A comparison of three fiber tract delineation methods and their impact on white matter analysis

Diffusion magnetic resonance imaging (dMRI) is an important method for studying white matter connectivity in the brain in vivo in both healthy and clinical populations. Improvements in dMRI tractography algorithms, which reconstruct macroscopic three-dimensional white matter fiber pathways, have all...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 178; pp. 318 - 331
Main Authors Sydnor, Valerie J., Rivas-Grajales, Ana María, Lyall, Amanda E., Zhang, Fan, Bouix, Sylvain, Karmacharya, Sarina, Shenton, Martha E., Westin, Carl-Fredrik, Makris, Nikos, Wassermann, Demian, O'Donnell, Lauren J., Kubicki, Marek
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.09.2018
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2018.05.044

Cover

Abstract Diffusion magnetic resonance imaging (dMRI) is an important method for studying white matter connectivity in the brain in vivo in both healthy and clinical populations. Improvements in dMRI tractography algorithms, which reconstruct macroscopic three-dimensional white matter fiber pathways, have allowed for methodological advances in the study of white matter; however, insufficient attention has been paid to comparing post-tractography methods that extract white matter fiber tracts of interest from whole-brain tractography. Here we conduct a comparison of three representative and conceptually distinct approaches to fiber tract delineation: 1) a manual multiple region of interest-based approach, 2) an atlas-based approach, and 3) a groupwise fiber clustering approach, by employing methods that exemplify these approaches to delineate the arcuate fasciculus, the middle longitudinal fasciculus, and the uncinate fasciculus in 10 healthy male subjects. We enable qualitative comparisons across methods, conduct quantitative evaluations of tract volume, tract length, mean fractional anisotropy, and true positive and true negative rates, and report measures of intra-method and inter-method agreement. We discuss methodological similarities and differences between the three approaches and the major advantages and drawbacks of each, and review research and clinical contexts for which each method may be most apposite. Emphasis is given to the means by which different white matter fiber tract delineation approaches may systematically produce variable results, despite utilizing the same input tractography and reliance on similar anatomical knowledge.
AbstractList Diffusion magnetic resonance imaging (dMRI) is an important method for studying white matter connectivity in the brain in vivo in both healthy and clinical populations. Improvements in dMRI tractography algorithms, which reconstruct macroscopic three-dimensional white matter fiber pathways, have allowed for methodological advances in the study of white matter; however, insufficient attention has been paid to comparing post-tractography methods that extract white matter fiber tracts of interest from whole-brain tractography. Here we conduct a comparison of three representative and conceptually distinct approaches to fiber tract delineation: 1) a manual multiple region of interest-based approach, 2) an atlas-based approach, and 3) a groupwise fiber clustering approach, by employing methods that exemplify these approaches to delineate the arcuate fasciculus, the middle longitudinal fasciculus, and the uncinate fasciculus in 10 healthy male subjects. We enable qualitative comparisons across methods, conduct quantitative evaluations of tract volume, tract length, mean fractional anisotropy, true positive and true negative rates, and report measures of intra-method and inter-method agreement. We discuss methodological similarities and differences between the three approaches and the major advantages and drawbacks of each, and review research and clinical contexts for which each method may be most apposite. Emphasis is given to the means by which different white matter fiber tract delineation approaches may systematically produce variable results, despite utilizing the same input tractography and reliance on similar anatomical knowledge.
Diffusion magnetic resonance imaging (dMRI) is an important method for studying white matter connectivity in the brain in vivo in both healthy and clinical populations. Improvements in dMRI tractography algorithms, which reconstruct macroscopic three-dimensional white matter fiber pathways, have allowed for methodological advances in the study of white matter; however, insufficient attention has been paid to comparing post-tractography methods that extract white matter fiber tracts of interest from whole-brain tractography. Here we conduct a comparison of three representative and conceptually distinct approaches to fiber tract delineation: 1) a manual multiple region of interest-based approach, 2) an atlas-based approach, and 3) a groupwise fiber clustering approach, by employing methods that exemplify these approaches to delineate the arcuate fasciculus, the middle longitudinal fasciculus, and the uncinate fasciculus in 10 healthy male subjects. We enable qualitative comparisons across methods, conduct quantitative evaluations
Diffusion magnetic resonance imaging (dMRI) is an important method for studying white matter connectivity in the brain in vivo in both healthy and clinical populations. Improvements in dMRI tractography algorithms, which reconstruct macroscopic three-dimensional white matter fiber pathways, have allowed for methodological advances in the study of white matter; however, insufficient attention has been paid to comparing post-tractography methods that extract white matter fiber tracts of interest from whole-brain tractography. Here we conduct a comparison of three representative and conceptually distinct approaches to fiber tract delineation: 1) a manual multiple region of interest-based approach, 2) an atlas-based approach, and 3) a groupwise fiber clustering approach, by employing methods that exemplify these approaches to delineate the arcuate fasciculus, the middle longitudinal fasciculus, and the uncinate fasciculus in 10 healthy male subjects. We enable qualitative comparisons across methods, conduct quantitative evaluations of tract volume, tract length, mean fractional anisotropy, and true positive and true negative rates, and report measures of intra-method and inter-method agreement. We discuss methodological similarities and differences between the three approaches and the major advantages and drawbacks of each, and review research and clinical contexts for which each method may be most apposite. Emphasis is given to the means by which different white matter fiber tract delineation approaches may systematically produce variable results, despite utilizing the same input tractography and reliance on similar anatomical knowledge.
Diffusion magnetic resonance imaging (dMRI) is an important method for studying white matter connectivity in the brain in vivo in both healthy and clinical populations. Improvements in dMRI tractography algorithms, which reconstruct macroscopic three-dimensional white matter fiber pathways, have allowed for methodological advances in the study of white matter; however, insufficient attention has been paid to comparing post-tractography methods that extract white matter fiber tracts of interest from whole-brain tractography. Here we conduct a comparison of three representative and conceptually distinct approaches to fiber tract delineation: 1) a manual multiple region of interest-based approach, 2) an atlas-based approach, and 3) a groupwise fiber clustering approach, by employing methods that exemplify these approaches to delineate the arcuate fasciculus, the middle longitudinal fasciculus, and the uncinate fasciculus in 10 healthy male subjects. We enable qualitative comparisons across methods, conduct quantitative evaluations of tract volume, tract length, mean fractional anisotropy, and true positive and true negative rates, and report measures of intra-method and inter-method agreement. We discuss methodological similarities and differences between the three approaches and the major advantages and drawbacks of each, and review research and clinical contexts for which each method may be most apposite. Emphasis is given to the means by which different white matter fiber tract delineation approaches may systematically produce variable results, despite utilizing the same input tractography and reliance on similar anatomical knowledge.Diffusion magnetic resonance imaging (dMRI) is an important method for studying white matter connectivity in the brain in vivo in both healthy and clinical populations. Improvements in dMRI tractography algorithms, which reconstruct macroscopic three-dimensional white matter fiber pathways, have allowed for methodological advances in the study of white matter; however, insufficient attention has been paid to comparing post-tractography methods that extract white matter fiber tracts of interest from whole-brain tractography. Here we conduct a comparison of three representative and conceptually distinct approaches to fiber tract delineation: 1) a manual multiple region of interest-based approach, 2) an atlas-based approach, and 3) a groupwise fiber clustering approach, by employing methods that exemplify these approaches to delineate the arcuate fasciculus, the middle longitudinal fasciculus, and the uncinate fasciculus in 10 healthy male subjects. We enable qualitative comparisons across methods, conduct quantitative evaluations of tract volume, tract length, mean fractional anisotropy, and true positive and true negative rates, and report measures of intra-method and inter-method agreement. We discuss methodological similarities and differences between the three approaches and the major advantages and drawbacks of each, and review research and clinical contexts for which each method may be most apposite. Emphasis is given to the means by which different white matter fiber tract delineation approaches may systematically produce variable results, despite utilizing the same input tractography and reliance on similar anatomical knowledge.
Author Bouix, Sylvain
Westin, Carl-Fredrik
Karmacharya, Sarina
Wassermann, Demian
Rivas-Grajales, Ana María
Sydnor, Valerie J.
Shenton, Martha E.
Lyall, Amanda E.
Makris, Nikos
O'Donnell, Lauren J.
Zhang, Fan
Kubicki, Marek
AuthorAffiliation e VA Boston Healthcare System, Brockton Division, Brockton, MA, USA
c Laboratory for Mathematics in Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
b Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
a Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
d Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
f Athena, Université Cote d’Azur, Inria, France
g Parietal, CEA, Université Paris-Saclay, INRIA Saclay Île-de-France
AuthorAffiliation_xml – name: d Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
– name: f Athena, Université Cote d’Azur, Inria, France
– name: g Parietal, CEA, Université Paris-Saclay, INRIA Saclay Île-de-France
– name: a Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
– name: e VA Boston Healthcare System, Brockton Division, Brockton, MA, USA
– name: c Laboratory for Mathematics in Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
– name: b Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
Author_xml – sequence: 1
  givenname: Valerie J.
  surname: Sydnor
  fullname: Sydnor, Valerie J.
  organization: Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
– sequence: 2
  givenname: Ana María
  surname: Rivas-Grajales
  fullname: Rivas-Grajales, Ana María
  organization: Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
– sequence: 3
  givenname: Amanda E.
  surname: Lyall
  fullname: Lyall, Amanda E.
  organization: Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
– sequence: 4
  givenname: Fan
  surname: Zhang
  fullname: Zhang, Fan
  organization: Laboratory for Mathematics in Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
– sequence: 5
  givenname: Sylvain
  surname: Bouix
  fullname: Bouix, Sylvain
  organization: Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
– sequence: 6
  givenname: Sarina
  surname: Karmacharya
  fullname: Karmacharya, Sarina
  organization: Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
– sequence: 7
  givenname: Martha E.
  surname: Shenton
  fullname: Shenton, Martha E.
  organization: Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
– sequence: 8
  givenname: Carl-Fredrik
  surname: Westin
  fullname: Westin, Carl-Fredrik
  organization: Laboratory for Mathematics in Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
– sequence: 9
  givenname: Nikos
  surname: Makris
  fullname: Makris, Nikos
  organization: Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
– sequence: 10
  givenname: Demian
  surname: Wassermann
  fullname: Wassermann, Demian
  organization: Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
– sequence: 11
  givenname: Lauren J.
  surname: O'Donnell
  fullname: O'Donnell, Lauren J.
  organization: Laboratory for Mathematics in Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
– sequence: 12
  givenname: Marek
  surname: Kubicki
  fullname: Kubicki, Marek
  email: kubicki@bwh.harvard.edu
  organization: Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29787865$$D View this record in MEDLINE/PubMed
https://inria.hal.science/hal-01807178$$DView record in HAL
BookMark eNqNkl-P1CAUxYlZ4_7Rr2BIfNGHVmihhRfjuFHXZBJf9Jkw9HaHsYUR6Jj59lJnndV5moQEAr97Ljn3XKML5x0ghCkpKaHN203pYArejvoeyopQURJeEsaeoCtKJC8kb6uL-czrQlAqL9F1jBtCiKRMPEOXlWxFKxp-hdQCGz9udbDRO-x7nNYBAPd2BQGnoE3CHQzWgU42AyOkte8i1q7LJNiAbS7OUH77tbYJ8KhTyqXa6WEfbXyOnvZ6iPDiYb9B3z99_HZ7Vyy_fv5yu1gWhkuRilZ2vDaylUYQA1VveL_SHDSljKwME33DuDFNRepWd4wJWfeNoTyvnvW6q-ob9O6gu51WI3QGXP78oLYhexT2ymur_n9xdq3u_U41TNCGzQJvDgLrk7K7xVLNd9ll0tJW7GhmXz80C_7nBDGp0UYDw6Ad-CmqirCaiprSWfbVCbrxU8jmzFQjJWOy5pl6-e_vj_3_zikD4gCY4GMM0B8RStQcCbVRj5FQcyQU4SpH4tGZY6mx6c80sw92OEfgw0EA8vx2FoKKxoIz0NkAJqnO23NE3p-ImJwqa_TwA_bnSfwGIKDwZA
CitedBy_id crossref_primary_10_3389_fpsyt_2021_686967
crossref_primary_10_3389_fradi_2022_866974
crossref_primary_10_3390_jcm12052079
crossref_primary_10_1016_j_neuroimage_2018_06_019
crossref_primary_10_1016_j_nicl_2019_101883
crossref_primary_10_3390_brainsci11030381
crossref_primary_10_3233_JAD_221304
crossref_primary_10_1016_j_neuroimage_2020_117168
crossref_primary_10_1126_sciadv_abn5803
crossref_primary_10_1016_j_neuroimage_2020_116993
crossref_primary_10_1002_hbm_24579
crossref_primary_10_1016_j_neuroimage_2021_118870
crossref_primary_10_1016_j_pediatrneurol_2023_03_005
crossref_primary_10_1002_hbm_26497
crossref_primary_10_1089_brain_2021_0058
crossref_primary_10_1016_j_neuroimage_2023_120086
crossref_primary_10_1016_j_media_2021_102126
crossref_primary_10_1016_j_jpeds_2024_114372
crossref_primary_10_1016_j_neuroimage_2018_06_027
crossref_primary_10_4103_1673_5374_290901
crossref_primary_10_3389_fonc_2022_936228
crossref_primary_10_1016_j_jad_2020_05_008
crossref_primary_10_3389_fpain_2022_840328
crossref_primary_10_1111_jon_70007
crossref_primary_10_1109_TCDS_2020_2968116
crossref_primary_10_1109_TMI_2019_2954477
crossref_primary_10_1162_imag_a_00353
crossref_primary_10_3390_diagnostics13050911
crossref_primary_10_1002_hbm_24626
Cites_doi 10.2307/2529310
10.1016/j.neuroimage.2006.01.021
10.1006/nimg.2002.1136
10.1016/j.nicl.2017.04.029
10.1002/ima.22005
10.1016/j.neuroimage.2012.01.056
10.1016/S0896-6273(02)00569-X
10.1097/WCO.0b013e3282f4594b
10.1016/j.neuroimage.2007.06.022
10.1002/mrm.10074
10.1016/j.neuroimage.2007.02.049
10.1002/nbm.782
10.1093/cercor/bhh186
10.1016/j.neuroimage.2007.06.041
10.1371/journal.pone.0083847
10.3389/fninf.2011.00023
10.1002/ana.410420617
10.1016/j.neuroimage.2008.12.028
10.1016/j.cortex.2008.05.004
10.1109/TMI.2007.899168
10.1002/mrm.21789
10.1055/s-0028-1087212
10.1016/j.nicl.2017.06.011
10.1016/j.schres.2012.11.029
10.1016/j.cortex.2008.05.002
10.1016/j.media.2007.06.004
10.1109/TVCG.2005.59
10.1007/s11682-012-9156-5
10.1016/j.neuroimage.2007.04.039
10.1002/jmri.10350
10.1016/j.neuroimage.2007.05.042
10.1007/s00429-012-0441-2
10.1523/JNEUROSCI.0493-16.2016
10.1002/jmri.22584
10.1016/j.neuroimage.2012.02.071
10.1016/j.neuroimage.2011.11.043
10.1158/0008-5472.CAN-17-0332
10.3174/ajnr.A4301
10.1016/j.jpsychires.2005.05.005
10.1002/jmri.22243
10.1002/mrm.10609
10.1016/j.neuroimage.2010.02.007
10.1109/TMI.2007.906785
10.1016/j.neuroimage.2010.01.004
10.1109/TMI.2004.828354
10.1148/radiol.2301021640
10.1371/journal.pone.0133337
10.1093/brain/awp114
10.1002/nbm.787
10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3
10.1007/s11682-013-9235-2
10.1093/schbul/sbv171
10.1016/j.neuroimage.2008.04.241
10.1007/s00701-010-0764-9
10.1093/cercor/bhg087
10.1111/jon.12283
10.1016/j.neuroimage.2006.09.018
10.1002/hbm.22902
10.1002/mrm.10415
10.1016/j.neuroimage.2007.04.067
10.1007/s00429-008-0199-8
10.1016/j.neuroimage.2010.09.035
10.1002/(SICI)1522-2594(199907)42:1<37::AID-MRM7>3.0.CO;2-O
10.1007/s00429-015-1001-3
10.1016/j.neuroimage.2013.12.022
10.1016/j.neuroimage.2009.01.002
10.1016/j.media.2010.05.002
10.1016/j.nicl.2016.04.013
10.1109/TMI.2010.2048121
10.1192/bjp.bp.107.048793
10.3389/fnins.2012.00175
10.1007/s00429-014-0975-6
10.1016/j.neubiorev.2006.06.002
10.1016/j.neuroimage.2013.04.066
10.1016/j.nicl.2016.11.023
10.1016/j.neuroimage.2010.10.028
10.1371/journal.pone.0091424
10.1227/NEU.0b013e3182061ebb
10.1017/S1092852900018071
10.1016/j.pscychresns.2007.11.007
10.1118/1.4745560
10.1002/ana.20319
10.1016/j.neuroimage.2008.11.038
10.1002/mrm.20147
10.1007/s00429-015-1179-4
10.1016/j.neuroimage.2014.01.009
10.1118/1.4811155
10.1093/cercor/bhs036
10.1098/rstb.2005.1639
10.1016/j.neuroimage.2007.07.053
10.1002/mrm.10268
10.1093/cercor/bhs225
10.1073/pnas.96.18.10422
10.1002/hbm.10102
10.1016/j.neuroimage.2011.01.032
10.1002/hbm.23465
10.1093/cercor/bhn102
10.1093/cercor/bhn124
ContentType Journal Article
Copyright 2018
Copyright © 2018. Published by Elsevier Inc.
Copyright Elsevier Limited Sep 2018
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2018
– notice: Copyright © 2018. Published by Elsevier Inc.
– notice: Copyright Elsevier Limited Sep 2018
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
1XC
VOOES
5PM
DOI 10.1016/j.neuroimage.2018.05.044
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
MEDLINE

ProQuest One Psychology
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1095-9572
EndPage 331
ExternalDocumentID PMC6481642
oai_HAL_hal_01807178v1
29787865
10_1016_j_neuroimage_2018_05_044
S1053811918304518
Genre Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: K24 MH110807
– fundername: NCI NIH HHS
  grantid: U01 CA199459
– fundername: NIMH NIH HHS
  grantid: T32 MH016259
– fundername: NIA NIH HHS
  grantid: R01 AG042512
– fundername: NIA NIH HHS
  grantid: R01 AG043640
– fundername: NIA NIH HHS
  grantid: RF1 AG043640
– fundername: NIBIB NIH HHS
  grantid: P41 EB015898
– fundername: NIMH NIH HHS
  grantid: R01 MH074794
– fundername: NIBIB NIH HHS
  grantid: P41 EB015902
– fundername: NIMH NIH HHS
  grantid: R01 MH112748
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
3V.
6I.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
LCYCR
NCXOZ
RIG
ZA5
AAYXX
AGRNS
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c598t-79d53c979c80ce2fc5fba5ea1140bc48f645cc62037ad44893f6c15c15f4fad23
IEDL.DBID AIKHN
ISSN 1053-8119
1095-9572
IngestDate Thu Aug 21 18:26:19 EDT 2025
Wed Aug 27 07:27:15 EDT 2025
Fri Sep 05 08:28:33 EDT 2025
Wed Aug 13 02:48:35 EDT 2025
Thu Apr 03 06:53:49 EDT 2025
Tue Jul 01 03:01:57 EDT 2025
Thu Apr 24 23:08:42 EDT 2025
Fri Feb 23 02:47:32 EST 2024
Tue Aug 26 20:08:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords ROIs
AF
MR
Tractography
ICC
S.D
STAPLE
Fiber tract
White matter
Automatic classification of white matter tracts
ROI
dMRI
TE
UF
UKF
ANTS
TI
MdLF
DTI
Diffusion MRI
JC
WMQL
FA
TR
White Matter
Fiber Tract
Language English
License Copyright © 2018. Published by Elsevier Inc.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c598t-79d53c979c80ce2fc5fba5ea1140bc48f645cc62037ad44893f6c15c15f4fad23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ORCID 0000-0001-9017-5864
0000-0001-5194-6056
OpenAccessLink https://inria.hal.science/hal-01807178
PMID 29787865
PQID 2069944935
PQPubID 2031077
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6481642
hal_primary_oai_HAL_hal_01807178v1
proquest_miscellaneous_2043183112
proquest_journals_2069944935
pubmed_primary_29787865
crossref_primary_10_1016_j_neuroimage_2018_05_044
crossref_citationtrail_10_1016_j_neuroimage_2018_05_044
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2018_05_044
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2018_05_044
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2018
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Fischl (bib23) 2012; 62
Malcolm, Shenton, Rathi (bib59) 2009; 21
Hua, Zhang, Wakana, Jiang, Li, Reich, Calabresi, Pekar, van Zijl, Mori (bib33) 2008; 39
Sullivan, Pfefferbaum (bib91) 2006; 30
Kubicki, McCarley, Westin, Park, Maier, Kikinis, Jolesz, Shenton (bib43) 2007; 41
Guevara, Duclap, Poupon, Marrakchi-Kacem, Fillard, Le Bihan, Leboyer, Houenou, Mangin (bib31) 2012; 61
Poupon, Rieul, Kezele, Perrin, Poupon, Mangin (bib75) 2008; 60
Tuch, Reese, Wiegell, Makris, Belliveau, Wedeen (bib94) 2002; 48
Behrens, Berg, Jbabdi, Rushworth, Woolrich (bib5) 2007; 34
Makris, Worth, Sorensen, Papadimitriou, Wu, Reese, Wedeen, Davis, Stakes, Caviness, Kaplan, Rosen, Pandya, Kennedy (bib52) 1997; 42
Brun, Knutsson, Park, Shenton, Westin (bib7) 2004
Chen, Weigel, Ganslandt, Buchfelder, Nimsky (bib13) 2009; 45
Yoo, Guevara, Jeong, Yoo, Shin, Mangin, Seong (bib108) 2015; 10
Fritzsche, Laun, Meinzer, Stieltjes (bib26) 2010; 51
Sotiropoulos, Behrens, Jbabdi (bib88) 2012; 60
Oishi, Faria, Jiang, Li, Akhter, Zhang, Hsu, Miller, van Zijl, Albert, Lyketsos, Woods, Toga, Pike, Rosa-Neto, Evans, Mazziotta, Mori (bib68) 2009; 46
Xu, Anderson, Gore, Ding (bib105) 2013; 40
Conturo, Lori, Cull, Akbudak, Snyder, Shimony, McKinstry, Burton, Raichle (bib15) 1999; 96
Warfield, Zou, Wells (bib102) 2004; 23
Zhang, Olivi, Hertig, van Zijl, Mori (bib109) 2008; 42
Yendiki, Panneck, Srinivasan, Stevens, Zöllei, Augustinack, Wang, Salat, Ehrlich, Behrens, Jbabdi, Gollub, Fischl (bib106) 2011; 5
Chua, Wen, Slavin, Sachdev (bib14) 2008; 21
Makris, Pandya (bib51) 2009; 213
Essayed, Zhang, Unadkat, Cosgrove, Golby, O'Donnell (bib21) 2017; 15
Wang, Jackowski, Kalmar, Chepenik, Tie, Qiu, Gong, Pittman, Jones, Shah, Spencer, Papademetris, Constable, Blumberg (bib100) 2008; 193
Beaulieu (bib3) 2002; 15
Lazar, Alexander, Thottakara, Badie, Field (bib47) 2006; 27
O'Donnell, Westin (bib69) 2007; 26
Parker, Haroon, Wheeler-Kingshott (bib74) 2003; 18
Mori, C M van Zijl, Oishi, Faria (bib64) 2011
Maier-Hein, Neher, Houde, Côté, Garyfallidis, Zhong, Chamberland, Yeh, Lin, Ji, Reddick, Glass, Chen, Feng, Gao, Wu, Ma, Renjie, Li, Westin, Deslauriers-Gauthier, González, Paquette, St-Jean, Girard, Rheault, Sidhu, Tax, Guo, Mesri, Dávid, Froeling, Heemskerk, Leemans, Boré, Pinsard, Bedetti, Desrosiers, Brambati, Doyon, Sarica, Vasta, Cerasa, Quattrone, Yeatman, Khan, Hodges, Alexander, Romascano, Barakovic, Auría, Esteban, Lemkaddem, Thiran, Cetingul, Odry, Mailhe, Nadar, Pizzagalli, Prasad, Villalon-Reina, Galvis, Thompson, Requejo, Laguna, Lacerda, Barrett, Dell'Acqua, Catani, Petit, Caruyer, Daducci, Dyrby, Holland-Letz, Hilgetag, Stieltjes, Descoteaux (bib50) 2017; 8
Landis, Koch (bib44) 1977; 33
Makris, Papadimitriou, Kaiser, Sorg, Kennedy, Pandya (bib56) 2009; 19
Norton, Essayed, Zhang, Pujol, Yarmarkovich, Golby, Kindlmann, Wassermann, Estepar, Rathi, Pieper, Kikinis, Johnson, Westin, O'Donnell (bib67) 2017; 77
O'Donnell, Suter, Rigolo, Kahali, Zhang, Norton, Albi, Olubiyi, Meola, Essayed, Unadkat, Ciris, Wells, Rathi, Westin, Golby (bib72) 2016; 13
Berman (bib6) 2009; 17
Suarez, Commowick, Prabhu, Warfield (bib90) 2012; 59
Malcolm, Shenton, Rathi (bib60) 2010; 29
Wang, Fernández-Miranda, Verstynen, Pathak, Schneider, Yeh (bib101) 2013; 23
Fischl, van der Kouwe, Destrieux, Halgren, Ségonne, Salat, Busa, Seidman, Goldstein, Kennedy, Caviness, Makris, Rosen, Dale (bib25) 2004; 14
Avants, Epstein, Grossman, Gee (bib1) 2008; 12
Psomiades, Fonteneau, Mondino, Luck, Haesebaert, Suaud-Chagny, Brunelin (bib76) 2016; 12
Lawes, Barrick, Murugam, Spierings, Evans, Song, Clark (bib45) 2008; 39
Dyrby, Søgaard, Parker, Alexander, Lind, Baaré, Hay-Schmidt, Eriksen, Pakkenberg, Paulson, Jelsing (bib20) 2007; 37
Maffei, Soria, Prats-Galino, Catani (bib49) 2015; 129
Wassermann, Makris, Rathi, Shenton, Kikinis, Kubicki, Westin (bib104) 2016; 221
Pullens, Roebroeck, Goebel (bib78) 2010; 32
Tensaouti, Lahlou, Clarisse, Lotterie, Berry (bib92) 2011; 34
Catani, Thiebaut de Schotten (bib9) 2008; 44
Shenton, Hamoda, Schneiderman, Bouix, Pasternak, Rathi, Vu, Purohit, Helmer, Koerte, Lin, Westin, Kikinis, Kubicki, Stern, Zafonte (bib86) 2012; 6
Jones, Simmons, Williams, Horsfield (bib40) 1999; 42
Donahue, Sotiropoulos, Jbabdi, Hernandez-Fernandez, Behrens, Dyrby, Coalson, Kennedy, Knoblauch, Van Essen, Glasser (bib19) 2016; 36
Huang, Zhang, van Zijl, Mori (bib34) 2004; 52
O'Donnell, Golby, Westin (bib71) 2013; 80
Behrens, Woolrich, Jenkinson, Johansen-Berg, Nunes, Clare, Matthews, Brady, Smith (bib4) 2003; 50
Rojkova, Volle, Urbanski, Humbert, Dell'Acqua, Thiebaut de Schotten (bib80) 2016; 221
Catani, Howard, Pajevic, Jones (bib11) 2002; 17
J-Donald, Fernando, Alan (bib35) 2012; 22
Baumgartner, Michailovich, Levitt, Pasternak, Bouix, Westin, Rathi (bib2) 2012
Golby, Kindlmann, Norton, Yarmarkovich, Pieper, Kikinis (bib28) 2011; 68
Parker, Alexander (bib73) 2005; 360
Makris, Papadimitriou, Sorg, Kennedy, Caviness, Pandya (bib55) 2007; 37
Mori, Crain, Chacko, van Zijl (bib62) 1999; 45
Malykhin, Concha, Seres, Beaulieu, Coupland (bib61) 2008; 164
Wakana, Caprihan, Panzenboeck, Fallon, Perry, Gollub, Hua, Zhang, Jiang, Dubey, Blitz, van Zijl, Mori (bib99) 2007; 36
Yogarajah, Focke, Bonelli, Cercignani, Acheson, Parker, Alexander, McEvoy, Symms, Koepp, Duncan (bib107) 2009; 132
Guevara, Poupon, Rivière, Cointepas, Descoteaux, Thirion, Mangin (bib30) 2011; 54
Sherbondy, Akers, Mackenzie, Dougherty, Wandell (bib87) 2005; 11
Bürgel, Mädler, Honey, Thron, Gilsbach, Coenen (bib8) 2009; 70
O'Donnell, Wells, Golby, Westin (bib70) 2012; 15
Wakana, Jiang, Nagae-Poetscher, van Zijl, Mori (bib98) 2004; 230
Khalsa, Mayhew, Chechlacz, Bagary, Bagshaw (bib41) 2014; 102
Jonasson, Bresson, Thiran, Wedeen, Hagmann (bib38) 2007; 26
Pujol, Wells, Pierpaoli, Brun, Gee, Cheng, Vemuri, Commowick, Prima, Stamm, Goubran, Khan, Peters, Neher, Maier-Hein, Shi, Tristan-Vega, Veni, Whitaker, Styner, Westin, Gouttard, Norton, Chauvin, Mamata, Gerig, Nabavi, Golby, Kikinis (bib77) 2015; 25
Lazar, Weinstein, Tsuruda, Hasan, Arfanakis, Meyerand, Badie, Rowley, Haughton, Field, Alexander (bib46) 2003; 18
Tylee, Kikinis, Quinn, Antshel, Fremont, Tahir, Zhu, Gong, Glatt, Coman, Shenton, Kates, Makris (bib95) 2017; 15
Garyfallidis, Brett, Correia, Williams, Nimmo-Smith (bib27) 2012; 6
Voineskos, O'Donnell, Lobaugh, Markant, Ameis, Niethammer, Mulsant, Pollock, Kennedy, Westin, Shenton (bib97) 2009; 45
Ding, Gore, Anderson (bib18) 2003; 49
Lee, Kubicki, Asami, Seidman, Goldstein, Mesholam-Gately, McCarley, Shenton (bib48) 2013; 143
Seitz, Zuo, Lyall, Makris, Kikinis, Bouix, Pasternak, Fredman, Duskin, Goldstein, Petryshen, Mesholam-Gately, Wojcik, McCarley, Seidman, Shenton, Koerte, Kubicki (bib84) 2016; 42
Zhang, Savadjiev, Cai, Song, Rathi, Tunç, Parker, Kapur, Schultz, Makris, Verma, O'Donnell (bib111) 2017
Makris, Pandya, Normandin, Papadimitriou, Rauch, Caviness, Kennedy (bib53) 2002; 7
Makris, Kennedy, McInerney, Sorensen, Wang, Caviness, Pandya (bib54) 2005; 15
Horsfield, Jones (bib32) 2002; 15
Nazem-Zadeh, Chapman, Lawrence, Tsien, Cao (bib66) 2012; 39
Wassermann, Bloy, Kanterakis, Verma, Deriche (bib103) 2010; 51
Catani, Jones, Ffytche (bib12) 2005; 57
Jones (bib39) 2008; 44
Mori, Kaufmann, Davatzikos, Stieltjes, Amodei, Fredericksen, Pearlson, Melhem, Solaiyappan, Raymond, Moser, van Zijl (bib63) 2002; 47
Dauguet, Peled, Berezovskii, Delzescaux, Warfield, Born, Westin (bib16) 2007; 37
Makris, Preti, Asami, Pelavin, Campbell, Papadimitriou, Kaiser, Baselli, Westin, Shenton, Kubicki (bib57) 2013; 218
Truong, Guidon, Song (bib93) 2014; 9
Spena, Nava, Cassini, Pepoli, Bruno, D'Agata, Cauda, Sacco, Duca, Barletta, Versari (bib89) 2010; 152
Varentsova, Zhang, Arfanakis (bib96) 2014; 91
Rousson, Lenglet, Deriche (bib82) 2004
Jbabdi, Woolrich, Andersson, Behrens (bib36) 2007; 37
Zhang, Awatea, Das, Woo, Melhem, Gee, Yushkevich (bib110) 2010; 14
Knösche, Anwander, Liptrot, Dyrby (bib42) 2015; 36
Makris, Preti, Wassermann, Rathi, Papadimitriou, Yergatian, Dickerson, Shenton, Kubicki (bib58) 2013; 7
Seehaus, Roebroeck, Chiry, Kim, Ronen, Bratzke, Goebel, Galuske (bib83) 2013; 23
Desikan, Ségonne, Fischl, Quinn, Dickerson, Blacker, Buckner, Dale, Maguire, Hyman, Albert, Killiany (bib17) 2006; 31
Zhukov, Museth, Breen, Whitaker, Barr (bib112) 2003; 12
Fischl, Salat, Busa, Albert, Dieterich, Haselgrove, Van Der Kouwe, Killiany, Kennedy, Klaveness, Montillo, Makris, Rosen, Dale (bib24) 2002; 33
Shaffer, Ghayoor, Long, Kim, Lourens, O'Donnell, Westin, Rathi, Magnotta, Paulsen, Johnson (bib85) 2017; 38
Jolles, Wassermann, Chokhani, Richardson, Tenison, Bammer, Fuchs, Supekar, Menon (bib37) 2016; 221
Gong, He, Concha, Lebel, Gross, Evans, Beaulieu (bib29) 2009; 19
Fillard, Descoteaux, Goh, Gouttard, Jeurissen, Malcolm, Ramirez-Manzanares, Reisert, Sakaie, Tensaouti, Yo, Mangin, Poupon (bib22) 2011; 56
Nazem-Zadeh, Davoodi-Bojd, Soltanian-Zadeh (bib65) 2011; 54
Rijken, Leemans, Lucas, Montfort, van Mathijssen, Lequin (bib79) 2015; 36
Ros, Güllmar, Stenzel, Mentzel, Reichenbach (bib81) 2013; 8
Malcolm (10.1016/j.neuroimage.2018.05.044_bib59) 2009; 21
Kubicki (10.1016/j.neuroimage.2018.05.044_bib43) 2007; 41
Knösche (10.1016/j.neuroimage.2018.05.044_bib42) 2015; 36
Behrens (10.1016/j.neuroimage.2018.05.044_bib5) 2007; 34
Fillard (10.1016/j.neuroimage.2018.05.044_bib22) 2011; 56
Makris (10.1016/j.neuroimage.2018.05.044_bib58) 2013; 7
Chen (10.1016/j.neuroimage.2018.05.044_bib13) 2009; 45
Desikan (10.1016/j.neuroimage.2018.05.044_bib17) 2006; 31
Yogarajah (10.1016/j.neuroimage.2018.05.044_bib107) 2009; 132
Wassermann (10.1016/j.neuroimage.2018.05.044_bib104) 2016; 221
Nazem-Zadeh (10.1016/j.neuroimage.2018.05.044_bib66) 2012; 39
Lazar (10.1016/j.neuroimage.2018.05.044_bib46) 2003; 18
Seitz (10.1016/j.neuroimage.2018.05.044_bib84) 2016; 42
Nazem-Zadeh (10.1016/j.neuroimage.2018.05.044_bib65) 2011; 54
Lawes (10.1016/j.neuroimage.2018.05.044_bib45) 2008; 39
Poupon (10.1016/j.neuroimage.2018.05.044_bib75) 2008; 60
Dauguet (10.1016/j.neuroimage.2018.05.044_bib16) 2007; 37
Bürgel (10.1016/j.neuroimage.2018.05.044_bib8) 2009; 70
Mori (10.1016/j.neuroimage.2018.05.044_bib64) 2011
Parker (10.1016/j.neuroimage.2018.05.044_bib74) 2003; 18
Makris (10.1016/j.neuroimage.2018.05.044_bib53) 2002; 7
Norton (10.1016/j.neuroimage.2018.05.044_bib67) 2017; 77
Varentsova (10.1016/j.neuroimage.2018.05.044_bib96) 2014; 91
Yendiki (10.1016/j.neuroimage.2018.05.044_bib106) 2011; 5
Pullens (10.1016/j.neuroimage.2018.05.044_bib78) 2010; 32
Conturo (10.1016/j.neuroimage.2018.05.044_bib15) 1999; 96
Zhukov (10.1016/j.neuroimage.2018.05.044_bib112) 2003; 12
Baumgartner (10.1016/j.neuroimage.2018.05.044_bib2) 2012
Zhang (10.1016/j.neuroimage.2018.05.044_bib110) 2010; 14
Dyrby (10.1016/j.neuroimage.2018.05.044_bib20) 2007; 37
Essayed (10.1016/j.neuroimage.2018.05.044_bib21) 2017; 15
Warfield (10.1016/j.neuroimage.2018.05.044_bib102) 2004; 23
Malykhin (10.1016/j.neuroimage.2018.05.044_bib61) 2008; 164
Makris (10.1016/j.neuroimage.2018.05.044_bib54) 2005; 15
Makris (10.1016/j.neuroimage.2018.05.044_bib52) 1997; 42
Guevara (10.1016/j.neuroimage.2018.05.044_bib30) 2011; 54
Huang (10.1016/j.neuroimage.2018.05.044_bib34) 2004; 52
Makris (10.1016/j.neuroimage.2018.05.044_bib55) 2007; 37
Ding (10.1016/j.neuroimage.2018.05.044_bib18) 2003; 49
Wassermann (10.1016/j.neuroimage.2018.05.044_bib103) 2010; 51
Rijken (10.1016/j.neuroimage.2018.05.044_bib79) 2015; 36
Wang (10.1016/j.neuroimage.2018.05.044_bib100) 2008; 193
Tuch (10.1016/j.neuroimage.2018.05.044_bib94) 2002; 48
Makris (10.1016/j.neuroimage.2018.05.044_bib57) 2013; 218
Parker (10.1016/j.neuroimage.2018.05.044_bib73) 2005; 360
Landis (10.1016/j.neuroimage.2018.05.044_bib44) 1977; 33
Maier-Hein (10.1016/j.neuroimage.2018.05.044_bib50) 2017; 8
Mori (10.1016/j.neuroimage.2018.05.044_bib63) 2002; 47
Fischl (10.1016/j.neuroimage.2018.05.044_bib23) 2012; 62
Malcolm (10.1016/j.neuroimage.2018.05.044_bib60) 2010; 29
Mori (10.1016/j.neuroimage.2018.05.044_bib62) 1999; 45
Suarez (10.1016/j.neuroimage.2018.05.044_bib90) 2012; 59
Spena (10.1016/j.neuroimage.2018.05.044_bib89) 2010; 152
Fischl (10.1016/j.neuroimage.2018.05.044_bib24) 2002; 33
O'Donnell (10.1016/j.neuroimage.2018.05.044_bib70) 2012; 15
O'Donnell (10.1016/j.neuroimage.2018.05.044_bib71) 2013; 80
Wakana (10.1016/j.neuroimage.2018.05.044_bib99) 2007; 36
Zhang (10.1016/j.neuroimage.2018.05.044_bib111) 2017
Donahue (10.1016/j.neuroimage.2018.05.044_bib19) 2016; 36
Jonasson (10.1016/j.neuroimage.2018.05.044_bib38) 2007; 26
Jbabdi (10.1016/j.neuroimage.2018.05.044_bib36) 2007; 37
Avants (10.1016/j.neuroimage.2018.05.044_bib1) 2008; 12
Seehaus (10.1016/j.neuroimage.2018.05.044_bib83) 2013; 23
Catani (10.1016/j.neuroimage.2018.05.044_bib11) 2002; 17
Sullivan (10.1016/j.neuroimage.2018.05.044_bib91) 2006; 30
Fischl (10.1016/j.neuroimage.2018.05.044_bib25) 2004; 14
Fritzsche (10.1016/j.neuroimage.2018.05.044_bib26) 2010; 51
Pujol (10.1016/j.neuroimage.2018.05.044_bib77) 2015; 25
Tensaouti (10.1016/j.neuroimage.2018.05.044_bib92) 2011; 34
Beaulieu (10.1016/j.neuroimage.2018.05.044_bib3) 2002; 15
Rousson (10.1016/j.neuroimage.2018.05.044_bib82) 2004
J-Donald (10.1016/j.neuroimage.2018.05.044_bib35) 2012; 22
Jones (10.1016/j.neuroimage.2018.05.044_bib40) 1999; 42
Voineskos (10.1016/j.neuroimage.2018.05.044_bib97) 2009; 45
Tylee (10.1016/j.neuroimage.2018.05.044_bib95) 2017; 15
Makris (10.1016/j.neuroimage.2018.05.044_bib51) 2009; 213
Maffei (10.1016/j.neuroimage.2018.05.044_bib49) 2015; 129
Wang (10.1016/j.neuroimage.2018.05.044_bib101) 2013; 23
Berman (10.1016/j.neuroimage.2018.05.044_bib6) 2009; 17
Hua (10.1016/j.neuroimage.2018.05.044_bib33) 2008; 39
Behrens (10.1016/j.neuroimage.2018.05.044_bib4) 2003; 50
Horsfield (10.1016/j.neuroimage.2018.05.044_bib32) 2002; 15
Truong (10.1016/j.neuroimage.2018.05.044_bib93) 2014; 9
Sherbondy (10.1016/j.neuroimage.2018.05.044_bib87) 2005; 11
Garyfallidis (10.1016/j.neuroimage.2018.05.044_bib27) 2012; 6
Catani (10.1016/j.neuroimage.2018.05.044_bib12) 2005; 57
Gong (10.1016/j.neuroimage.2018.05.044_bib29) 2009; 19
Xu (10.1016/j.neuroimage.2018.05.044_bib105) 2013; 40
Shaffer (10.1016/j.neuroimage.2018.05.044_bib85) 2017; 38
Sotiropoulos (10.1016/j.neuroimage.2018.05.044_bib88) 2012; 60
Brun (10.1016/j.neuroimage.2018.05.044_bib7) 2004
Psomiades (10.1016/j.neuroimage.2018.05.044_bib76) 2016; 12
Rojkova (10.1016/j.neuroimage.2018.05.044_bib80) 2016; 221
Jolles (10.1016/j.neuroimage.2018.05.044_bib37) 2016; 221
Golby (10.1016/j.neuroimage.2018.05.044_bib28) 2011; 68
O'Donnell (10.1016/j.neuroimage.2018.05.044_bib69) 2007; 26
Makris (10.1016/j.neuroimage.2018.05.044_bib56) 2009; 19
Chua (10.1016/j.neuroimage.2018.05.044_bib14) 2008; 21
Yoo (10.1016/j.neuroimage.2018.05.044_bib108) 2015; 10
Guevara (10.1016/j.neuroimage.2018.05.044_bib31) 2012; 61
Wakana (10.1016/j.neuroimage.2018.05.044_bib98) 2004; 230
Shenton (10.1016/j.neuroimage.2018.05.044_bib86) 2012; 6
Jones (10.1016/j.neuroimage.2018.05.044_bib39) 2008; 44
Ros (10.1016/j.neuroimage.2018.05.044_bib81) 2013; 8
Oishi (10.1016/j.neuroimage.2018.05.044_bib68) 2009; 46
Khalsa (10.1016/j.neuroimage.2018.05.044_bib41) 2014; 102
Zhang (10.1016/j.neuroimage.2018.05.044_bib109) 2008; 42
Lazar (10.1016/j.neuroimage.2018.05.044_bib47) 2006; 27
Lee (10.1016/j.neuroimage.2018.05.044_bib48) 2013; 143
Catani (10.1016/j.neuroimage.2018.05.044_bib9) 2008; 44
O'Donnell (10.1016/j.neuroimage.2018.05.044_bib72) 2016; 13
References_xml – volume: 193
  start-page: 126
  year: 2008
  end-page: 129
  ident: bib100
  article-title: Abnormal anterior cingulum integrity in bipolar disorder determined through diffusion tensor imaging
  publication-title: Br. J. Psychiatry
– volume: 37
  start-page: 1267
  year: 2007
  end-page: 1277
  ident: bib20
  article-title: Validation of in vitro probabilistic tractography
  publication-title: Neuroimage
– volume: 40
  start-page: 072301
  year: 2013
  ident: bib105
  article-title: Gray matter parcellation constrained full brain fiber bundling with diffusion tensor imaging
  publication-title: Med. Phys.
– volume: 10
  year: 2015
  ident: bib108
  article-title: An example-based multi-atlas approach to automatic labeling of white matter tracts
  publication-title: PLoS One
– volume: 45
  start-page: 286
  year: 2009
  end-page: 297
  ident: bib13
  article-title: Prediction of visual field deficits by diffusion tensor imaging in temporal lobe epilepsy surgery
  publication-title: Neuroimage
– volume: 25
  start-page: 875
  year: 2015
  end-page: 882
  ident: bib77
  article-title: The DTI challenge: toward standardized evaluation of diffusion tensor imaging tractography for neurosurgery
  publication-title: J. Neuroimaging
– volume: 41
  start-page: 15
  year: 2007
  end-page: 30
  ident: bib43
  article-title: A review of diffusion tensor imaging studies in schizophrenia
  publication-title: J. Psychiatr. Res.
– volume: 30
  start-page: 749
  year: 2006
  end-page: 761
  ident: bib91
  article-title: Diffusion tensor imaging and aging
  publication-title: Neurosci. Biobehav. Rev.
– volume: 164
  start-page: 132
  year: 2008
  end-page: 142
  ident: bib61
  article-title: Diffusion tensor imaging tractography and reliability analysis for limbic and paralimbic white matter tracts
  publication-title: Psychiatr. Res.
– volume: 36
  start-page: 1558
  year: 2015
  end-page: 1564
  ident: bib79
  article-title: Diffusion tensor imaging and fiber tractography in children with craniosynostosis syndromes
  publication-title: Am. J. Neuroradiol.
– volume: 221
  start-page: 1751
  year: 2016
  end-page: 1766
  ident: bib80
  article-title: Atlasing the frontal lobe connections and their variability due to age and education: a spherical deconvolution tractography study
  publication-title: Brain Struct. Funct.
– volume: 15
  start-page: 570
  year: 2002
  end-page: 577
  ident: bib32
  article-title: Applications of diffusion-weighted and diffusion tensor MRI to white matter diseases - a review
  publication-title: NMR Biomed.
– volume: 7
  start-page: 522
  year: 2002
  end-page: 528
  ident: bib53
  article-title: Quantitative DT-MRI investigations of the human cingulum bundle
  publication-title: CNS Spectr.
– volume: 47
  start-page: 215
  year: 2002
  end-page: 223
  ident: bib63
  article-title: Imaging cortical association tracts in the human brain using diffusion-tensor-based axonal tracking
  publication-title: Magn. Reson. Med.
– volume: 38
  start-page: 1460
  year: 2017
  end-page: 1477
  ident: bib85
  article-title: Longitudinal diffusion changes in prodromal and early HD: evidence of white-matter tract deterioration
  publication-title: Hum. Brain Mapp.
– volume: 21
  start-page: 126
  year: 2009
  end-page: 138
  ident: bib59
  article-title: Neural tractography using an unscented Kalman filter
  publication-title: Inf. Process Med. Imaging
– volume: 132
  start-page: 1656
  year: 2009
  end-page: 1668
  ident: bib107
  article-title: Defining Meyer's loop–temporal lobe resections, visual field deficits and diffusion tensor tractography
  publication-title: Brain
– volume: 57
  start-page: 8
  year: 2005
  end-page: 16
  ident: bib12
  article-title: Perisylvian language networks of the human brain
  publication-title: Ann. Neurol.
– volume: 11
  start-page: 419
  year: 2005
  end-page: 430
  ident: bib87
  article-title: Exploring connectivity of the brain's white matter with dynamic queries
  publication-title: IEEE Trans. Visual. Comput. Graph.
– volume: 37
  start-page: 530
  year: 2007
  end-page: 538
  ident: bib16
  article-title: Comparison of fiber tracts derived from in-vivo DTI tractography with 3D histological neural tract tracer reconstruction on a macaque brain
  publication-title: Neuroimage
– volume: 49
  start-page: 716
  year: 2003
  end-page: 721
  ident: bib18
  article-title: Classification and quantification of neuronal fiber pathways using diffusion tensor MRI
  publication-title: Magn. Reson. Med.
– volume: 15
  start-page: 854
  year: 2005
  end-page: 869
  ident: bib54
  article-title: Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study
  publication-title: Cerebr. Cortex
– volume: 6
  year: 2012
  ident: bib27
  article-title: QuickBundles, a method for tractography simplification
  publication-title: Front. Neurosci.
– volume: 34
  start-page: 165
  year: 2011
  end-page: 172
  ident: bib92
  article-title: Quantitative and reproducibility study of four tractography algorithms used in clinical routine
  publication-title: J. Magn. Reson. Imag.
– volume: 102
  start-page: 118
  year: 2014
  end-page: 127
  ident: bib41
  article-title: The structural and functional connectivity of the posterior cingulate cortex: comparison between deterministic and probabilistic tractography for the investigation of structure-function relationships
  publication-title: Neuroimage
– volume: 23
  start-page: 903
  year: 2004
  end-page: 921
  ident: bib102
  article-title: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation
  publication-title: IEEE Trans. Med. Imag.
– volume: 44
  start-page: 1105
  year: 2008
  end-page: 1132
  ident: bib9
  article-title: A diffusion tensor imaging tractography atlas for virtual in vivo dissections
  publication-title: Cortex
– volume: 143
  start-page: 231
  year: 2013
  end-page: 238
  ident: bib48
  article-title: Extensive white matter abnormalities in patients with first-episode schizophrenia: a Diffusion Tensor Imaging (DTI) study
  publication-title: Schizophr. Res.
– year: 2011
  ident: bib64
  article-title: MRI Atlas of Human White Matter
– start-page: 123
  year: 2004
  end-page: 134
  ident: bib82
  article-title: Level set and region based surface propagation for diffusion tensor MRI segmentation
  publication-title: Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis
– volume: 54
  start-page: S146
  year: 2011
  end-page: S164
  ident: bib65
  article-title: Atlas-based fiber bundle segmentation using principal diffusion directions and spherical harmonic coefficients
  publication-title: Neuroimage
– start-page: 27
  year: 2012
  end-page: 32
  ident: bib2
  article-title: A unified tractography framework for comparing diffusion models on clinical scans
  publication-title: Computational Diffusion MRI Workshop. Presented at the MICCAI, Nice
– volume: 39
  start-page: 62
  year: 2008
  end-page: 79
  ident: bib45
  article-title: Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection
  publication-title: Neuroimage
– volume: 15
  start-page: 659
  year: 2017
  end-page: 672
  ident: bib21
  article-title: White matter tractography for neurosurgical planning: a topography-based review of the current state of the art
  publication-title: Neuroimage: Clinica
– volume: 36
  start-page: 4116
  year: 2015
  end-page: 4134
  ident: bib42
  article-title: Validation of tractography: comparison with manganese tracing
  publication-title: Hum. Brain Mapp.
– volume: 51
  start-page: 228
  year: 2010
  end-page: 241
  ident: bib103
  article-title: Unsupervised white matter fiber clustering and tract probability map generation: applications of a Gaussian process framework for white matter fibers
  publication-title: Neuroimage
– volume: 5
  year: 2011
  ident: bib106
  article-title: Automated probabilistic reconstruction of white-matter pathways in Health and disease using an atlas of the underlying anatomy
  publication-title: Front. Neuroinf.
– volume: 15
  start-page: 435
  year: 2002
  end-page: 455
  ident: bib3
  article-title: The basis of anisotropic water diffusion in the nervous system - a technical review
  publication-title: NMR Biomed.
– volume: 37
  start-page: 1100
  year: 2007
  end-page: 1111
  ident: bib55
  article-title: The occipitofrontal fascicle in humans: a quantitative, in vivo, DT-MRI study
  publication-title: Neuroimage
– volume: 42
  start-page: 762
  year: 2016
  end-page: 771
  ident: bib84
  article-title: Tractography analysis of 5 white matter bundles and their clinical and cognitive correlates in early-course schizophrenia
  publication-title: Schizophr. Bull.
– volume: 70
  start-page: 27
  year: 2009
  end-page: 35
  ident: bib8
  article-title: Fiber tracking with distinct software tools results in a clear diversity in anatomical fiber tract portrayal
  publication-title: Cent. Eur. Neurosurg.
– volume: 12
  start-page: 970
  year: 2016
  end-page: 975
  ident: bib76
  article-title: Integrity of the arcuate fasciculus in patients with schizophrenia with auditory verbal hallucinations: a DTI-tractography study
  publication-title: Neuroimage: Clinica
– volume: 218
  start-page: 951
  year: 2013
  end-page: 968
  ident: bib57
  article-title: Human middle longitudinal fascicle: variations in patterns of anatomical connections
  publication-title: Brain Struct. Funct.
– volume: 18
  start-page: 306
  year: 2003
  end-page: 321
  ident: bib46
  article-title: White matter tractography using diffusion tensor deflection
  publication-title: Hum. Brain Mapp.
– volume: 39
  start-page: 5603
  year: 2012
  end-page: 5613
  ident: bib66
  article-title: Radiation therapy effects on white matter fiber tracts of the limbic circuit
  publication-title: Med. Phys.
– volume: 29
  start-page: 1664
  year: 2010
  end-page: 1675
  ident: bib60
  article-title: Filtered multi-tensor tractography
  publication-title: IEEE Trans. Med. Imag.
– volume: 80
  start-page: 283
  year: 2013
  end-page: 289
  ident: bib71
  article-title: Fiber clustering versus the parcellation-based connectome
  publication-title: Neuroimage
– volume: 230
  start-page: 77
  year: 2004
  end-page: 87
  ident: bib98
  article-title: Fiber tract-based atlas of human white matter anatomy
  publication-title: Radiology
– volume: 34
  start-page: 144
  year: 2007
  end-page: 155
  ident: bib5
  article-title: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain?
  publication-title: Neuroimage
– volume: 15
  start-page: 123
  year: 2012
  end-page: 130
  ident: bib70
  article-title: Unbiased groupwise registration of white matter tractography
  publication-title: Med Image Comput Comput Assist Interv
– volume: 44
  start-page: 936
  year: 2008
  end-page: 952
  ident: bib39
  article-title: Studying connections in the living human brain with diffusion MRI
  publication-title: Cortex
– volume: 152
  start-page: 1835
  year: 2010
  end-page: 1846
  ident: bib89
  article-title: Preoperative and intraoperative brain mapping for the resection of eloquent-area tumors. A prospective analysis of methodology, correlation, and usefulness based on clinical outcomes
  publication-title: Acta Neurochir.
– year: 2017
  ident: bib111
  article-title: Whole brain white matter connectivity analysis using machine learning: an application to autism
  publication-title: Neuroimage
– volume: 23
  start-page: 442
  year: 2013
  end-page: 450
  ident: bib83
  article-title: Histological validation of DW-MRI tractography in human postmortem tissue
  publication-title: Cerebr. Cortex
– volume: 33
  start-page: 341
  year: 2002
  end-page: 355
  ident: bib24
  article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain
  publication-title: Neuron
– volume: 213
  start-page: 343
  year: 2009
  end-page: 358
  ident: bib51
  article-title: The extreme capsule in humans and rethinking of the language circuitry
  publication-title: Brain Struct. Funct.
– volume: 60
  start-page: 1412
  year: 2012
  end-page: 1425
  ident: bib88
  article-title: Ball and rackets: inferring fiber fanning from diffusion-weighted MRI
  publication-title: Neuroimage
– volume: 22
  start-page: 53
  year: 2012
  end-page: 66
  ident: bib35
  article-title: MRtrix: diffusion tractography in crossing fiber regions
  publication-title: Int. J. Imag. Syst. Technol.
– volume: 15
  start-page: 832
  year: 2017
  end-page: 842
  ident: bib95
  article-title: Machine-learning classification of 22q11.2 deletion syndrome: a diffusion tensor imaging study
  publication-title: Neuroimage: Clinica
– volume: 221
  start-page: 4705
  year: 2016
  end-page: 4721
  ident: bib104
  article-title: The white matter query language: a novel approach for describing human white matter anatomy
  publication-title: Brain Struct. Funct.
– volume: 50
  start-page: 1077
  year: 2003
  end-page: 1088
  ident: bib4
  article-title: Characterization and propagation of uncertainty in diffusion-weighted MR imaging
  publication-title: Magn. Reson. Med.
– volume: 56
  start-page: 220
  year: 2011
  end-page: 234
  ident: bib22
  article-title: Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom
  publication-title: Neuroimage
– volume: 48
  start-page: 577
  year: 2002
  end-page: 582
  ident: bib94
  article-title: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity
  publication-title: Magn. Reson. Med.
– volume: 26
  start-page: 1562
  year: 2007
  end-page: 1575
  ident: bib69
  article-title: Automatic tractography segmentation using a high-dimensional white matter atlas
  publication-title: IEEE Trans. Med. Imag.
– volume: 42
  start-page: 771
  year: 2008
  end-page: 777
  ident: bib109
  article-title: Automated fiber tracking of human brain white matter using diffusion tensor imaging
  publication-title: Neuroimage
– volume: 42
  start-page: 37
  year: 1999
  end-page: 41
  ident: bib40
  article-title: Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI
  publication-title: Magn. Reson. Med.
– volume: 12
  start-page: 26
  year: 2008
  end-page: 41
  ident: bib1
  article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain
  publication-title: Med. Image Anal.
– volume: 68
  start-page: 496
  year: 2011
  end-page: 505
  ident: bib28
  article-title: Interactive diffusion tensor tractography visualization for neurosurgical planning
  publication-title: Neurosurgery
– volume: 32
  start-page: 482
  year: 2010
  end-page: 488
  ident: bib78
  article-title: Ground truth hardware phantoms for validation of diffusion-weighted MRI applications
  publication-title: J. Magn. Reson. Imag.
– volume: 23
  start-page: 2347
  year: 2013
  end-page: 2356
  ident: bib101
  article-title: Rethinking the role of the middle longitudinal fascicle in language and auditory pathways
  publication-title: Cerebr. Cortex
– volume: 13
  start-page: 138
  year: 2016
  end-page: 153
  ident: bib72
  article-title: Automated white matter fiber tract identification in patients with brain tumors
  publication-title: Neuroimage Clin
– volume: 31
  start-page: 968
  year: 2006
  end-page: 980
  ident: bib17
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: Neuroimage
– volume: 8
  year: 2013
  ident: bib81
  article-title: Atlas-guided cluster analysis of large tractography datasets
  publication-title: PLoS One
– volume: 36
  start-page: 6758
  year: 2016
  end-page: 6770
  ident: bib19
  article-title: Using diffusion tractography to predict cortical connection strength and distance: a quantitative comparison with tracers in the monkey
  publication-title: J. Neurosci.
– volume: 129
  start-page: 277
  year: 2015
  end-page: 288
  ident: bib49
  article-title: Imaging white-matter pathways of the auditory system with diffusion imaging tractography. Handbook of Clinical Neurology
  publication-title: The Human Auditory System
– volume: 9
  year: 2014
  ident: bib93
  article-title: Cortical depth dependence of the diffusion anisotropy in the human cortical gray matter in vivo
  publication-title: PLoS One
– volume: 26
  start-page: 1547
  year: 2007
  end-page: 1554
  ident: bib38
  article-title: Representing diffusion MRI in 5-d simplifies regularization and segmentation of white matter tracts
  publication-title: IEEE Trans. Med. Imag.
– volume: 360
  start-page: 893
  year: 2005
  end-page: 902
  ident: bib73
  article-title: Probabilistic anatomical connectivity derived from the microscopic persistent angular structure of cerebral tissue
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
– volume: 8
  year: 2017
  ident: bib50
  article-title: The challenge of mapping the human connectome based on diffusion tractography
  publication-title: Nat. Commun.
– volume: 17
  start-page: 205
  year: 2009
  end-page: 214
  ident: bib6
  article-title: Diffusion MR tractography as a tool for surgical planning. Magnetic resonance imaging clinics of North America
  publication-title: Clinical Applications of MR Diffusion and Perfusion Imaging
– volume: 39
  start-page: 336
  year: 2008
  end-page: 347
  ident: bib33
  article-title: Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification
  publication-title: Neuroimage
– volume: 221
  start-page: 1337
  year: 2016
  end-page: 1351
  ident: bib37
  article-title: Plasticity of left perisylvian white-matter tracts is associated with individual differences in math learning
  publication-title: Brain Struct. Funct.
– volume: 52
  start-page: 559
  year: 2004
  end-page: 565
  ident: bib34
  article-title: Analysis of noise effects on DTI-based tractography using the brute-force and multi-ROI approach
  publication-title: Magn. Reson. Med.
– volume: 7
  start-page: 335
  year: 2013
  end-page: 352
  ident: bib58
  article-title: Human middle longitudinal fascicle: segregation and behavioral-clinical implications of two distinct fiber connections linking temporal pole and superior temporal gyrus with the angular gyrus or superior parietal lobule using multi-tensor tractography
  publication-title: Brain Imaging Behav
– volume: 54
  start-page: 1975
  year: 2011
  end-page: 1993
  ident: bib30
  article-title: Robust clustering of massive tractography datasets
  publication-title: Neuroimage
– volume: 61
  start-page: 1083
  year: 2012
  end-page: 1099
  ident: bib31
  article-title: Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas
  publication-title: Neuroimage
– volume: 45
  start-page: 265
  year: 1999
  end-page: 269
  ident: bib62
  article-title: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging
  publication-title: Ann. Neurol.
– volume: 33
  start-page: 159
  year: 1977
  end-page: 174
  ident: bib44
  article-title: The measurement of observer agreement for categorical data
  publication-title: Biometrics
– volume: 42
  start-page: 951
  year: 1997
  end-page: 962
  ident: bib52
  article-title: Morphometry of in vivo human white matter association pathways with diffusion-weighted magnetic resonance imaging
  publication-title: Ann. Neurol.
– volume: 6
  start-page: 137
  year: 2012
  end-page: 192
  ident: bib86
  article-title: A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury
  publication-title: Brain Imaging Behav
– start-page: 368
  year: 2004
  end-page: 375
  ident: bib7
  article-title: Clustering fiber traces using normalized cuts
  publication-title: Medical Image Computing and Computer-assisted Intervention – MICCAI 2004, Lecture Notes in Computer Science. Presented at the International Conference on Medical Image Computing and Computer-assisted Intervention
– volume: 37
  start-page: 116
  year: 2007
  end-page: 129
  ident: bib36
  article-title: A Bayesian framework for global tractography
  publication-title: Neuroimage
– volume: 96
  start-page: 10422
  year: 1999
  end-page: 10427
  ident: bib15
  article-title: Tracking neuronal fiber pathways in the living human brain
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 62
  start-page: 774
  year: 2012
  end-page: 781
  ident: bib23
  article-title: FreeSurfer. NeuroImage
  publication-title: 20 YEARS OF fMRI
– volume: 17
  start-page: 77
  year: 2002
  end-page: 94
  ident: bib11
  article-title: Virtual in vivo interactive dissection of white matter fasciculi in the human brain
  publication-title: Neuroimage
– volume: 14
  start-page: 666
  year: 2010
  end-page: 673
  ident: bib110
  article-title: A tract-specific framework for white matter morphometry combining macroscopic and microscopic tract features
  publication-title: Med. Image Anal.
– volume: 51
  start-page: 242
  year: 2010
  end-page: 251
  ident: bib26
  article-title: Opportunities and pitfalls in the quantification of fiber integrity: what can we gain from Q-ball imaging?
  publication-title: Neuroimage
– volume: 60
  start-page: 1276
  year: 2008
  end-page: 1283
  ident: bib75
  article-title: New diffusion phantoms dedicated to the study and validation of high-angular-resolution diffusion imaging (HARDI) models
  publication-title: Magn. Reson. Med.
– volume: 18
  start-page: 242
  year: 2003
  end-page: 254
  ident: bib74
  article-title: A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements
  publication-title: J. Magn. Reson. Imag.
– volume: 36
  start-page: 630
  year: 2007
  end-page: 644
  ident: bib99
  article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter
  publication-title: Neuroimage
– volume: 45
  start-page: 370
  year: 2009
  end-page: 376
  ident: bib97
  article-title: Quantitative examination of a novel clustering method using magnetic resonance diffusion tensor tractography
  publication-title: Neuroimage
– volume: 19
  start-page: 777
  year: 2009
  end-page: 785
  ident: bib56
  article-title: Delineation of the middle longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study
  publication-title: Cerebr. Cortex
– volume: 19
  start-page: 524
  year: 2009
  end-page: 536
  ident: bib29
  article-title: Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography
  publication-title: Cerebr. Cortex
– volume: 59
  start-page: 3690
  year: 2012
  end-page: 3700
  ident: bib90
  article-title: Automated delineation of white matter fiber tracts with a multiple region-of-interest approach
  publication-title: Neuroimage
– volume: 46
  start-page: 486
  year: 2009
  end-page: 499
  ident: bib68
  article-title: Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and Alzheimer's disease participants
  publication-title: Neuroimage
– volume: 91
  start-page: 177
  year: 2014
  end-page: 186
  ident: bib96
  article-title: Development of a high angular resolution diffusion imaging human brain template
  publication-title: Neuroimage
– volume: 12
  year: 2003
  ident: bib112
  article-title: Level set modeling and segmentation of diffusion tensor magnetic resonance imaging brain data
  publication-title: J. Electron. Imag.
– volume: 77
  start-page: e101
  year: 2017
  end-page: e103
  ident: bib67
  article-title: SlicerDMRI: open source diffusion MRI software for brain cancer research
  publication-title: Canc. Res.
– volume: 21
  start-page: 83
  year: 2008
  end-page: 92
  ident: bib14
  article-title: Diffusion tensor imaging in mild cognitive impairment and Alzheimer's disease: a review
  publication-title: Curr. Opin. Neurol.
– volume: 14
  start-page: 11
  year: 2004
  end-page: 22
  ident: bib25
  article-title: Automatically parcellating the human cerebral cortex
  publication-title: Cerebr. Cortex
– volume: 27
  start-page: 1258
  year: 2006
  end-page: 1271
  ident: bib47
  article-title: White matter reorganization after surgical resection of brain tumors and vascular malformations
  publication-title: Am. J. Neuroradiol.
– volume: 33
  start-page: 159
  year: 1977
  ident: 10.1016/j.neuroimage.2018.05.044_bib44
  article-title: The measurement of observer agreement for categorical data
  publication-title: Biometrics
  doi: 10.2307/2529310
– volume: 31
  start-page: 968
  year: 2006
  ident: 10.1016/j.neuroimage.2018.05.044_bib17
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.021
– volume: 27
  start-page: 1258
  year: 2006
  ident: 10.1016/j.neuroimage.2018.05.044_bib47
  article-title: White matter reorganization after surgical resection of brain tumors and vascular malformations
  publication-title: Am. J. Neuroradiol.
– volume: 17
  start-page: 77
  year: 2002
  ident: 10.1016/j.neuroimage.2018.05.044_bib11
  article-title: Virtual in vivo interactive dissection of white matter fasciculi in the human brain
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1136
– volume: 15
  start-page: 832
  year: 2017
  ident: 10.1016/j.neuroimage.2018.05.044_bib95
  article-title: Machine-learning classification of 22q11.2 deletion syndrome: a diffusion tensor imaging study
  publication-title: Neuroimage: Clinica
  doi: 10.1016/j.nicl.2017.04.029
– volume: 22
  start-page: 53
  year: 2012
  ident: 10.1016/j.neuroimage.2018.05.044_bib35
  article-title: MRtrix: diffusion tractography in crossing fiber regions
  publication-title: Int. J. Imag. Syst. Technol.
  doi: 10.1002/ima.22005
– volume: 60
  start-page: 1412
  year: 2012
  ident: 10.1016/j.neuroimage.2018.05.044_bib88
  article-title: Ball and rackets: inferring fiber fanning from diffusion-weighted MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.056
– volume: 33
  start-page: 341
  year: 2002
  ident: 10.1016/j.neuroimage.2018.05.044_bib24
  article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00569-X
– volume: 21
  start-page: 83
  year: 2008
  ident: 10.1016/j.neuroimage.2018.05.044_bib14
  article-title: Diffusion tensor imaging in mild cognitive impairment and Alzheimer's disease: a review
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/WCO.0b013e3282f4594b
– volume: 37
  start-page: 1267
  year: 2007
  ident: 10.1016/j.neuroimage.2018.05.044_bib20
  article-title: Validation of in vitro probabilistic tractography
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.06.022
– volume: 129
  start-page: 277
  year: 2015
  ident: 10.1016/j.neuroimage.2018.05.044_bib49
  article-title: Imaging white-matter pathways of the auditory system with diffusion imaging tractography. Handbook of Clinical Neurology
  publication-title: The Human Auditory System
– volume: 47
  start-page: 215
  year: 2002
  ident: 10.1016/j.neuroimage.2018.05.044_bib63
  article-title: Imaging cortical association tracts in the human brain using diffusion-tensor-based axonal tracking
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10074
– volume: 36
  start-page: 630
  year: 2007
  ident: 10.1016/j.neuroimage.2018.05.044_bib99
  article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.02.049
– volume: 15
  start-page: 435
  year: 2002
  ident: 10.1016/j.neuroimage.2018.05.044_bib3
  article-title: The basis of anisotropic water diffusion in the nervous system - a technical review
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.782
– volume: 15
  start-page: 854
  year: 2005
  ident: 10.1016/j.neuroimage.2018.05.044_bib54
  article-title: Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/bhh186
– volume: 39
  start-page: 62
  year: 2008
  ident: 10.1016/j.neuroimage.2018.05.044_bib45
  article-title: Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.06.041
– volume: 8
  year: 2013
  ident: 10.1016/j.neuroimage.2018.05.044_bib81
  article-title: Atlas-guided cluster analysis of large tractography datasets
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0083847
– volume: 5
  year: 2011
  ident: 10.1016/j.neuroimage.2018.05.044_bib106
  article-title: Automated probabilistic reconstruction of white-matter pathways in Health and disease using an atlas of the underlying anatomy
  publication-title: Front. Neuroinf.
  doi: 10.3389/fninf.2011.00023
– volume: 42
  start-page: 951
  year: 1997
  ident: 10.1016/j.neuroimage.2018.05.044_bib52
  article-title: Morphometry of in vivo human white matter association pathways with diffusion-weighted magnetic resonance imaging
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.410420617
– volume: 45
  start-page: 370
  year: 2009
  ident: 10.1016/j.neuroimage.2018.05.044_bib97
  article-title: Quantitative examination of a novel clustering method using magnetic resonance diffusion tensor tractography
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.12.028
– volume: 44
  start-page: 1105
  year: 2008
  ident: 10.1016/j.neuroimage.2018.05.044_bib9
  article-title: A diffusion tensor imaging tractography atlas for virtual in vivo dissections
  publication-title: Cortex
  doi: 10.1016/j.cortex.2008.05.004
– volume: 26
  start-page: 1547
  year: 2007
  ident: 10.1016/j.neuroimage.2018.05.044_bib38
  article-title: Representing diffusion MRI in 5-d simplifies regularization and segmentation of white matter tracts
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2007.899168
– volume: 60
  start-page: 1276
  year: 2008
  ident: 10.1016/j.neuroimage.2018.05.044_bib75
  article-title: New diffusion phantoms dedicated to the study and validation of high-angular-resolution diffusion imaging (HARDI) models
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21789
– volume: 70
  start-page: 27
  year: 2009
  ident: 10.1016/j.neuroimage.2018.05.044_bib8
  article-title: Fiber tracking with distinct software tools results in a clear diversity in anatomical fiber tract portrayal
  publication-title: Cent. Eur. Neurosurg.
  doi: 10.1055/s-0028-1087212
– volume: 15
  start-page: 659
  year: 2017
  ident: 10.1016/j.neuroimage.2018.05.044_bib21
  article-title: White matter tractography for neurosurgical planning: a topography-based review of the current state of the art
  publication-title: Neuroimage: Clinica
  doi: 10.1016/j.nicl.2017.06.011
– volume: 143
  start-page: 231
  year: 2013
  ident: 10.1016/j.neuroimage.2018.05.044_bib48
  article-title: Extensive white matter abnormalities in patients with first-episode schizophrenia: a Diffusion Tensor Imaging (DTI) study
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2012.11.029
– volume: 44
  start-page: 936
  year: 2008
  ident: 10.1016/j.neuroimage.2018.05.044_bib39
  article-title: Studying connections in the living human brain with diffusion MRI
  publication-title: Cortex
  doi: 10.1016/j.cortex.2008.05.002
– volume: 12
  start-page: 26
  year: 2008
  ident: 10.1016/j.neuroimage.2018.05.044_bib1
  article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2007.06.004
– year: 2017
  ident: 10.1016/j.neuroimage.2018.05.044_bib111
  article-title: Whole brain white matter connectivity analysis using machine learning: an application to autism
  publication-title: Neuroimage
– volume: 11
  start-page: 419
  year: 2005
  ident: 10.1016/j.neuroimage.2018.05.044_bib87
  article-title: Exploring connectivity of the brain's white matter with dynamic queries
  publication-title: IEEE Trans. Visual. Comput. Graph.
  doi: 10.1109/TVCG.2005.59
– volume: 6
  start-page: 137
  year: 2012
  ident: 10.1016/j.neuroimage.2018.05.044_bib86
  article-title: A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury
  publication-title: Brain Imaging Behav
  doi: 10.1007/s11682-012-9156-5
– volume: 37
  start-page: 116
  year: 2007
  ident: 10.1016/j.neuroimage.2018.05.044_bib36
  article-title: A Bayesian framework for global tractography
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.04.039
– volume: 18
  start-page: 242
  year: 2003
  ident: 10.1016/j.neuroimage.2018.05.044_bib74
  article-title: A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements
  publication-title: J. Magn. Reson. Imag.
  doi: 10.1002/jmri.10350
– volume: 37
  start-page: 1100
  year: 2007
  ident: 10.1016/j.neuroimage.2018.05.044_bib55
  article-title: The occipitofrontal fascicle in humans: a quantitative, in vivo, DT-MRI study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.05.042
– volume: 218
  start-page: 951
  year: 2013
  ident: 10.1016/j.neuroimage.2018.05.044_bib57
  article-title: Human middle longitudinal fascicle: variations in patterns of anatomical connections
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-012-0441-2
– volume: 36
  start-page: 6758
  year: 2016
  ident: 10.1016/j.neuroimage.2018.05.044_bib19
  article-title: Using diffusion tractography to predict cortical connection strength and distance: a quantitative comparison with tracers in the monkey
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0493-16.2016
– volume: 34
  start-page: 165
  year: 2011
  ident: 10.1016/j.neuroimage.2018.05.044_bib92
  article-title: Quantitative and reproducibility study of four tractography algorithms used in clinical routine
  publication-title: J. Magn. Reson. Imag.
  doi: 10.1002/jmri.22584
– volume: 61
  start-page: 1083
  year: 2012
  ident: 10.1016/j.neuroimage.2018.05.044_bib31
  article-title: Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.071
– volume: 59
  start-page: 3690
  year: 2012
  ident: 10.1016/j.neuroimage.2018.05.044_bib90
  article-title: Automated delineation of white matter fiber tracts with a multiple region-of-interest approach
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.11.043
– volume: 77
  start-page: e101
  year: 2017
  ident: 10.1016/j.neuroimage.2018.05.044_bib67
  article-title: SlicerDMRI: open source diffusion MRI software for brain cancer research
  publication-title: Canc. Res.
  doi: 10.1158/0008-5472.CAN-17-0332
– volume: 36
  start-page: 1558
  year: 2015
  ident: 10.1016/j.neuroimage.2018.05.044_bib79
  article-title: Diffusion tensor imaging and fiber tractography in children with craniosynostosis syndromes
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A4301
– start-page: 123
  year: 2004
  ident: 10.1016/j.neuroimage.2018.05.044_bib82
  article-title: Level set and region based surface propagation for diffusion tensor MRI segmentation
– start-page: 368
  year: 2004
  ident: 10.1016/j.neuroimage.2018.05.044_bib7
  article-title: Clustering fiber traces using normalized cuts
– volume: 41
  start-page: 15
  year: 2007
  ident: 10.1016/j.neuroimage.2018.05.044_bib43
  article-title: A review of diffusion tensor imaging studies in schizophrenia
  publication-title: J. Psychiatr. Res.
  doi: 10.1016/j.jpsychires.2005.05.005
– volume: 32
  start-page: 482
  year: 2010
  ident: 10.1016/j.neuroimage.2018.05.044_bib78
  article-title: Ground truth hardware phantoms for validation of diffusion-weighted MRI applications
  publication-title: J. Magn. Reson. Imag.
  doi: 10.1002/jmri.22243
– volume: 50
  start-page: 1077
  year: 2003
  ident: 10.1016/j.neuroimage.2018.05.044_bib4
  article-title: Characterization and propagation of uncertainty in diffusion-weighted MR imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10609
– volume: 51
  start-page: 242
  year: 2010
  ident: 10.1016/j.neuroimage.2018.05.044_bib26
  article-title: Opportunities and pitfalls in the quantification of fiber integrity: what can we gain from Q-ball imaging?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.02.007
– volume: 26
  start-page: 1562
  year: 2007
  ident: 10.1016/j.neuroimage.2018.05.044_bib69
  article-title: Automatic tractography segmentation using a high-dimensional white matter atlas
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2007.906785
– volume: 51
  start-page: 228
  year: 2010
  ident: 10.1016/j.neuroimage.2018.05.044_bib103
  article-title: Unsupervised white matter fiber clustering and tract probability map generation: applications of a Gaussian process framework for white matter fibers
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.01.004
– volume: 23
  start-page: 903
  year: 2004
  ident: 10.1016/j.neuroimage.2018.05.044_bib102
  article-title: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2004.828354
– volume: 15
  start-page: 123
  year: 2012
  ident: 10.1016/j.neuroimage.2018.05.044_bib70
  article-title: Unbiased groupwise registration of white matter tractography
  publication-title: Med Image Comput Comput Assist Interv
– volume: 230
  start-page: 77
  year: 2004
  ident: 10.1016/j.neuroimage.2018.05.044_bib98
  article-title: Fiber tract-based atlas of human white matter anatomy
  publication-title: Radiology
  doi: 10.1148/radiol.2301021640
– volume: 10
  year: 2015
  ident: 10.1016/j.neuroimage.2018.05.044_bib108
  article-title: An example-based multi-atlas approach to automatic labeling of white matter tracts
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0133337
– volume: 132
  start-page: 1656
  year: 2009
  ident: 10.1016/j.neuroimage.2018.05.044_bib107
  article-title: Defining Meyer's loop–temporal lobe resections, visual field deficits and diffusion tensor tractography
  publication-title: Brain
  doi: 10.1093/brain/awp114
– volume: 15
  start-page: 570
  year: 2002
  ident: 10.1016/j.neuroimage.2018.05.044_bib32
  article-title: Applications of diffusion-weighted and diffusion tensor MRI to white matter diseases - a review
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.787
– volume: 45
  start-page: 265
  year: 1999
  ident: 10.1016/j.neuroimage.2018.05.044_bib62
  article-title: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging
  publication-title: Ann. Neurol.
  doi: 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3
– volume: 7
  start-page: 335
  year: 2013
  ident: 10.1016/j.neuroimage.2018.05.044_bib58
  article-title: Human middle longitudinal fascicle: segregation and behavioral-clinical implications of two distinct fiber connections linking temporal pole and superior temporal gyrus with the angular gyrus or superior parietal lobule using multi-tensor tractography
  publication-title: Brain Imaging Behav
  doi: 10.1007/s11682-013-9235-2
– volume: 42
  start-page: 762
  year: 2016
  ident: 10.1016/j.neuroimage.2018.05.044_bib84
  article-title: Tractography analysis of 5 white matter bundles and their clinical and cognitive correlates in early-course schizophrenia
  publication-title: Schizophr. Bull.
  doi: 10.1093/schbul/sbv171
– volume: 42
  start-page: 771
  year: 2008
  ident: 10.1016/j.neuroimage.2018.05.044_bib109
  article-title: Automated fiber tracking of human brain white matter using diffusion tensor imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.04.241
– volume: 152
  start-page: 1835
  year: 2010
  ident: 10.1016/j.neuroimage.2018.05.044_bib89
  article-title: Preoperative and intraoperative brain mapping for the resection of eloquent-area tumors. A prospective analysis of methodology, correlation, and usefulness based on clinical outcomes
  publication-title: Acta Neurochir.
  doi: 10.1007/s00701-010-0764-9
– volume: 14
  start-page: 11
  year: 2004
  ident: 10.1016/j.neuroimage.2018.05.044_bib25
  article-title: Automatically parcellating the human cerebral cortex
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/bhg087
– year: 2011
  ident: 10.1016/j.neuroimage.2018.05.044_bib64
– volume: 25
  start-page: 875
  year: 2015
  ident: 10.1016/j.neuroimage.2018.05.044_bib77
  article-title: The DTI challenge: toward standardized evaluation of diffusion tensor imaging tractography for neurosurgery
  publication-title: J. Neuroimaging
  doi: 10.1111/jon.12283
– volume: 34
  start-page: 144
  year: 2007
  ident: 10.1016/j.neuroimage.2018.05.044_bib5
  article-title: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.09.018
– volume: 21
  start-page: 126
  year: 2009
  ident: 10.1016/j.neuroimage.2018.05.044_bib59
  article-title: Neural tractography using an unscented Kalman filter
  publication-title: Inf. Process Med. Imaging
– start-page: 27
  year: 2012
  ident: 10.1016/j.neuroimage.2018.05.044_bib2
  article-title: A unified tractography framework for comparing diffusion models on clinical scans
– volume: 36
  start-page: 4116
  year: 2015
  ident: 10.1016/j.neuroimage.2018.05.044_bib42
  article-title: Validation of tractography: comparison with manganese tracing
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22902
– volume: 8
  issue: 1349
  year: 2017
  ident: 10.1016/j.neuroimage.2018.05.044_bib50
  article-title: The challenge of mapping the human connectome based on diffusion tractography
  publication-title: Nat. Commun.
– volume: 49
  start-page: 716
  year: 2003
  ident: 10.1016/j.neuroimage.2018.05.044_bib18
  article-title: Classification and quantification of neuronal fiber pathways using diffusion tensor MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10415
– volume: 37
  start-page: 530
  year: 2007
  ident: 10.1016/j.neuroimage.2018.05.044_bib16
  article-title: Comparison of fiber tracts derived from in-vivo DTI tractography with 3D histological neural tract tracer reconstruction on a macaque brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.04.067
– volume: 213
  start-page: 343
  year: 2009
  ident: 10.1016/j.neuroimage.2018.05.044_bib51
  article-title: The extreme capsule in humans and rethinking of the language circuitry
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-008-0199-8
– volume: 54
  start-page: S146
  issue: 1
  year: 2011
  ident: 10.1016/j.neuroimage.2018.05.044_bib65
  article-title: Atlas-based fiber bundle segmentation using principal diffusion directions and spherical harmonic coefficients
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.09.035
– volume: 42
  start-page: 37
  year: 1999
  ident: 10.1016/j.neuroimage.2018.05.044_bib40
  article-title: Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/(SICI)1522-2594(199907)42:1<37::AID-MRM7>3.0.CO;2-O
– volume: 221
  start-page: 1751
  year: 2016
  ident: 10.1016/j.neuroimage.2018.05.044_bib80
  article-title: Atlasing the frontal lobe connections and their variability due to age and education: a spherical deconvolution tractography study
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-015-1001-3
– volume: 102
  start-page: 118
  issue: 1
  year: 2014
  ident: 10.1016/j.neuroimage.2018.05.044_bib41
  article-title: The structural and functional connectivity of the posterior cingulate cortex: comparison between deterministic and probabilistic tractography for the investigation of structure-function relationships
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.12.022
– volume: 17
  start-page: 205
  year: 2009
  ident: 10.1016/j.neuroimage.2018.05.044_bib6
  article-title: Diffusion MR tractography as a tool for surgical planning. Magnetic resonance imaging clinics of North America
  publication-title: Clinical Applications of MR Diffusion and Perfusion Imaging
– volume: 46
  start-page: 486
  year: 2009
  ident: 10.1016/j.neuroimage.2018.05.044_bib68
  article-title: Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and Alzheimer's disease participants
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.01.002
– volume: 14
  start-page: 666
  year: 2010
  ident: 10.1016/j.neuroimage.2018.05.044_bib110
  article-title: A tract-specific framework for white matter morphometry combining macroscopic and microscopic tract features
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2010.05.002
– volume: 12
  start-page: 970
  year: 2016
  ident: 10.1016/j.neuroimage.2018.05.044_bib76
  article-title: Integrity of the arcuate fasciculus in patients with schizophrenia with auditory verbal hallucinations: a DTI-tractography study
  publication-title: Neuroimage: Clinica
  doi: 10.1016/j.nicl.2016.04.013
– volume: 29
  start-page: 1664
  year: 2010
  ident: 10.1016/j.neuroimage.2018.05.044_bib60
  article-title: Filtered multi-tensor tractography
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2010.2048121
– volume: 193
  start-page: 126
  year: 2008
  ident: 10.1016/j.neuroimage.2018.05.044_bib100
  article-title: Abnormal anterior cingulum integrity in bipolar disorder determined through diffusion tensor imaging
  publication-title: Br. J. Psychiatry
  doi: 10.1192/bjp.bp.107.048793
– volume: 6
  year: 2012
  ident: 10.1016/j.neuroimage.2018.05.044_bib27
  article-title: QuickBundles, a method for tractography simplification
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2012.00175
– volume: 221
  start-page: 1337
  year: 2016
  ident: 10.1016/j.neuroimage.2018.05.044_bib37
  article-title: Plasticity of left perisylvian white-matter tracts is associated with individual differences in math learning
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-014-0975-6
– volume: 30
  start-page: 749
  year: 2006
  ident: 10.1016/j.neuroimage.2018.05.044_bib91
  article-title: Diffusion tensor imaging and aging
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2006.06.002
– volume: 80
  start-page: 283
  year: 2013
  ident: 10.1016/j.neuroimage.2018.05.044_bib71
  article-title: Fiber clustering versus the parcellation-based connectome
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.066
– volume: 13
  start-page: 138
  year: 2016
  ident: 10.1016/j.neuroimage.2018.05.044_bib72
  article-title: Automated white matter fiber tract identification in patients with brain tumors
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2016.11.023
– volume: 54
  start-page: 1975
  year: 2011
  ident: 10.1016/j.neuroimage.2018.05.044_bib30
  article-title: Robust clustering of massive tractography datasets
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.10.028
– volume: 9
  year: 2014
  ident: 10.1016/j.neuroimage.2018.05.044_bib93
  article-title: Cortical depth dependence of the diffusion anisotropy in the human cortical gray matter in vivo
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0091424
– volume: 68
  start-page: 496
  year: 2011
  ident: 10.1016/j.neuroimage.2018.05.044_bib28
  article-title: Interactive diffusion tensor tractography visualization for neurosurgical planning
  publication-title: Neurosurgery
  doi: 10.1227/NEU.0b013e3182061ebb
– volume: 7
  start-page: 522
  year: 2002
  ident: 10.1016/j.neuroimage.2018.05.044_bib53
  article-title: Quantitative DT-MRI investigations of the human cingulum bundle
  publication-title: CNS Spectr.
  doi: 10.1017/S1092852900018071
– volume: 164
  start-page: 132
  year: 2008
  ident: 10.1016/j.neuroimage.2018.05.044_bib61
  article-title: Diffusion tensor imaging tractography and reliability analysis for limbic and paralimbic white matter tracts
  publication-title: Psychiatr. Res.
  doi: 10.1016/j.pscychresns.2007.11.007
– volume: 62
  start-page: 774
  year: 2012
  ident: 10.1016/j.neuroimage.2018.05.044_bib23
  article-title: FreeSurfer. NeuroImage
  publication-title: 20 YEARS OF fMRI
– volume: 39
  start-page: 5603
  year: 2012
  ident: 10.1016/j.neuroimage.2018.05.044_bib66
  article-title: Radiation therapy effects on white matter fiber tracts of the limbic circuit
  publication-title: Med. Phys.
  doi: 10.1118/1.4745560
– volume: 57
  start-page: 8
  year: 2005
  ident: 10.1016/j.neuroimage.2018.05.044_bib12
  article-title: Perisylvian language networks of the human brain
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.20319
– volume: 45
  start-page: 286
  year: 2009
  ident: 10.1016/j.neuroimage.2018.05.044_bib13
  article-title: Prediction of visual field deficits by diffusion tensor imaging in temporal lobe epilepsy surgery
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.11.038
– volume: 52
  start-page: 559
  year: 2004
  ident: 10.1016/j.neuroimage.2018.05.044_bib34
  article-title: Analysis of noise effects on DTI-based tractography using the brute-force and multi-ROI approach
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20147
– volume: 221
  start-page: 4705
  year: 2016
  ident: 10.1016/j.neuroimage.2018.05.044_bib104
  article-title: The white matter query language: a novel approach for describing human white matter anatomy
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-015-1179-4
– volume: 91
  start-page: 177
  year: 2014
  ident: 10.1016/j.neuroimage.2018.05.044_bib96
  article-title: Development of a high angular resolution diffusion imaging human brain template
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.01.009
– volume: 40
  start-page: 072301
  year: 2013
  ident: 10.1016/j.neuroimage.2018.05.044_bib105
  article-title: Gray matter parcellation constrained full brain fiber bundling with diffusion tensor imaging
  publication-title: Med. Phys.
  doi: 10.1118/1.4811155
– volume: 23
  start-page: 442
  year: 2013
  ident: 10.1016/j.neuroimage.2018.05.044_bib83
  article-title: Histological validation of DW-MRI tractography in human postmortem tissue
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/bhs036
– volume: 360
  start-page: 893
  year: 2005
  ident: 10.1016/j.neuroimage.2018.05.044_bib73
  article-title: Probabilistic anatomical connectivity derived from the microscopic persistent angular structure of cerebral tissue
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.2005.1639
– volume: 39
  start-page: 336
  year: 2008
  ident: 10.1016/j.neuroimage.2018.05.044_bib33
  article-title: Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.07.053
– volume: 48
  start-page: 577
  year: 2002
  ident: 10.1016/j.neuroimage.2018.05.044_bib94
  article-title: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10268
– volume: 23
  start-page: 2347
  year: 2013
  ident: 10.1016/j.neuroimage.2018.05.044_bib101
  article-title: Rethinking the role of the middle longitudinal fascicle in language and auditory pathways
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/bhs225
– volume: 12
  year: 2003
  ident: 10.1016/j.neuroimage.2018.05.044_bib112
  article-title: Level set modeling and segmentation of diffusion tensor magnetic resonance imaging brain data
  publication-title: J. Electron. Imag.
– volume: 96
  start-page: 10422
  year: 1999
  ident: 10.1016/j.neuroimage.2018.05.044_bib15
  article-title: Tracking neuronal fiber pathways in the living human brain
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.96.18.10422
– volume: 18
  start-page: 306
  year: 2003
  ident: 10.1016/j.neuroimage.2018.05.044_bib46
  article-title: White matter tractography using diffusion tensor deflection
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10102
– volume: 56
  start-page: 220
  year: 2011
  ident: 10.1016/j.neuroimage.2018.05.044_bib22
  article-title: Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.01.032
– volume: 38
  start-page: 1460
  year: 2017
  ident: 10.1016/j.neuroimage.2018.05.044_bib85
  article-title: Longitudinal diffusion changes in prodromal and early HD: evidence of white-matter tract deterioration
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23465
– volume: 19
  start-page: 524
  year: 2009
  ident: 10.1016/j.neuroimage.2018.05.044_bib29
  article-title: Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/bhn102
– volume: 19
  start-page: 777
  year: 2009
  ident: 10.1016/j.neuroimage.2018.05.044_bib56
  article-title: Delineation of the middle longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/bhn124
SSID ssj0009148
Score 2.4382982
Snippet Diffusion magnetic resonance imaging (dMRI) is an important method for studying white matter connectivity in the brain in vivo in both healthy and clinical...
Diffusion magnetic resonance imaging (dMRI) is an important method for studying white matter connectivity in the brain in vivo in both healthy and clinical...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 318
SubjectTerms Algorithms
Anisotropy
Attention deficit hyperactivity disorder
Automatic classification of white matter tracts
Automation
Biological Physics
Brain - anatomy & histology
Brain Mapping - methods
Diffusion MRI
Diffusion Tensor Imaging - methods
Fiber tract
Humans
Image processing
Image Processing, Computer-Assisted - methods
Magnetic resonance imaging
Male
Methods
Neural networks
Neuroimaging
Physics
Substantia alba
Tractography
White matter
White Matter - anatomy & histology
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDI_YkBAviG8KAwXEa6V-OF_iAZ0Q0wkxnph0b1GaNtoQ6w2u2_597CbtcSDQSX26xGp6dhw7tn9m7K3yhXTBQF4LU-eoJVEPKu3z1uum1I1TSlDt8MkXuTyFTyuxShdum5RWOenEUVG3a0935OikS2MATC3eX_7IqWsURVdTC40DdnuELkN5Viu1Bd0tIZbCiTrXOCFl8sT8rhEv8vwCdy0leOkRvxPgX8fTwRnlSf5thP6ZS_nb4XR8n91LViVfRDF4wG51_UN25yTFzR8xu-B-bjjI14EPyMKOB0oX4QMVSvGWCtOjAcljW-kNd33Lx0gCj8WUHMduKO7AL0ZYTpwQIU0es9Pjj18_LPPUWiH3wughV6YVtTfKeF34rgpehMaJzqF3VDQedJAgvJdVUSvXAgHUBOlLgU-A4NqqfsIO-3XfPWOc7pBc6QDAA4gOPbCmUD6goVgZqWXImJr-UesT7ji1v_hupwSzb3bLC0u8sIWwyIuMlTPlZcTe2IPGTEyzU20pakOLB8QetO9m2mR_RLtiT-o3KCPzQgm2e7n4bOk3AklDt1lflxk7mkTIJmWxsVvRztjreRi3OcVuXN-tr2gOkPZF6zhjT6PEza-qDGpdLZFa7cjizlp2R_rzsxFKXIJGf7l6_v9lvWB36UNjat0ROxx-XnUv0RYbmlfjhvsFQao0gw
  priority: 102
  providerName: ProQuest
Title A comparison of three fiber tract delineation methods and their impact on white matter analysis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811918304518
https://dx.doi.org/10.1016/j.neuroimage.2018.05.044
https://www.ncbi.nlm.nih.gov/pubmed/29787865
https://www.proquest.com/docview/2069944935
https://www.proquest.com/docview/2043183112
https://inria.hal.science/hal-01807178
https://pubmed.ncbi.nlm.nih.gov/PMC6481642
Volume 178
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfWTkK8IL6XMSqDeA3Nhz_FU6k2FdiqaTCpb5bjxFoRSyfWjTf-du7iJKMgpEpIVarEucTJnc93ubufCXkjXSKs1yzOuc5j0JKgB6VycelUkarCSsmxdvhkLmbn7OOCL3bItKuFwbTKVvcHnd5o6_bIuH2b46vlcvwZLAOYbsDfUBjtS9WA7Ga5FnxIdicfPs3md9i7KQsVcTyPkaBN6AlpXg1s5PISBi_meakGxpOxf81SgwtMl_zbFv0zpfK3OeroIXnQGpd0Evr_iOxU9WNy76QNnz8hZkJdv-4gXXm6Bk5W1GPWCF1jvRQtsT492JE0rC59TW1d0iagQENNJYW2Hxh-oJcNOiecEJBNnpLzo8Mv01ncrrAQO67VOpa65LnTUjuVuCrzjvvC8sqCk5QUjikvGHdOZEkubckQp8YLl3L4eeZtmeXPyLBe1dUeofgpyaaWMeYY4xU4YkUinQd7MdNCCR8R2b1R41r4cVwF45vp8sy-mjteGOSFSbgBXkQk7SmvAgTHFjS6Y5rpSkxBKRqYJ7agfdfTbojiltSvQUb6jiJ692xybPAYYqWB96xu04gcdCJkWp1xDRcRWjOmcx6RV30zjHYM4di6Wt3gOQyVMBjJEXkeJK6_VaZB-SoB1HJDFjf6stlSLy8aRHHBFLjN2f5_PfkLch_3QgLeARmuv99UL8FiWxcjMnj7M4WtXMgRjM7p2fHpqB2l8P_-cH569gsZ6UZE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwEviM8RGGAQPEbKhz-FECqwqWNthdAm7c04TqwNsXTQjol_ir-RuzhJKQjUl0l9inOqE59_vsvd_Y6Q59IlwnrN4pzrPAaUBByUysWlU0WqCislx9rhyVSMDtn7I360QX52tTCYVtlhYgPU5czhN3Jw0oXWjOmcvz77GmPXKIyudi00glrsVz8uwGWbv9p7B-v7Ist2dw7ejuK2q0DsuFaLWOqS505L7VTiqsw77gvLKwuOQVI4prxg3DmRJbm0JUNuFi9cyuHnmbclEh0A5G8yrGgdkM03O9MPH5c0vykLxXc8j1Wa6jZ3KGSUNQyVJ6eAE5hSphrGUMb-dSBeOcbMzL_N3j-zN387DndvkhutHUuHQfFukY2qvk2uTtpI_R1ihtT1LQ7pzNMFKE1FPSao0AWWZtESS-GDyUpDI-s5tXVJm9gFDeWbFMYuMNJBTxsiULghkKjcJYeX8trvkUE9q6v7hOJXK5taxphjjFfg8xWJdB5M00wLJXxEZPdGjWuZzrHhxhfTpbR9Nsu1MLgWJuEG1iIiaS95Ftg-1pDR3aKZrpoV8NfAkbSG7MtetrV4giWzpvQz0JF-okgUPhqODV5DWjZw1NX3NCLbnQqZFp7mZrmZIvK0HwZgwWiRravZOd7DEO_BHo_IVtC4_q8yDTivBEjLFV1cmcvqSH1y3JCXC6bAQ88e_H9aT8i10cFkbMZ70_2H5Do-dEjs2yaDxbfz6hFYgovicbv9KPl02Tv-F6wqc3Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSouiDeBAgbBMSIPP1VV1Yqy2tKHOFBpb8ZxYrWIZgubUvWv8euYiZMsCwLtpdKe4ozWicefZzIz3xDyWrpEWK9ZnHOdx4CSgINSubh0qkhVYaXkWDt8eCQmx-zDlE_XyM--FgbTKntMbIG6nDn8Rg5OutCaMZ3zt75Li_i4O945_xZjBymMtPbtNIKK7FdXl-C-zbf3dmGt32TZ-P2nd5O46zAQO65VE0td8txpqZ1KXJV5x31heWXBSUgKx5QXjDsnsiSXtmTI0-KFSzn8PPO2RNIDgP-bMgerCvaSnMoF4W_KQhkez2OVprrLIgq5ZS1X5ekZIAYml6mWO5Sxfx2NN04wR_NvA_jPPM7fDsbxHXK7s2jpKKjgXbJW1ffIxmEXs79PzIi6odkhnXnagPpU1GOqCm2wSIuWWBQfjFcaWlrPqa1L2kYxaCjkpDB2iTEPetZSgsINgU7lATm-lpf-kKzXs7p6TCh-v7KpZYw5xngF3l-RSOfBSM20UMJHRPZv1LiO8xxbb3w1fXLbF7NYC4NrYRJuYC0ikg6S54H3YwUZ3S-a6etaAYkNHE4ryG4Nsp3tE2yaFaVfgY4ME0XK8MnowOA1JGgDl139SCOy2auQ6YBqbhbbKiIvh2GAGIwb2bqaXeA9DJEfLPOIPAoaN_xVpgHxlQBpuaSLS3NZHqlPT1oac8EU-OrZk_9P6wXZgH1uDvaO9p-SW_jMIcNvk6w33y-qZ2ASNsXzdu9R8vm6N_svgQh2Ow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+three+fiber+tract+delineation+methods+and+their+impact+on+white+matter+analysis&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Sydnor%2C+Valerie+J.&rft.au=Rivas-Grajales%2C+Ana+Mar%C3%ADa&rft.au=Lyall%2C+Amanda+E.&rft.au=Zhang%2C+Fan&rft.date=2018-09-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=178&rft.spage=318&rft.epage=331&rft_id=info:doi/10.1016%2Fj.neuroimage.2018.05.044&rft.externalDocID=S1053811918304518
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon