IMP1 regulates UCA1-mediated cell invasion through facilitating UCA1 decay and decreasing the sponge effect of UCA1 for miR-122-5p

Long noncoding RNAs (LncRNAs) represent a class of widespread and diverse endogenous RNAs that can posttranscriptionally regulate gene expression through the interaction with RNA-binding proteins and micro RNAs (miRNAs). Here, we report that in breast carcinoma cells, the insulin-like growth factor...

Full description

Saved in:
Bibliographic Details
Published inBreast cancer research : BCR Vol. 20; no. 1; pp. 32 - 15
Main Authors Zhou, Yanchun, Meng, Xiuhua, Chen, Shaoying, Li, Wei, Li, Delin, Singer, Robert, Gu, Wei
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 18.04.2018
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Long noncoding RNAs (LncRNAs) represent a class of widespread and diverse endogenous RNAs that can posttranscriptionally regulate gene expression through the interaction with RNA-binding proteins and micro RNAs (miRNAs). Here, we report that in breast carcinoma cells, the insulin-like growth factor 2 messenger RNA binding protein (IMP1) binds to lncRNA urethral carcinoma-associated 1 (UCA1) and suppresses the UCA1-induced invasive phenotype. RT-qPCR and RNA sequence assays were used to investigate the expression of UCA1 and miRNAs in breast cancer cells in response to IMP1 expression. The role of IMP1-UCA1 interaction in cell invasion was demonstrated by transwell analysis through loss-of-function and gain-of-function effects. RNA pull-down and RNA binding protein immunoprecipitation (RIP) were performed to confirm the molecular interactions of IMP1-UCA1 and UCA1-miR-122-5p involved in breast cancer cells. In breast cancer cells, IMP1 interacts with UCA1 via the "ACACCC" motifs within UCA1 and destabilizes UCA1 through the recruitment of CCR4-NOT1 deadenylase complex. Meanwhile, binding of IMP1 prevents the association of miR-122-5p with UCA1, thereby shifting the availability of miR-122-5p from UCA1 to the target mRNAs and reducing the UCA1-mediated cell invasion. Accordingly, either IMP1 silencing or UCA1 overexpression resulted in reduced levels of free miR-122-5p within the cytoplasm, affecting miR-122-5p in regulating its target mRNAs. Our study provides initial evidence that interaction between IMP1 and UCA1 enhances UCA1 decay and competes for miR-122-5p binding, leading to the liberation of miR-122-5p activity and the reduction of cell invasiveness.
AbstractList Long noncoding RNAs (LncRNAs) represent a class of widespread and diverse endogenous RNAs that can posttranscriptionally regulate gene expression through the interaction with RNA-binding proteins and micro RNAs (miRNAs). Here, we report that in breast carcinoma cells, the insulin-like growth factor 2 messenger RNA binding protein (IMP1) binds to lncRNA urethral carcinoma-associated 1 (UCA1) and suppresses the UCA1-induced invasive phenotype. RT-qPCR and RNA sequence assays were used to investigate the expression of UCA1 and miRNAs in breast cancer cells in response to IMP1 expression. The role of IMP1-UCA1 interaction in cell invasion was demonstrated by transwell analysis through loss-of-function and gain-of-function effects. RNA pull-down and RNA binding protein immunoprecipitation (RIP) were performed to confirm the molecular interactions of IMP1-UCA1 and UCA1-miR-122-5p involved in breast cancer cells. In breast cancer cells, IMP1 interacts with UCA1 via the "ACACCC" motifs within UCA1 and destabilizes UCA1 through the recruitment of CCR4-NOT1 deadenylase complex. Meanwhile, binding of IMP1 prevents the association of miR-122-5p with UCA1, thereby shifting the availability of miR-122-5p from UCA1 to the target mRNAs and reducing the UCA1-mediated cell invasion. Accordingly, either IMP1 silencing or UCA1 overexpression resulted in reduced levels of free miR-122-5p within the cytoplasm, affecting miR-122-5p in regulating its target mRNAs. Our study provides initial evidence that interaction between IMP1 and UCA1 enhances UCA1 decay and competes for miR-122-5p binding, leading to the liberation of miR-122-5p activity and the reduction of cell invasiveness.
Abstract Background Long noncoding RNAs (LncRNAs) represent a class of widespread and diverse endogenous RNAs that can posttranscriptionally regulate gene expression through the interaction with RNA-binding proteins and micro RNAs (miRNAs). Here, we report that in breast carcinoma cells, the insulin-like growth factor 2 messenger RNA binding protein (IMP1) binds to lncRNA urethral carcinoma-associated 1 (UCA1) and suppresses the UCA1-induced invasive phenotype. Methods RT-qPCR and RNA sequence assays were used to investigate the expression of UCA1 and miRNAs in breast cancer cells in response to IMP1 expression. The role of IMP1-UCA1 interaction in cell invasion was demonstrated by transwell analysis through loss-of-function and gain-of-function effects. RNA pull-down and RNA binding protein immunoprecipitation (RIP) were performed to confirm the molecular interactions of IMP1-UCA1 and UCA1-miR-122-5p involved in breast cancer cells. Results In breast cancer cells, IMP1 interacts with UCA1 via the “ACACCC” motifs within UCA1 and destabilizes UCA1 through the recruitment of CCR4-NOT1 deadenylase complex. Meanwhile, binding of IMP1 prevents the association of miR-122-5p with UCA1, thereby shifting the availability of miR-122-5p from UCA1 to the target mRNAs and reducing the UCA1-mediated cell invasion. Accordingly, either IMP1 silencing or UCA1 overexpression resulted in reduced levels of free miR-122-5p within the cytoplasm, affecting miR-122-5p in regulating its target mRNAs. Conclusions Our study provides initial evidence that interaction between IMP1 and UCA1 enhances UCA1 decay and competes for miR-122-5p binding, leading to the liberation of miR-122-5p activity and the reduction of cell invasiveness.
Background Long noncoding RNAs (LncRNAs) represent a class of widespread and diverse endogenous RNAs that can posttranscriptionally regulate gene expression through the interaction with RNA-binding proteins and micro RNAs (miRNAs). Here, we report that in breast carcinoma cells, the insulin-like growth factor 2 messenger RNA binding protein (IMP1) binds to lncRNA urethral carcinoma-associated 1 (UCA1) and suppresses the UCA1-induced invasive phenotype. Methods RT-qPCR and RNA sequence assays were used to investigate the expression of UCA1 and miRNAs in breast cancer cells in response to IMP1 expression. The role of IMP1-UCA1 interaction in cell invasion was demonstrated by transwell analysis through loss-of-function and gain-of-function effects. RNA pull-down and RNA binding protein immunoprecipitation (RIP) were performed to confirm the molecular interactions of IMP1-UCA1 and UCA1-miR-122-5p involved in breast cancer cells. Results In breast cancer cells, IMP1 interacts with UCA1 via the "ACACCC" motifs within UCA1 and destabilizes UCA1 through the recruitment of CCR4-NOT1 deadenylase complex. Meanwhile, binding of IMP1 prevents the association of miR-122-5p with UCA1, thereby shifting the availability of miR-122-5p from UCA1 to the target mRNAs and reducing the UCA1-mediated cell invasion. Accordingly, either IMP1 silencing or UCA1 overexpression resulted in reduced levels of free miR-122-5p within the cytoplasm, affecting miR-122-5p in regulating its target mRNAs. Conclusions Our study provides initial evidence that interaction between IMP1 and UCA1 enhances UCA1 decay and competes for miR-122-5p binding, leading to the liberation of miR-122-5p activity and the reduction of cell invasiveness. Keywords: lncRNA, RNA-binding protein, IMP1, UCA1, IMP1-UCA1 interaction, UCA1-miR122-5p interaction
Long noncoding RNAs (LncRNAs) represent a class of widespread and diverse endogenous RNAs that can posttranscriptionally regulate gene expression through the interaction with RNA-binding proteins and micro RNAs (miRNAs). Here, we report that in breast carcinoma cells, the insulin-like growth factor 2 messenger RNA binding protein (IMP1) binds to lncRNA urethral carcinoma-associated 1 (UCA1) and suppresses the UCA1-induced invasive phenotype.BACKGROUNDLong noncoding RNAs (LncRNAs) represent a class of widespread and diverse endogenous RNAs that can posttranscriptionally regulate gene expression through the interaction with RNA-binding proteins and micro RNAs (miRNAs). Here, we report that in breast carcinoma cells, the insulin-like growth factor 2 messenger RNA binding protein (IMP1) binds to lncRNA urethral carcinoma-associated 1 (UCA1) and suppresses the UCA1-induced invasive phenotype.RT-qPCR and RNA sequence assays were used to investigate the expression of UCA1 and miRNAs in breast cancer cells in response to IMP1 expression. The role of IMP1-UCA1 interaction in cell invasion was demonstrated by transwell analysis through loss-of-function and gain-of-function effects. RNA pull-down and RNA binding protein immunoprecipitation (RIP) were performed to confirm the molecular interactions of IMP1-UCA1 and UCA1-miR-122-5p involved in breast cancer cells.METHODSRT-qPCR and RNA sequence assays were used to investigate the expression of UCA1 and miRNAs in breast cancer cells in response to IMP1 expression. The role of IMP1-UCA1 interaction in cell invasion was demonstrated by transwell analysis through loss-of-function and gain-of-function effects. RNA pull-down and RNA binding protein immunoprecipitation (RIP) were performed to confirm the molecular interactions of IMP1-UCA1 and UCA1-miR-122-5p involved in breast cancer cells.In breast cancer cells, IMP1 interacts with UCA1 via the "ACACCC" motifs within UCA1 and destabilizes UCA1 through the recruitment of CCR4-NOT1 deadenylase complex. Meanwhile, binding of IMP1 prevents the association of miR-122-5p with UCA1, thereby shifting the availability of miR-122-5p from UCA1 to the target mRNAs and reducing the UCA1-mediated cell invasion. Accordingly, either IMP1 silencing or UCA1 overexpression resulted in reduced levels of free miR-122-5p within the cytoplasm, affecting miR-122-5p in regulating its target mRNAs.RESULTSIn breast cancer cells, IMP1 interacts with UCA1 via the "ACACCC" motifs within UCA1 and destabilizes UCA1 through the recruitment of CCR4-NOT1 deadenylase complex. Meanwhile, binding of IMP1 prevents the association of miR-122-5p with UCA1, thereby shifting the availability of miR-122-5p from UCA1 to the target mRNAs and reducing the UCA1-mediated cell invasion. Accordingly, either IMP1 silencing or UCA1 overexpression resulted in reduced levels of free miR-122-5p within the cytoplasm, affecting miR-122-5p in regulating its target mRNAs.Our study provides initial evidence that interaction between IMP1 and UCA1 enhances UCA1 decay and competes for miR-122-5p binding, leading to the liberation of miR-122-5p activity and the reduction of cell invasiveness.CONCLUSIONSOur study provides initial evidence that interaction between IMP1 and UCA1 enhances UCA1 decay and competes for miR-122-5p binding, leading to the liberation of miR-122-5p activity and the reduction of cell invasiveness.
Long noncoding RNAs (LncRNAs) represent a class of widespread and diverse endogenous RNAs that can posttranscriptionally regulate gene expression through the interaction with RNA-binding proteins and micro RNAs (miRNAs). Here, we report that in breast carcinoma cells, the insulin-like growth factor 2 messenger RNA binding protein (IMP1) binds to lncRNA urethral carcinoma-associated 1 (UCA1) and suppresses the UCA1-induced invasive phenotype. RT-qPCR and RNA sequence assays were used to investigate the expression of UCA1 and miRNAs in breast cancer cells in response to IMP1 expression. The role of IMP1-UCA1 interaction in cell invasion was demonstrated by transwell analysis through loss-of-function and gain-of-function effects. RNA pull-down and RNA binding protein immunoprecipitation (RIP) were performed to confirm the molecular interactions of IMP1-UCA1 and UCA1-miR-122-5p involved in breast cancer cells. In breast cancer cells, IMP1 interacts with UCA1 via the "ACACCC" motifs within UCA1 and destabilizes UCA1 through the recruitment of CCR4-NOT1 deadenylase complex. Meanwhile, binding of IMP1 prevents the association of miR-122-5p with UCA1, thereby shifting the availability of miR-122-5p from UCA1 to the target mRNAs and reducing the UCA1-mediated cell invasion. Accordingly, either IMP1 silencing or UCA1 overexpression resulted in reduced levels of free miR-122-5p within the cytoplasm, affecting miR-122-5p in regulating its target mRNAs. Our study provides initial evidence that interaction between IMP1 and UCA1 enhances UCA1 decay and competes for miR-122-5p binding, leading to the liberation of miR-122-5p activity and the reduction of cell invasiveness.
ArticleNumber 32
Audience Academic
Author Meng, Xiuhua
Gu, Wei
Singer, Robert
Zhou, Yanchun
Li, Wei
Li, Delin
Chen, Shaoying
Author_xml – sequence: 1
  givenname: Yanchun
  surname: Zhou
  fullname: Zhou, Yanchun
– sequence: 2
  givenname: Xiuhua
  surname: Meng
  fullname: Meng, Xiuhua
– sequence: 3
  givenname: Shaoying
  surname: Chen
  fullname: Chen, Shaoying
– sequence: 4
  givenname: Wei
  surname: Li
  fullname: Li, Wei
– sequence: 5
  givenname: Delin
  surname: Li
  fullname: Li, Delin
– sequence: 6
  givenname: Robert
  surname: Singer
  fullname: Singer, Robert
– sequence: 7
  givenname: Wei
  surname: Gu
  fullname: Gu, Wei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29669595$$D View this record in MEDLINE/PubMed
BookMark eNp1kkuLFDEUhQsZcR76A9xIwI2bGpN05bURmsZHw4giDrgL6eSmOkN1pU2qBmbrLzfVNSPTooSQm-Q7hzzOeXXSxx6q6iXBl4RI_jaTBWayxqR0xVRNnlRnpOGsZg39cfKoPq3Oc77BmAjJ5LPqlCrOi4CdVb_Wn78SlKAdOzNARterJal34EKZOWSh61Dob00OsUfDNsWx3SJvbOjCYIbQtwcBcmDNHTK9m6oEBS87wxZQ3se-BQTegx1Q9DPuY0K78K0mlNZs_7x66k2X4cX9eFFdf3j_ffWpvvrycb1aXtWWKTnUQnLlnfENJopjLkxDnQBqhHJSOCcIld5RZTeEqg3D0DjKiQcA2XBilFlcVOvZ10Vzo_cp7Ey609EEfViIqdUmDcF2oIFR55y3innVgFxsQDhJ2GLjmJPY4uL1bvbaj5vyWhb6IZnuyPR4pw9b3cZbzRQWDZ8M3twbpPhzhDzoXcjTc5se4pg1xVRwTDGZ0Ncz2ppytND7WBzthOsla7hcNLKRhbr8B1Wag12wJTc-lPUjwavHV_hz9odsFEDMgE0x5wRe28Onx-lGodME6ymFek6hLinUUwo1KUryl_LB_P-a35Fe3Wo
CitedBy_id crossref_primary_10_3390_cancers10110440
crossref_primary_10_1186_s12967_021_02872_9
crossref_primary_10_1016_j_isci_2023_107642
crossref_primary_10_1186_s12935_024_03591_z
crossref_primary_10_3390_ijms21072549
crossref_primary_10_1007_s13402_023_00806_9
crossref_primary_10_3389_fgene_2022_994003
crossref_primary_10_3892_ijmm_2018_3959
crossref_primary_10_1016_j_critrevonc_2024_104271
crossref_primary_10_3390_cells12040674
crossref_primary_10_3390_genes13071254
crossref_primary_10_1016_j_gendis_2023_06_017
crossref_primary_10_1016_j_ncrna_2022_06_003
crossref_primary_10_1016_j_biopha_2019_109459
crossref_primary_10_1186_s12859_022_04908_3
crossref_primary_10_1007_s10637_021_01148_9
crossref_primary_10_3389_fonc_2021_677111
crossref_primary_10_1111_cpr_12822
crossref_primary_10_1002_jcp_29188
crossref_primary_10_3389_fonc_2022_929037
crossref_primary_10_3892_etm_2019_7526
crossref_primary_10_1016_j_bbrc_2018_05_104
crossref_primary_10_1016_j_scitotenv_2022_158918
crossref_primary_10_1002_1878_0261_13045
crossref_primary_10_1186_s12943_020_01181_x
crossref_primary_10_3390_ijms242115600
crossref_primary_10_3390_ijms252111565
crossref_primary_10_1038_s41389_019_0182_7
crossref_primary_10_1002_jcp_30699
crossref_primary_10_3389_fgstr_2022_969533
crossref_primary_10_1124_molpharm_122_000530
crossref_primary_10_3892_mmr_2024_13217
crossref_primary_10_1002_cam4_3344
crossref_primary_10_3390_ijms21051564
crossref_primary_10_1016_j_ncrna_2024_01_019
crossref_primary_10_3892_mmr_2022_12591
crossref_primary_10_1016_j_neo_2021_04_002
crossref_primary_10_3390_cimb46030174
crossref_primary_10_1002_1873_3468_13470
crossref_primary_10_3892_etm_2019_8152
crossref_primary_10_3892_etm_2019_7564
crossref_primary_10_1080_21691401_2019_1652630
crossref_primary_10_3390_cancers12092406
crossref_primary_10_1186_s40364_021_00295_8
Cites_doi 10.1016/S0092-8674(03)00759-1
10.1007/s11427-013-4553-6
10.1101/gad.177428.111
10.1074/jbc.M409070200
10.1042/BC20070090
10.1038/nature04115
10.1042/BC20040151
10.1126/science.1138341
10.1186/1476-4598-13-92
10.1016/j.cell.2011.09.028
10.1016/j.tig.2013.01.004
10.18632/oncotarget.3219
10.1002/hep.22806
10.1042/BC20040063
10.1101/gad.1324305
10.1128/MCB.17.4.2158
10.1038/nature08975
10.18632/oncotarget.7464
10.1093/bib/bbv031
10.1093/bfgp/elq028
10.1038/srep23892
10.1002/hep.26537
10.1016/j.cell.2011.07.014
10.1016/j.cell.2009.01.035
10.1158/1078-0432.CCR-06-0134
10.1042/BST20120074
10.1038/nature12785
10.1038/cgt.2013.82
10.1242/jcs.086132
10.3727/096504017X14934860122864
10.1038/nature02871
10.1093/nar/gkq1003
10.1038/nrg2521
10.1038/nrg3074
10.1038/nature07672
10.1016/j.tig.2015.03.007
10.1101/gad.1862910
10.1038/nrg2673
10.1038/ncomms4596
10.1242/jcs.045278
10.1038/ng.848
10.1016/j.febslet.2008.05.012
10.1038/nm1784
10.1242/jcs.161679
10.1038/nature06992
10.1007/s13277-015-4090-y
10.1038/nature12986
10.1172/JCI63539
10.1016/j.tig.2008.05.004
10.1038/cddis.2013.541
ContentType Journal Article
Copyright COPYRIGHT 2018 BioMed Central Ltd.
The Author(s). 2018
Copyright_xml – notice: COPYRIGHT 2018 BioMed Central Ltd.
– notice: The Author(s). 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1186/s13058-018-0959-1
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1465-542X
EndPage 15
ExternalDocumentID oai_doaj_org_article_e52dddfc95f94e83be7d8153bd5d80c0
PMC5907460
A546834848
29669595
10_1186_s13058_018_0959_1
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GroupedDBID ---
04C
0R~
23N
2WC
4.4
53G
5GY
5VS
6J9
7X7
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
AAYXX
ABUWG
ACGFO
ACGFS
ACJQM
ACMJI
ACPRK
ADBBV
ADFRT
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIAM
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BMSDO
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
EIHBH
EJD
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HMCUK
HYE
IAO
ICW
IHR
INH
INR
ITC
KQ8
O5R
O5S
OK1
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RBZ
ROL
RPM
RSV
SBL
SOJ
TR2
U2A
UKHRP
WOQ
3V.
ACRMQ
ADINQ
C24
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c598t-7869fdaf40196067a42d7e2a79d87dd7128fd29cb129b50e4d261feee8461a9a3
IEDL.DBID DOA
ISSN 1465-542X
1465-5411
IngestDate Wed Aug 27 01:20:32 EDT 2025
Thu Aug 21 14:15:26 EDT 2025
Fri Jul 11 08:12:03 EDT 2025
Tue Jun 17 21:20:51 EDT 2025
Tue Jun 10 20:27:56 EDT 2025
Thu Jan 02 22:57:48 EST 2025
Tue Jul 01 02:43:11 EDT 2025
Thu Apr 24 22:53:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords IMP1-UCA1 interaction
UCA1
RNA-binding protein
lncRNA
UCA1-miR122-5p interaction
IMP1
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c598t-7869fdaf40196067a42d7e2a79d87dd7128fd29cb129b50e4d261feee8461a9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/e52dddfc95f94e83be7d8153bd5d80c0
PMID 29669595
PQID 2027602010
PQPubID 23479
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_e52dddfc95f94e83be7d8153bd5d80c0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5907460
proquest_miscellaneous_2027602010
gale_infotracmisc_A546834848
gale_infotracacademiconefile_A546834848
pubmed_primary_29669595
crossref_citationtrail_10_1186_s13058_018_0959_1
crossref_primary_10_1186_s13058_018_0959_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-18
PublicationDateYYYYMMDD 2018-04-18
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-18
  day: 18
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Breast cancer research : BCR
PublicationTitleAlternate Breast Cancer Res
PublicationYear 2018
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References T Song (959_CR38) 2015; 128
E Bernstein (959_CR27) 2005; 19
T Hung (959_CR10) 2011; 43
G St Laurent (959_CR3) 2015; 31
J Condeelis (959_CR31) 2005; 97
G Wang (959_CR35) 2016; 7
TR Mercer (959_CR4) 2009; 10
Z Bian (959_CR18) 2016; 6
W Gu (959_CR36) 2012; 125
PK Goudarzi (959_CR44) 2016; 37
M Cesana (959_CR13) 2011; 147
M Esteller (959_CR19) 2011; 12
X Wang (959_CR25) 2008; 454
W Gu (959_CR37) 2009; 122
K Wang (959_CR49) 2014; 5
S Huttelmaier (959_CR32) 2005; 438
JA Chao (959_CR40) 2010; 24
M Guttman (959_CR2) 2009; 458
F Ferre (959_CR21) 2016; 17
MS Kumar (959_CR12) 2014; 505
DD Licatalosi (959_CR24) 2010; 11
V Ambros (959_CR46) 2004; 431
F Wang (959_CR50) 2008; 582
A Castello (959_CR8) 2013; 29
MA Faghihi (959_CR11) 2008; 14
AF Ross (959_CR34) 1997; 17
XS Wang (959_CR39) 2006; 12
Y Tay (959_CR48) 2014; 505
L Jeffery (959_CR26) 2004; 279
X Han (959_CR43) 2014; 21
RA Gupta (959_CR9) 2010; 464
C Barrandon (959_CR28) 2008; 100
959_CR51
VL Patel (959_CR33) 2012; 26
Z Jeyapalan (959_CR47) 2011; 39
S Kishore (959_CR23) 2010; 9
KE Lukong (959_CR7) 2008; 24
RW Carthew (959_CR6) 2009; 136
M Hammerle (959_CR29) 2013; 58
J Huang (959_CR15) 2014; 5
CL Bartels (959_CR5) 2009; 1
SH Hsu (959_CR53) 2012; 122
F Wang (959_CR16) 2015; 6
R Doidge (959_CR41) 2012; 40
J Zhu (959_CR22) 2013; 56
M Rao (959_CR52) 2017; 7
WC Tsai (959_CR42) 2009; 49
L Salmena (959_CR14) 2011; 146
YL Tuo (959_CR17) 2015; 19
JK Yisraeli (959_CR30) 2005; 97
DS Schwarz (959_CR45) 2003; 115
XH Liu (959_CR20) 2014; 13
P Kapranov (959_CR1) 2007; 316
References_xml – volume: 115
  start-page: 199
  issue: 2
  year: 2003
  ident: 959_CR45
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00759-1
– volume: 56
  start-page: 876
  issue: 10
  year: 2013
  ident: 959_CR22
  publication-title: Sci China Life Sci
  doi: 10.1007/s11427-013-4553-6
– volume: 26
  start-page: 43
  issue: 1
  year: 2012
  ident: 959_CR33
  publication-title: Genes Dev
  doi: 10.1101/gad.177428.111
– volume: 279
  start-page: 49479
  issue: 47
  year: 2004
  ident: 959_CR26
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M409070200
– volume: 100
  start-page: 83
  issue: 2
  year: 2008
  ident: 959_CR28
  publication-title: Biol Cell
  doi: 10.1042/BC20070090
– volume: 438
  start-page: 512
  issue: 7067
  year: 2005
  ident: 959_CR32
  publication-title: Nature
  doi: 10.1038/nature04115
– volume: 97
  start-page: 87
  issue: 1
  year: 2005
  ident: 959_CR30
  publication-title: Biol Cell
  doi: 10.1042/BC20040151
– volume: 316
  start-page: 1484
  issue: 5830
  year: 2007
  ident: 959_CR1
  publication-title: Science
  doi: 10.1126/science.1138341
– volume: 13
  start-page: 92
  year: 2014
  ident: 959_CR20
  publication-title: Mol Cancer
  doi: 10.1186/1476-4598-13-92
– volume: 147
  start-page: 358
  issue: 2
  year: 2011
  ident: 959_CR13
  publication-title: Cell
  doi: 10.1016/j.cell.2011.09.028
– volume: 19
  start-page: 3403
  issue: 18
  year: 2015
  ident: 959_CR17
  publication-title: Eur Rev Med Pharmacol Sci
– volume: 29
  start-page: 318
  issue: 5
  year: 2013
  ident: 959_CR8
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2013.01.004
– volume: 6
  start-page: 7899
  issue: 10
  year: 2015
  ident: 959_CR16
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.3219
– volume: 49
  start-page: 1571
  issue: 5
  year: 2009
  ident: 959_CR42
  publication-title: Hepatology
  doi: 10.1002/hep.22806
– volume: 97
  start-page: 97
  issue: 1
  year: 2005
  ident: 959_CR31
  publication-title: Biol Cell
  doi: 10.1042/BC20040063
– volume: 19
  start-page: 1635
  issue: 14
  year: 2005
  ident: 959_CR27
  publication-title: Genes Dev
  doi: 10.1101/gad.1324305
– volume: 17
  start-page: 2158
  issue: 4
  year: 1997
  ident: 959_CR34
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.17.4.2158
– volume: 7
  start-page: 323
  issue: 2
  year: 2017
  ident: 959_CR52
  publication-title: Am J Cancer Res
– volume: 464
  start-page: 1071
  issue: 7291
  year: 2010
  ident: 959_CR9
  publication-title: Nature
  doi: 10.1038/nature08975
– volume: 7
  start-page: 15690
  issue: 13
  year: 2016
  ident: 959_CR35
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.7464
– volume: 17
  start-page: 106
  issue: 1
  year: 2016
  ident: 959_CR21
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbv031
– volume: 9
  start-page: 391
  issue: 5–6
  year: 2010
  ident: 959_CR23
  publication-title: Brief funct Genom
  doi: 10.1093/bfgp/elq028
– volume: 6
  start-page: 23892
  year: 2016
  ident: 959_CR18
  publication-title: Sci Rep
  doi: 10.1038/srep23892
– volume: 58
  start-page: 1703
  issue: 5
  year: 2013
  ident: 959_CR29
  publication-title: Hepatology
  doi: 10.1002/hep.26537
– volume: 146
  start-page: 353
  issue: 3
  year: 2011
  ident: 959_CR14
  publication-title: Cell
  doi: 10.1016/j.cell.2011.07.014
– volume: 136
  start-page: 642
  issue: 4
  year: 2009
  ident: 959_CR6
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.035
– volume: 12
  start-page: 4851
  issue: 16
  year: 2006
  ident: 959_CR39
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-06-0134
– volume: 40
  start-page: 896
  issue: 4
  year: 2012
  ident: 959_CR41
  publication-title: Biochem Soc Trans
  doi: 10.1042/BST20120074
– volume: 1
  start-page: 406
  issue: 4
  year: 2009
  ident: 959_CR5
  publication-title: Am J Transl Res
– volume: 505
  start-page: 212
  issue: 7482
  year: 2014
  ident: 959_CR12
  publication-title: Nature
  doi: 10.1038/nature12785
– volume: 21
  start-page: 60
  issue: 2
  year: 2014
  ident: 959_CR43
  publication-title: Cancer Gene Ther
  doi: 10.1038/cgt.2013.82
– volume: 125
  start-page: 81
  issue: Pt 1
  year: 2012
  ident: 959_CR36
  publication-title: J Cell Sci
  doi: 10.1242/jcs.086132
– ident: 959_CR51
  doi: 10.3727/096504017X14934860122864
– volume: 431
  start-page: 350
  issue: 7006
  year: 2004
  ident: 959_CR46
  publication-title: Nature
  doi: 10.1038/nature02871
– volume: 39
  start-page: 3026
  issue: 8
  year: 2011
  ident: 959_CR47
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq1003
– volume: 10
  start-page: 155
  issue: 3
  year: 2009
  ident: 959_CR4
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2521
– volume: 12
  start-page: 861
  issue: 12
  year: 2011
  ident: 959_CR19
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3074
– volume: 458
  start-page: 223
  issue: 7235
  year: 2009
  ident: 959_CR2
  publication-title: Nature
  doi: 10.1038/nature07672
– volume: 31
  start-page: 239
  issue: 5
  year: 2015
  ident: 959_CR3
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2015.03.007
– volume: 24
  start-page: 148
  issue: 2
  year: 2010
  ident: 959_CR40
  publication-title: Genes Dev
  doi: 10.1101/gad.1862910
– volume: 11
  start-page: 75
  issue: 1
  year: 2010
  ident: 959_CR24
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2673
– volume: 5
  start-page: 3596
  year: 2014
  ident: 959_CR49
  publication-title: Nat Commun
  doi: 10.1038/ncomms4596
– volume: 122
  start-page: 1895
  issue: Pt 11
  year: 2009
  ident: 959_CR37
  publication-title: J Cell Sci
  doi: 10.1242/jcs.045278
– volume: 43
  start-page: 621
  issue: 7
  year: 2011
  ident: 959_CR10
  publication-title: Nat Genet
  doi: 10.1038/ng.848
– volume: 582
  start-page: 1919
  issue: 13
  year: 2008
  ident: 959_CR50
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2008.05.012
– volume: 14
  start-page: 723
  issue: 7
  year: 2008
  ident: 959_CR11
  publication-title: Nat Med
  doi: 10.1038/nm1784
– volume: 128
  start-page: 1001
  issue: 5
  year: 2015
  ident: 959_CR38
  publication-title: J Cell Sci
  doi: 10.1242/jcs.161679
– volume: 454
  start-page: 126
  issue: 7200
  year: 2008
  ident: 959_CR25
  publication-title: Nature
  doi: 10.1038/nature06992
– volume: 37
  start-page: 5775
  issue: 5
  year: 2016
  ident: 959_CR44
  publication-title: Tumour Biol
  doi: 10.1007/s13277-015-4090-y
– volume: 505
  start-page: 344
  issue: 7483
  year: 2014
  ident: 959_CR48
  publication-title: Nature
  doi: 10.1038/nature12986
– volume: 122
  start-page: 2871
  issue: 8
  year: 2012
  ident: 959_CR53
  publication-title: J Clin Invest
  doi: 10.1172/JCI63539
– volume: 24
  start-page: 416
  issue: 8
  year: 2008
  ident: 959_CR7
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2008.05.004
– volume: 5
  start-page: e1008
  year: 2014
  ident: 959_CR15
  publication-title: Cell Death Dis
  doi: 10.1038/cddis.2013.541
SSID ssj0017858
Score 2.4465997
Snippet Long noncoding RNAs (LncRNAs) represent a class of widespread and diverse endogenous RNAs that can posttranscriptionally regulate gene expression through the...
Background Long noncoding RNAs (LncRNAs) represent a class of widespread and diverse endogenous RNAs that can posttranscriptionally regulate gene expression...
Abstract Background Long noncoding RNAs (LncRNAs) represent a class of widespread and diverse endogenous RNAs that can posttranscriptionally regulate gene...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 32
SubjectTerms Analysis
Binding proteins
Breast Neoplasms - genetics
Cell Line, Tumor
Cell Movement - genetics
Cell Proliferation - genetics
Epithelial-Mesenchymal Transition - genetics
Female
Gene Expression Regulation, Neoplastic
Humans
IMP1
IMP1-UCA1 interaction
Insulin-like growth factor I
lncRNA
MicroRNA
MicroRNAs - genetics
Neoplasm Invasiveness - genetics
Neoplasm Invasiveness - pathology
RNA sequencing
RNA, Long Noncoding - genetics
RNA-binding protein
RNA-Binding Proteins - genetics
UCA1
UCA1-miR122-5p interaction
Title IMP1 regulates UCA1-mediated cell invasion through facilitating UCA1 decay and decreasing the sponge effect of UCA1 for miR-122-5p
URI https://www.ncbi.nlm.nih.gov/pubmed/29669595
https://www.proquest.com/docview/2027602010
https://pubmed.ncbi.nlm.nih.gov/PMC5907460
https://doaj.org/article/e52dddfc95f94e83be7d8153bd5d80c0
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBdbB2MvY2v34a0LGowNBqK2I1nSY1JaukFKCQuEvQhZktvA6pQmHfR1f_nuZCXEDLaXvQQTyVjy3fl-96E7Qj5YEKC8wqNbgAUY184z5WzJcstzDvBbKI2nkSfn1dmMf52L-U6rL8wJ68oDdy_uKIjSe984LRrNgxrWQXoFYlp74VXuorUOOm9jTKX4gYSHpBhmoaqjFXypBSZtYahfaFb0tFAs1v_nJ3lHJ_XzJXcU0Okz8jQhRzrqVvycPAjtPjkYtWA1X9_TjzTmckYn-T55PEkh8wPy68vkoqC3Xcv5sKKz41HB4nkRwJoU_fZ00f606DSjqWkPbaxLxbvby3gD9cHZe2pbj1eYx44jgB0pZtheBtqlhdBl000HJEyvF1NWoA1684LMTk--HZ-x1HiBOaHVmklV6cbbhmPxHFBnlpdehtJK7ZX0XoJOa3ypXQ1goRZ54B7ssCaEAGCmsNoOX5K9dtmG14Ra4QCCSoz1OM7RjYcYSVTcNxbAm8xIviGEcakqOTbH-GGidaIq09HOAO0M0s4UGfm8veWmK8nxt8ljpO52IlbTjn8Aj5nEY-ZfPJaRT8gbBmUeFudsOroAW8TqWWYkeKWGXHGVkcPeTJBV1xt-v-Eug0OY4NaG5d3KoA-qyjE1ISOvOm7brrkEkxQ2IzIie3zY21R_pF1cxVLhAn0fVf7mf7yFt-RJGSWIs0Idkr317V14B4hsXQ_IQzmXA_JofHJ-MR1EUYTf6fj7b1rIM-k
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IMP1+regulates+UCA1-mediated+cell+invasion+through+facilitating+UCA1+decay+and+decreasing+the+sponge+effect+of+UCA1+for+miR-122-5p&rft.jtitle=Breast+cancer+research+%3A+BCR&rft.au=Yanchun+Zhou&rft.au=Xiuhua+Meng&rft.au=Shaoying+Chen&rft.au=Wei+Li&rft.date=2018-04-18&rft.pub=BMC&rft.eissn=1465-542X&rft.volume=20&rft.issue=1&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1186%2Fs13058-018-0959-1&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e52dddfc95f94e83be7d8153bd5d80c0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-542X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-542X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-542X&client=summon