - Appl Microbiol Biotechnol. 2010 Feb;85(5):1491-8 – reference: 19237442 - J Biochem. 2009 Jun;145(6):701-8 – reference: 15588770 - Bioresour Technol. 2005 Apr;96(6):673-86 – reference: 16914749 - Mol Cell Biol. 2006 Sep;26(17):6690-701 – reference: 17846724 - Adv Biochem Eng Biotechnol. 2007;108:179-204 – reference: 11526030 - Appl Environ Microbiol. 2001 Sep;67(9):4249-55 – reference: 15949975 - FEMS Yeast Res. 2005 Jul;5(10):925-34 – reference: 23053078 - Appl Microbiol Biotechnol. 2012 Nov;96(4):1079-91 – reference: 23468911 - PLoS One. 2013;8(2):e57048 – reference: 15806613 - Yeast. 2005 Apr 15;22(5):359-68 – reference: 12514033 - Appl Environ Microbiol. 2003 Jan;69(1):495-503 – reference: 17524590 - Biotechnol Adv. 2007 Sep-Oct;25(5):425-41 – reference: 19572128 - Appl Microbiol Biotechnol. 2009 Aug;84(1):37-53 – reference: 16598691 - Yeast. 2006 Apr 15;23(5):399-405 – reference: 25527558 - Appl Environ Microbiol. 2015 Mar;81(5):1601-9 – reference: 16140032 - Metab Eng. 2005 Sep-Nov;7(5-6):437-44 – reference: 16332810 - Appl Environ Microbiol. 2005 Dec;71(12):8249-56 – reference: 11850545 - Mod Pathol. 2002 Feb;15(2):159-66 – reference: 19125247 - Appl Microbiol Biotechnol. 2009 Apr;82(6):1037-47 – reference: 17280608 - Microb Cell Fact. 2007 Feb 05;6:5 – reference: 22921355 - Metab Eng. 2012 Nov;14(6):611-22 – reference: 25311863 - Biotechnol Bioeng. 2015 Mar;112(3):470-83 – reference: 19545992 - Curr Opin Biotechnol. 2009 Jun;20(3):300-6 – reference: 24966040 - Biotechnol Lett. 2014 Oct;36(10 ):2011-21 – reference: 1735128 - Curr Genet. 1992 Jan;21(1):83-4 – reference: 18249574 - Metab Eng. 2008 Nov;10(6):360-9 – reference: 19050860 - Appl Microbiol Biotechnol. 2009 Apr;82(6):1067-78 – reference: 12702276 - FEMS Yeast Res. 2002 Aug;2(3):277-82 – reference: 15691745 - FEMS Yeast Res. 2005 Feb;5(4-5):399-409 – reference: 12582134 - Eukaryot Cell. 2003 Feb;2(1):170-80 – reference: 25170344 - Biotechnol Biofuels. 2014 Aug 20;7(1):122 – reference: 17277207 - Appl Environ Microbiol. 2007 Apr;73(7):2061-6 – reference: 19712762 - N Biotechnol. 2009 Oct 31;26(3-4):171-80 – reference: 22280965 - J Biosci Bioeng. 2012 May;113(5):665-73 – reference: 15780654 - FEMS Yeast Res. 2005 Apr;5(6-7):545-58 – reference: 17693563 - Appl Environ Microbiol. 2007 Oct;73(19):6072-7 |
SSID | ssj0000500965 |
Score | 2.1834512 |
Snippet | Xylose is the second most abundant sugar in lignocellulosic materials and can be converted to ethanol by recombinant
Saccharomyces cerevisiae
yeast strains... Xylose is the second most abundant sugar in lignocellulosic materials and can be converted to ethanol by recombinant Saccharomyces cerevisiae yeast strains... |
SourceID | pubmedcentral proquest pubmed crossref springer nii |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4 |
SubjectTerms | Biomedical and Life Sciences Biotechnology Life Sciences Microbial Genetics and Genomics Microbiology Original Original Article Orpinomyces Saccharomyces cerevisiae |
SummonAdditionalLinks | – databaseName: Proquest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEB-8PQRfxG-rdxLBJ6Vc0qRN8yR-3LEInot4cG8lTVKucLTrdVe9_96ZtltdP_alFDIt7WQy-c1HZgBeeMOVQxwaowJOY-UVrjnheMxLQdWldKYr8kN-PM3mZ-rDeXo-Oty6Ma1yoxN7Re1bRz7yI9yJULwQviSvl19j6hpF0dWxhcYe7KMKzvMZ7L89Pl18nrwsPCWMno7hTJFnR52QaUb5W5SzptNYb21Ie01d_wtr_p0y-UfctN-OTu7A7RFHsjfDxN-FG6G5BzeHzpLX92Hxvu6u1r06YG3FFvNPQrK6dyCEjgXyl7eXbDmUeyWib7VliAXZDzTgu8DqriVvFd5Ry-Lv9voBnJ0cf3k3j8fmCbFLTb6KLeWHOhNSn9ERECdc8EYa4XWVVNo4qStT2konno6WqjL3vvJKU8E-xHxJKR_CrGmb8BiY1NZmSCfKCo2nilsrgrQmp9o1Buc0Ar7hYOHGyuLU4OKy6C2MPCsGphfI9IKYXugIXk6PLIeyGruID3Fa8NV0FWjhKQoH51watIaQNIKDzYQV4wrsil_yEsHzaRjXDgVEbBPaNdLojOdoXRizi4aaPkg0oyN4NMjA9MUJ5QcrIyLQW9IxEVDt7u2Rpr7oa3grOsPLZQSvNnL026f_jxFPdv_oU7iFcK53EAl1ALPV1TocImRalc_GdfETRVgQlw priority: 102 providerName: ProQuest – databaseName: SpringerLINK dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFD-4ieCLuPnVfUgEn5Ri0qRN8yi6cRH28eBgbyVtEiyMdqz3qvvvPSdtL16dA18uhf56KSc56fn8HYC3znDVoB2a4gGcp8op1DnR8JTXgtildKEDxSFPTovFhfpymV9OfdzDXO0-pyTjSR3Vuiw-DELmBRVeUbGZzlO9BQ9zct0pQzu1OIyE3mSW51MG884nN75BW13b3mVe_l0l-UeqNH6Bjp_Ck8l0ZB_Htd6BB77bhUfjMMnbZ3D-uR1uVvEEYH1g54szIVkbYwZ-YJ5C5P0Vux4ZXgn0vbUMzT_2E332wbN26ClAhVc0pfiHvX0OF8dHXz8t0mleQtrkplymlkpCG-NzV1DXRyMa74w0wumQBW0aqYOpbdCZo25SVZfOBac0cfShmZfV8gVsd33nXwGT2toCcaIO6C8Fbq3w0pqS6GoMLmMCfJZg1Uxk4jTT4qqKTkVZVKPQKxR6RUKvdALv1o9cj0wa94EPcVnwr-lXoFOnKANccmnQAUJoAgfzglWT0g2IQxjaZzxL4M36NqoL5UBs5_sVYnTBS3QojLkPQ3MeJHrOCbwc98D6jTMqCVZGJKA3dscaQHTdm3e69luk7VbUtstlAu_nffTbq_9LEHv_hd6Hx2jQxRCRUAewvbxZ-UM0mpb166gkvwBVRgut priority: 102 providerName: Springer Nature |
Title | Disruption of PHO13 improves ethanol production via the xylose isomerase pathway |
URI | https://cir.nii.ac.jp/crid/1871428068039597568 https://link.springer.com/article/10.1186/s13568-015-0175-7 https://www.ncbi.nlm.nih.gov/pubmed/26769491 https://www.proquest.com/docview/1814251502 https://www.proquest.com/docview/1760872999 https://www.proquest.com/docview/1780523549 https://pubmed.ncbi.nlm.nih.gov/PMC4713403 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-tm5B4QXwT2Coj8QQK2LETxw8IjbJSIW1UiEp7i5zEEZGqdDQtrP89d_moKJQ98GK1yqWNznfx787n3wG8yA1XGeJQH1_Aoa9yhT4nMu7zVBC7lI50QXnI84toMlOfLsPLA-jbW3UKrPeGdtRParacv77-vnmHDv-2cfg4elMLGUZUkkVlaDr09QCOcGHS1NDgvEP7LdU3Afaw29vceydxA1PRpzJiZ6EaVGW5D4P-XUr5x35qs0yN78KdDl-y09Yg7sGBq-7Drbbj5OYBTD-U9XLdvCbYomDTyWchWdkkFlzNHOXRF3N21dLAktCP0jLEiOwaA_vasbJeUBYLP1Er45928xBm47Ovo4nfNVXws9DEK99S3WhmXJhHdDQkE5nLjTQi10VQaJNJXZjUFjrI6cipSuM8L3KlicgPsWCQykdwWC0q9wSY1NZGKCfSAoOqglsrnLQmJk4bg3PtAe81mGQd4zg1vpgnTeQRR0mr_wT1n5D-E-3By-0tVy3dxk3CJzgt-NM0Coz8FG0Tx1wajJJQ1IPjfsKS3rBQDsUQxPHAg-fby-hTtFFiK7dYo4yOeIxRhzE3yVAzCInhtQePWxvYPnFvQh7oHevYChCn9-6VqvzWcHsrOtvLpQevejv67dH_pYin__0_z-A2IsAmpyTUMRyulmt3gihrlQ5hoPhHHOMxjkfvzy6mX_DbKFA0RqNhk70YNh6G4yw4_QWnvyZu |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcNQWIbgg3qS0YCS4gKLGsRPHB4QQZdnSBz20Um9pEjsi0irZNruU_Sm-kZm8YHnsrZcokieWM56x5z0AL432ZIZyqIsHcOBKI5HneOa5XsqpupQKVU52yMOjcHwqP58FZ2vwo8-FobDK_kxsDmpTZWQj38GbCMkLxRf_3fTCpa5R5F3tW2i0ZLFvF1eostVv93Zxf1_5_ujjyYex23UVcLNARzM3ocDJTNvAhJQbkfHMGi00Nyr3c6UzoXKdJrnyDeVcyjQyJjdSUSU7FIb8VOC863BDCrzJKTN99Gmw6XgBaQRB5zzlUbhTcxGEFC1GEXIqcNXS9bdeFsW_JNu_AzT_8NI2l9_oLtzppFb2viWze7Bmy_tws-1juXgAx7tFfTlvDh9W5ex4_IULVjTmClszS9b5asKmbXFZAvpWJAwlT_Z9Malqy4q6ItsYvlGD5Ktk8RBOrwWpj2CjrEr7BJhQSRIiHE9zVNVyL0m4FYmOqFKORgpywOsxGGddHXNqpzGJG30mCuMW6TEiPSakx8qB18Mn07aIxyrgbdwWnJqeHPVJSc7nyBMadS8EdWCr37C44_c6_kWdDrwYhpFTyf2SlLaaI4wKvQh1Ga1XwVCLCYFKuwOPWxoYVuxTNLLU3AG1RB0DAFUKXx4pi69NxXBJGcOecOBNT0e_Lf1_iNhc_aPP4db45PAgPtg72n8Kt1GQbExTXG7BxuxybrdRWJulzxoOYXB-3Sz5EyU3S7s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9NADLe2TiBeEN8ENjgkeAFFzSWXXO4BIaCrOgalQkzaW3ZJLiJSlZSlZfRf46_DzheUj77tJYoU55T47Dv_bJ8N8DRVjkjQDrVxAfZtkQrUOZ44thNzqi4lA5mRH_LDNJiciHen_ukO_OjOwlBaZbcm1gt1WibkIx_iToTiheaLO8zatIjZaPxq8dWmDlIUae3aaTQicmzWFwjfqpdHI5zrZ647Pvz8dmK3HQbsxFfh0taURJko46cBnZNIeGJS5SmeyszNpEo8malYZ9JN6fyliMM0zVIhqaodGkZu7OG4u7AnCRUNYO_N4XT2qffwOD7hA78NpfIwGFbc8wPKHaN8OenbcmMz3C3y_F927t_pmn_EbOutcHwDrrc2LHvdCN1N2DHFLbjSdLVc34bZKK_OV_VSxMqMzSYfucfy2nlhKmbIV1_O2aIpNUtE33LN0A5l39fzsjIsr0rylOEdtUu-0Os7cHIpbL0Lg6IszH1gntQ6QDoeZwjcMkdrbjytQqqbo1CeLHA6DkZJW9WcmmvMoxrdhEHUMD1CpkfE9Eha8Lx_ZdGU9NhGfIDTgkPTlSO6FBSKDh1PIRJDUgv2uwmLWu2vol-yasGT_jHqLQVjdGHKFdLIwAkR2Si1jYYaTngI4S2418hA_8Uu5SYLxS2QG9LRE1Dd8M0nRf6lrh8u6Pyw41nwopOj3z79f4x4sP1HH8NVVMfo_dH0-CFcQ6uy9lNxsQ-D5fnKHKDltowftSrC4OyytfInbT1RTQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disruption+of+PHO13+improves+ethanol+production+via+the+xylose+isomerase+pathway&rft.jtitle=AMB+Express&rft.au=Bamba%2C+Takahiro&rft.au=Hasunuma%2C+Tomohisa&rft.au=Kondo%2C+Akihiko&rft.date=2016-01-14&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=2191-0855&rft.volume=6&rft_id=info:doi/10.1186%2Fs13568-015-0175-7&rft_id=info%3Apmid%2F26769491&rft.externalDocID=PMC4713403 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2191-0855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2191-0855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2191-0855&client=summon |