Deep Learning Algorithm to Detect Cardiac Sarcoidosis From Echocardiographic Movies

Background:Because the early diagnosis of subclinical cardiac sarcoidosis (CS) remains difficult, we developed a deep learning algorithm to distinguish CS patients from healthy subjects using echocardiographic movies.Methods and Results:Among the patients who underwent echocardiography from January...

Full description

Saved in:
Bibliographic Details
Published inCirculation Journal Vol. 86; no. 1; pp. 87 - 95
Main Authors Kakuda, Nobutaka, Shinohara, Hiroki, Morita, Hiroyuki, Fujiu, Katsuhito, Ieki, Hirotaka, Akazawa, Hiroshi, Matsuoka, Ryo, Higashikuni, Yasutomi, Uehara, Masae, Kodera, Satoshi, Komuro, Issei, Takeda, Norifumi, Nakanishi, Koki, Daimon, Masao, Ninomiya, Kota, Ando, Jiro, Katsushika, Susumu, Nakamoto, Mitsuhiko, Nakao, Tomoko
Format Journal Article
LanguageEnglish
Published Japan The Japanese Circulation Society 24.12.2021
Subjects
Online AccessGet full text
ISSN1346-9843
1347-4820
1347-4820
DOI10.1253/circj.CJ-21-0265

Cover

Loading…
Abstract Background:Because the early diagnosis of subclinical cardiac sarcoidosis (CS) remains difficult, we developed a deep learning algorithm to distinguish CS patients from healthy subjects using echocardiographic movies.Methods and Results:Among the patients who underwent echocardiography from January 2015 to December 2019, we chose 151 echocardiographic movies from 50 CS patients and 151 from 149 healthy subjects. We trained two 3D convolutional neural networks (3D-CNN) to identify CS patients using a dataset of 212 echocardiographic movies with and without a transfer learning method (Pretrained algorithm and Non-pretrained algorithm). On an independent set of 41 echocardiographic movies, the area under the receiver-operating characteristic curve (AUC) of the Pretrained algorithm was greater than that of Non-pretrained algorithm (0.842, 95% confidence interval (CI): 0.722–0.962 vs. 0.724, 95% CI: 0.566–0.882, P=0.253). The AUC from the interpretation of the same set of 41 echocardiographic movies by 5 cardiologists was not significantly different from that of the Pretrained algorithm (0.855, 95% CI: 0.735–0.975 vs. 0.842, 95% CI: 0.722–0.962, P=0.885). A sensitivity map demonstrated that the Pretrained algorithm focused on the area of the mitral valve.Conclusions:A 3D-CNN with a transfer learning method may be a promising tool for detecting CS using an echocardiographic movie.
AbstractList Because the early diagnosis of subclinical cardiac sarcoidosis (CS) remains difficult, we developed a deep learning algorithm to distinguish CS patients from healthy subjects using echocardiographic movies.BACKGROUNDBecause the early diagnosis of subclinical cardiac sarcoidosis (CS) remains difficult, we developed a deep learning algorithm to distinguish CS patients from healthy subjects using echocardiographic movies.Among the patients who underwent echocardiography from January 2015 to December 2019, we chose 151 echocardiographic movies from 50 CS patients and 151 from 149 healthy subjects. We trained two 3D convolutional neural networks (3D-CNN) to identify CS patients using a dataset of 212 echocardiographic movies with and without a transfer learning method (Pretrained algorithm and Non-pretrained algorithm). On an independent set of 41 echocardiographic movies, the area under the receiver-operating characteristic curve (AUC) of the Pretrained algorithm was greater than that of Non-pretrained algorithm (0.842, 95% confidence interval (CI): 0.722-0.962 vs. 0.724, 95% CI: 0.566-0.882, P=0.253). The AUC from the interpretation of the same set of 41 echocardiographic movies by 5 cardiologists was not significantly different from that of the Pretrained algorithm (0.855, 95% CI: 0.735-0.975 vs. 0.842, 95% CI: 0.722-0.962, P=0.885). A sensitivity map demonstrated that the Pretrained algorithm focused on the area of the mitral valve.METHODS AND RESULTSAmong the patients who underwent echocardiography from January 2015 to December 2019, we chose 151 echocardiographic movies from 50 CS patients and 151 from 149 healthy subjects. We trained two 3D convolutional neural networks (3D-CNN) to identify CS patients using a dataset of 212 echocardiographic movies with and without a transfer learning method (Pretrained algorithm and Non-pretrained algorithm). On an independent set of 41 echocardiographic movies, the area under the receiver-operating characteristic curve (AUC) of the Pretrained algorithm was greater than that of Non-pretrained algorithm (0.842, 95% confidence interval (CI): 0.722-0.962 vs. 0.724, 95% CI: 0.566-0.882, P=0.253). The AUC from the interpretation of the same set of 41 echocardiographic movies by 5 cardiologists was not significantly different from that of the Pretrained algorithm (0.855, 95% CI: 0.735-0.975 vs. 0.842, 95% CI: 0.722-0.962, P=0.885). A sensitivity map demonstrated that the Pretrained algorithm focused on the area of the mitral valve.A 3D-CNN with a transfer learning method may be a promising tool for detecting CS using an echocardiographic movie.CONCLUSIONSA 3D-CNN with a transfer learning method may be a promising tool for detecting CS using an echocardiographic movie.
Because the early diagnosis of subclinical cardiac sarcoidosis (CS) remains difficult, we developed a deep learning algorithm to distinguish CS patients from healthy subjects using echocardiographic movies. Among the patients who underwent echocardiography from January 2015 to December 2019, we chose 151 echocardiographic movies from 50 CS patients and 151 from 149 healthy subjects. We trained two 3D convolutional neural networks (3D-CNN) to identify CS patients using a dataset of 212 echocardiographic movies with and without a transfer learning method (Pretrained algorithm and Non-pretrained algorithm). On an independent set of 41 echocardiographic movies, the area under the receiver-operating characteristic curve (AUC) of the Pretrained algorithm was greater than that of Non-pretrained algorithm (0.842, 95% confidence interval (CI): 0.722-0.962 vs. 0.724, 95% CI: 0.566-0.882, P=0.253). The AUC from the interpretation of the same set of 41 echocardiographic movies by 5 cardiologists was not significantly different from that of the Pretrained algorithm (0.855, 95% CI: 0.735-0.975 vs. 0.842, 95% CI: 0.722-0.962, P=0.885). A sensitivity map demonstrated that the Pretrained algorithm focused on the area of the mitral valve. A 3D-CNN with a transfer learning method may be a promising tool for detecting CS using an echocardiographic movie.
Background:Because the early diagnosis of subclinical cardiac sarcoidosis (CS) remains difficult, we developed a deep learning algorithm to distinguish CS patients from healthy subjects using echocardiographic movies.Methods and Results:Among the patients who underwent echocardiography from January 2015 to December 2019, we chose 151 echocardiographic movies from 50 CS patients and 151 from 149 healthy subjects. We trained two 3D convolutional neural networks (3D-CNN) to identify CS patients using a dataset of 212 echocardiographic movies with and without a transfer learning method (Pretrained algorithm and Non-pretrained algorithm). On an independent set of 41 echocardiographic movies, the area under the receiver-operating characteristic curve (AUC) of the Pretrained algorithm was greater than that of Non-pretrained algorithm (0.842, 95% confidence interval (CI): 0.722–0.962 vs. 0.724, 95% CI: 0.566–0.882, P=0.253). The AUC from the interpretation of the same set of 41 echocardiographic movies by 5 cardiologists was not significantly different from that of the Pretrained algorithm (0.855, 95% CI: 0.735–0.975 vs. 0.842, 95% CI: 0.722–0.962, P=0.885). A sensitivity map demonstrated that the Pretrained algorithm focused on the area of the mitral valve.Conclusions:A 3D-CNN with a transfer learning method may be a promising tool for detecting CS using an echocardiographic movie.
ArticleNumber CJ-21-0265
Author Uehara, Masae
Higashikuni, Yasutomi
Akazawa, Hiroshi
Ieki, Hirotaka
Nakao, Tomoko
Ninomiya, Kota
Morita, Hiroyuki
Matsuoka, Ryo
Daimon, Masao
Kodera, Satoshi
Komuro, Issei
Katsushika, Susumu
Nakamoto, Mitsuhiko
Takeda, Norifumi
Kakuda, Nobutaka
Shinohara, Hiroki
Fujiu, Katsuhito
Ando, Jiro
Nakanishi, Koki
Author_xml – sequence: 1
  fullname: Kakuda, Nobutaka
  organization: Department of Cardiovascular Medicine, The University of Tokyo Hospital
– sequence: 1
  fullname: Shinohara, Hiroki
  organization: Department of Cardiovascular Medicine, The University of Tokyo Hospital
– sequence: 1
  fullname: Morita, Hiroyuki
  organization: Department of Cardiovascular Medicine, The University of Tokyo Hospital
– sequence: 1
  fullname: Fujiu, Katsuhito
  organization: Department of Advanced Cardiology, The University of Tokyo
– sequence: 1
  fullname: Ieki, Hirotaka
  organization: Department of Cardiovascular Medicine, The University of Tokyo Hospital
– sequence: 1
  fullname: Akazawa, Hiroshi
  organization: Department of Cardiovascular Medicine, The University of Tokyo Hospital
– sequence: 1
  fullname: Matsuoka, Ryo
  organization: Department of Cardiovascular Medicine, The University of Tokyo Hospital
– sequence: 1
  fullname: Higashikuni, Yasutomi
  organization: Department of Cardiovascular Medicine, The University of Tokyo Hospital
– sequence: 1
  fullname: Uehara, Masae
  organization: Department of Cardiovascular Medicine, The University of Tokyo Hospital
– sequence: 1
  fullname: Kodera, Satoshi
  organization: Department of Cardiovascular Medicine, The University of Tokyo Hospital
– sequence: 1
  fullname: Komuro, Issei
  organization: Department of Cardiovascular Medicine, The University of Tokyo Hospital
– sequence: 1
  fullname: Takeda, Norifumi
  organization: Department of Cardiovascular Medicine, The University of Tokyo Hospital
– sequence: 1
  fullname: Nakanishi, Koki
  organization: Department of Cardiovascular Medicine, The University of Tokyo Hospital
– sequence: 1
  fullname: Daimon, Masao
  organization: Department of Clinical Laboratory, The University of Tokyo Hospital
– sequence: 1
  fullname: Ninomiya, Kota
  organization: Department of Cardiovascular Medicine, The University of Tokyo Hospital
– sequence: 1
  fullname: Ando, Jiro
  organization: Department of Cardiovascular Medicine, The University of Tokyo Hospital
– sequence: 1
  fullname: Katsushika, Susumu
  organization: Department of Cardiovascular Medicine, The University of Tokyo Hospital
– sequence: 1
  fullname: Nakamoto, Mitsuhiko
  organization: Department of Cardiovascular Medicine, The University of Tokyo Hospital
– sequence: 1
  fullname: Nakao, Tomoko
  organization: Department of Clinical Laboratory, The University of Tokyo Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34176867$$D View this record in MEDLINE/PubMed
BookMark eNp9kD1v2zAQhokiRfPR7p0Kjl2U8lMmx0CJ2wYuMiSZiTN1smlIokvSAfrva8VOAnTocjyAz8M7vufkZIwjEvKZs0sutPzmQ_Kby-a2ErxiotbvyBmXalYpI9jJc19X1ih5Ss5z3jAmLNP2AzmVis9qU8_OyP014pYuENIYxhW96lcxhbIeaIn0Ggv6QhtIbQBP7yH5GNqYQ6bzFAd649fRT5dxlWC7Dp7-ik8B80fyvoM-46fjeUEe5zcPzY9qcff9Z3O1qLy2plS2a40wXAvGmAdghrcSJUBnWScZGiOV6vabAtpla1UnamBLwbVSQi1BM3lBvh7e3ab4e4e5uCFkj30PI8ZddkIrbacfz_bolyO6Ww7Yum0KA6Q_7iWIPcAOgE8x54TdK8KZm7J2z1m75tYJ7qas90r9j-JDgRLiWBKE_n_i_CBucoEVvk6CVILv8SiY2vGpvIlvwBqSw1H-BUJYnWU
CitedBy_id crossref_primary_10_1093_ehjdh_ztad027
crossref_primary_10_1007_s40336_023_00595_z
crossref_primary_10_1016_j_jjcc_2021_10_016
crossref_primary_10_1093_eurheartj_ehae356
crossref_primary_10_1097_MCP_0000000000000902
crossref_primary_10_3390_cells11010059
crossref_primary_10_3390_jimaging9020050
crossref_primary_10_3390_life13081653
crossref_primary_10_1007_s00408_023_00641_7
crossref_primary_10_1536_ihj_24_111
crossref_primary_10_1111_echo_15417
crossref_primary_10_46497_ArchRheumatol_2024_10664
crossref_primary_10_1007_s11886_024_02159_7
crossref_primary_10_1016_j_rdc_2022_07_004
crossref_primary_10_1253_circj_CJ_21_0663
crossref_primary_10_1253_circj_CJ_22_0671
crossref_primary_10_3390_diagnostics13142426
crossref_primary_10_1053_j_semnuclmed_2024_02_004
crossref_primary_10_1007_s11886_024_02088_5
crossref_primary_10_1007_s42452_025_06504_5
Cites_doi 10.1038/s41586-020-2145-8
10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F
10.1038/s41598-020-61055-6
10.1253/jcj.44.264
10.1136/heartjnl-2015-307877
10.1109/TMI.2016.2528162
10.1109/CVPR.2018.00675
10.1007/978-3-658-33198-6_52
10.2307/2531595
10.1016/j.hrthm.2014.03.043
10.1016/0002-9149(89)90323-8
10.1253/circj.CJ-19-0508
10.1007/s11886-018-1065-9
10.1016/j.amjcard.2013.03.027
10.1161/CIRCULATIONAHA.114.011522
10.1016/0002-9343(77)90145-0
10.1371/journal.pmed.1002686
10.1007/s10439-008-9588-7
10.1007/978-3-030-33128-3_1
10.1016/j.echo.2014.10.003
10.1055/s-0037-1602381
10.1038/nature14539
10.1016/S0735-1097(98)00237-X
10.1161/CIRCULATIONAHA.118.034338
ContentType Journal Article
Copyright 2022, THE JAPANESE CIRCULATION SOCIETY
Copyright_xml – notice: 2022, THE JAPANESE CIRCULATION SOCIETY
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1253/circj.CJ-21-0265
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1347-4820
EndPage 95
ExternalDocumentID 34176867
10_1253_circj_CJ_21_0265
article_circj_86_1_86_CJ_21_0265_article_char_en
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.55
29B
2WC
53G
5GY
5RE
6J9
ACGFO
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
JSF
JSH
KQ8
OK1
OVT
P2P
RJT
RNS
RZJ
TR2
W2D
X7M
XSB
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
M~E
NPM
7X8
ID FETCH-LOGICAL-c598t-9fd828152000caa081d3e3aaf90f30e88344f341ae9bd94f26a0b2154424ba503
ISSN 1346-9843
1347-4820
IngestDate Thu Jul 10 23:55:16 EDT 2025
Thu Jan 02 22:37:52 EST 2025
Tue Jul 01 02:01:32 EDT 2025
Thu Apr 24 22:53:04 EDT 2025
Wed Sep 03 06:31:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Echocardiography
Transfer learning
Artificial intelligence
Cardiac sarcoidosis
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c598t-9fd828152000caa081d3e3aaf90f30e88344f341ae9bd94f26a0b2154424ba503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/circj/86/1/86_CJ-21-0265/_article/-char/en
PMID 34176867
PQID 2545990597
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2545990597
pubmed_primary_34176867
crossref_primary_10_1253_circj_CJ_21_0265
crossref_citationtrail_10_1253_circj_CJ_21_0265
jstage_primary_article_circj_86_1_86_CJ_21_0265_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-24
PublicationDateYYYYMMDD 2021-12-24
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-24
  day: 24
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Circulation Journal
PublicationTitleAlternate Circ J
PublicationYear 2021
Publisher The Japanese Circulation Society
Publisher_xml – name: The Japanese Circulation Society
References 3. Kandolin R, Lehtonen J, Airaksinen J, Vihinen T, Miettinen H, Ylitalo K, et al. Cardiac sarcoidosis: Epidemiology, characteristics, and outcome over 25 years in a nationwide study. Circulation 2015; 131: 624–632.
8. Lecun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521: 436–444.
6. Kusano KF, Satomi K. Diagnosis and treatment of cardiac sarcoidosis. Heart 2016; 102: 184–190.
16. Gotkowski K, Gonzalez C, Bucher A, Mukhopadhyay A. M3d-CAM: A PyTorch library to generate 3D data attention maps for medical deep learning. arXiv:2007.00453 [cs.CV], 2020. https://arxiv.org/abs/2007.00453 (accessed June 2021).
23. Kheradvar A, Gharib M. On mitral valve dynamics and its connection to early diastolic flow. Ann Biomed Eng 2009; 37: 1–13.
2. Roberts WC, McAllister HA Jr, Ferrans VJ. Sarcoidosis of the heart: A clinicopathologic study of 35 necropsy patients (Group I) and review of 78 previously described necropsy patients (Group II). Am J Med 1977; 63: 86–108.
10. Ouyang D, He B, Ghorbani A, Yuan N, Ebinger J, Langlotz CP, et al. Video-based AI for beat-to-beat assessment of cardiac function. Nature 2020; 580: 252–256.
4. Birnie DH, Sauer WH, Bogun F, Cooper JM, Culver DA, Duvernoy CS, et al. HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm 2014; 11: 1304–1323.
9. Zhang J, Gajjala S, Agrawal P, Tison GH, Hallock LA, Beussink-Nelson L, et al. Fully automated echocardiogram interpretation in clinical practice: Feasibility and diagnostic accuracy. Circulation 2018; 138: 1623–1635.
13. Lang RM, Badano LP, Victor MA, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2015; 28: 1–39.e14.
22. Kurmann R, Mankad SV, Mankad R. Echocardiography in sarcoidosis. Curr Cardiol Rep 2018; 20: 118.
7. Satou M, Shishido H, Satou S, Iwata Y, Ooki K, Kondou E, et al. A hard case to diagnose: Cardiac sarcoidosis. Med J Asahikawa RCH 2014; 28: 25–30.
26. Burstow DJ, Tajik AJ, Bailey KR, DeRemee RA, Taliercio CP. Two-dimensional echocardiographic findings in systemic sarcoidosis. Am J Cardiol 1989; 63: 478–482.
11. Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 2016; 35: 1285–1298.
25. Otsuji Y, Gilon D, Jiang L, He S, Leavitt M, Roy MJ, et al. Restricted diastolic opening of the mitral leaflets in patients with left ventricular dysfunction: Evidence for increased valve tethering. J Am Coll Cardiol 1998; 32: 398–404.
19. Lemley J, Bazrafkan S, Corcoran P. Transfer learning of temporal information for driver action classification. In: Proceedings of 28th Modern Artificial Intelligence and Cognitive Science Conference, Fort Wayne, IN, April 2017; 123–128.
17. Carpenter J, Bithell J. Bootstrap confidence intervals: When, which, what?: A practical guide for medical statisticians. Stat Med 2000; 19: 1141–1164.
24. Sayah DM, Bradfield JS, Moriarty JM, Belperio JA, Lynch JP. Cardiac involvement in sarcoidosis: Evolving concepts in diagnosis and treatment. Semin Respir Crit Care Med 2017; 38: 477–498.
20. Rajpurkar P, Irvin J, Ball RL, Zhu K, Yang B, Mehta H, et al. Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Med 2018; 15: 1–17.
5. Terasaki F, Azuma A, Anzai T, Ishizaka N, Ishida Y, Isobe M, et al; on behalf of the Japanese Circulation Society Joint Working Group. JCS 2016 guideline on diagnosis and treatment of cardiac sarcoidosis: Digest version. Circ J 2019; 83: 2329–2388.
12. Chan HP, Samala RK, Hadjiiski LM, Zhou C. Deep learning in medical image analysis. Adv Exp Med Biol 2020; 1213: 3–21.
14. Tran D, Wang H, Torresani L, Ray J, Lecun Y, Paluri M. A closer look at spatiotemporal convolutions for action recognition. arXiv:1711.11248v3 [cs.CV], 2018. https://arxiv.org/abs/1711.11248v3.
18. Delong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 2016; 44: 837–845.
1. Sekiguchi M, Hiroe M, Take M, Hirosawa K. Clinical and histopathological profile of sarcoidosis of the heart and acute idiopathic myocarditis. Concepts through a study employing endomyocardial biopsy. II: Myocarditis. Jpn Circ J 1980; 44: 264–273.
21. Rajpurkar P, Park A, Irvin J, Chute C, Bereket M, Mastrodicasa D, et al. AppendiXNet: Deep learning for diagnosis of appendicitis from a small dataset of CT exams using video pretraining. Sci Rep 2020; 10: 1–7.
27. Freeman AM, Curran-Everett D, Weinberger HD, Fenster BE, Buckner JK, Gottschall EB, et al. Predictors of cardiac sarcoidosis using commonly available cardiac studies. Am J Cardiol 2013; 112: 280–285.
15. Kingma DP, Ba JL. Adam: A method for stochastic optimization. In: Bengio Y, LeCun Y, editors. ICLR 2015 Conference Track Proceedings [Proceedings of the 3rd International Conference on Learning Representations], 7–9 May 2015, San Diego, CA, USA.
22
23
24
25
26
27
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
34471070 - Circ J. 2021 Dec 24;86(1):96-97. doi: 10.1253/circj.CJ-21-0663
References_xml – reference: 4. Birnie DH, Sauer WH, Bogun F, Cooper JM, Culver DA, Duvernoy CS, et al. HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm 2014; 11: 1304–1323.
– reference: 16. Gotkowski K, Gonzalez C, Bucher A, Mukhopadhyay A. M3d-CAM: A PyTorch library to generate 3D data attention maps for medical deep learning. arXiv:2007.00453 [cs.CV], 2020. https://arxiv.org/abs/2007.00453 (accessed June 2021).
– reference: 27. Freeman AM, Curran-Everett D, Weinberger HD, Fenster BE, Buckner JK, Gottschall EB, et al. Predictors of cardiac sarcoidosis using commonly available cardiac studies. Am J Cardiol 2013; 112: 280–285.
– reference: 3. Kandolin R, Lehtonen J, Airaksinen J, Vihinen T, Miettinen H, Ylitalo K, et al. Cardiac sarcoidosis: Epidemiology, characteristics, and outcome over 25 years in a nationwide study. Circulation 2015; 131: 624–632.
– reference: 18. Delong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 2016; 44: 837–845.
– reference: 26. Burstow DJ, Tajik AJ, Bailey KR, DeRemee RA, Taliercio CP. Two-dimensional echocardiographic findings in systemic sarcoidosis. Am J Cardiol 1989; 63: 478–482.
– reference: 19. Lemley J, Bazrafkan S, Corcoran P. Transfer learning of temporal information for driver action classification. In: Proceedings of 28th Modern Artificial Intelligence and Cognitive Science Conference, Fort Wayne, IN, April 2017; 123–128.
– reference: 5. Terasaki F, Azuma A, Anzai T, Ishizaka N, Ishida Y, Isobe M, et al; on behalf of the Japanese Circulation Society Joint Working Group. JCS 2016 guideline on diagnosis and treatment of cardiac sarcoidosis: Digest version. Circ J 2019; 83: 2329–2388.
– reference: 14. Tran D, Wang H, Torresani L, Ray J, Lecun Y, Paluri M. A closer look at spatiotemporal convolutions for action recognition. arXiv:1711.11248v3 [cs.CV], 2018. https://arxiv.org/abs/1711.11248v3.
– reference: 15. Kingma DP, Ba JL. Adam: A method for stochastic optimization. In: Bengio Y, LeCun Y, editors. ICLR 2015 Conference Track Proceedings [Proceedings of the 3rd International Conference on Learning Representations], 7–9 May 2015, San Diego, CA, USA.
– reference: 1. Sekiguchi M, Hiroe M, Take M, Hirosawa K. Clinical and histopathological profile of sarcoidosis of the heart and acute idiopathic myocarditis. Concepts through a study employing endomyocardial biopsy. II: Myocarditis. Jpn Circ J 1980; 44: 264–273.
– reference: 24. Sayah DM, Bradfield JS, Moriarty JM, Belperio JA, Lynch JP. Cardiac involvement in sarcoidosis: Evolving concepts in diagnosis and treatment. Semin Respir Crit Care Med 2017; 38: 477–498.
– reference: 17. Carpenter J, Bithell J. Bootstrap confidence intervals: When, which, what?: A practical guide for medical statisticians. Stat Med 2000; 19: 1141–1164.
– reference: 21. Rajpurkar P, Park A, Irvin J, Chute C, Bereket M, Mastrodicasa D, et al. AppendiXNet: Deep learning for diagnosis of appendicitis from a small dataset of CT exams using video pretraining. Sci Rep 2020; 10: 1–7.
– reference: 22. Kurmann R, Mankad SV, Mankad R. Echocardiography in sarcoidosis. Curr Cardiol Rep 2018; 20: 118.
– reference: 10. Ouyang D, He B, Ghorbani A, Yuan N, Ebinger J, Langlotz CP, et al. Video-based AI for beat-to-beat assessment of cardiac function. Nature 2020; 580: 252–256.
– reference: 25. Otsuji Y, Gilon D, Jiang L, He S, Leavitt M, Roy MJ, et al. Restricted diastolic opening of the mitral leaflets in patients with left ventricular dysfunction: Evidence for increased valve tethering. J Am Coll Cardiol 1998; 32: 398–404.
– reference: 2. Roberts WC, McAllister HA Jr, Ferrans VJ. Sarcoidosis of the heart: A clinicopathologic study of 35 necropsy patients (Group I) and review of 78 previously described necropsy patients (Group II). Am J Med 1977; 63: 86–108.
– reference: 8. Lecun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521: 436–444.
– reference: 12. Chan HP, Samala RK, Hadjiiski LM, Zhou C. Deep learning in medical image analysis. Adv Exp Med Biol 2020; 1213: 3–21.
– reference: 11. Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 2016; 35: 1285–1298.
– reference: 6. Kusano KF, Satomi K. Diagnosis and treatment of cardiac sarcoidosis. Heart 2016; 102: 184–190.
– reference: 7. Satou M, Shishido H, Satou S, Iwata Y, Ooki K, Kondou E, et al. A hard case to diagnose: Cardiac sarcoidosis. Med J Asahikawa RCH 2014; 28: 25–30.
– reference: 9. Zhang J, Gajjala S, Agrawal P, Tison GH, Hallock LA, Beussink-Nelson L, et al. Fully automated echocardiogram interpretation in clinical practice: Feasibility and diagnostic accuracy. Circulation 2018; 138: 1623–1635.
– reference: 23. Kheradvar A, Gharib M. On mitral valve dynamics and its connection to early diastolic flow. Ann Biomed Eng 2009; 37: 1–13.
– reference: 13. Lang RM, Badano LP, Victor MA, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2015; 28: 1–39.e14.
– reference: 20. Rajpurkar P, Irvin J, Ball RL, Zhu K, Yang B, Mehta H, et al. Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Med 2018; 15: 1–17.
– ident: 10
  doi: 10.1038/s41586-020-2145-8
– ident: 17
  doi: 10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F
– ident: 21
  doi: 10.1038/s41598-020-61055-6
– ident: 1
  doi: 10.1253/jcj.44.264
– ident: 6
  doi: 10.1136/heartjnl-2015-307877
– ident: 11
  doi: 10.1109/TMI.2016.2528162
– ident: 14
  doi: 10.1109/CVPR.2018.00675
– ident: 16
  doi: 10.1007/978-3-658-33198-6_52
– ident: 18
  doi: 10.2307/2531595
– ident: 7
– ident: 4
  doi: 10.1016/j.hrthm.2014.03.043
– ident: 26
  doi: 10.1016/0002-9149(89)90323-8
– ident: 5
  doi: 10.1253/circj.CJ-19-0508
– ident: 22
  doi: 10.1007/s11886-018-1065-9
– ident: 27
  doi: 10.1016/j.amjcard.2013.03.027
– ident: 3
  doi: 10.1161/CIRCULATIONAHA.114.011522
– ident: 2
  doi: 10.1016/0002-9343(77)90145-0
– ident: 20
  doi: 10.1371/journal.pmed.1002686
– ident: 23
  doi: 10.1007/s10439-008-9588-7
– ident: 12
  doi: 10.1007/978-3-030-33128-3_1
– ident: 13
  doi: 10.1016/j.echo.2014.10.003
– ident: 19
– ident: 24
  doi: 10.1055/s-0037-1602381
– ident: 15
– ident: 8
  doi: 10.1038/nature14539
– ident: 25
  doi: 10.1016/S0735-1097(98)00237-X
– ident: 9
  doi: 10.1161/CIRCULATIONAHA.118.034338
– reference: 34471070 - Circ J. 2021 Dec 24;86(1):96-97. doi: 10.1253/circj.CJ-21-0663
SSID ssj0029059
Score 2.437261
Snippet Background:Because the early diagnosis of subclinical cardiac sarcoidosis (CS) remains difficult, we developed a deep learning algorithm to distinguish CS...
Because the early diagnosis of subclinical cardiac sarcoidosis (CS) remains difficult, we developed a deep learning algorithm to distinguish CS patients from...
SourceID proquest
pubmed
crossref
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 87
SubjectTerms Algorithms
Artificial intelligence
Cardiac sarcoidosis
Deep Learning
Echocardiography
Humans
Motion Pictures
Myocarditis
Sarcoidosis - diagnostic imaging
Transfer learning
Title Deep Learning Algorithm to Detect Cardiac Sarcoidosis From Echocardiographic Movies
URI https://www.jstage.jst.go.jp/article/circj/86/1/86_CJ-21-0265/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/34176867
https://www.proquest.com/docview/2545990597
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Circulation Journal, 2021/12/24, Vol.86(1), pp.87-95
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKQIgXxDcdHzISL2hKl9pJGj-hqduYKo0XNqlvkeM4bffRTG2CNP46_jTuYscJG0WMl6hybTfN_ey7i393R8jHmClf-RlIgOcjL8h16AkuuRdHGryDTLCojuI__hodnQaTaTjt9X52WEtVmQ7Ujz_GlfyPVKEN5IpRsneQrJsUGuAzyBeuIGG4_pOM97W-ajKkznb2LmYFuPrzS7Qn9zWeDiCfAwCg8MWvKhZZgelHDjGi5AC2PVVzUeuU1QsFq_t7QyhsMhcsVspW93IZJjalnUD7dQKKFwta7nQHWlqo29hlua7W88W5tJyg6rJy32FdNtMuywI6uTfV8lwCpArD84cJYHzRnqhgZPW1CW0rStl9j8GGyAkx4dN26-VB5InYJG0a6KYNABQzv7tf29TZXVyuu5rbqHFTuvOWgmB1lQ8Fj-FsMJ54cBvghIatMmwIADd0pGMuos8EcyT1DMl4krBhgjPcI_cZOCqoGr5MHcmICb8u1-f-mz0ohxl2b97Db4bRgzPwDWZ6s9tTmz8nT8hj67fQPQPCp6Snl8_Iw2PLzHhOviEWaYNF6rBIy4IaLFKLRdrBIkUs0ltYpAaLL8jp4cHJ-MizBTs8FYq49ESegQM_xExevpISrM2May5lLvyc-zrGmi45mE1SizQTQc4i6acM80GxIJWhz1-SrWWx1K8JZTzLsbZAGKoMvhsJGJRyHuboQDAV9Mlu87RAFoa1gkVVLpJNEuqTT27Elcnk8pe-n40AXE-7xm3POEqGeGlHtB3mcgV7U598aCSXwIaNp3CwAotqnTDwWQTiYtQnr4xI3a_AswH3Pxpt3-Fe35BH7XJ6S7bKVaXfgaFcpu9rLP4CSw7CFA
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Algorithm+to+Detect+Cardiac+Sarcoidosis+From+Echocardiographic+Movies&rft.jtitle=Circulation+journal+%3A+official+journal+of+the+Japanese+Circulation+Society&rft.au=Katsushika%2C+Susumu&rft.au=Kodera%2C+Satoshi&rft.au=Nakamoto%2C+Mitsuhiko&rft.au=Ninomiya%2C+Kota&rft.date=2021-12-24&rft.issn=1346-9843&rft.eissn=1347-4820&rft.volume=86&rft.issue=1&rft.spage=87&rft.epage=95&rft_id=info:doi/10.1253%2Fcircj.CJ-21-0265&rft.externalDBID=n%2Fa&rft.externalDocID=10_1253_circj_CJ_21_0265
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-9843&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-9843&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-9843&client=summon