Deep Learning Algorithm to Detect Cardiac Sarcoidosis From Echocardiographic Movies
Background:Because the early diagnosis of subclinical cardiac sarcoidosis (CS) remains difficult, we developed a deep learning algorithm to distinguish CS patients from healthy subjects using echocardiographic movies.Methods and Results:Among the patients who underwent echocardiography from January...
Saved in:
Published in | Circulation Journal Vol. 86; no. 1; pp. 87 - 95 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
The Japanese Circulation Society
24.12.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1346-9843 1347-4820 1347-4820 |
DOI | 10.1253/circj.CJ-21-0265 |
Cover
Loading…
Abstract | Background:Because the early diagnosis of subclinical cardiac sarcoidosis (CS) remains difficult, we developed a deep learning algorithm to distinguish CS patients from healthy subjects using echocardiographic movies.Methods and Results:Among the patients who underwent echocardiography from January 2015 to December 2019, we chose 151 echocardiographic movies from 50 CS patients and 151 from 149 healthy subjects. We trained two 3D convolutional neural networks (3D-CNN) to identify CS patients using a dataset of 212 echocardiographic movies with and without a transfer learning method (Pretrained algorithm and Non-pretrained algorithm). On an independent set of 41 echocardiographic movies, the area under the receiver-operating characteristic curve (AUC) of the Pretrained algorithm was greater than that of Non-pretrained algorithm (0.842, 95% confidence interval (CI): 0.722–0.962 vs. 0.724, 95% CI: 0.566–0.882, P=0.253). The AUC from the interpretation of the same set of 41 echocardiographic movies by 5 cardiologists was not significantly different from that of the Pretrained algorithm (0.855, 95% CI: 0.735–0.975 vs. 0.842, 95% CI: 0.722–0.962, P=0.885). A sensitivity map demonstrated that the Pretrained algorithm focused on the area of the mitral valve.Conclusions:A 3D-CNN with a transfer learning method may be a promising tool for detecting CS using an echocardiographic movie. |
---|---|
AbstractList | Because the early diagnosis of subclinical cardiac sarcoidosis (CS) remains difficult, we developed a deep learning algorithm to distinguish CS patients from healthy subjects using echocardiographic movies.BACKGROUNDBecause the early diagnosis of subclinical cardiac sarcoidosis (CS) remains difficult, we developed a deep learning algorithm to distinguish CS patients from healthy subjects using echocardiographic movies.Among the patients who underwent echocardiography from January 2015 to December 2019, we chose 151 echocardiographic movies from 50 CS patients and 151 from 149 healthy subjects. We trained two 3D convolutional neural networks (3D-CNN) to identify CS patients using a dataset of 212 echocardiographic movies with and without a transfer learning method (Pretrained algorithm and Non-pretrained algorithm). On an independent set of 41 echocardiographic movies, the area under the receiver-operating characteristic curve (AUC) of the Pretrained algorithm was greater than that of Non-pretrained algorithm (0.842, 95% confidence interval (CI): 0.722-0.962 vs. 0.724, 95% CI: 0.566-0.882, P=0.253). The AUC from the interpretation of the same set of 41 echocardiographic movies by 5 cardiologists was not significantly different from that of the Pretrained algorithm (0.855, 95% CI: 0.735-0.975 vs. 0.842, 95% CI: 0.722-0.962, P=0.885). A sensitivity map demonstrated that the Pretrained algorithm focused on the area of the mitral valve.METHODS AND RESULTSAmong the patients who underwent echocardiography from January 2015 to December 2019, we chose 151 echocardiographic movies from 50 CS patients and 151 from 149 healthy subjects. We trained two 3D convolutional neural networks (3D-CNN) to identify CS patients using a dataset of 212 echocardiographic movies with and without a transfer learning method (Pretrained algorithm and Non-pretrained algorithm). On an independent set of 41 echocardiographic movies, the area under the receiver-operating characteristic curve (AUC) of the Pretrained algorithm was greater than that of Non-pretrained algorithm (0.842, 95% confidence interval (CI): 0.722-0.962 vs. 0.724, 95% CI: 0.566-0.882, P=0.253). The AUC from the interpretation of the same set of 41 echocardiographic movies by 5 cardiologists was not significantly different from that of the Pretrained algorithm (0.855, 95% CI: 0.735-0.975 vs. 0.842, 95% CI: 0.722-0.962, P=0.885). A sensitivity map demonstrated that the Pretrained algorithm focused on the area of the mitral valve.A 3D-CNN with a transfer learning method may be a promising tool for detecting CS using an echocardiographic movie.CONCLUSIONSA 3D-CNN with a transfer learning method may be a promising tool for detecting CS using an echocardiographic movie. Because the early diagnosis of subclinical cardiac sarcoidosis (CS) remains difficult, we developed a deep learning algorithm to distinguish CS patients from healthy subjects using echocardiographic movies. Among the patients who underwent echocardiography from January 2015 to December 2019, we chose 151 echocardiographic movies from 50 CS patients and 151 from 149 healthy subjects. We trained two 3D convolutional neural networks (3D-CNN) to identify CS patients using a dataset of 212 echocardiographic movies with and without a transfer learning method (Pretrained algorithm and Non-pretrained algorithm). On an independent set of 41 echocardiographic movies, the area under the receiver-operating characteristic curve (AUC) of the Pretrained algorithm was greater than that of Non-pretrained algorithm (0.842, 95% confidence interval (CI): 0.722-0.962 vs. 0.724, 95% CI: 0.566-0.882, P=0.253). The AUC from the interpretation of the same set of 41 echocardiographic movies by 5 cardiologists was not significantly different from that of the Pretrained algorithm (0.855, 95% CI: 0.735-0.975 vs. 0.842, 95% CI: 0.722-0.962, P=0.885). A sensitivity map demonstrated that the Pretrained algorithm focused on the area of the mitral valve. A 3D-CNN with a transfer learning method may be a promising tool for detecting CS using an echocardiographic movie. Background:Because the early diagnosis of subclinical cardiac sarcoidosis (CS) remains difficult, we developed a deep learning algorithm to distinguish CS patients from healthy subjects using echocardiographic movies.Methods and Results:Among the patients who underwent echocardiography from January 2015 to December 2019, we chose 151 echocardiographic movies from 50 CS patients and 151 from 149 healthy subjects. We trained two 3D convolutional neural networks (3D-CNN) to identify CS patients using a dataset of 212 echocardiographic movies with and without a transfer learning method (Pretrained algorithm and Non-pretrained algorithm). On an independent set of 41 echocardiographic movies, the area under the receiver-operating characteristic curve (AUC) of the Pretrained algorithm was greater than that of Non-pretrained algorithm (0.842, 95% confidence interval (CI): 0.722–0.962 vs. 0.724, 95% CI: 0.566–0.882, P=0.253). The AUC from the interpretation of the same set of 41 echocardiographic movies by 5 cardiologists was not significantly different from that of the Pretrained algorithm (0.855, 95% CI: 0.735–0.975 vs. 0.842, 95% CI: 0.722–0.962, P=0.885). A sensitivity map demonstrated that the Pretrained algorithm focused on the area of the mitral valve.Conclusions:A 3D-CNN with a transfer learning method may be a promising tool for detecting CS using an echocardiographic movie. |
ArticleNumber | CJ-21-0265 |
Author | Uehara, Masae Higashikuni, Yasutomi Akazawa, Hiroshi Ieki, Hirotaka Nakao, Tomoko Ninomiya, Kota Morita, Hiroyuki Matsuoka, Ryo Daimon, Masao Kodera, Satoshi Komuro, Issei Katsushika, Susumu Nakamoto, Mitsuhiko Takeda, Norifumi Kakuda, Nobutaka Shinohara, Hiroki Fujiu, Katsuhito Ando, Jiro Nakanishi, Koki |
Author_xml | – sequence: 1 fullname: Kakuda, Nobutaka organization: Department of Cardiovascular Medicine, The University of Tokyo Hospital – sequence: 1 fullname: Shinohara, Hiroki organization: Department of Cardiovascular Medicine, The University of Tokyo Hospital – sequence: 1 fullname: Morita, Hiroyuki organization: Department of Cardiovascular Medicine, The University of Tokyo Hospital – sequence: 1 fullname: Fujiu, Katsuhito organization: Department of Advanced Cardiology, The University of Tokyo – sequence: 1 fullname: Ieki, Hirotaka organization: Department of Cardiovascular Medicine, The University of Tokyo Hospital – sequence: 1 fullname: Akazawa, Hiroshi organization: Department of Cardiovascular Medicine, The University of Tokyo Hospital – sequence: 1 fullname: Matsuoka, Ryo organization: Department of Cardiovascular Medicine, The University of Tokyo Hospital – sequence: 1 fullname: Higashikuni, Yasutomi organization: Department of Cardiovascular Medicine, The University of Tokyo Hospital – sequence: 1 fullname: Uehara, Masae organization: Department of Cardiovascular Medicine, The University of Tokyo Hospital – sequence: 1 fullname: Kodera, Satoshi organization: Department of Cardiovascular Medicine, The University of Tokyo Hospital – sequence: 1 fullname: Komuro, Issei organization: Department of Cardiovascular Medicine, The University of Tokyo Hospital – sequence: 1 fullname: Takeda, Norifumi organization: Department of Cardiovascular Medicine, The University of Tokyo Hospital – sequence: 1 fullname: Nakanishi, Koki organization: Department of Cardiovascular Medicine, The University of Tokyo Hospital – sequence: 1 fullname: Daimon, Masao organization: Department of Clinical Laboratory, The University of Tokyo Hospital – sequence: 1 fullname: Ninomiya, Kota organization: Department of Cardiovascular Medicine, The University of Tokyo Hospital – sequence: 1 fullname: Ando, Jiro organization: Department of Cardiovascular Medicine, The University of Tokyo Hospital – sequence: 1 fullname: Katsushika, Susumu organization: Department of Cardiovascular Medicine, The University of Tokyo Hospital – sequence: 1 fullname: Nakamoto, Mitsuhiko organization: Department of Cardiovascular Medicine, The University of Tokyo Hospital – sequence: 1 fullname: Nakao, Tomoko organization: Department of Clinical Laboratory, The University of Tokyo Hospital |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34176867$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kD1v2zAQhokiRfPR7p0Kjl2U8lMmx0CJ2wYuMiSZiTN1smlIokvSAfrva8VOAnTocjyAz8M7vufkZIwjEvKZs0sutPzmQ_Kby-a2ErxiotbvyBmXalYpI9jJc19X1ih5Ss5z3jAmLNP2AzmVis9qU8_OyP014pYuENIYxhW96lcxhbIeaIn0Ggv6QhtIbQBP7yH5GNqYQ6bzFAd649fRT5dxlWC7Dp7-ik8B80fyvoM-46fjeUEe5zcPzY9qcff9Z3O1qLy2plS2a40wXAvGmAdghrcSJUBnWScZGiOV6vabAtpla1UnamBLwbVSQi1BM3lBvh7e3ab4e4e5uCFkj30PI8ZddkIrbacfz_bolyO6Ww7Yum0KA6Q_7iWIPcAOgE8x54TdK8KZm7J2z1m75tYJ7qas90r9j-JDgRLiWBKE_n_i_CBucoEVvk6CVILv8SiY2vGpvIlvwBqSw1H-BUJYnWU |
CitedBy_id | crossref_primary_10_1093_ehjdh_ztad027 crossref_primary_10_1007_s40336_023_00595_z crossref_primary_10_1016_j_jjcc_2021_10_016 crossref_primary_10_1093_eurheartj_ehae356 crossref_primary_10_1097_MCP_0000000000000902 crossref_primary_10_3390_cells11010059 crossref_primary_10_3390_jimaging9020050 crossref_primary_10_3390_life13081653 crossref_primary_10_1007_s00408_023_00641_7 crossref_primary_10_1536_ihj_24_111 crossref_primary_10_1111_echo_15417 crossref_primary_10_46497_ArchRheumatol_2024_10664 crossref_primary_10_1007_s11886_024_02159_7 crossref_primary_10_1016_j_rdc_2022_07_004 crossref_primary_10_1253_circj_CJ_21_0663 crossref_primary_10_1253_circj_CJ_22_0671 crossref_primary_10_3390_diagnostics13142426 crossref_primary_10_1053_j_semnuclmed_2024_02_004 crossref_primary_10_1007_s11886_024_02088_5 crossref_primary_10_1007_s42452_025_06504_5 |
Cites_doi | 10.1038/s41586-020-2145-8 10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F 10.1038/s41598-020-61055-6 10.1253/jcj.44.264 10.1136/heartjnl-2015-307877 10.1109/TMI.2016.2528162 10.1109/CVPR.2018.00675 10.1007/978-3-658-33198-6_52 10.2307/2531595 10.1016/j.hrthm.2014.03.043 10.1016/0002-9149(89)90323-8 10.1253/circj.CJ-19-0508 10.1007/s11886-018-1065-9 10.1016/j.amjcard.2013.03.027 10.1161/CIRCULATIONAHA.114.011522 10.1016/0002-9343(77)90145-0 10.1371/journal.pmed.1002686 10.1007/s10439-008-9588-7 10.1007/978-3-030-33128-3_1 10.1016/j.echo.2014.10.003 10.1055/s-0037-1602381 10.1038/nature14539 10.1016/S0735-1097(98)00237-X 10.1161/CIRCULATIONAHA.118.034338 |
ContentType | Journal Article |
Copyright | 2022, THE JAPANESE CIRCULATION SOCIETY |
Copyright_xml | – notice: 2022, THE JAPANESE CIRCULATION SOCIETY |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1253/circj.CJ-21-0265 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1347-4820 |
EndPage | 95 |
ExternalDocumentID | 34176867 10_1253_circj_CJ_21_0265 article_circj_86_1_86_CJ_21_0265_article_char_en |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .55 29B 2WC 53G 5GY 5RE 6J9 ACGFO ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DU5 E3Z EBS EJD F5P GX1 JSF JSH KQ8 OK1 OVT P2P RJT RNS RZJ TR2 W2D X7M XSB ZXP AAYXX CITATION CGR CUY CVF ECM EIF M~E NPM 7X8 |
ID | FETCH-LOGICAL-c598t-9fd828152000caa081d3e3aaf90f30e88344f341ae9bd94f26a0b2154424ba503 |
ISSN | 1346-9843 1347-4820 |
IngestDate | Thu Jul 10 23:55:16 EDT 2025 Thu Jan 02 22:37:52 EST 2025 Tue Jul 01 02:01:32 EDT 2025 Thu Apr 24 22:53:04 EDT 2025 Wed Sep 03 06:31:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Deep learning Echocardiography Transfer learning Artificial intelligence Cardiac sarcoidosis |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c598t-9fd828152000caa081d3e3aaf90f30e88344f341ae9bd94f26a0b2154424ba503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/circj/86/1/86_CJ-21-0265/_article/-char/en |
PMID | 34176867 |
PQID | 2545990597 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2545990597 pubmed_primary_34176867 crossref_primary_10_1253_circj_CJ_21_0265 crossref_citationtrail_10_1253_circj_CJ_21_0265 jstage_primary_article_circj_86_1_86_CJ_21_0265_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-24 |
PublicationDateYYYYMMDD | 2021-12-24 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan |
PublicationTitle | Circulation Journal |
PublicationTitleAlternate | Circ J |
PublicationYear | 2021 |
Publisher | The Japanese Circulation Society |
Publisher_xml | – name: The Japanese Circulation Society |
References | 3. Kandolin R, Lehtonen J, Airaksinen J, Vihinen T, Miettinen H, Ylitalo K, et al. Cardiac sarcoidosis: Epidemiology, characteristics, and outcome over 25 years in a nationwide study. Circulation 2015; 131: 624–632. 8. Lecun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521: 436–444. 6. Kusano KF, Satomi K. Diagnosis and treatment of cardiac sarcoidosis. Heart 2016; 102: 184–190. 16. Gotkowski K, Gonzalez C, Bucher A, Mukhopadhyay A. M3d-CAM: A PyTorch library to generate 3D data attention maps for medical deep learning. arXiv:2007.00453 [cs.CV], 2020. https://arxiv.org/abs/2007.00453 (accessed June 2021). 23. Kheradvar A, Gharib M. On mitral valve dynamics and its connection to early diastolic flow. Ann Biomed Eng 2009; 37: 1–13. 2. Roberts WC, McAllister HA Jr, Ferrans VJ. Sarcoidosis of the heart: A clinicopathologic study of 35 necropsy patients (Group I) and review of 78 previously described necropsy patients (Group II). Am J Med 1977; 63: 86–108. 10. Ouyang D, He B, Ghorbani A, Yuan N, Ebinger J, Langlotz CP, et al. Video-based AI for beat-to-beat assessment of cardiac function. Nature 2020; 580: 252–256. 4. Birnie DH, Sauer WH, Bogun F, Cooper JM, Culver DA, Duvernoy CS, et al. HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm 2014; 11: 1304–1323. 9. Zhang J, Gajjala S, Agrawal P, Tison GH, Hallock LA, Beussink-Nelson L, et al. Fully automated echocardiogram interpretation in clinical practice: Feasibility and diagnostic accuracy. Circulation 2018; 138: 1623–1635. 13. Lang RM, Badano LP, Victor MA, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2015; 28: 1–39.e14. 22. Kurmann R, Mankad SV, Mankad R. Echocardiography in sarcoidosis. Curr Cardiol Rep 2018; 20: 118. 7. Satou M, Shishido H, Satou S, Iwata Y, Ooki K, Kondou E, et al. A hard case to diagnose: Cardiac sarcoidosis. Med J Asahikawa RCH 2014; 28: 25–30. 26. Burstow DJ, Tajik AJ, Bailey KR, DeRemee RA, Taliercio CP. Two-dimensional echocardiographic findings in systemic sarcoidosis. Am J Cardiol 1989; 63: 478–482. 11. Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 2016; 35: 1285–1298. 25. Otsuji Y, Gilon D, Jiang L, He S, Leavitt M, Roy MJ, et al. Restricted diastolic opening of the mitral leaflets in patients with left ventricular dysfunction: Evidence for increased valve tethering. J Am Coll Cardiol 1998; 32: 398–404. 19. Lemley J, Bazrafkan S, Corcoran P. Transfer learning of temporal information for driver action classification. In: Proceedings of 28th Modern Artificial Intelligence and Cognitive Science Conference, Fort Wayne, IN, April 2017; 123–128. 17. Carpenter J, Bithell J. Bootstrap confidence intervals: When, which, what?: A practical guide for medical statisticians. Stat Med 2000; 19: 1141–1164. 24. Sayah DM, Bradfield JS, Moriarty JM, Belperio JA, Lynch JP. Cardiac involvement in sarcoidosis: Evolving concepts in diagnosis and treatment. Semin Respir Crit Care Med 2017; 38: 477–498. 20. Rajpurkar P, Irvin J, Ball RL, Zhu K, Yang B, Mehta H, et al. Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Med 2018; 15: 1–17. 5. Terasaki F, Azuma A, Anzai T, Ishizaka N, Ishida Y, Isobe M, et al; on behalf of the Japanese Circulation Society Joint Working Group. JCS 2016 guideline on diagnosis and treatment of cardiac sarcoidosis: Digest version. Circ J 2019; 83: 2329–2388. 12. Chan HP, Samala RK, Hadjiiski LM, Zhou C. Deep learning in medical image analysis. Adv Exp Med Biol 2020; 1213: 3–21. 14. Tran D, Wang H, Torresani L, Ray J, Lecun Y, Paluri M. A closer look at spatiotemporal convolutions for action recognition. arXiv:1711.11248v3 [cs.CV], 2018. https://arxiv.org/abs/1711.11248v3. 18. Delong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 2016; 44: 837–845. 1. Sekiguchi M, Hiroe M, Take M, Hirosawa K. Clinical and histopathological profile of sarcoidosis of the heart and acute idiopathic myocarditis. Concepts through a study employing endomyocardial biopsy. II: Myocarditis. Jpn Circ J 1980; 44: 264–273. 21. Rajpurkar P, Park A, Irvin J, Chute C, Bereket M, Mastrodicasa D, et al. AppendiXNet: Deep learning for diagnosis of appendicitis from a small dataset of CT exams using video pretraining. Sci Rep 2020; 10: 1–7. 27. Freeman AM, Curran-Everett D, Weinberger HD, Fenster BE, Buckner JK, Gottschall EB, et al. Predictors of cardiac sarcoidosis using commonly available cardiac studies. Am J Cardiol 2013; 112: 280–285. 15. Kingma DP, Ba JL. Adam: A method for stochastic optimization. In: Bengio Y, LeCun Y, editors. ICLR 2015 Conference Track Proceedings [Proceedings of the 3rd International Conference on Learning Representations], 7–9 May 2015, San Diego, CA, USA. 22 23 24 25 26 27 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 34471070 - Circ J. 2021 Dec 24;86(1):96-97. doi: 10.1253/circj.CJ-21-0663 |
References_xml | – reference: 4. Birnie DH, Sauer WH, Bogun F, Cooper JM, Culver DA, Duvernoy CS, et al. HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm 2014; 11: 1304–1323. – reference: 16. Gotkowski K, Gonzalez C, Bucher A, Mukhopadhyay A. M3d-CAM: A PyTorch library to generate 3D data attention maps for medical deep learning. arXiv:2007.00453 [cs.CV], 2020. https://arxiv.org/abs/2007.00453 (accessed June 2021). – reference: 27. Freeman AM, Curran-Everett D, Weinberger HD, Fenster BE, Buckner JK, Gottschall EB, et al. Predictors of cardiac sarcoidosis using commonly available cardiac studies. Am J Cardiol 2013; 112: 280–285. – reference: 3. Kandolin R, Lehtonen J, Airaksinen J, Vihinen T, Miettinen H, Ylitalo K, et al. Cardiac sarcoidosis: Epidemiology, characteristics, and outcome over 25 years in a nationwide study. Circulation 2015; 131: 624–632. – reference: 18. Delong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 2016; 44: 837–845. – reference: 26. Burstow DJ, Tajik AJ, Bailey KR, DeRemee RA, Taliercio CP. Two-dimensional echocardiographic findings in systemic sarcoidosis. Am J Cardiol 1989; 63: 478–482. – reference: 19. Lemley J, Bazrafkan S, Corcoran P. Transfer learning of temporal information for driver action classification. In: Proceedings of 28th Modern Artificial Intelligence and Cognitive Science Conference, Fort Wayne, IN, April 2017; 123–128. – reference: 5. Terasaki F, Azuma A, Anzai T, Ishizaka N, Ishida Y, Isobe M, et al; on behalf of the Japanese Circulation Society Joint Working Group. JCS 2016 guideline on diagnosis and treatment of cardiac sarcoidosis: Digest version. Circ J 2019; 83: 2329–2388. – reference: 14. Tran D, Wang H, Torresani L, Ray J, Lecun Y, Paluri M. A closer look at spatiotemporal convolutions for action recognition. arXiv:1711.11248v3 [cs.CV], 2018. https://arxiv.org/abs/1711.11248v3. – reference: 15. Kingma DP, Ba JL. Adam: A method for stochastic optimization. In: Bengio Y, LeCun Y, editors. ICLR 2015 Conference Track Proceedings [Proceedings of the 3rd International Conference on Learning Representations], 7–9 May 2015, San Diego, CA, USA. – reference: 1. Sekiguchi M, Hiroe M, Take M, Hirosawa K. Clinical and histopathological profile of sarcoidosis of the heart and acute idiopathic myocarditis. Concepts through a study employing endomyocardial biopsy. II: Myocarditis. Jpn Circ J 1980; 44: 264–273. – reference: 24. Sayah DM, Bradfield JS, Moriarty JM, Belperio JA, Lynch JP. Cardiac involvement in sarcoidosis: Evolving concepts in diagnosis and treatment. Semin Respir Crit Care Med 2017; 38: 477–498. – reference: 17. Carpenter J, Bithell J. Bootstrap confidence intervals: When, which, what?: A practical guide for medical statisticians. Stat Med 2000; 19: 1141–1164. – reference: 21. Rajpurkar P, Park A, Irvin J, Chute C, Bereket M, Mastrodicasa D, et al. AppendiXNet: Deep learning for diagnosis of appendicitis from a small dataset of CT exams using video pretraining. Sci Rep 2020; 10: 1–7. – reference: 22. Kurmann R, Mankad SV, Mankad R. Echocardiography in sarcoidosis. Curr Cardiol Rep 2018; 20: 118. – reference: 10. Ouyang D, He B, Ghorbani A, Yuan N, Ebinger J, Langlotz CP, et al. Video-based AI for beat-to-beat assessment of cardiac function. Nature 2020; 580: 252–256. – reference: 25. Otsuji Y, Gilon D, Jiang L, He S, Leavitt M, Roy MJ, et al. Restricted diastolic opening of the mitral leaflets in patients with left ventricular dysfunction: Evidence for increased valve tethering. J Am Coll Cardiol 1998; 32: 398–404. – reference: 2. Roberts WC, McAllister HA Jr, Ferrans VJ. Sarcoidosis of the heart: A clinicopathologic study of 35 necropsy patients (Group I) and review of 78 previously described necropsy patients (Group II). Am J Med 1977; 63: 86–108. – reference: 8. Lecun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521: 436–444. – reference: 12. Chan HP, Samala RK, Hadjiiski LM, Zhou C. Deep learning in medical image analysis. Adv Exp Med Biol 2020; 1213: 3–21. – reference: 11. Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 2016; 35: 1285–1298. – reference: 6. Kusano KF, Satomi K. Diagnosis and treatment of cardiac sarcoidosis. Heart 2016; 102: 184–190. – reference: 7. Satou M, Shishido H, Satou S, Iwata Y, Ooki K, Kondou E, et al. A hard case to diagnose: Cardiac sarcoidosis. Med J Asahikawa RCH 2014; 28: 25–30. – reference: 9. Zhang J, Gajjala S, Agrawal P, Tison GH, Hallock LA, Beussink-Nelson L, et al. Fully automated echocardiogram interpretation in clinical practice: Feasibility and diagnostic accuracy. Circulation 2018; 138: 1623–1635. – reference: 23. Kheradvar A, Gharib M. On mitral valve dynamics and its connection to early diastolic flow. Ann Biomed Eng 2009; 37: 1–13. – reference: 13. Lang RM, Badano LP, Victor MA, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2015; 28: 1–39.e14. – reference: 20. Rajpurkar P, Irvin J, Ball RL, Zhu K, Yang B, Mehta H, et al. Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Med 2018; 15: 1–17. – ident: 10 doi: 10.1038/s41586-020-2145-8 – ident: 17 doi: 10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F – ident: 21 doi: 10.1038/s41598-020-61055-6 – ident: 1 doi: 10.1253/jcj.44.264 – ident: 6 doi: 10.1136/heartjnl-2015-307877 – ident: 11 doi: 10.1109/TMI.2016.2528162 – ident: 14 doi: 10.1109/CVPR.2018.00675 – ident: 16 doi: 10.1007/978-3-658-33198-6_52 – ident: 18 doi: 10.2307/2531595 – ident: 7 – ident: 4 doi: 10.1016/j.hrthm.2014.03.043 – ident: 26 doi: 10.1016/0002-9149(89)90323-8 – ident: 5 doi: 10.1253/circj.CJ-19-0508 – ident: 22 doi: 10.1007/s11886-018-1065-9 – ident: 27 doi: 10.1016/j.amjcard.2013.03.027 – ident: 3 doi: 10.1161/CIRCULATIONAHA.114.011522 – ident: 2 doi: 10.1016/0002-9343(77)90145-0 – ident: 20 doi: 10.1371/journal.pmed.1002686 – ident: 23 doi: 10.1007/s10439-008-9588-7 – ident: 12 doi: 10.1007/978-3-030-33128-3_1 – ident: 13 doi: 10.1016/j.echo.2014.10.003 – ident: 19 – ident: 24 doi: 10.1055/s-0037-1602381 – ident: 15 – ident: 8 doi: 10.1038/nature14539 – ident: 25 doi: 10.1016/S0735-1097(98)00237-X – ident: 9 doi: 10.1161/CIRCULATIONAHA.118.034338 – reference: 34471070 - Circ J. 2021 Dec 24;86(1):96-97. doi: 10.1253/circj.CJ-21-0663 |
SSID | ssj0029059 |
Score | 2.437261 |
Snippet | Background:Because the early diagnosis of subclinical cardiac sarcoidosis (CS) remains difficult, we developed a deep learning algorithm to distinguish CS... Because the early diagnosis of subclinical cardiac sarcoidosis (CS) remains difficult, we developed a deep learning algorithm to distinguish CS patients from... |
SourceID | proquest pubmed crossref jstage |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 87 |
SubjectTerms | Algorithms Artificial intelligence Cardiac sarcoidosis Deep Learning Echocardiography Humans Motion Pictures Myocarditis Sarcoidosis - diagnostic imaging Transfer learning |
Title | Deep Learning Algorithm to Detect Cardiac Sarcoidosis From Echocardiographic Movies |
URI | https://www.jstage.jst.go.jp/article/circj/86/1/86_CJ-21-0265/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/34176867 https://www.proquest.com/docview/2545990597 |
Volume | 86 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Circulation Journal, 2021/12/24, Vol.86(1), pp.87-95 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKQIgXxDcdHzISL2hKl9pJGj-hqduYKo0XNqlvkeM4bffRTG2CNP46_jTuYscJG0WMl6hybTfN_ey7i393R8jHmClf-RlIgOcjL8h16AkuuRdHGryDTLCojuI__hodnQaTaTjt9X52WEtVmQ7Ujz_GlfyPVKEN5IpRsneQrJsUGuAzyBeuIGG4_pOM97W-ajKkznb2LmYFuPrzS7Qn9zWeDiCfAwCg8MWvKhZZgelHDjGi5AC2PVVzUeuU1QsFq_t7QyhsMhcsVspW93IZJjalnUD7dQKKFwta7nQHWlqo29hlua7W88W5tJyg6rJy32FdNtMuywI6uTfV8lwCpArD84cJYHzRnqhgZPW1CW0rStl9j8GGyAkx4dN26-VB5InYJG0a6KYNABQzv7tf29TZXVyuu5rbqHFTuvOWgmB1lQ8Fj-FsMJ54cBvghIatMmwIADd0pGMuos8EcyT1DMl4krBhgjPcI_cZOCqoGr5MHcmICb8u1-f-mz0ohxl2b97Db4bRgzPwDWZ6s9tTmz8nT8hj67fQPQPCp6Snl8_Iw2PLzHhOviEWaYNF6rBIy4IaLFKLRdrBIkUs0ltYpAaLL8jp4cHJ-MizBTs8FYq49ESegQM_xExevpISrM2May5lLvyc-zrGmi45mE1SizQTQc4i6acM80GxIJWhz1-SrWWx1K8JZTzLsbZAGKoMvhsJGJRyHuboQDAV9Mlu87RAFoa1gkVVLpJNEuqTT27Elcnk8pe-n40AXE-7xm3POEqGeGlHtB3mcgV7U598aCSXwIaNp3CwAotqnTDwWQTiYtQnr4xI3a_AswH3Pxpt3-Fe35BH7XJ6S7bKVaXfgaFcpu9rLP4CSw7CFA |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Algorithm+to+Detect+Cardiac+Sarcoidosis+From+Echocardiographic+Movies&rft.jtitle=Circulation+journal+%3A+official+journal+of+the+Japanese+Circulation+Society&rft.au=Katsushika%2C+Susumu&rft.au=Kodera%2C+Satoshi&rft.au=Nakamoto%2C+Mitsuhiko&rft.au=Ninomiya%2C+Kota&rft.date=2021-12-24&rft.issn=1346-9843&rft.eissn=1347-4820&rft.volume=86&rft.issue=1&rft.spage=87&rft.epage=95&rft_id=info:doi/10.1253%2Fcircj.CJ-21-0265&rft.externalDBID=n%2Fa&rft.externalDocID=10_1253_circj_CJ_21_0265 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-9843&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-9843&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-9843&client=summon |