The hypoxic tumor microenvironment in vivo selects the cancer stem cell fate of breast cancer cells

Tumor hypoxia is an independent prognostic factor associated with poor patient survival. Emerging evidence suggests that hypoxia can potentially maintain or enhance the stem cell phenotype of both normal stem cells and cancer cells. However, it remains to be determined whether cell fate is regulated...

Full description

Saved in:
Bibliographic Details
Published inBreast cancer research : BCR Vol. 20; no. 1; pp. 16 - 15
Main Authors Kim, Hoon, Lin, Qun, Glazer, Peter M., Yun, Zhong
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 06.03.2018
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tumor hypoxia is an independent prognostic factor associated with poor patient survival. Emerging evidence suggests that hypoxia can potentially maintain or enhance the stem cell phenotype of both normal stem cells and cancer cells. However, it remains to be determined whether cell fate is regulated in vivo by the hypoxic tumor microenvironment (TME). We established a hypoxia-sensing xenograft model to identify hypoxic tumor cell in vivo primarily using human breast cancer cell lines MDA-MB-231 and MCF7. Hypoxic tumor cells were identified in situ by fluorescence of green fluorescence protein. They were further isolated from xenografts, purified and sorted by flow cytometry for detailed analysis of their stem cell characteristics. We have found that hypoxic tumor cells freshly isolated from xenografts contain increased subpopulations of tumor cells with cancer stem cell (CSC)-like characteristics. The CSC characteristics of the hypoxic tumor cells are further enhanced upon re-implantation in vivo, whereas secondary xenografts derived from the non-hypoxic tumor cells remain similar to the primary xenografts. Interestingly, the phenotypes exhibited by the hypoxic tumor cells are stable and remain distinctively different from those of the non-hypoxic tumor cells isolated from the same tumor mass even when they are maintained under the same ambient culture conditions. Mechanistically, the PI3K/AKT pathway is strongly potentiated in the hypoxic tumor cells and is required to maintain the CSC-like phenotype. Importantly, the differential cell fates between hypoxic and non-hypoxic tumor cells are only found in tumor cells isolated from the hypoxic TME in vivo and are not seen in tumor cells treated by hypoxia in vitro alone. These previously unknown observations suggest that the hypoxic TME may promote malignant progression and therapy resistance by coordinating induction, selection and/or preferential maintenance of the CSC-like phenotype in tumor cells.
AbstractList Abstract Background Tumor hypoxia is an independent prognostic factor associated with poor patient survival. Emerging evidence suggests that hypoxia can potentially maintain or enhance the stem cell phenotype of both normal stem cells and cancer cells. However, it remains to be determined whether cell fate is regulated in vivo by the hypoxic tumor microenvironment (TME). Methods We established a hypoxia-sensing xenograft model to identify hypoxic tumor cell in vivo primarily using human breast cancer cell lines MDA-MB-231 and MCF7. Hypoxic tumor cells were identified in situ by fluorescence of green fluorescence protein. They were further isolated from xenografts, purified and sorted by flow cytometry for detailed analysis of their stem cell characteristics. Results We have found that hypoxic tumor cells freshly isolated from xenografts contain increased subpopulations of tumor cells with cancer stem cell (CSC)-like characteristics. The CSC characteristics of the hypoxic tumor cells are further enhanced upon re-implantation in vivo, whereas secondary xenografts derived from the non-hypoxic tumor cells remain similar to the primary xenografts. Interestingly, the phenotypes exhibited by the hypoxic tumor cells are stable and remain distinctively different from those of the non-hypoxic tumor cells isolated from the same tumor mass even when they are maintained under the same ambient culture conditions. Mechanistically, the PI3K/AKT pathway is strongly potentiated in the hypoxic tumor cells and is required to maintain the CSC-like phenotype. Importantly, the differential cell fates between hypoxic and non-hypoxic tumor cells are only found in tumor cells isolated from the hypoxic TME in vivo and are not seen in tumor cells treated by hypoxia in vitro alone. Conclusions These previously unknown observations suggest that the hypoxic TME may promote malignant progression and therapy resistance by coordinating induction, selection and/or preferential maintenance of the CSC-like phenotype in tumor cells.
Tumor hypoxia is an independent prognostic factor associated with poor patient survival. Emerging evidence suggests that hypoxia can potentially maintain or enhance the stem cell phenotype of both normal stem cells and cancer cells. However, it remains to be determined whether cell fate is regulated in vivo by the hypoxic tumor microenvironment (TME).BACKGROUNDTumor hypoxia is an independent prognostic factor associated with poor patient survival. Emerging evidence suggests that hypoxia can potentially maintain or enhance the stem cell phenotype of both normal stem cells and cancer cells. However, it remains to be determined whether cell fate is regulated in vivo by the hypoxic tumor microenvironment (TME).We established a hypoxia-sensing xenograft model to identify hypoxic tumor cell in vivo primarily using human breast cancer cell lines MDA-MB-231 and MCF7. Hypoxic tumor cells were identified in situ by fluorescence of green fluorescence protein. They were further isolated from xenografts, purified and sorted by flow cytometry for detailed analysis of their stem cell characteristics.METHODSWe established a hypoxia-sensing xenograft model to identify hypoxic tumor cell in vivo primarily using human breast cancer cell lines MDA-MB-231 and MCF7. Hypoxic tumor cells were identified in situ by fluorescence of green fluorescence protein. They were further isolated from xenografts, purified and sorted by flow cytometry for detailed analysis of their stem cell characteristics.We have found that hypoxic tumor cells freshly isolated from xenografts contain increased subpopulations of tumor cells with cancer stem cell (CSC)-like characteristics. The CSC characteristics of the hypoxic tumor cells are further enhanced upon re-implantation in vivo, whereas secondary xenografts derived from the non-hypoxic tumor cells remain similar to the primary xenografts. Interestingly, the phenotypes exhibited by the hypoxic tumor cells are stable and remain distinctively different from those of the non-hypoxic tumor cells isolated from the same tumor mass even when they are maintained under the same ambient culture conditions. Mechanistically, the PI3K/AKT pathway is strongly potentiated in the hypoxic tumor cells and is required to maintain the CSC-like phenotype. Importantly, the differential cell fates between hypoxic and non-hypoxic tumor cells are only found in tumor cells isolated from the hypoxic TME in vivo and are not seen in tumor cells treated by hypoxia in vitro alone.RESULTSWe have found that hypoxic tumor cells freshly isolated from xenografts contain increased subpopulations of tumor cells with cancer stem cell (CSC)-like characteristics. The CSC characteristics of the hypoxic tumor cells are further enhanced upon re-implantation in vivo, whereas secondary xenografts derived from the non-hypoxic tumor cells remain similar to the primary xenografts. Interestingly, the phenotypes exhibited by the hypoxic tumor cells are stable and remain distinctively different from those of the non-hypoxic tumor cells isolated from the same tumor mass even when they are maintained under the same ambient culture conditions. Mechanistically, the PI3K/AKT pathway is strongly potentiated in the hypoxic tumor cells and is required to maintain the CSC-like phenotype. Importantly, the differential cell fates between hypoxic and non-hypoxic tumor cells are only found in tumor cells isolated from the hypoxic TME in vivo and are not seen in tumor cells treated by hypoxia in vitro alone.These previously unknown observations suggest that the hypoxic TME may promote malignant progression and therapy resistance by coordinating induction, selection and/or preferential maintenance of the CSC-like phenotype in tumor cells.CONCLUSIONSThese previously unknown observations suggest that the hypoxic TME may promote malignant progression and therapy resistance by coordinating induction, selection and/or preferential maintenance of the CSC-like phenotype in tumor cells.
Tumor hypoxia is an independent prognostic factor associated with poor patient survival. Emerging evidence suggests that hypoxia can potentially maintain or enhance the stem cell phenotype of both normal stem cells and cancer cells. However, it remains to be determined whether cell fate is regulated in vivo by the hypoxic tumor microenvironment (TME). We established a hypoxia-sensing xenograft model to identify hypoxic tumor cell in vivo primarily using human breast cancer cell lines MDA-MB-231 and MCF7. Hypoxic tumor cells were identified in situ by fluorescence of green fluorescence protein. They were further isolated from xenografts, purified and sorted by flow cytometry for detailed analysis of their stem cell characteristics. We have found that hypoxic tumor cells freshly isolated from xenografts contain increased subpopulations of tumor cells with cancer stem cell (CSC)-like characteristics. The CSC characteristics of the hypoxic tumor cells are further enhanced upon re-implantation in vivo, whereas secondary xenografts derived from the non-hypoxic tumor cells remain similar to the primary xenografts. Interestingly, the phenotypes exhibited by the hypoxic tumor cells are stable and remain distinctively different from those of the non-hypoxic tumor cells isolated from the same tumor mass even when they are maintained under the same ambient culture conditions. Mechanistically, the PI3K/AKT pathway is strongly potentiated in the hypoxic tumor cells and is required to maintain the CSC-like phenotype. Importantly, the differential cell fates between hypoxic and non-hypoxic tumor cells are only found in tumor cells isolated from the hypoxic TME in vivo and are not seen in tumor cells treated by hypoxia in vitro alone. These previously unknown observations suggest that the hypoxic TME may promote malignant progression and therapy resistance by coordinating induction, selection and/or preferential maintenance of the CSC-like phenotype in tumor cells.
ArticleNumber 16
Audience Academic
Author Kim, Hoon
Glazer, Peter M.
Lin, Qun
Yun, Zhong
Author_xml – sequence: 1
  givenname: Hoon
  surname: Kim
  fullname: Kim, Hoon
– sequence: 2
  givenname: Qun
  surname: Lin
  fullname: Lin, Qun
– sequence: 3
  givenname: Peter M.
  surname: Glazer
  fullname: Glazer, Peter M.
– sequence: 4
  givenname: Zhong
  orcidid: 0000-0003-4123-747X
  surname: Yun
  fullname: Yun, Zhong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29510720$$D View this record in MEDLINE/PubMed
BookMark eNp9Ul1rHCEUlZLSJNv-gL4UoS99mVTHj9GXQghtEwj0JYW-iTq6a5gZt-ouyb-v00lCNpQiotx7zuF-nFNwNMXJAfAeozOMBf-cMUFMNAjXKyltxCtwgilnDaPtr6Nn_2NwmvMtQrgTTLwBx61kGHUtOgH2ZuPg5n4b74KFZTfGBMdgU3TTPqQ4jW4qMExwH_YRZjc4WzIslWL1ZF2CubgRWjcM0OviYPTQJKdzeczPqfwWvPZ6yO7dw7sCP799vbm4bK5_fL-6OL9uLJOiNJyYljFje9ohYqRh2lNuNGox8UxKQxD31nPJJTJMatQ50jthhOScE8odWYGrRbeP-lZtUxh1uldRB_U3ENNa6VSCHZzqWiK5bz3peklbSSVDlGFs-hqmXJuq9WXR2u7M6Hpb55D0cCB6mJnCRq3jXjFBUVcbWIFPDwIp_t65XNQY8jwOPbm4y6pFGHPMaUcq9OMCXetaWph8rIp2hqtzVofBSCdwRZ39A1VP7-rGqjF8qPEDwofnLTzV_rj8CsALoO475-T8EwQjNRtMLQZT1WBqNpgSldO94NhQdAlxnkIY_sP8A_Ab02E
CitedBy_id crossref_primary_10_1007_s12079_021_00648_w
crossref_primary_10_1016_j_devcel_2021_05_011
crossref_primary_10_1186_s13287_024_03880_4
crossref_primary_10_3389_fcell_2023_1082057
crossref_primary_10_3389_fmolb_2023_1297611
crossref_primary_10_3390_cancers12123863
crossref_primary_10_1155_2020_3189217
crossref_primary_10_3390_cancers11081128
crossref_primary_10_3390_pr9010045
crossref_primary_10_1007_s00432_019_03080_1
crossref_primary_10_1016_j_bbcan_2018_10_006
crossref_primary_10_1038_s41598_019_47116_5
crossref_primary_10_1080_14728222_2023_2259096
crossref_primary_10_12677_ACM_2023_13112537
crossref_primary_10_2217_epi_2023_0430
crossref_primary_10_3390_ijms25115876
crossref_primary_10_1016_j_pan_2024_02_002
crossref_primary_10_3389_fmolb_2020_00079
crossref_primary_10_3390_ijms20061336
crossref_primary_10_3389_fneur_2023_1188383
crossref_primary_10_1038_s41467_019_12412_1
crossref_primary_10_1186_s12935_019_0888_9
crossref_primary_10_3390_biom14121651
crossref_primary_10_1016_j_lfs_2018_07_034
crossref_primary_10_2174_1568009622666211224154952
crossref_primary_10_1016_j_tips_2019_01_003
crossref_primary_10_1016_j_cej_2023_145498
crossref_primary_10_1038_s41467_020_16352_z
crossref_primary_10_1002_advs_202404853
crossref_primary_10_1016_j_bbadis_2024_167549
crossref_primary_10_1016_j_gep_2021_119181
crossref_primary_10_1016_j_critrevonc_2022_103796
crossref_primary_10_3390_cancers12123716
crossref_primary_10_3390_ijms19103047
crossref_primary_10_2147_DDDT_S247730
crossref_primary_10_3389_fonc_2018_00235
crossref_primary_10_3390_cancers11101569
crossref_primary_10_1007_s12094_024_03728_6
crossref_primary_10_1097_CAD_0000000000001065
crossref_primary_10_3390_antiox10111801
crossref_primary_10_3390_cells8090957
crossref_primary_10_3390_cancers13112784
crossref_primary_10_1002_mc_23347
crossref_primary_10_1002_mco2_176
crossref_primary_10_3390_cancers13040736
crossref_primary_10_4103_jcrt_jcrt_1834_22
crossref_primary_10_1002_jcp_29252
crossref_primary_10_3390_ijms23031665
crossref_primary_10_3389_fonc_2023_981247
crossref_primary_10_1016_j_actbio_2020_02_006
crossref_primary_10_1016_j_gendis_2023_05_024
crossref_primary_10_1016_j_ebiom_2021_103303
crossref_primary_10_1038_s41419_021_04116_6
crossref_primary_10_2147_IJN_S460387
crossref_primary_10_1186_s12964_023_01302_1
crossref_primary_10_26442_18151434_2020_4_200495
crossref_primary_10_3390_cancers13050988
crossref_primary_10_1039_C9RA02741F
crossref_primary_10_1016_j_phrs_2021_105609
crossref_primary_10_1016_j_canlet_2018_05_047
crossref_primary_10_1177_2041731420933407
crossref_primary_10_1039_D3LC00630A
crossref_primary_10_1016_j_stem_2018_12_009
crossref_primary_10_1038_s41598_019_46210_y
crossref_primary_10_3390_molecules26092615
crossref_primary_10_1038_s43018_023_00595_y
crossref_primary_10_1111_cpr_12822
crossref_primary_10_3390_cancers11091240
crossref_primary_10_1016_j_phymed_2024_155824
crossref_primary_10_3390_cancers12092482
crossref_primary_10_3390_cancers15061897
crossref_primary_10_1016_j_critrevonc_2020_103174
crossref_primary_10_1016_j_semcancer_2018_07_007
crossref_primary_10_4103_jcrt_jcrt_1458_21
crossref_primary_10_1039_D2RA02005J
crossref_primary_10_1111_cas_14890
crossref_primary_10_1002_adhm_202202609
crossref_primary_10_1109_OJEMB_2020_2965084
crossref_primary_10_1158_0008_5472_CAN_21_0753
crossref_primary_10_1016_j_ejphar_2023_175565
crossref_primary_10_1002_1878_0261_12828
crossref_primary_10_1186_s12935_020_01719_5
crossref_primary_10_3389_fimmu_2022_933329
crossref_primary_10_3389_pore_2023_1610801
crossref_primary_10_1002_jcp_29337
crossref_primary_10_1016_j_apmt_2023_102015
Cites_doi 10.1667/RR13959.1
10.4161/cbt.9.12.12347
10.1038/ncb3465
10.18632/oncotarget.2997
10.1007/978-1-4614-5915-6_2
10.1016/j.cub.2016.11.057
10.18632/oncotarget.11743
10.1158/0008-5472.CAN-15-2402
10.1038/nn.2955
10.1074/jbc.C600120200
10.1073/pnas.1018866109
10.1007/s10555-007-9055-1
10.1111/cas.13147
10.1016/j.ccr.2009.03.018
10.1186/bcr1673
10.1016/j.canlet.2007.08.025
10.1073/pnas.1602883113
10.1002/jcb.25972
10.1046/j.1563-258X.2002.02032.x
10.1016/S1470-2045(11)70191-7
10.1016/j.stem.2010.07.007
10.1016/j.humpath.2007.12.003
10.1186/1471-2407-14-283
10.1038/nrm2354
10.1126/science.aah4199
10.1007/s10549-012-2289-9
10.1634/stemcells.20-4-347
10.1016/j.radonc.2015.06.028
10.1371/journal.pone.0139112
10.1038/sj.neo.7900192
10.1038/sj.bjc.6602245
10.1158/1078-0432.CCR-13-0542
10.1016/j.radonc.2012.02.002
10.1126/science.aah4307
10.1042/CS20150451
10.18632/oncotarget.5564
10.1634/stemcells.2007-0724
10.1158/0008-5472.CAN-09-1605
10.3109/14756366.2014.966704
10.1038/nrc2499
10.1038/sj.bjc.6605450
10.1073/pnas.102660199
10.1002/jcp.24603
10.1038/sj.gt.3301124
10.1016/j.ceb.2012.01.005
10.1016/j.stem.2014.02.012
10.1136/jcp.2011.090456
10.1016/j.molcel.2015.10.031
10.1177/1758834014530023
10.1002/path.2304
10.1073/pnas.0904606106
10.1016/j.prp.2015.05.011
10.1016/j.stem.2014.02.006
10.1016/B978-0-12-385071-3.00006-X
10.1016/j.cell.2016.02.041
10.1128/MCB.18.5.2845
10.1242/dev.137075
10.1016/j.ccr.2007.01.013
10.1073/pnas.1402012111
10.1038/35102167
10.1080/15384047.2016.1250988
10.1038/sj.bjc.6600126
10.1073/pnas.1520032112
10.1053/j.semnuclmed.2014.11.002
10.1016/j.stem.2015.02.015
ContentType Journal Article
Copyright COPYRIGHT 2018 BioMed Central Ltd.
The Author(s). 2018
Copyright_xml – notice: COPYRIGHT 2018 BioMed Central Ltd.
– notice: The Author(s). 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1186/s13058-018-0944-8
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1465-542X
EndPage 15
ExternalDocumentID oai_doaj_org_article_72396f2f37d942949504511bd39646ab
PMC5840770
A547053781
29510720
10_1186_s13058_018_0944_8
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH HHS
  grantid: R01 ES005775
– fundername: NIEHS NIH HHS
  grantid: R01 ES005775
– fundername: NCI NIH HHS
  grantid: R01 CA178254
– fundername: ;
  grantid: 13-SCA-YALE-05
– fundername: ;
  grantid: R01 ES005775
– fundername: ;
  grantid: R01 CA178254
GroupedDBID ---
04C
0R~
23N
2WC
4.4
53G
5GY
5VS
6J9
7X7
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
AAYXX
ABUWG
ACGFO
ACGFS
ACJQM
ACMJI
ACPRK
ADBBV
ADFRT
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIAM
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BMSDO
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
EIHBH
EJD
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HMCUK
HYE
IAO
ICW
IHR
INH
INR
ITC
KQ8
O5R
O5S
OK1
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RBZ
ROL
RPM
RSV
SBL
SOJ
TR2
U2A
UKHRP
WOQ
3V.
ACRMQ
ADINQ
C24
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c598t-63b255bcd4703b9b5af46ba0213f599b306fcf69690b59a07e3de8b89666346e3
IEDL.DBID DOA
ISSN 1465-542X
1465-5411
IngestDate Wed Aug 27 01:28:19 EDT 2025
Thu Aug 21 14:26:22 EDT 2025
Fri Jul 11 04:34:32 EDT 2025
Tue Jun 17 21:06:01 EDT 2025
Tue Jun 10 20:50:36 EDT 2025
Thu Jan 02 23:02:49 EST 2025
Thu Apr 24 23:10:12 EDT 2025
Tue Jul 01 02:43:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Xenograft
Cell fate
PI3K
Tumor microenvironment
Cancer stem cell
Breast cancer cell
Hypoxia
AKT
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c598t-63b255bcd4703b9b5af46ba0213f599b306fcf69690b59a07e3de8b89666346e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4123-747X
OpenAccessLink https://doaj.org/article/72396f2f37d942949504511bd39646ab
PMID 29510720
PQID 2011616473
PQPubID 23479
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_72396f2f37d942949504511bd39646ab
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5840770
proquest_miscellaneous_2011616473
gale_infotracmisc_A547053781
gale_infotracacademiconefile_A547053781
pubmed_primary_29510720
crossref_primary_10_1186_s13058_018_0944_8
crossref_citationtrail_10_1186_s13058_018_0944_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-06
PublicationDateYYYYMMDD 2018-03-06
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-06
  day: 06
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Breast cancer research : BCR
PublicationTitleAlternate Breast Cancer Res
PublicationYear 2018
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References H Zhang (944_CR62) 2015; 112
A Eustace (944_CR34) 2013; 19
A Shiraishi (944_CR58) 2017; 108
A Couvelard (944_CR17) 2005; 92
FM Buffa (944_CR33) 2010; 102
BS Sorensen (944_CR35) 2015; 116
T Reya (944_CR38) 2001; 414
Z Yun (944_CR7) 2014; 772
AB Hjelmeland (944_CR39) 2011; 14
A Kreso (944_CR10) 2014; 14
AS Clark (944_CR50) 2002; 1
SJ Conley (944_CR63) 2012; 109
P Vaupel (944_CR2) 2007; 26
Q Lin (944_CR4) 2010; 9
S Koren (944_CR36) 2015; 60
G Perez-Tenorio (944_CR51) 2002; 86
RC D'Angelo (944_CR53) 2010; 95
C Zhang (944_CR61) 2016; 7
H Masuda (944_CR48) 2012; 136
M Shipitsin (944_CR66) 2007; 11
Y Kim (944_CR22) 2009; 69
G Fluegen (944_CR30) 2017; 19
944_CR56
Z Li (944_CR20) 2009; 15
J Mathieu (944_CR24) 2014; 14
S Badve (944_CR42) 2012; 13
JS Yu (944_CR55) 2016; 143
JE Visvader (944_CR9) 2008; 8
S Ricardo (944_CR44) 2011; 64
V Plaks (944_CR37) 2015; 16
HJ Kim (944_CR45) 2007; 258
D Voskas (944_CR54) 2014; 229
N Dhani (944_CR1) 2015; 45
A Pietras (944_CR18) 2008; 214
A Pietras (944_CR19) 2009; 106
P Mu (944_CR13) 2017; 355
C Liu (944_CR11) 2015; 183
T Xin (944_CR14) 2016; 164
D Vordermark (944_CR27) 2001; 3
N Kapucuoglu (944_CR43) 2015; 211
C Zhang (944_CR60) 2016; 113
V Desplat (944_CR21) 2002; 20
MC Simon (944_CR5) 2008; 9
A Mohyeldin (944_CR8) 2010; 7
B Das (944_CR15) 2008; 26
KE Lee (944_CR40) 2012; 24
P Vaupel (944_CR64) 1991; 51
MH Starmans (944_CR67) 2012; 102
C Fillmore (944_CR65) 2007; 9
Q Lin (944_CR6) 2006; 281
C Schmaltz (944_CR23) 1998; 18
Q Li (944_CR28) 2016; 17
MJ Kwon (944_CR46) 2015; 10
SY Ku (944_CR12) 2017; 355
L Xiang (944_CR59) 2014; 5
E Paplomata (944_CR52) 2014; 6
O Iriondo (944_CR57) 2015; 6
944_CR31
M Moerkens (944_CR49) 2014; 14
CG Hubert (944_CR26) 2016; 76
E Mylona (944_CR47) 2008; 39
T Shibata (944_CR29) 2000; 7
GL Semenza (944_CR41) 2015; 129
P Vaupel (944_CR68) 2002; 152
M Hockel (944_CR3) 1996; 56
A Jogi (944_CR16) 2002; 99
EO Pettersen (944_CR32) 2015; 30
S Lehmann (944_CR25) 2017; 27
References_xml – volume: 183
  start-page: 487
  issue: 5
  year: 2015
  ident: 944_CR11
  publication-title: Radiat Res.
  doi: 10.1667/RR13959.1
– volume: 9
  start-page: 949
  issue: 12
  year: 2010
  ident: 944_CR4
  publication-title: Cancer Biol Ther.
  doi: 10.4161/cbt.9.12.12347
– volume: 19
  start-page: 120
  issue: 2
  year: 2017
  ident: 944_CR30
  publication-title: Nat Cell Biol.
  doi: 10.1038/ncb3465
– volume: 5
  start-page: 12509
  issue: 24
  year: 2014
  ident: 944_CR59
  publication-title: Oncotarget.
  doi: 10.18632/oncotarget.2997
– volume: 772
  start-page: 41
  year: 2014
  ident: 944_CR7
  publication-title: Adv Exp Med Biol.
  doi: 10.1007/978-1-4614-5915-6_2
– volume: 27
  start-page: 392
  issue: 3
  year: 2017
  ident: 944_CR25
  publication-title: Curr Biol.
  doi: 10.1016/j.cub.2016.11.057
– volume: 7
  start-page: 64527
  issue: 40
  year: 2016
  ident: 944_CR61
  publication-title: Oncotarget.
  doi: 10.18632/oncotarget.11743
– volume: 76
  start-page: 2465
  issue: 8
  year: 2016
  ident: 944_CR26
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-15-2402
– volume: 14
  start-page: 1375
  issue: 11
  year: 2011
  ident: 944_CR39
  publication-title: Nat Neurosci.
  doi: 10.1038/nn.2955
– volume: 281
  start-page: 30678
  issue: 41
  year: 2006
  ident: 944_CR6
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.C600120200
– volume: 109
  start-page: 2784
  issue: 8
  year: 2012
  ident: 944_CR63
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.1018866109
– volume: 26
  start-page: 225
  issue: 2
  year: 2007
  ident: 944_CR2
  publication-title: Cancer Metastasis Rev.
  doi: 10.1007/s10555-007-9055-1
– volume: 108
  start-page: 362
  issue: 3
  year: 2017
  ident: 944_CR58
  publication-title: Cancer Sci.
  doi: 10.1111/cas.13147
– volume: 15
  start-page: 501
  issue: 6
  year: 2009
  ident: 944_CR20
  publication-title: Cancer Cell.
  doi: 10.1016/j.ccr.2009.03.018
– volume: 9
  start-page: 303
  issue: 3
  year: 2007
  ident: 944_CR65
  publication-title: Breast Cancer Res.
  doi: 10.1186/bcr1673
– volume: 258
  start-page: 98
  issue: 1
  year: 2007
  ident: 944_CR45
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2007.08.025
– volume: 113
  start-page: E2047
  issue: 14
  year: 2016
  ident: 944_CR60
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.1602883113
– ident: 944_CR56
  doi: 10.1002/jcb.25972
– volume: 152
  start-page: 334
  issue: 13–14
  year: 2002
  ident: 944_CR68
  publication-title: Wien Med Wochenschr.
  doi: 10.1046/j.1563-258X.2002.02032.x
– volume: 13
  start-page: e43
  issue: 1
  year: 2012
  ident: 944_CR42
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(11)70191-7
– volume: 7
  start-page: 150
  issue: 2
  year: 2010
  ident: 944_CR8
  publication-title: Cell Stem Cell.
  doi: 10.1016/j.stem.2010.07.007
– volume: 39
  start-page: 1096
  issue: 7
  year: 2008
  ident: 944_CR47
  publication-title: Hum Pathol.
  doi: 10.1016/j.humpath.2007.12.003
– volume: 14
  start-page: 283
  year: 2014
  ident: 944_CR49
  publication-title: BMC Cancer.
  doi: 10.1186/1471-2407-14-283
– volume: 9
  start-page: 285
  issue: 4
  year: 2008
  ident: 944_CR5
  publication-title: Nat Rev Mol Cell Biol.
  doi: 10.1038/nrm2354
– volume: 355
  start-page: 78
  issue: 6320
  year: 2017
  ident: 944_CR12
  publication-title: Science.
  doi: 10.1126/science.aah4199
– volume: 136
  start-page: 331
  issue: 2
  year: 2012
  ident: 944_CR48
  publication-title: Breast Cancer Res Treat.
  doi: 10.1007/s10549-012-2289-9
– volume: 20
  start-page: 347
  issue: 4
  year: 2002
  ident: 944_CR21
  publication-title: Stem Cells.
  doi: 10.1634/stemcells.20-4-347
– volume: 116
  start-page: 346
  issue: 3
  year: 2015
  ident: 944_CR35
  publication-title: Radiother Oncol.
  doi: 10.1016/j.radonc.2015.06.028
– volume: 10
  start-page: e0139112
  issue: 10
  year: 2015
  ident: 944_CR46
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0139112
– volume: 3
  start-page: 527
  issue: 6
  year: 2001
  ident: 944_CR27
  publication-title: Neoplasia.
  doi: 10.1038/sj.neo.7900192
– volume: 92
  start-page: 94
  issue: 1
  year: 2005
  ident: 944_CR17
  publication-title: Br J Cancer.
  doi: 10.1038/sj.bjc.6602245
– volume: 19
  start-page: 4879
  issue: 17
  year: 2013
  ident: 944_CR34
  publication-title: Clin Cancer Res.
  doi: 10.1158/1078-0432.CCR-13-0542
– volume: 102
  start-page: 436
  issue: 3
  year: 2012
  ident: 944_CR67
  publication-title: Radiother Oncol.
  doi: 10.1016/j.radonc.2012.02.002
– volume: 355
  start-page: 84
  issue: 6320
  year: 2017
  ident: 944_CR13
  publication-title: Science.
  doi: 10.1126/science.aah4307
– volume: 129
  start-page: 1037
  issue: 12
  year: 2015
  ident: 944_CR41
  publication-title: Clin Sci (Lond).
  doi: 10.1042/CS20150451
– volume: 6
  start-page: 31721
  issue: 31
  year: 2015
  ident: 944_CR57
  publication-title: Oncotarget.
  doi: 10.18632/oncotarget.5564
– volume: 26
  start-page: 1818
  issue: 7
  year: 2008
  ident: 944_CR15
  publication-title: Stem Cells.
  doi: 10.1634/stemcells.2007-0724
– volume: 69
  start-page: 9271
  issue: 24
  year: 2009
  ident: 944_CR22
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-09-1605
– volume: 30
  start-page: 689
  issue: 5
  year: 2015
  ident: 944_CR32
  publication-title: J Enzyme Inhib Med Chem.
  doi: 10.3109/14756366.2014.966704
– volume: 8
  start-page: 755
  issue: 10
  year: 2008
  ident: 944_CR9
  publication-title: Nat Rev Cancer.
  doi: 10.1038/nrc2499
– volume: 102
  start-page: 428
  issue: 2
  year: 2010
  ident: 944_CR33
  publication-title: Br J Cancer.
  doi: 10.1038/sj.bjc.6605450
– volume: 99
  start-page: 7021
  issue: 10
  year: 2002
  ident: 944_CR16
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.102660199
– volume: 229
  start-page: 1312
  issue: 10
  year: 2014
  ident: 944_CR54
  publication-title: J Cell Physiol.
  doi: 10.1002/jcp.24603
– volume: 51
  start-page: 3316
  issue: 12
  year: 1991
  ident: 944_CR64
  publication-title: Cancer Res.
– volume: 7
  start-page: 493
  issue: 6
  year: 2000
  ident: 944_CR29
  publication-title: Gene Ther.
  doi: 10.1038/sj.gt.3301124
– volume: 24
  start-page: 232
  issue: 2
  year: 2012
  ident: 944_CR40
  publication-title: Curr Opin Cell Biol.
  doi: 10.1016/j.ceb.2012.01.005
– volume: 14
  start-page: 592
  issue: 5
  year: 2014
  ident: 944_CR24
  publication-title: Cell Stem Cell.
  doi: 10.1016/j.stem.2014.02.012
– volume: 64
  start-page: 937
  issue: 11
  year: 2011
  ident: 944_CR44
  publication-title: J Clin Pathol.
  doi: 10.1136/jcp.2011.090456
– volume: 60
  start-page: 537
  issue: 4
  year: 2015
  ident: 944_CR36
  publication-title: Mol Cell.
  doi: 10.1016/j.molcel.2015.10.031
– volume: 56
  start-page: 4509
  issue: 19
  year: 1996
  ident: 944_CR3
  publication-title: Cancer Res.
– volume: 6
  start-page: 154
  issue: 4
  year: 2014
  ident: 944_CR52
  publication-title: Ther Adv Med Oncol.
  doi: 10.1177/1758834014530023
– volume: 214
  start-page: 482
  issue: 4
  year: 2008
  ident: 944_CR18
  publication-title: J Pathol.
  doi: 10.1002/path.2304
– volume: 106
  start-page: 16805
  issue: 39
  year: 2009
  ident: 944_CR19
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.0904606106
– volume: 211
  start-page: 740
  issue: 10
  year: 2015
  ident: 944_CR43
  publication-title: Pathol Res Pract.
  doi: 10.1016/j.prp.2015.05.011
– volume: 14
  start-page: 275
  issue: 3
  year: 2014
  ident: 944_CR10
  publication-title: Cell Stem Cell.
  doi: 10.1016/j.stem.2014.02.006
– volume: 95
  start-page: 113
  year: 2010
  ident: 944_CR53
  publication-title: Prog Mol Biol Transl Sci.
  doi: 10.1016/B978-0-12-385071-3.00006-X
– volume: 164
  start-page: 1212
  issue: 6
  year: 2016
  ident: 944_CR14
  publication-title: Cell.
  doi: 10.1016/j.cell.2016.02.041
– volume: 18
  start-page: 2845
  issue: 5
  year: 1998
  ident: 944_CR23
  publication-title: Mol Cell Biol.
  doi: 10.1128/MCB.18.5.2845
– volume: 143
  start-page: 3050
  issue: 17
  year: 2016
  ident: 944_CR55
  publication-title: Development.
  doi: 10.1242/dev.137075
– volume: 11
  start-page: 259
  issue: 3
  year: 2007
  ident: 944_CR66
  publication-title: Cancer Cell.
  doi: 10.1016/j.ccr.2007.01.013
– ident: 944_CR31
  doi: 10.1073/pnas.1402012111
– volume: 414
  start-page: 105
  issue: 6859
  year: 2001
  ident: 944_CR38
  publication-title: Nature.
  doi: 10.1038/35102167
– volume: 1
  start-page: 707
  issue: 9
  year: 2002
  ident: 944_CR50
  publication-title: Mol Cancer Ther.
– volume: 17
  start-page: 1266
  issue: 12
  year: 2016
  ident: 944_CR28
  publication-title: Cancer Biol Ther.
  doi: 10.1080/15384047.2016.1250988
– volume: 86
  start-page: 540
  issue: 4
  year: 2002
  ident: 944_CR51
  publication-title: Br J Cancer.
  doi: 10.1038/sj.bjc.6600126
– volume: 112
  start-page: E6215
  issue: 45
  year: 2015
  ident: 944_CR62
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.1520032112
– volume: 45
  start-page: 110
  issue: 2
  year: 2015
  ident: 944_CR1
  publication-title: Semin Nucl Med.
  doi: 10.1053/j.semnuclmed.2014.11.002
– volume: 16
  start-page: 225
  issue: 3
  year: 2015
  ident: 944_CR37
  publication-title: Cell Stem Cell.
  doi: 10.1016/j.stem.2015.02.015
SSID ssj0017858
Score 2.5332851
Snippet Tumor hypoxia is an independent prognostic factor associated with poor patient survival. Emerging evidence suggests that hypoxia can potentially maintain or...
Abstract Background Tumor hypoxia is an independent prognostic factor associated with poor patient survival. Emerging evidence suggests that hypoxia can...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 16
SubjectTerms AKT
Animals
Breast cancer
Breast cancer cell
Breast Neoplasms - genetics
Breast Neoplasms - pathology
Cancer stem cell
Cell Differentiation - genetics
Cell fate
Cell Lineage - genetics
Development and progression
Female
Humans
Hypoxia
MCF-7 Cells
Mice
Neoplastic Stem Cells - metabolism
Neoplastic Stem Cells - pathology
PI3K
Prognosis
Stem cells
Tumor Hypoxia - genetics
Tumor Microenvironment - genetics
Tumors
Xenograft Model Antitumor Assays
Xenotransplantation
Title The hypoxic tumor microenvironment in vivo selects the cancer stem cell fate of breast cancer cells
URI https://www.ncbi.nlm.nih.gov/pubmed/29510720
https://www.proquest.com/docview/2011616473
https://pubmed.ncbi.nlm.nih.gov/PMC5840770
https://doaj.org/article/72396f2f37d942949504511bd39646ab
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA96gvgieudH9VwiiIJQbtt8P-7KHYdwhxweLL6EJG25Bbc9tt3D---dSbvLFkFffOlDJ6VJZiYzk0x-Q8iHXDnnAjep4VlIuchcqrUQqdEOArEqk0WsEnFxKc-v-deFWOyV-sKcsB4euJ-4E5UzI6u8YqowsHaCP4-IKJkv4DWXzuPqCzZvG0wN5wdKCz2cYWZanrSwUgtM2sKjfs5TPbJCEaz_zyV5zyaN8yX3DNDZM_J08BzprO_xc_KgrA_J0ayGqHl1Tz_SmMsZN8kPyeOL4cj8iAQQBHpzf9v8WgbabVbNmq4wCW_vhhtd1vRuedfQNhbFaSk4hTSgOKwp4jxT3N2nFXiltKmoxzT2bktHUvuCXJ-dfv9yng6VFdIgjO5SyTyEEj4UHBTeGy9cxaV3YO9ZJYzxEEdUoZIGQmcvjJuqkhWl9hpiI8m4LNlLclA3dfmawG8McyrL88xD8BOCD1mhCykKpqURPkvIdDvTNgyw41j94qeN4YeWtmeOBeZYZI7VCfm8--S2x9z4W-M5sm_XEOGy4wsQIjsIkf2XECXkEzLfolJD54Ib7ibAEBEey84ETJRgSsNwjkctQRnDiPx-Kz4WSZjBVpfNprXoaEkEb2MJedWL067PObq5Kp8mRI0EbTSoMaVe3kQscPAfp0pN3_yPWXhLnuRRRbDexzE56Nab8h24XJ2fkIdqoSbk0fz08tvVJOoaPK_mP34Da1UoVQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+hypoxic+tumor+microenvironment+in+vivo+selects+the+cancer+stem+cell+fate+of+breast+cancer+cells&rft.jtitle=Breast+cancer+research+%3A+BCR&rft.au=Kim%2C+Hoon&rft.au=Lin%2C+Qun&rft.au=Glazer%2C+Peter+M.&rft.au=Yun%2C+Zhong&rft.date=2018-03-06&rft.issn=1465-542X&rft.eissn=1465-542X&rft.volume=20&rft.issue=1&rft_id=info:doi/10.1186%2Fs13058-018-0944-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13058_018_0944_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-542X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-542X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-542X&client=summon