Metabolomic investigation of urinary extracellular vesicles for early detection and screening of lung cancer

Lung cancer is a prevalent cancer type worldwide that often remains asymptomatic in its early stages and is frequently diagnosed at an advanced stage with a poor prognosis due to the lack of effective diagnostic techniques and molecular biomarkers. However, emerging evidence suggests that extracellu...

Full description

Saved in:
Bibliographic Details
Published inJournal of nanobiotechnology Vol. 21; no. 1; pp. 153 - 10
Main Authors Yang, Qinsi, Luo, Jiaxin, Xu, Hao, Huang, Liu, Zhu, Xinxi, Li, Hengrui, Yang, Rui, Peng, Bo, Sun, Da, Zhu, Qingfu, Liu, Fei
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 16.05.2023
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lung cancer is a prevalent cancer type worldwide that often remains asymptomatic in its early stages and is frequently diagnosed at an advanced stage with a poor prognosis due to the lack of effective diagnostic techniques and molecular biomarkers. However, emerging evidence suggests that extracellular vesicles (EVs) may promote lung cancer cell proliferation and metastasis, and modulate the anti-tumor immune response in lung cancer carcinogenesis, making them potential biomarkers for early cancer detection. To investigate the potential of urinary EVs for non-invasive detection and screening of patients at early stages, we studied metabolomic signatures of lung cancer. Specifically, we conducted metabolomic analysis of 102 EV samples and identified metabolome profiles of urinary EVs, including organic acids and derivatives, lipids and lipid-like molecules, organheterocyclic compounds, and benzenoids. Using machine learning with a random forest model, we screened for potential markers of lung cancer and identified a marker panel consisting of Kanzonol Z, Xanthosine, Nervonyl carnitine, and 3,4-Dihydroxybenzaldehyde, which exhibited a diagnostic potency of 96% for the testing cohort (AUC value). Importantly, this marker panel also demonstrated effective prediction for the validation set, with an AUC value of 84%, indicating the reliability of the marker screening process. Our findings suggest that the metabolomic analysis of urinary EVs provides a promising source of non-invasive markers for lung cancer diagnostics. We believe that the EV metabolic signatures could be used to develop clinical applications for the early detection and screening of lung cancer, potentially improving patient outcomes.
AbstractList Lung cancer is a prevalent cancer type worldwide that often remains asymptomatic in its early stages and is frequently diagnosed at an advanced stage with a poor prognosis due to the lack of effective diagnostic techniques and molecular biomarkers. However, emerging evidence suggests that extracellular vesicles (EVs) may promote lung cancer cell proliferation and metastasis, and modulate the anti-tumor immune response in lung cancer carcinogenesis, making them potential biomarkers for early cancer detection. To investigate the potential of urinary EVs for non-invasive detection and screening of patients at early stages, we studied metabolomic signatures of lung cancer. Specifically, we conducted metabolomic analysis of 102 EV samples and identified metabolome profiles of urinary EVs, including organic acids and derivatives, lipids and lipid-like molecules, organheterocyclic compounds, and benzenoids. Using machine learning with a random forest model, we screened for potential markers of lung cancer and identified a marker panel consisting of Kanzonol Z, Xanthosine, Nervonyl carnitine, and 3,4-Dihydroxybenzaldehyde, which exhibited a diagnostic potency of 96% for the testing cohort (AUC value). Importantly, this marker panel also demonstrated effective prediction for the validation set, with an AUC value of 84%, indicating the reliability of the marker screening process. Our findings suggest that the metabolomic analysis of urinary EVs provides a promising source of non-invasive markers for lung cancer diagnostics. We believe that the EV metabolic signatures could be used to develop clinical applications for the early detection and screening of lung cancer, potentially improving patient outcomes.
Lung cancer is a prevalent cancer type worldwide that often remains asymptomatic in its early stages and is frequently diagnosed at an advanced stage with a poor prognosis due to the lack of effective diagnostic techniques and molecular biomarkers. However, emerging evidence suggests that extracellular vesicles (EVs) may promote lung cancer cell proliferation and metastasis, and modulate the anti-tumor immune response in lung cancer carcinogenesis, making them potential biomarkers for early cancer detection. To investigate the potential of urinary EVs for non-invasive detection and screening of patients at early stages, we studied metabolomic signatures of lung cancer. Specifically, we conducted metabolomic analysis of 102 EV samples and identified metabolome profiles of urinary EVs, including organic acids and derivatives, lipids and lipid-like molecules, organheterocyclic compounds, and benzenoids. Using machine learning with a random forest model, we screened for potential markers of lung cancer and identified a marker panel consisting of Kanzonol Z, Xanthosine, Nervonyl carnitine, and 3,4-Dihydroxybenzaldehyde, which exhibited a diagnostic potency of 96% for the testing cohort (AUC value). Importantly, this marker panel also demonstrated effective prediction for the validation set, with an AUC value of 84%, indicating the reliability of the marker screening process. Our findings suggest that the metabolomic analysis of urinary EVs provides a promising source of non-invasive markers for lung cancer diagnostics. We believe that the EV metabolic signatures could be used to develop clinical applications for the early detection and screening of lung cancer, potentially improving patient outcomes. Keywords: Lung cancer, Metabolomics, Extracellular vesicles, Early diagnosis
Lung cancer is a prevalent cancer type worldwide that often remains asymptomatic in its early stages and is frequently diagnosed at an advanced stage with a poor prognosis due to the lack of effective diagnostic techniques and molecular biomarkers. However, emerging evidence suggests that extracellular vesicles (EVs) may promote lung cancer cell proliferation and metastasis, and modulate the anti-tumor immune response in lung cancer carcinogenesis, making them potential biomarkers for early cancer detection. To investigate the potential of urinary EVs for non-invasive detection and screening of patients at early stages, we studied metabolomic signatures of lung cancer. Specifically, we conducted metabolomic analysis of 102 EV samples and identified metabolome profiles of urinary EVs, including organic acids and derivatives, lipids and lipid-like molecules, organheterocyclic compounds, and benzenoids. Using machine learning with a random forest model, we screened for potential markers of lung cancer and identified a marker panel consisting of Kanzonol Z, Xanthosine, Nervonyl carnitine, and 3,4-Dihydroxybenzaldehyde, which exhibited a diagnostic potency of 96% for the testing cohort (AUC value). Importantly, this marker panel also demonstrated effective prediction for the validation set, with an AUC value of 84%, indicating the reliability of the marker screening process. Our findings suggest that the metabolomic analysis of urinary EVs provides a promising source of non-invasive markers for lung cancer diagnostics. We believe that the EV metabolic signatures could be used to develop clinical applications for the early detection and screening of lung cancer, potentially improving patient outcomes.Lung cancer is a prevalent cancer type worldwide that often remains asymptomatic in its early stages and is frequently diagnosed at an advanced stage with a poor prognosis due to the lack of effective diagnostic techniques and molecular biomarkers. However, emerging evidence suggests that extracellular vesicles (EVs) may promote lung cancer cell proliferation and metastasis, and modulate the anti-tumor immune response in lung cancer carcinogenesis, making them potential biomarkers for early cancer detection. To investigate the potential of urinary EVs for non-invasive detection and screening of patients at early stages, we studied metabolomic signatures of lung cancer. Specifically, we conducted metabolomic analysis of 102 EV samples and identified metabolome profiles of urinary EVs, including organic acids and derivatives, lipids and lipid-like molecules, organheterocyclic compounds, and benzenoids. Using machine learning with a random forest model, we screened for potential markers of lung cancer and identified a marker panel consisting of Kanzonol Z, Xanthosine, Nervonyl carnitine, and 3,4-Dihydroxybenzaldehyde, which exhibited a diagnostic potency of 96% for the testing cohort (AUC value). Importantly, this marker panel also demonstrated effective prediction for the validation set, with an AUC value of 84%, indicating the reliability of the marker screening process. Our findings suggest that the metabolomic analysis of urinary EVs provides a promising source of non-invasive markers for lung cancer diagnostics. We believe that the EV metabolic signatures could be used to develop clinical applications for the early detection and screening of lung cancer, potentially improving patient outcomes.
Abstract Lung cancer is a prevalent cancer type worldwide that often remains asymptomatic in its early stages and is frequently diagnosed at an advanced stage with a poor prognosis due to the lack of effective diagnostic techniques and molecular biomarkers. However, emerging evidence suggests that extracellular vesicles (EVs) may promote lung cancer cell proliferation and metastasis, and modulate the anti-tumor immune response in lung cancer carcinogenesis, making them potential biomarkers for early cancer detection. To investigate the potential of urinary EVs for non-invasive detection and screening of patients at early stages, we studied metabolomic signatures of lung cancer. Specifically, we conducted metabolomic analysis of 102 EV samples and identified metabolome profiles of urinary EVs, including organic acids and derivatives, lipids and lipid-like molecules, organheterocyclic compounds, and benzenoids. Using machine learning with a random forest model, we screened for potential markers of lung cancer and identified a marker panel consisting of Kanzonol Z, Xanthosine, Nervonyl carnitine, and 3,4-Dihydroxybenzaldehyde, which exhibited a diagnostic potency of 96% for the testing cohort (AUC value). Importantly, this marker panel also demonstrated effective prediction for the validation set, with an AUC value of 84%, indicating the reliability of the marker screening process. Our findings suggest that the metabolomic analysis of urinary EVs provides a promising source of non-invasive markers for lung cancer diagnostics. We believe that the EV metabolic signatures could be used to develop clinical applications for the early detection and screening of lung cancer, potentially improving patient outcomes.
ArticleNumber 153
Audience Academic
Author Xu, Hao
Sun, Da
Liu, Fei
Peng, Bo
Yang, Rui
Zhu, Qingfu
Li, Hengrui
Huang, Liu
Luo, Jiaxin
Zhu, Xinxi
Yang, Qinsi
Author_xml – sequence: 1
  givenname: Qinsi
  surname: Yang
  fullname: Yang, Qinsi
– sequence: 2
  givenname: Jiaxin
  surname: Luo
  fullname: Luo, Jiaxin
– sequence: 3
  givenname: Hao
  surname: Xu
  fullname: Xu, Hao
– sequence: 4
  givenname: Liu
  surname: Huang
  fullname: Huang, Liu
– sequence: 5
  givenname: Xinxi
  surname: Zhu
  fullname: Zhu, Xinxi
– sequence: 6
  givenname: Hengrui
  surname: Li
  fullname: Li, Hengrui
– sequence: 7
  givenname: Rui
  surname: Yang
  fullname: Yang, Rui
– sequence: 8
  givenname: Bo
  surname: Peng
  fullname: Peng, Bo
– sequence: 9
  givenname: Da
  surname: Sun
  fullname: Sun, Da
– sequence: 10
  givenname: Qingfu
  surname: Zhu
  fullname: Zhu, Qingfu
– sequence: 11
  givenname: Fei
  surname: Liu
  fullname: Liu, Fei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37189121$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURB_wB1igSGxgkeLn2FmhquIxUhESj7XlONfBVcYudlLRf8_NTAudCiEvbDnnfs499xxXBzFFqKrnlJxSqldvCmWtpA1hvCG0Jbohj6ojKpRqOJXy4N75sDou5ZIQxgQTT6pDrqhuKaNH1fgJJtulMW2Cq0O8hjKFwU4hxTr5es4h2nxTw68pWwfjOI821ygKboRS-5RrsHm8qXuYwG2rbOzr4jJADHFYGOOMu7PRQX5aPfZ2LPDsdj-pvr9_9-38Y3Px-cP6_OyicbLVUyNbx6xXKwFWgnJMkJZ3lvQW-o5Z6hxY5SVznGsQnfKOAHjdAffcS98JflKtd9w-2UtzlcMGmzDJBrO9SHkwNk9LD8avbCuZBwJMi070XY8PI9BpygnvW2S93bGu5m4DvYOIVox70P0vMfwwQ7o2lOCMlOBIeHVLyOnnjAabTSiLmTZCmothmgrJpNIapS8fSC_TnCN6tajkSjDJ6V_VYLGDEH1aprNAzZkSrRBKU4Kq03-ocPWAs8Yk-YD3ewWv9wpQM-HgBzuXYtZfv-xrX9x35Y8dd8FCgd4JXE6lZPDGhWmbK_yLMKI7Zsmw2WXYYIbNNsNmYbMHpXf0_xT9Bm9N9PI
CitedBy_id crossref_primary_10_1002_advs_202401069
crossref_primary_10_3389_fimmu_2023_1254155
crossref_primary_10_1016_j_chemosphere_2025_144302
crossref_primary_10_1002_INMD_20230021
crossref_primary_10_1016_j_jconrel_2024_05_029
crossref_primary_10_1186_s12935_024_03366_6
crossref_primary_10_3389_fonc_2024_1486310
crossref_primary_10_1016_j_ijbiomac_2024_130074
crossref_primary_10_1002_jev2_70034
crossref_primary_10_20517_evcna_2024_12
crossref_primary_10_1016_j_snb_2024_135828
crossref_primary_10_1016_j_apsb_2024_06_010
crossref_primary_10_1002_jev2_12491
crossref_primary_10_1016_j_cca_2024_117845
crossref_primary_10_1038_s41596_024_01082_z
Cites_doi 10.1186/s12885-016-3022-6
10.1002/jev2.12093
10.1158/1055-9965.EPI-15-1191
10.1080/20013078.2018.1470442
10.1038/s41592-020-01034-x
10.1038/s41556-018-0040-4
10.1016/bs.acc.2016.07.003
10.1002/elps.201000598
10.1016/j.molonc.2016.10.003
10.3390/bioengineering9080363
10.1016/j.bios.2020.112290
10.1186/s12943-017-0753-1
10.1371/journal.pone.0104490
10.1039/D1NR04015D
10.1038/cgt.2016.77
10.3402/jev.v4.30087
10.1038/s41592-021-01303-3
10.1186/s12943-017-0726-4
10.3402/jev.v5.32570
10.1158/1055-9965.EPI-18-0569
10.1586/14737159.8.5.617
10.1016/j.intimp.2020.106353
10.1038/nrm.2017.125
10.1080/20013078.2019.1643670
10.1038/onc.2014.300
10.1038/s41551-018-0343-6
10.1016/j.cca.2015.12.031
10.1016/j.chemosphere.2018.11.044
10.1038/nature14581
10.1038/nchembio.2422
10.1080/20013078.2018.1461450
10.1186/s12943-021-01440-5
10.1002/1878-0261.12823
10.1158/0008-5472.CAN-14-0109
10.1016/j.ejca.2016.10.011
10.1007/s13277-016-5410-6
10.1111/resp.13479
10.1073/pnas.2108876118
10.1021/acs.chemrev.7b00534
10.1159/000489129
10.1038/s41392-020-00359-5
10.7150/thno.19890
10.1021/pr5003142
ContentType Journal Article
Copyright 2023. The Author(s).
COPYRIGHT 2023 BioMed Central Ltd.
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2023
Copyright_xml – notice: 2023. The Author(s).
– notice: COPYRIGHT 2023 BioMed Central Ltd.
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7TB
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
LK8
M0S
M1P
M7P
P64
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s12951-023-01908-0
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Mechanical & Transportation Engineering Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


Publicly Available Content Database
MEDLINE

CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1477-3155
EndPage 10
ExternalDocumentID oai_doaj_org_article_f6a952fe0e284b4dbdf76c0ec81303d9
PMC10186743
A749447810
37189121
10_1186_s12951_023_01908_0
Genre Journal Article
GeographicLocations China
United Kingdom--UK
United States--US
GeographicLocations_xml – name: China
– name: United Kingdom--UK
– name: United States--US
GroupedDBID ---
0R~
29L
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADDVE
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EBLON
EBS
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
I-F
IAO
IHR
INH
INR
ISR
ITC
ITG
ITH
KB.
KQ8
LK8
M1P
M48
M7P
MM.
M~E
O5R
O5S
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
RVI
SCM
SOJ
SV3
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
-A0
3V.
ACRMQ
ADINQ
C24
CGR
CUY
CVF
ECM
EIF
FRP
NPM
PMFND
7QO
7TB
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c598t-59c2af764ea5e7c24093ba0daedb2a1ccea7f52c338e4b7fc0eef8be3f3f5fb43
IEDL.DBID M48
ISSN 1477-3155
IngestDate Wed Aug 27 01:25:17 EDT 2025
Thu Aug 21 18:37:05 EDT 2025
Thu Jul 10 22:30:06 EDT 2025
Sat Aug 23 14:44:57 EDT 2025
Tue Jun 17 21:33:19 EDT 2025
Tue Jun 10 20:38:57 EDT 2025
Fri Jun 27 05:45:49 EDT 2025
Wed Feb 19 02:24:41 EST 2025
Thu Apr 24 23:01:36 EDT 2025
Tue Jul 01 01:26:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Extracellular vesicles
Metabolomics
Early diagnosis
Lung cancer
Language English
License 2023. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c598t-59c2af764ea5e7c24093ba0daedb2a1ccea7f52c338e4b7fc0eef8be3f3f5fb43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12951-023-01908-0
PMID 37189121
PQID 2815642531
PQPubID 44676
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_f6a952fe0e284b4dbdf76c0ec81303d9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10186743
proquest_miscellaneous_2814525788
proquest_journals_2815642531
gale_infotracmisc_A749447810
gale_infotracacademiconefile_A749447810
gale_incontextgauss_ISR_A749447810
pubmed_primary_37189121
crossref_citationtrail_10_1186_s12951_023_01908_0
crossref_primary_10_1186_s12951_023_01908_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-16
PublicationDateYYYYMMDD 2023-05-16
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-16
  day: 16
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Journal of nanobiotechnology
PublicationTitleAlternate J Nanobiotechnology
PublicationYear 2023
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References R Nedaeinia (1908_CR24) 2017; 24
SA Melo (1908_CR40) 2015; 523
JL Tao (1908_CR43) 2019; 24
N Iraci (1908_CR33) 2017; 13
Q Zhu (1908_CR20) 2021; 118
1908_CR41
Y Li (1908_CR10) 2011; 32
1908_CR21
1908_CR45
EA Mathé (1908_CR1) 2014; 74
1908_CR22
1908_CR44
1908_CR5
1908_CR13
1908_CR2
JL Palacios-Ferrer (1908_CR36) 2021; 15
1908_CR38
1908_CR3
1908_CR15
Y Zhan (1908_CR17) 2018; 17
GAN Gowda (1908_CR27) 2008; 8
1908_CR37
1908_CR18
D Yuwen (1908_CR7) 2019; 28
1908_CR39
L Chen (1908_CR28) 2021; 18
H Shao (1908_CR4) 2018; 118
1908_CR8
1908_CR6
L Wu (1908_CR25) 2022; 2022
E Lázaro-Ibáñez (1908_CR31) 2017; 17
J Ni (1908_CR23) 2022; 9
1908_CR30
Q Zhu (1908_CR9) 2021; 13
1908_CR32
1908_CR12
1908_CR34
1908_CR11
1908_CR26
1908_CR29
J Zhang (1908_CR42) 2014; 13
J Lee (1908_CR16) 2018; 41
CM Yamamoto (1908_CR19) 2018; 47
M Rodríguez (1908_CR14) 2017; 16
M Puhka (1908_CR35) 2017; 7
References_xml – volume: 17
  start-page: 1
  year: 2017
  ident: 1908_CR31
  publication-title: BMC Cancer BMC Cancer
  doi: 10.1186/s12885-016-3022-6
– ident: 1908_CR21
  doi: 10.1002/jev2.12093
– ident: 1908_CR2
  doi: 10.1158/1055-9965.EPI-15-1191
– volume: 2022
  start-page: 1
  year: 2022
  ident: 1908_CR25
  publication-title: Evidence-based Complement Altern Med Molecular Cancer
– ident: 1908_CR13
  doi: 10.1080/20013078.2018.1470442
– ident: 1908_CR37
  doi: 10.1038/s41592-020-01034-x
– ident: 1908_CR5
  doi: 10.1038/s41556-018-0040-4
– ident: 1908_CR22
  doi: 10.1016/bs.acc.2016.07.003
– volume: 32
  start-page: 1976
  year: 2011
  ident: 1908_CR10
  publication-title: Electrophoresis
  doi: 10.1002/elps.201000598
– volume: 41
  start-page: 179
  year: 2018
  ident: 1908_CR16
  publication-title: Mol Cells
– ident: 1908_CR11
  doi: 10.1016/j.molonc.2016.10.003
– volume: 9
  start-page: 363
  year: 2022
  ident: 1908_CR23
  publication-title: Bioengineering
  doi: 10.3390/bioengineering9080363
– ident: 1908_CR12
  doi: 10.1016/j.bios.2020.112290
– volume: 17
  start-page: 1
  year: 2018
  ident: 1908_CR17
  publication-title: Mol Cancer Molecular Cancer
  doi: 10.1186/s12943-017-0753-1
– ident: 1908_CR18
  doi: 10.1371/journal.pone.0104490
– volume: 13
  start-page: 16457
  year: 2021
  ident: 1908_CR9
  publication-title: Nanoscale
  doi: 10.1039/D1NR04015D
– volume: 24
  start-page: 48
  year: 2017
  ident: 1908_CR24
  publication-title: Cancer Gene Ther
  doi: 10.1038/cgt.2016.77
– ident: 1908_CR41
  doi: 10.3402/jev.v4.30087
– volume: 18
  start-page: 1377
  year: 2021
  ident: 1908_CR28
  publication-title: Nat Methods Springer US
  doi: 10.1038/s41592-021-01303-3
– volume: 16
  start-page: 4
  year: 2017
  ident: 1908_CR14
  publication-title: Mol Cancer
  doi: 10.1186/s12943-017-0726-4
– ident: 1908_CR32
  doi: 10.3402/jev.v5.32570
– volume: 28
  start-page: 163
  year: 2019
  ident: 1908_CR7
  publication-title: Cancer Epidemiol Biomarkers Prev
  doi: 10.1158/1055-9965.EPI-18-0569
– volume: 8
  start-page: 617
  year: 2008
  ident: 1908_CR27
  publication-title: Expert Rev Mol Diagn
  doi: 10.1586/14737159.8.5.617
– ident: 1908_CR45
  doi: 10.1016/j.intimp.2020.106353
– ident: 1908_CR3
  doi: 10.1038/nrm.2017.125
– ident: 1908_CR30
  doi: 10.1080/20013078.2019.1643670
– ident: 1908_CR8
  doi: 10.1038/onc.2014.300
– ident: 1908_CR26
  doi: 10.1038/s41551-018-0343-6
– ident: 1908_CR39
  doi: 10.1016/j.cca.2015.12.031
– ident: 1908_CR44
  doi: 10.1016/j.chemosphere.2018.11.044
– volume: 523
  start-page: 177
  year: 2015
  ident: 1908_CR40
  publication-title: Nature
  doi: 10.1038/nature14581
– volume: 13
  start-page: 951
  year: 2017
  ident: 1908_CR33
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.2422
– ident: 1908_CR38
  doi: 10.1080/20013078.2018.1461450
– ident: 1908_CR34
  doi: 10.1186/s12943-021-01440-5
– volume: 15
  start-page: 407
  year: 2021
  ident: 1908_CR36
  publication-title: Mol Oncol
  doi: 10.1002/1878-0261.12823
– volume: 74
  start-page: 3259
  year: 2014
  ident: 1908_CR1
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-14-0109
– ident: 1908_CR15
  doi: 10.1016/j.ejca.2016.10.011
– ident: 1908_CR6
  doi: 10.1007/s13277-016-5410-6
– volume: 24
  start-page: 572
  year: 2019
  ident: 1908_CR43
  publication-title: Respirology
  doi: 10.1111/resp.13479
– volume: 118
  start-page: 10
  year: 2021
  ident: 1908_CR20
  publication-title: PNAS
  doi: 10.1073/pnas.2108876118
– volume: 118
  start-page: 1917
  year: 2018
  ident: 1908_CR4
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.7b00534
– volume: 47
  start-page: 283
  year: 2018
  ident: 1908_CR19
  publication-title: Am J Nephrol
  doi: 10.1159/000489129
– ident: 1908_CR29
  doi: 10.1038/s41392-020-00359-5
– volume: 7
  start-page: 3824
  year: 2017
  ident: 1908_CR35
  publication-title: Theranostics
  doi: 10.7150/thno.19890
– volume: 13
  start-page: 3088
  year: 2014
  ident: 1908_CR42
  publication-title: J Proteome Res
  doi: 10.1021/pr5003142
SSID ssj0022424
Score 2.435758
Snippet Lung cancer is a prevalent cancer type worldwide that often remains asymptomatic in its early stages and is frequently diagnosed at an advanced stage with a...
Abstract Lung cancer is a prevalent cancer type worldwide that often remains asymptomatic in its early stages and is frequently diagnosed at an advanced stage...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 153
SubjectTerms Analysis
Antibodies
Benzenoids
Biomarkers
Biomarkers, Tumor - metabolism
Carcinogenesis
Carcinogens
Care and treatment
Carnitine
Cell proliferation
Chromatography
Diagnosis
Early Detection of Cancer
Early diagnosis
Extracellular vesicles
Extracellular Vesicles - metabolism
Gene expression
Genetic aspects
Health aspects
Humans
Immune response
Invasiveness
Lipids
Lung cancer
Lung cancer, Non-small cell
Lung Neoplasms - diagnosis
Lung Neoplasms - metabolism
Machine learning
Marker panels
Metabolism
Metabolites
Metabolomics
Metastases
Organic acids
Proteins
Reproducibility of Results
Tumors
Urine
Vesicles
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9QwDI7QnuCAeFNYUEBIHFC1bZO0yXFBrBak5QCstLcoSR1YaZSimc6Bf4-ddoapkODCtXFftuNHa39m7JUPMtKot1IFUZVSyK5Ep6dKTJ2jMLUO0VG_88Wn9vxSfrxSVwejvqgmbIIHnhh3EltnVBOhAjSkXva-j10bKgiarG-fW_fQ5-2SqTnVoqaHXYuMbk826NUUps0N1Q4Z-uG_cEMZrf9Pm3zglJYFkwce6OwOuz2Hjvx0euS77Aake-zWAaDgfba6gBGluqJWY379G0JjSHyInD6su_VPjvZ47eiLPZWgciTKpXEcw1cOhHfMexhzhVbiLvUcDQsmu3h9usYKjQMPpCrrB-zy7P3Xd-flPE-hDMrosVQmNA65J8Ep6AL6ciO8q3oHvW9cHQK4LqomYNYK0ncRuQxRexBRRBW9FA_ZURoSPGYcjAu9EbWXmI-o1rtadb1U2tNIKwwbClbv2GvDDDZOMy9WNicdurWTSCyKxGaR2Kpgb_bn_JigNv5K_ZaktqckmOx8AJXHzspj_6U8BXtJMrcEhJGo0uab22429sOXz_a0k0ZSHy7e6fVMFAcSj5sbF5AThJ21oDxeUOJODcvlnWrZ2VJsbJPheho0hQV7sV-mM6n6LcGwzTT0-7nTumCPJk3cv7fA4MLUxHG90NEFY5Yr6fp7xhEnsDbqQXnyP1j5lN1s8v5SZd0es6NxvYVnGK-N_nnemr8AhwQ-uQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOBQ8SZQkEFIHFDUPOzEPqGCqApSOQCV9mb5WSqtkjbJHvj3zHi9jwip1_UkWXvG87BnviHkvbEsYKu3nNu6yFnN2hyMHs8hdA61LIUNGuudz380Zxfs-4Iv0oHbmNIqNzoxKmrXWzwjP64irEkFIvPp-ibHrlF4u5paaNwl9xC6DFO62sUu4MLSh02hjGiOR7BtHILnCjOIJF77z4xRxOz_XzPvmaZ52uSeHTp9SA6TA0lP1hx_RO747jF5sAcr-IQsz_0EvF1iwTG92gFp9B3tA8XjdT38paCVB43n9piISoEoJshRcGKpR9Rj6vwU87Q6qjtHQb1AyAvvx3csQUVQiwIzPCUXp19_fznLU1eF3HIpppxLW-nQNsxr7lsLFl3WRhdOe2cqXVrrdRt4ZSF29cy0wRbeB2F8HerAg2H1M3LQ9Z1_QaiX2jpZl4ZBVMIbo0veOsaFwcZW4DxkpNwsr7IJchw7XyxVDD1Eo9YsUcASFVmiiox83D5zvQbcuJX6M3JtS4lg2fGHfrhUae-p0GjJq-ALD7bYMGccTB-mZQUacCcz8g55rhAOo8N8m0u9Gkf17ddPddIyybAaF770IRGFHtmjU_kCrAQiaM0oj2aUsF_tfHgjWirpi1HtpDsjb7fD-CTmwHW-X0UavIRuhcjI87Ukbuddg4shS1xxMZPR2cLMR7qrPxFNHCHbsBLl5e3_6xW5X8Wdw_OyOSIH07Dyr8Efm8ybuOn-AZahNVQ
  priority: 102
  providerName: ProQuest
Title Metabolomic investigation of urinary extracellular vesicles for early detection and screening of lung cancer
URI https://www.ncbi.nlm.nih.gov/pubmed/37189121
https://www.proquest.com/docview/2815642531
https://www.proquest.com/docview/2814525788
https://pubmed.ncbi.nlm.nih.gov/PMC10186743
https://doaj.org/article/f6a952fe0e284b4dbdf76c0ec81303d9
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELf2IaHxgPgmMCqDkHhAYfmw4_gBoQ2tDKROaFCpb5bt2GNSlUDaSuy_585NSiMmHnjpQ3JOZd-Xz777HSGvjGUeW73F3OZJzHImYnB6PIbQ2ecyLa3XWO88OS_OpuzzjM92SN_uqFvAxY2hHfaTmrbzt79-Xr8HhX8XFL4sjhbgszgExRlmBkm8zt8l--CZBCrqhG1uFTIshegLZ24cd0Bu5WCsZZqlAz8V4Pz_NtpbXmuYUbnlosZ3yZ1ub0mP18Jwj-y4-j65vYU4-IDMJ24JbJ9jLTK9-oOx0dS08RRP3nV7TcFgtxqP9DFHlQJRyJ2jsL-lDgGRaeWWIYWrprquKFgeiIbh-_iNOVgPalGW2odkOj799uEs7houxJbLchlzaTPtRcGc5k5YcPYyNzqptKtMplNrnRaeZxbCWseM8DZxzpfG5T733BuWPyJ7dVO7J4Q6qW0l89QwCFh4YXTKRcV4abDnFewrIpL2y6tsh0aOTTHmKkQlZaHW3FHAHRW4o5KIvNmM-bHG4vgn9QlybUOJONrhQdNeqk4tlS-05Jl3iQM3bVhlKpg-TMuW6NsrGZGXyHOFSBk1puJc6tVioT59vVDHgkmGhbrwT687It8ge3RX2QArgeBaA8rDASWosh2-7kVL9ZqgsoDnk4GtjMiLzWscielxtWtWgQbvp0VZRuTxWhI38-4FOiLlQEYHCzN8U199D0DjiOaGRSpP_3_oM3KQBQXjcVockr1lu3LPYRu3NCOyK2YCfsvxxxHZPzk9_3IxCkcio6C1vwFXgEpe
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CrlABwQbxYKGATigKLmYSfxAaHyqHZptwdopb25tmOXSqukZLNC_Sm-kRkn2d0Iqbde1xNnPe-J50HIW22Yw1FvATdJGLCEZQEYPR5A6OwSEeXGKax3nh6l4xP2fcZnW-RvXwuDaZW9TvSKuqgMfiPfjX1bkxhY5tPF7wCnRuHtaj9Co2WLA3v5B0K2xcfJV6Dvuzje_3b8ZRx0UwUCw0XeBFyYWLksZVZxmxmwaCLRKiyULXSsImOsyhyPDcRulunMmdBal2ubuMRxp1kC-94gN8HwhihR2Wwd4GGpRV-Yk6e7C7ClHIL1GDOWBKYZDIyfnxHwvyXYMIXDNM0Nu7d_j9ztHFa613LYfbJlywfkzkYbw4dkPrUN8NIcC5zp-bpxR1XSylH8nK_qSwpWoFZ4T4CJrxSAfEIeBaeZWuyyTAvb-LywkqqyoKDOIMSG_XGPOagkapBB60fk5Frw_Zhsl1VpnxJqhTKFSCLNIAriqVYRzwrGc42DtMBZGZGoR680XYtznLQxlz7UyVPZkkQCSaQniQxH5MPqmYu2wceV0J-RaitIbM7tf6jqM9nJunSpEjx2NrRg-zUrdAHHh2OZHB2GQozIG6S5xPYbJeb3nKnlYiEnP3_IvYwJhtW_8Kb3HZCrkDyqK5cATGDHrgHkzgAS9IMZLvesJTv9tJBraRqR16tlfBJz7kpbLT0MXnpneT4iT1pOXJ07AZdGRIjxfMCjA8QMV8rzX757ObaIw8qXZ1f_r1fk1vh4eigPJ0cHz8nt2EsRD6J0h2w39dK-AF-w0S-9AFJyet0S_w9L5XW1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolomic+investigation+of+urinary+extracellular+vesicles+for+early+detection+and+screening+of+lung+cancer&rft.jtitle=Journal+of+nanobiotechnology&rft.au=Yang%2C+Qinsi&rft.au=Luo%2C+Jiaxin&rft.au=Xu%2C+Hao&rft.au=Huang%2C+Liu&rft.date=2023-05-16&rft.pub=BioMed+Central&rft.eissn=1477-3155&rft.volume=21&rft_id=info:doi/10.1186%2Fs12951-023-01908-0&rft_id=info%3Apmid%2F37189121&rft.externalDocID=PMC10186743
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-3155&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-3155&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-3155&client=summon