The hypoxic tumor microenvironment in vivo selects the cancer stem cell fate of breast cancer cells
Tumor hypoxia is an independent prognostic factor associated with poor patient survival. Emerging evidence suggests that hypoxia can potentially maintain or enhance the stem cell phenotype of both normal stem cells and cancer cells. However, it remains to be determined whether cell fate is regulated...
Saved in:
Published in | Breast cancer research : BCR Vol. 20; no. 1; pp. 16 - 15 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
06.03.2018
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tumor hypoxia is an independent prognostic factor associated with poor patient survival. Emerging evidence suggests that hypoxia can potentially maintain or enhance the stem cell phenotype of both normal stem cells and cancer cells. However, it remains to be determined whether cell fate is regulated in vivo by the hypoxic tumor microenvironment (TME).
We established a hypoxia-sensing xenograft model to identify hypoxic tumor cell in vivo primarily using human breast cancer cell lines MDA-MB-231 and MCF7. Hypoxic tumor cells were identified in situ by fluorescence of green fluorescence protein. They were further isolated from xenografts, purified and sorted by flow cytometry for detailed analysis of their stem cell characteristics.
We have found that hypoxic tumor cells freshly isolated from xenografts contain increased subpopulations of tumor cells with cancer stem cell (CSC)-like characteristics. The CSC characteristics of the hypoxic tumor cells are further enhanced upon re-implantation in vivo, whereas secondary xenografts derived from the non-hypoxic tumor cells remain similar to the primary xenografts. Interestingly, the phenotypes exhibited by the hypoxic tumor cells are stable and remain distinctively different from those of the non-hypoxic tumor cells isolated from the same tumor mass even when they are maintained under the same ambient culture conditions. Mechanistically, the PI3K/AKT pathway is strongly potentiated in the hypoxic tumor cells and is required to maintain the CSC-like phenotype. Importantly, the differential cell fates between hypoxic and non-hypoxic tumor cells are only found in tumor cells isolated from the hypoxic TME in vivo and are not seen in tumor cells treated by hypoxia in vitro alone.
These previously unknown observations suggest that the hypoxic TME may promote malignant progression and therapy resistance by coordinating induction, selection and/or preferential maintenance of the CSC-like phenotype in tumor cells. |
---|---|
AbstractList | Abstract Background Tumor hypoxia is an independent prognostic factor associated with poor patient survival. Emerging evidence suggests that hypoxia can potentially maintain or enhance the stem cell phenotype of both normal stem cells and cancer cells. However, it remains to be determined whether cell fate is regulated in vivo by the hypoxic tumor microenvironment (TME). Methods We established a hypoxia-sensing xenograft model to identify hypoxic tumor cell in vivo primarily using human breast cancer cell lines MDA-MB-231 and MCF7. Hypoxic tumor cells were identified in situ by fluorescence of green fluorescence protein. They were further isolated from xenografts, purified and sorted by flow cytometry for detailed analysis of their stem cell characteristics. Results We have found that hypoxic tumor cells freshly isolated from xenografts contain increased subpopulations of tumor cells with cancer stem cell (CSC)-like characteristics. The CSC characteristics of the hypoxic tumor cells are further enhanced upon re-implantation in vivo, whereas secondary xenografts derived from the non-hypoxic tumor cells remain similar to the primary xenografts. Interestingly, the phenotypes exhibited by the hypoxic tumor cells are stable and remain distinctively different from those of the non-hypoxic tumor cells isolated from the same tumor mass even when they are maintained under the same ambient culture conditions. Mechanistically, the PI3K/AKT pathway is strongly potentiated in the hypoxic tumor cells and is required to maintain the CSC-like phenotype. Importantly, the differential cell fates between hypoxic and non-hypoxic tumor cells are only found in tumor cells isolated from the hypoxic TME in vivo and are not seen in tumor cells treated by hypoxia in vitro alone. Conclusions These previously unknown observations suggest that the hypoxic TME may promote malignant progression and therapy resistance by coordinating induction, selection and/or preferential maintenance of the CSC-like phenotype in tumor cells. Tumor hypoxia is an independent prognostic factor associated with poor patient survival. Emerging evidence suggests that hypoxia can potentially maintain or enhance the stem cell phenotype of both normal stem cells and cancer cells. However, it remains to be determined whether cell fate is regulated in vivo by the hypoxic tumor microenvironment (TME).BACKGROUNDTumor hypoxia is an independent prognostic factor associated with poor patient survival. Emerging evidence suggests that hypoxia can potentially maintain or enhance the stem cell phenotype of both normal stem cells and cancer cells. However, it remains to be determined whether cell fate is regulated in vivo by the hypoxic tumor microenvironment (TME).We established a hypoxia-sensing xenograft model to identify hypoxic tumor cell in vivo primarily using human breast cancer cell lines MDA-MB-231 and MCF7. Hypoxic tumor cells were identified in situ by fluorescence of green fluorescence protein. They were further isolated from xenografts, purified and sorted by flow cytometry for detailed analysis of their stem cell characteristics.METHODSWe established a hypoxia-sensing xenograft model to identify hypoxic tumor cell in vivo primarily using human breast cancer cell lines MDA-MB-231 and MCF7. Hypoxic tumor cells were identified in situ by fluorescence of green fluorescence protein. They were further isolated from xenografts, purified and sorted by flow cytometry for detailed analysis of their stem cell characteristics.We have found that hypoxic tumor cells freshly isolated from xenografts contain increased subpopulations of tumor cells with cancer stem cell (CSC)-like characteristics. The CSC characteristics of the hypoxic tumor cells are further enhanced upon re-implantation in vivo, whereas secondary xenografts derived from the non-hypoxic tumor cells remain similar to the primary xenografts. Interestingly, the phenotypes exhibited by the hypoxic tumor cells are stable and remain distinctively different from those of the non-hypoxic tumor cells isolated from the same tumor mass even when they are maintained under the same ambient culture conditions. Mechanistically, the PI3K/AKT pathway is strongly potentiated in the hypoxic tumor cells and is required to maintain the CSC-like phenotype. Importantly, the differential cell fates between hypoxic and non-hypoxic tumor cells are only found in tumor cells isolated from the hypoxic TME in vivo and are not seen in tumor cells treated by hypoxia in vitro alone.RESULTSWe have found that hypoxic tumor cells freshly isolated from xenografts contain increased subpopulations of tumor cells with cancer stem cell (CSC)-like characteristics. The CSC characteristics of the hypoxic tumor cells are further enhanced upon re-implantation in vivo, whereas secondary xenografts derived from the non-hypoxic tumor cells remain similar to the primary xenografts. Interestingly, the phenotypes exhibited by the hypoxic tumor cells are stable and remain distinctively different from those of the non-hypoxic tumor cells isolated from the same tumor mass even when they are maintained under the same ambient culture conditions. Mechanistically, the PI3K/AKT pathway is strongly potentiated in the hypoxic tumor cells and is required to maintain the CSC-like phenotype. Importantly, the differential cell fates between hypoxic and non-hypoxic tumor cells are only found in tumor cells isolated from the hypoxic TME in vivo and are not seen in tumor cells treated by hypoxia in vitro alone.These previously unknown observations suggest that the hypoxic TME may promote malignant progression and therapy resistance by coordinating induction, selection and/or preferential maintenance of the CSC-like phenotype in tumor cells.CONCLUSIONSThese previously unknown observations suggest that the hypoxic TME may promote malignant progression and therapy resistance by coordinating induction, selection and/or preferential maintenance of the CSC-like phenotype in tumor cells. Tumor hypoxia is an independent prognostic factor associated with poor patient survival. Emerging evidence suggests that hypoxia can potentially maintain or enhance the stem cell phenotype of both normal stem cells and cancer cells. However, it remains to be determined whether cell fate is regulated in vivo by the hypoxic tumor microenvironment (TME). We established a hypoxia-sensing xenograft model to identify hypoxic tumor cell in vivo primarily using human breast cancer cell lines MDA-MB-231 and MCF7. Hypoxic tumor cells were identified in situ by fluorescence of green fluorescence protein. They were further isolated from xenografts, purified and sorted by flow cytometry for detailed analysis of their stem cell characteristics. We have found that hypoxic tumor cells freshly isolated from xenografts contain increased subpopulations of tumor cells with cancer stem cell (CSC)-like characteristics. The CSC characteristics of the hypoxic tumor cells are further enhanced upon re-implantation in vivo, whereas secondary xenografts derived from the non-hypoxic tumor cells remain similar to the primary xenografts. Interestingly, the phenotypes exhibited by the hypoxic tumor cells are stable and remain distinctively different from those of the non-hypoxic tumor cells isolated from the same tumor mass even when they are maintained under the same ambient culture conditions. Mechanistically, the PI3K/AKT pathway is strongly potentiated in the hypoxic tumor cells and is required to maintain the CSC-like phenotype. Importantly, the differential cell fates between hypoxic and non-hypoxic tumor cells are only found in tumor cells isolated from the hypoxic TME in vivo and are not seen in tumor cells treated by hypoxia in vitro alone. These previously unknown observations suggest that the hypoxic TME may promote malignant progression and therapy resistance by coordinating induction, selection and/or preferential maintenance of the CSC-like phenotype in tumor cells. |
ArticleNumber | 16 |
Audience | Academic |
Author | Kim, Hoon Glazer, Peter M. Lin, Qun Yun, Zhong |
Author_xml | – sequence: 1 givenname: Hoon surname: Kim fullname: Kim, Hoon – sequence: 2 givenname: Qun surname: Lin fullname: Lin, Qun – sequence: 3 givenname: Peter M. surname: Glazer fullname: Glazer, Peter M. – sequence: 4 givenname: Zhong orcidid: 0000-0003-4123-747X surname: Yun fullname: Yun, Zhong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29510720$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ul1rHCEUlZLSJNv-gL4UoS99mVTHj9GXQghtEwj0JYW-iTq6a5gZt-ouyb-v00lCNpQiotx7zuF-nFNwNMXJAfAeozOMBf-cMUFMNAjXKyltxCtwgilnDaPtr6Nn_2NwmvMtQrgTTLwBx61kGHUtOgH2ZuPg5n4b74KFZTfGBMdgU3TTPqQ4jW4qMExwH_YRZjc4WzIslWL1ZF2CubgRWjcM0OviYPTQJKdzeczPqfwWvPZ6yO7dw7sCP799vbm4bK5_fL-6OL9uLJOiNJyYljFje9ohYqRh2lNuNGox8UxKQxD31nPJJTJMatQ50jthhOScE8odWYGrRbeP-lZtUxh1uldRB_U3ENNa6VSCHZzqWiK5bz3peklbSSVDlGFs-hqmXJuq9WXR2u7M6Hpb55D0cCB6mJnCRq3jXjFBUVcbWIFPDwIp_t65XNQY8jwOPbm4y6pFGHPMaUcq9OMCXetaWph8rIp2hqtzVofBSCdwRZ39A1VP7-rGqjF8qPEDwofnLTzV_rj8CsALoO475-T8EwQjNRtMLQZT1WBqNpgSldO94NhQdAlxnkIY_sP8A_Ab02E |
CitedBy_id | crossref_primary_10_1007_s12079_021_00648_w crossref_primary_10_1016_j_devcel_2021_05_011 crossref_primary_10_1186_s13287_024_03880_4 crossref_primary_10_3389_fcell_2023_1082057 crossref_primary_10_3389_fmolb_2023_1297611 crossref_primary_10_3390_cancers12123863 crossref_primary_10_1155_2020_3189217 crossref_primary_10_3390_cancers11081128 crossref_primary_10_3390_pr9010045 crossref_primary_10_1007_s00432_019_03080_1 crossref_primary_10_1016_j_bbcan_2018_10_006 crossref_primary_10_1038_s41598_019_47116_5 crossref_primary_10_1080_14728222_2023_2259096 crossref_primary_10_12677_ACM_2023_13112537 crossref_primary_10_2217_epi_2023_0430 crossref_primary_10_3390_ijms25115876 crossref_primary_10_1016_j_pan_2024_02_002 crossref_primary_10_3389_fmolb_2020_00079 crossref_primary_10_3390_ijms20061336 crossref_primary_10_3389_fneur_2023_1188383 crossref_primary_10_1038_s41467_019_12412_1 crossref_primary_10_1186_s12935_019_0888_9 crossref_primary_10_3390_biom14121651 crossref_primary_10_1016_j_lfs_2018_07_034 crossref_primary_10_2174_1568009622666211224154952 crossref_primary_10_1016_j_tips_2019_01_003 crossref_primary_10_1016_j_cej_2023_145498 crossref_primary_10_1038_s41467_020_16352_z crossref_primary_10_1002_advs_202404853 crossref_primary_10_1016_j_bbadis_2024_167549 crossref_primary_10_1016_j_gep_2021_119181 crossref_primary_10_1016_j_critrevonc_2022_103796 crossref_primary_10_3390_cancers12123716 crossref_primary_10_3390_ijms19103047 crossref_primary_10_2147_DDDT_S247730 crossref_primary_10_3389_fonc_2018_00235 crossref_primary_10_3390_cancers11101569 crossref_primary_10_1007_s12094_024_03728_6 crossref_primary_10_1097_CAD_0000000000001065 crossref_primary_10_3390_antiox10111801 crossref_primary_10_3390_cells8090957 crossref_primary_10_3390_cancers13112784 crossref_primary_10_1002_mc_23347 crossref_primary_10_1002_mco2_176 crossref_primary_10_3390_cancers13040736 crossref_primary_10_4103_jcrt_jcrt_1834_22 crossref_primary_10_1002_jcp_29252 crossref_primary_10_3390_ijms23031665 crossref_primary_10_3389_fonc_2023_981247 crossref_primary_10_1016_j_actbio_2020_02_006 crossref_primary_10_1016_j_gendis_2023_05_024 crossref_primary_10_1016_j_ebiom_2021_103303 crossref_primary_10_1038_s41419_021_04116_6 crossref_primary_10_2147_IJN_S460387 crossref_primary_10_1186_s12964_023_01302_1 crossref_primary_10_26442_18151434_2020_4_200495 crossref_primary_10_3390_cancers13050988 crossref_primary_10_1039_C9RA02741F crossref_primary_10_1016_j_phrs_2021_105609 crossref_primary_10_1016_j_canlet_2018_05_047 crossref_primary_10_1177_2041731420933407 crossref_primary_10_1039_D3LC00630A crossref_primary_10_1016_j_stem_2018_12_009 crossref_primary_10_1038_s41598_019_46210_y crossref_primary_10_3390_molecules26092615 crossref_primary_10_1038_s43018_023_00595_y crossref_primary_10_1111_cpr_12822 crossref_primary_10_3390_cancers11091240 crossref_primary_10_1016_j_phymed_2024_155824 crossref_primary_10_3390_cancers12092482 crossref_primary_10_3390_cancers15061897 crossref_primary_10_1016_j_critrevonc_2020_103174 crossref_primary_10_1016_j_semcancer_2018_07_007 crossref_primary_10_4103_jcrt_jcrt_1458_21 crossref_primary_10_1039_D2RA02005J crossref_primary_10_1111_cas_14890 crossref_primary_10_1002_adhm_202202609 crossref_primary_10_1109_OJEMB_2020_2965084 crossref_primary_10_1158_0008_5472_CAN_21_0753 crossref_primary_10_1016_j_ejphar_2023_175565 crossref_primary_10_1002_1878_0261_12828 crossref_primary_10_1186_s12935_020_01719_5 crossref_primary_10_3389_fimmu_2022_933329 crossref_primary_10_3389_pore_2023_1610801 crossref_primary_10_1002_jcp_29337 crossref_primary_10_1016_j_apmt_2023_102015 |
Cites_doi | 10.1667/RR13959.1 10.4161/cbt.9.12.12347 10.1038/ncb3465 10.18632/oncotarget.2997 10.1007/978-1-4614-5915-6_2 10.1016/j.cub.2016.11.057 10.18632/oncotarget.11743 10.1158/0008-5472.CAN-15-2402 10.1038/nn.2955 10.1074/jbc.C600120200 10.1073/pnas.1018866109 10.1007/s10555-007-9055-1 10.1111/cas.13147 10.1016/j.ccr.2009.03.018 10.1186/bcr1673 10.1016/j.canlet.2007.08.025 10.1073/pnas.1602883113 10.1002/jcb.25972 10.1046/j.1563-258X.2002.02032.x 10.1016/S1470-2045(11)70191-7 10.1016/j.stem.2010.07.007 10.1016/j.humpath.2007.12.003 10.1186/1471-2407-14-283 10.1038/nrm2354 10.1126/science.aah4199 10.1007/s10549-012-2289-9 10.1634/stemcells.20-4-347 10.1016/j.radonc.2015.06.028 10.1371/journal.pone.0139112 10.1038/sj.neo.7900192 10.1038/sj.bjc.6602245 10.1158/1078-0432.CCR-13-0542 10.1016/j.radonc.2012.02.002 10.1126/science.aah4307 10.1042/CS20150451 10.18632/oncotarget.5564 10.1634/stemcells.2007-0724 10.1158/0008-5472.CAN-09-1605 10.3109/14756366.2014.966704 10.1038/nrc2499 10.1038/sj.bjc.6605450 10.1073/pnas.102660199 10.1002/jcp.24603 10.1038/sj.gt.3301124 10.1016/j.ceb.2012.01.005 10.1016/j.stem.2014.02.012 10.1136/jcp.2011.090456 10.1016/j.molcel.2015.10.031 10.1177/1758834014530023 10.1002/path.2304 10.1073/pnas.0904606106 10.1016/j.prp.2015.05.011 10.1016/j.stem.2014.02.006 10.1016/B978-0-12-385071-3.00006-X 10.1016/j.cell.2016.02.041 10.1128/MCB.18.5.2845 10.1242/dev.137075 10.1016/j.ccr.2007.01.013 10.1073/pnas.1402012111 10.1038/35102167 10.1080/15384047.2016.1250988 10.1038/sj.bjc.6600126 10.1073/pnas.1520032112 10.1053/j.semnuclmed.2014.11.002 10.1016/j.stem.2015.02.015 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2018 BioMed Central Ltd. The Author(s). 2018 |
Copyright_xml | – notice: COPYRIGHT 2018 BioMed Central Ltd. – notice: The Author(s). 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1186/s13058-018-0944-8 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1465-542X |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_72396f2f37d942949504511bd39646ab PMC5840770 A547053781 29510720 10_1186_s13058_018_0944_8 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH HHS grantid: R01 ES005775 – fundername: NIEHS NIH HHS grantid: R01 ES005775 – fundername: NCI NIH HHS grantid: R01 CA178254 – fundername: ; grantid: 13-SCA-YALE-05 – fundername: ; grantid: R01 ES005775 – fundername: ; grantid: R01 CA178254 |
GroupedDBID | --- 04C 0R~ 23N 2WC 4.4 53G 5GY 5VS 6J9 7X7 8FI 8FJ AAFWJ AAJSJ AASML AAWTL AAYXX ABUWG ACGFO ACGFS ACJQM ACMJI ACPRK ADBBV ADFRT ADUKV AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIAM AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BMSDO BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EBD EBLON EBS EIHBH EJD F5P FYUFA GROUPED_DOAJ GX1 H13 HMCUK HYE IAO ICW IHR INH INR ITC KQ8 O5R O5S OK1 P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RBZ ROL RPM RSV SBL SOJ TR2 U2A UKHRP WOQ 3V. ACRMQ ADINQ C24 CGR CUY CVF ECM EIF NPM PMFND 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c598t-63b255bcd4703b9b5af46ba0213f599b306fcf69690b59a07e3de8b89666346e3 |
IEDL.DBID | DOA |
ISSN | 1465-542X 1465-5411 |
IngestDate | Wed Aug 27 01:28:19 EDT 2025 Thu Aug 21 14:26:22 EDT 2025 Fri Jul 11 04:34:32 EDT 2025 Tue Jun 17 21:06:01 EDT 2025 Tue Jun 10 20:50:36 EDT 2025 Thu Jan 02 23:02:49 EST 2025 Thu Apr 24 23:10:12 EDT 2025 Tue Jul 01 02:43:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Xenograft Cell fate PI3K Tumor microenvironment Cancer stem cell Breast cancer cell Hypoxia AKT |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c598t-63b255bcd4703b9b5af46ba0213f599b306fcf69690b59a07e3de8b89666346e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4123-747X |
OpenAccessLink | https://doaj.org/article/72396f2f37d942949504511bd39646ab |
PMID | 29510720 |
PQID | 2011616473 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_72396f2f37d942949504511bd39646ab pubmedcentral_primary_oai_pubmedcentral_nih_gov_5840770 proquest_miscellaneous_2011616473 gale_infotracmisc_A547053781 gale_infotracacademiconefile_A547053781 pubmed_primary_29510720 crossref_primary_10_1186_s13058_018_0944_8 crossref_citationtrail_10_1186_s13058_018_0944_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-06 |
PublicationDateYYYYMMDD | 2018-03-06 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Breast cancer research : BCR |
PublicationTitleAlternate | Breast Cancer Res |
PublicationYear | 2018 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | H Zhang (944_CR62) 2015; 112 A Eustace (944_CR34) 2013; 19 A Shiraishi (944_CR58) 2017; 108 A Couvelard (944_CR17) 2005; 92 FM Buffa (944_CR33) 2010; 102 BS Sorensen (944_CR35) 2015; 116 T Reya (944_CR38) 2001; 414 Z Yun (944_CR7) 2014; 772 AB Hjelmeland (944_CR39) 2011; 14 A Kreso (944_CR10) 2014; 14 AS Clark (944_CR50) 2002; 1 SJ Conley (944_CR63) 2012; 109 P Vaupel (944_CR2) 2007; 26 Q Lin (944_CR4) 2010; 9 S Koren (944_CR36) 2015; 60 G Perez-Tenorio (944_CR51) 2002; 86 RC D'Angelo (944_CR53) 2010; 95 C Zhang (944_CR61) 2016; 7 H Masuda (944_CR48) 2012; 136 M Shipitsin (944_CR66) 2007; 11 Y Kim (944_CR22) 2009; 69 G Fluegen (944_CR30) 2017; 19 944_CR56 Z Li (944_CR20) 2009; 15 J Mathieu (944_CR24) 2014; 14 S Badve (944_CR42) 2012; 13 JS Yu (944_CR55) 2016; 143 JE Visvader (944_CR9) 2008; 8 S Ricardo (944_CR44) 2011; 64 V Plaks (944_CR37) 2015; 16 HJ Kim (944_CR45) 2007; 258 D Voskas (944_CR54) 2014; 229 N Dhani (944_CR1) 2015; 45 A Pietras (944_CR18) 2008; 214 A Pietras (944_CR19) 2009; 106 P Mu (944_CR13) 2017; 355 C Liu (944_CR11) 2015; 183 T Xin (944_CR14) 2016; 164 D Vordermark (944_CR27) 2001; 3 N Kapucuoglu (944_CR43) 2015; 211 C Zhang (944_CR60) 2016; 113 V Desplat (944_CR21) 2002; 20 MC Simon (944_CR5) 2008; 9 A Mohyeldin (944_CR8) 2010; 7 B Das (944_CR15) 2008; 26 KE Lee (944_CR40) 2012; 24 P Vaupel (944_CR64) 1991; 51 MH Starmans (944_CR67) 2012; 102 C Fillmore (944_CR65) 2007; 9 Q Lin (944_CR6) 2006; 281 C Schmaltz (944_CR23) 1998; 18 Q Li (944_CR28) 2016; 17 MJ Kwon (944_CR46) 2015; 10 SY Ku (944_CR12) 2017; 355 L Xiang (944_CR59) 2014; 5 E Paplomata (944_CR52) 2014; 6 O Iriondo (944_CR57) 2015; 6 944_CR31 M Moerkens (944_CR49) 2014; 14 CG Hubert (944_CR26) 2016; 76 E Mylona (944_CR47) 2008; 39 T Shibata (944_CR29) 2000; 7 GL Semenza (944_CR41) 2015; 129 P Vaupel (944_CR68) 2002; 152 M Hockel (944_CR3) 1996; 56 A Jogi (944_CR16) 2002; 99 EO Pettersen (944_CR32) 2015; 30 S Lehmann (944_CR25) 2017; 27 |
References_xml | – volume: 183 start-page: 487 issue: 5 year: 2015 ident: 944_CR11 publication-title: Radiat Res. doi: 10.1667/RR13959.1 – volume: 9 start-page: 949 issue: 12 year: 2010 ident: 944_CR4 publication-title: Cancer Biol Ther. doi: 10.4161/cbt.9.12.12347 – volume: 19 start-page: 120 issue: 2 year: 2017 ident: 944_CR30 publication-title: Nat Cell Biol. doi: 10.1038/ncb3465 – volume: 5 start-page: 12509 issue: 24 year: 2014 ident: 944_CR59 publication-title: Oncotarget. doi: 10.18632/oncotarget.2997 – volume: 772 start-page: 41 year: 2014 ident: 944_CR7 publication-title: Adv Exp Med Biol. doi: 10.1007/978-1-4614-5915-6_2 – volume: 27 start-page: 392 issue: 3 year: 2017 ident: 944_CR25 publication-title: Curr Biol. doi: 10.1016/j.cub.2016.11.057 – volume: 7 start-page: 64527 issue: 40 year: 2016 ident: 944_CR61 publication-title: Oncotarget. doi: 10.18632/oncotarget.11743 – volume: 76 start-page: 2465 issue: 8 year: 2016 ident: 944_CR26 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-15-2402 – volume: 14 start-page: 1375 issue: 11 year: 2011 ident: 944_CR39 publication-title: Nat Neurosci. doi: 10.1038/nn.2955 – volume: 281 start-page: 30678 issue: 41 year: 2006 ident: 944_CR6 publication-title: J Biol Chem. doi: 10.1074/jbc.C600120200 – volume: 109 start-page: 2784 issue: 8 year: 2012 ident: 944_CR63 publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.1018866109 – volume: 26 start-page: 225 issue: 2 year: 2007 ident: 944_CR2 publication-title: Cancer Metastasis Rev. doi: 10.1007/s10555-007-9055-1 – volume: 108 start-page: 362 issue: 3 year: 2017 ident: 944_CR58 publication-title: Cancer Sci. doi: 10.1111/cas.13147 – volume: 15 start-page: 501 issue: 6 year: 2009 ident: 944_CR20 publication-title: Cancer Cell. doi: 10.1016/j.ccr.2009.03.018 – volume: 9 start-page: 303 issue: 3 year: 2007 ident: 944_CR65 publication-title: Breast Cancer Res. doi: 10.1186/bcr1673 – volume: 258 start-page: 98 issue: 1 year: 2007 ident: 944_CR45 publication-title: Cancer Lett. doi: 10.1016/j.canlet.2007.08.025 – volume: 113 start-page: E2047 issue: 14 year: 2016 ident: 944_CR60 publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.1602883113 – ident: 944_CR56 doi: 10.1002/jcb.25972 – volume: 152 start-page: 334 issue: 13–14 year: 2002 ident: 944_CR68 publication-title: Wien Med Wochenschr. doi: 10.1046/j.1563-258X.2002.02032.x – volume: 13 start-page: e43 issue: 1 year: 2012 ident: 944_CR42 publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(11)70191-7 – volume: 7 start-page: 150 issue: 2 year: 2010 ident: 944_CR8 publication-title: Cell Stem Cell. doi: 10.1016/j.stem.2010.07.007 – volume: 39 start-page: 1096 issue: 7 year: 2008 ident: 944_CR47 publication-title: Hum Pathol. doi: 10.1016/j.humpath.2007.12.003 – volume: 14 start-page: 283 year: 2014 ident: 944_CR49 publication-title: BMC Cancer. doi: 10.1186/1471-2407-14-283 – volume: 9 start-page: 285 issue: 4 year: 2008 ident: 944_CR5 publication-title: Nat Rev Mol Cell Biol. doi: 10.1038/nrm2354 – volume: 355 start-page: 78 issue: 6320 year: 2017 ident: 944_CR12 publication-title: Science. doi: 10.1126/science.aah4199 – volume: 136 start-page: 331 issue: 2 year: 2012 ident: 944_CR48 publication-title: Breast Cancer Res Treat. doi: 10.1007/s10549-012-2289-9 – volume: 20 start-page: 347 issue: 4 year: 2002 ident: 944_CR21 publication-title: Stem Cells. doi: 10.1634/stemcells.20-4-347 – volume: 116 start-page: 346 issue: 3 year: 2015 ident: 944_CR35 publication-title: Radiother Oncol. doi: 10.1016/j.radonc.2015.06.028 – volume: 10 start-page: e0139112 issue: 10 year: 2015 ident: 944_CR46 publication-title: PLoS One. doi: 10.1371/journal.pone.0139112 – volume: 3 start-page: 527 issue: 6 year: 2001 ident: 944_CR27 publication-title: Neoplasia. doi: 10.1038/sj.neo.7900192 – volume: 92 start-page: 94 issue: 1 year: 2005 ident: 944_CR17 publication-title: Br J Cancer. doi: 10.1038/sj.bjc.6602245 – volume: 19 start-page: 4879 issue: 17 year: 2013 ident: 944_CR34 publication-title: Clin Cancer Res. doi: 10.1158/1078-0432.CCR-13-0542 – volume: 102 start-page: 436 issue: 3 year: 2012 ident: 944_CR67 publication-title: Radiother Oncol. doi: 10.1016/j.radonc.2012.02.002 – volume: 355 start-page: 84 issue: 6320 year: 2017 ident: 944_CR13 publication-title: Science. doi: 10.1126/science.aah4307 – volume: 129 start-page: 1037 issue: 12 year: 2015 ident: 944_CR41 publication-title: Clin Sci (Lond). doi: 10.1042/CS20150451 – volume: 6 start-page: 31721 issue: 31 year: 2015 ident: 944_CR57 publication-title: Oncotarget. doi: 10.18632/oncotarget.5564 – volume: 26 start-page: 1818 issue: 7 year: 2008 ident: 944_CR15 publication-title: Stem Cells. doi: 10.1634/stemcells.2007-0724 – volume: 69 start-page: 9271 issue: 24 year: 2009 ident: 944_CR22 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-09-1605 – volume: 30 start-page: 689 issue: 5 year: 2015 ident: 944_CR32 publication-title: J Enzyme Inhib Med Chem. doi: 10.3109/14756366.2014.966704 – volume: 8 start-page: 755 issue: 10 year: 2008 ident: 944_CR9 publication-title: Nat Rev Cancer. doi: 10.1038/nrc2499 – volume: 102 start-page: 428 issue: 2 year: 2010 ident: 944_CR33 publication-title: Br J Cancer. doi: 10.1038/sj.bjc.6605450 – volume: 99 start-page: 7021 issue: 10 year: 2002 ident: 944_CR16 publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.102660199 – volume: 229 start-page: 1312 issue: 10 year: 2014 ident: 944_CR54 publication-title: J Cell Physiol. doi: 10.1002/jcp.24603 – volume: 51 start-page: 3316 issue: 12 year: 1991 ident: 944_CR64 publication-title: Cancer Res. – volume: 7 start-page: 493 issue: 6 year: 2000 ident: 944_CR29 publication-title: Gene Ther. doi: 10.1038/sj.gt.3301124 – volume: 24 start-page: 232 issue: 2 year: 2012 ident: 944_CR40 publication-title: Curr Opin Cell Biol. doi: 10.1016/j.ceb.2012.01.005 – volume: 14 start-page: 592 issue: 5 year: 2014 ident: 944_CR24 publication-title: Cell Stem Cell. doi: 10.1016/j.stem.2014.02.012 – volume: 64 start-page: 937 issue: 11 year: 2011 ident: 944_CR44 publication-title: J Clin Pathol. doi: 10.1136/jcp.2011.090456 – volume: 60 start-page: 537 issue: 4 year: 2015 ident: 944_CR36 publication-title: Mol Cell. doi: 10.1016/j.molcel.2015.10.031 – volume: 56 start-page: 4509 issue: 19 year: 1996 ident: 944_CR3 publication-title: Cancer Res. – volume: 6 start-page: 154 issue: 4 year: 2014 ident: 944_CR52 publication-title: Ther Adv Med Oncol. doi: 10.1177/1758834014530023 – volume: 214 start-page: 482 issue: 4 year: 2008 ident: 944_CR18 publication-title: J Pathol. doi: 10.1002/path.2304 – volume: 106 start-page: 16805 issue: 39 year: 2009 ident: 944_CR19 publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.0904606106 – volume: 211 start-page: 740 issue: 10 year: 2015 ident: 944_CR43 publication-title: Pathol Res Pract. doi: 10.1016/j.prp.2015.05.011 – volume: 14 start-page: 275 issue: 3 year: 2014 ident: 944_CR10 publication-title: Cell Stem Cell. doi: 10.1016/j.stem.2014.02.006 – volume: 95 start-page: 113 year: 2010 ident: 944_CR53 publication-title: Prog Mol Biol Transl Sci. doi: 10.1016/B978-0-12-385071-3.00006-X – volume: 164 start-page: 1212 issue: 6 year: 2016 ident: 944_CR14 publication-title: Cell. doi: 10.1016/j.cell.2016.02.041 – volume: 18 start-page: 2845 issue: 5 year: 1998 ident: 944_CR23 publication-title: Mol Cell Biol. doi: 10.1128/MCB.18.5.2845 – volume: 143 start-page: 3050 issue: 17 year: 2016 ident: 944_CR55 publication-title: Development. doi: 10.1242/dev.137075 – volume: 11 start-page: 259 issue: 3 year: 2007 ident: 944_CR66 publication-title: Cancer Cell. doi: 10.1016/j.ccr.2007.01.013 – ident: 944_CR31 doi: 10.1073/pnas.1402012111 – volume: 414 start-page: 105 issue: 6859 year: 2001 ident: 944_CR38 publication-title: Nature. doi: 10.1038/35102167 – volume: 1 start-page: 707 issue: 9 year: 2002 ident: 944_CR50 publication-title: Mol Cancer Ther. – volume: 17 start-page: 1266 issue: 12 year: 2016 ident: 944_CR28 publication-title: Cancer Biol Ther. doi: 10.1080/15384047.2016.1250988 – volume: 86 start-page: 540 issue: 4 year: 2002 ident: 944_CR51 publication-title: Br J Cancer. doi: 10.1038/sj.bjc.6600126 – volume: 112 start-page: E6215 issue: 45 year: 2015 ident: 944_CR62 publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.1520032112 – volume: 45 start-page: 110 issue: 2 year: 2015 ident: 944_CR1 publication-title: Semin Nucl Med. doi: 10.1053/j.semnuclmed.2014.11.002 – volume: 16 start-page: 225 issue: 3 year: 2015 ident: 944_CR37 publication-title: Cell Stem Cell. doi: 10.1016/j.stem.2015.02.015 |
SSID | ssj0017858 |
Score | 2.5332851 |
Snippet | Tumor hypoxia is an independent prognostic factor associated with poor patient survival. Emerging evidence suggests that hypoxia can potentially maintain or... Abstract Background Tumor hypoxia is an independent prognostic factor associated with poor patient survival. Emerging evidence suggests that hypoxia can... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 16 |
SubjectTerms | AKT Animals Breast cancer Breast cancer cell Breast Neoplasms - genetics Breast Neoplasms - pathology Cancer stem cell Cell Differentiation - genetics Cell fate Cell Lineage - genetics Development and progression Female Humans Hypoxia MCF-7 Cells Mice Neoplastic Stem Cells - metabolism Neoplastic Stem Cells - pathology PI3K Prognosis Stem cells Tumor Hypoxia - genetics Tumor Microenvironment - genetics Tumors Xenograft Model Antitumor Assays Xenotransplantation |
Title | The hypoxic tumor microenvironment in vivo selects the cancer stem cell fate of breast cancer cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29510720 https://www.proquest.com/docview/2011616473 https://pubmed.ncbi.nlm.nih.gov/PMC5840770 https://doaj.org/article/72396f2f37d942949504511bd39646ab |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA96gvgieudH9VwiiIJQbtt8P-7KHYdwhxweLL6EJG25Bbc9tt3D---dSbvLFkFffOlDJ6VJZiYzk0x-Q8iHXDnnAjep4VlIuchcqrUQqdEOArEqk0WsEnFxKc-v-deFWOyV-sKcsB4euJ-4E5UzI6u8YqowsHaCP4-IKJkv4DWXzuPqCzZvG0wN5wdKCz2cYWZanrSwUgtM2sKjfs5TPbJCEaz_zyV5zyaN8yX3DNDZM_J08BzprO_xc_KgrA_J0ayGqHl1Tz_SmMsZN8kPyeOL4cj8iAQQBHpzf9v8WgbabVbNmq4wCW_vhhtd1vRuedfQNhbFaSk4hTSgOKwp4jxT3N2nFXiltKmoxzT2bktHUvuCXJ-dfv9yng6VFdIgjO5SyTyEEj4UHBTeGy9cxaV3YO9ZJYzxEEdUoZIGQmcvjJuqkhWl9hpiI8m4LNlLclA3dfmawG8McyrL88xD8BOCD1mhCykKpqURPkvIdDvTNgyw41j94qeN4YeWtmeOBeZYZI7VCfm8--S2x9z4W-M5sm_XEOGy4wsQIjsIkf2XECXkEzLfolJD54Ib7ibAEBEey84ETJRgSsNwjkctQRnDiPx-Kz4WSZjBVpfNprXoaEkEb2MJedWL067PObq5Kp8mRI0EbTSoMaVe3kQscPAfp0pN3_yPWXhLnuRRRbDexzE56Nab8h24XJ2fkIdqoSbk0fz08tvVJOoaPK_mP34Da1UoVQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+hypoxic+tumor+microenvironment+in+vivo+selects+the+cancer+stem+cell+fate+of+breast+cancer+cells&rft.jtitle=Breast+cancer+research+%3A+BCR&rft.au=Kim%2C+Hoon&rft.au=Lin%2C+Qun&rft.au=Glazer%2C+Peter+M.&rft.au=Yun%2C+Zhong&rft.date=2018-03-06&rft.issn=1465-542X&rft.eissn=1465-542X&rft.volume=20&rft.issue=1&rft_id=info:doi/10.1186%2Fs13058-018-0944-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13058_018_0944_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-542X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-542X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-542X&client=summon |