Metabolomic investigation of urinary extracellular vesicles for early detection and screening of lung cancer
Lung cancer is a prevalent cancer type worldwide that often remains asymptomatic in its early stages and is frequently diagnosed at an advanced stage with a poor prognosis due to the lack of effective diagnostic techniques and molecular biomarkers. However, emerging evidence suggests that extracellu...
Saved in:
Published in | Journal of nanobiotechnology Vol. 21; no. 1; pp. 153 - 10 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
16.05.2023
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lung cancer is a prevalent cancer type worldwide that often remains asymptomatic in its early stages and is frequently diagnosed at an advanced stage with a poor prognosis due to the lack of effective diagnostic techniques and molecular biomarkers. However, emerging evidence suggests that extracellular vesicles (EVs) may promote lung cancer cell proliferation and metastasis, and modulate the anti-tumor immune response in lung cancer carcinogenesis, making them potential biomarkers for early cancer detection. To investigate the potential of urinary EVs for non-invasive detection and screening of patients at early stages, we studied metabolomic signatures of lung cancer. Specifically, we conducted metabolomic analysis of 102 EV samples and identified metabolome profiles of urinary EVs, including organic acids and derivatives, lipids and lipid-like molecules, organheterocyclic compounds, and benzenoids. Using machine learning with a random forest model, we screened for potential markers of lung cancer and identified a marker panel consisting of Kanzonol Z, Xanthosine, Nervonyl carnitine, and 3,4-Dihydroxybenzaldehyde, which exhibited a diagnostic potency of 96% for the testing cohort (AUC value). Importantly, this marker panel also demonstrated effective prediction for the validation set, with an AUC value of 84%, indicating the reliability of the marker screening process. Our findings suggest that the metabolomic analysis of urinary EVs provides a promising source of non-invasive markers for lung cancer diagnostics. We believe that the EV metabolic signatures could be used to develop clinical applications for the early detection and screening of lung cancer, potentially improving patient outcomes. |
---|---|
AbstractList | Lung cancer is a prevalent cancer type worldwide that often remains asymptomatic in its early stages and is frequently diagnosed at an advanced stage with a poor prognosis due to the lack of effective diagnostic techniques and molecular biomarkers. However, emerging evidence suggests that extracellular vesicles (EVs) may promote lung cancer cell proliferation and metastasis, and modulate the anti-tumor immune response in lung cancer carcinogenesis, making them potential biomarkers for early cancer detection. To investigate the potential of urinary EVs for non-invasive detection and screening of patients at early stages, we studied metabolomic signatures of lung cancer. Specifically, we conducted metabolomic analysis of 102 EV samples and identified metabolome profiles of urinary EVs, including organic acids and derivatives, lipids and lipid-like molecules, organheterocyclic compounds, and benzenoids. Using machine learning with a random forest model, we screened for potential markers of lung cancer and identified a marker panel consisting of Kanzonol Z, Xanthosine, Nervonyl carnitine, and 3,4-Dihydroxybenzaldehyde, which exhibited a diagnostic potency of 96% for the testing cohort (AUC value). Importantly, this marker panel also demonstrated effective prediction for the validation set, with an AUC value of 84%, indicating the reliability of the marker screening process. Our findings suggest that the metabolomic analysis of urinary EVs provides a promising source of non-invasive markers for lung cancer diagnostics. We believe that the EV metabolic signatures could be used to develop clinical applications for the early detection and screening of lung cancer, potentially improving patient outcomes. Lung cancer is a prevalent cancer type worldwide that often remains asymptomatic in its early stages and is frequently diagnosed at an advanced stage with a poor prognosis due to the lack of effective diagnostic techniques and molecular biomarkers. However, emerging evidence suggests that extracellular vesicles (EVs) may promote lung cancer cell proliferation and metastasis, and modulate the anti-tumor immune response in lung cancer carcinogenesis, making them potential biomarkers for early cancer detection. To investigate the potential of urinary EVs for non-invasive detection and screening of patients at early stages, we studied metabolomic signatures of lung cancer. Specifically, we conducted metabolomic analysis of 102 EV samples and identified metabolome profiles of urinary EVs, including organic acids and derivatives, lipids and lipid-like molecules, organheterocyclic compounds, and benzenoids. Using machine learning with a random forest model, we screened for potential markers of lung cancer and identified a marker panel consisting of Kanzonol Z, Xanthosine, Nervonyl carnitine, and 3,4-Dihydroxybenzaldehyde, which exhibited a diagnostic potency of 96% for the testing cohort (AUC value). Importantly, this marker panel also demonstrated effective prediction for the validation set, with an AUC value of 84%, indicating the reliability of the marker screening process. Our findings suggest that the metabolomic analysis of urinary EVs provides a promising source of non-invasive markers for lung cancer diagnostics. We believe that the EV metabolic signatures could be used to develop clinical applications for the early detection and screening of lung cancer, potentially improving patient outcomes. Keywords: Lung cancer, Metabolomics, Extracellular vesicles, Early diagnosis Lung cancer is a prevalent cancer type worldwide that often remains asymptomatic in its early stages and is frequently diagnosed at an advanced stage with a poor prognosis due to the lack of effective diagnostic techniques and molecular biomarkers. However, emerging evidence suggests that extracellular vesicles (EVs) may promote lung cancer cell proliferation and metastasis, and modulate the anti-tumor immune response in lung cancer carcinogenesis, making them potential biomarkers for early cancer detection. To investigate the potential of urinary EVs for non-invasive detection and screening of patients at early stages, we studied metabolomic signatures of lung cancer. Specifically, we conducted metabolomic analysis of 102 EV samples and identified metabolome profiles of urinary EVs, including organic acids and derivatives, lipids and lipid-like molecules, organheterocyclic compounds, and benzenoids. Using machine learning with a random forest model, we screened for potential markers of lung cancer and identified a marker panel consisting of Kanzonol Z, Xanthosine, Nervonyl carnitine, and 3,4-Dihydroxybenzaldehyde, which exhibited a diagnostic potency of 96% for the testing cohort (AUC value). Importantly, this marker panel also demonstrated effective prediction for the validation set, with an AUC value of 84%, indicating the reliability of the marker screening process. Our findings suggest that the metabolomic analysis of urinary EVs provides a promising source of non-invasive markers for lung cancer diagnostics. We believe that the EV metabolic signatures could be used to develop clinical applications for the early detection and screening of lung cancer, potentially improving patient outcomes.Lung cancer is a prevalent cancer type worldwide that often remains asymptomatic in its early stages and is frequently diagnosed at an advanced stage with a poor prognosis due to the lack of effective diagnostic techniques and molecular biomarkers. However, emerging evidence suggests that extracellular vesicles (EVs) may promote lung cancer cell proliferation and metastasis, and modulate the anti-tumor immune response in lung cancer carcinogenesis, making them potential biomarkers for early cancer detection. To investigate the potential of urinary EVs for non-invasive detection and screening of patients at early stages, we studied metabolomic signatures of lung cancer. Specifically, we conducted metabolomic analysis of 102 EV samples and identified metabolome profiles of urinary EVs, including organic acids and derivatives, lipids and lipid-like molecules, organheterocyclic compounds, and benzenoids. Using machine learning with a random forest model, we screened for potential markers of lung cancer and identified a marker panel consisting of Kanzonol Z, Xanthosine, Nervonyl carnitine, and 3,4-Dihydroxybenzaldehyde, which exhibited a diagnostic potency of 96% for the testing cohort (AUC value). Importantly, this marker panel also demonstrated effective prediction for the validation set, with an AUC value of 84%, indicating the reliability of the marker screening process. Our findings suggest that the metabolomic analysis of urinary EVs provides a promising source of non-invasive markers for lung cancer diagnostics. We believe that the EV metabolic signatures could be used to develop clinical applications for the early detection and screening of lung cancer, potentially improving patient outcomes. Abstract Lung cancer is a prevalent cancer type worldwide that often remains asymptomatic in its early stages and is frequently diagnosed at an advanced stage with a poor prognosis due to the lack of effective diagnostic techniques and molecular biomarkers. However, emerging evidence suggests that extracellular vesicles (EVs) may promote lung cancer cell proliferation and metastasis, and modulate the anti-tumor immune response in lung cancer carcinogenesis, making them potential biomarkers for early cancer detection. To investigate the potential of urinary EVs for non-invasive detection and screening of patients at early stages, we studied metabolomic signatures of lung cancer. Specifically, we conducted metabolomic analysis of 102 EV samples and identified metabolome profiles of urinary EVs, including organic acids and derivatives, lipids and lipid-like molecules, organheterocyclic compounds, and benzenoids. Using machine learning with a random forest model, we screened for potential markers of lung cancer and identified a marker panel consisting of Kanzonol Z, Xanthosine, Nervonyl carnitine, and 3,4-Dihydroxybenzaldehyde, which exhibited a diagnostic potency of 96% for the testing cohort (AUC value). Importantly, this marker panel also demonstrated effective prediction for the validation set, with an AUC value of 84%, indicating the reliability of the marker screening process. Our findings suggest that the metabolomic analysis of urinary EVs provides a promising source of non-invasive markers for lung cancer diagnostics. We believe that the EV metabolic signatures could be used to develop clinical applications for the early detection and screening of lung cancer, potentially improving patient outcomes. |
ArticleNumber | 153 |
Audience | Academic |
Author | Xu, Hao Sun, Da Liu, Fei Peng, Bo Yang, Rui Zhu, Qingfu Li, Hengrui Huang, Liu Luo, Jiaxin Zhu, Xinxi Yang, Qinsi |
Author_xml | – sequence: 1 givenname: Qinsi surname: Yang fullname: Yang, Qinsi – sequence: 2 givenname: Jiaxin surname: Luo fullname: Luo, Jiaxin – sequence: 3 givenname: Hao surname: Xu fullname: Xu, Hao – sequence: 4 givenname: Liu surname: Huang fullname: Huang, Liu – sequence: 5 givenname: Xinxi surname: Zhu fullname: Zhu, Xinxi – sequence: 6 givenname: Hengrui surname: Li fullname: Li, Hengrui – sequence: 7 givenname: Rui surname: Yang fullname: Yang, Rui – sequence: 8 givenname: Bo surname: Peng fullname: Peng, Bo – sequence: 9 givenname: Da surname: Sun fullname: Sun, Da – sequence: 10 givenname: Qingfu surname: Zhu fullname: Zhu, Qingfu – sequence: 11 givenname: Fei surname: Liu fullname: Liu, Fei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37189121$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhSNURB_wB1igSGxgkeLn2FmhquIxUhESj7XlONfBVcYudlLRf8_NTAudCiEvbDnnfs499xxXBzFFqKrnlJxSqldvCmWtpA1hvCG0Jbohj6ojKpRqOJXy4N75sDou5ZIQxgQTT6pDrqhuKaNH1fgJJtulMW2Cq0O8hjKFwU4hxTr5es4h2nxTw68pWwfjOI821ygKboRS-5RrsHm8qXuYwG2rbOzr4jJADHFYGOOMu7PRQX5aPfZ2LPDsdj-pvr9_9-38Y3Px-cP6_OyicbLVUyNbx6xXKwFWgnJMkJZ3lvQW-o5Z6hxY5SVznGsQnfKOAHjdAffcS98JflKtd9w-2UtzlcMGmzDJBrO9SHkwNk9LD8avbCuZBwJMi070XY8PI9BpygnvW2S93bGu5m4DvYOIVox70P0vMfwwQ7o2lOCMlOBIeHVLyOnnjAabTSiLmTZCmothmgrJpNIapS8fSC_TnCN6tajkSjDJ6V_VYLGDEH1aprNAzZkSrRBKU4Kq03-ocPWAs8Yk-YD3ewWv9wpQM-HgBzuXYtZfv-xrX9x35Y8dd8FCgd4JXE6lZPDGhWmbK_yLMKI7Zsmw2WXYYIbNNsNmYbMHpXf0_xT9Bm9N9PI |
CitedBy_id | crossref_primary_10_1002_advs_202401069 crossref_primary_10_3389_fimmu_2023_1254155 crossref_primary_10_1016_j_chemosphere_2025_144302 crossref_primary_10_1002_INMD_20230021 crossref_primary_10_1016_j_jconrel_2024_05_029 crossref_primary_10_1186_s12935_024_03366_6 crossref_primary_10_3389_fonc_2024_1486310 crossref_primary_10_1016_j_ijbiomac_2024_130074 crossref_primary_10_1002_jev2_70034 crossref_primary_10_20517_evcna_2024_12 crossref_primary_10_1016_j_snb_2024_135828 crossref_primary_10_1016_j_apsb_2024_06_010 crossref_primary_10_1002_jev2_12491 crossref_primary_10_1016_j_cca_2024_117845 crossref_primary_10_1038_s41596_024_01082_z |
Cites_doi | 10.1186/s12885-016-3022-6 10.1002/jev2.12093 10.1158/1055-9965.EPI-15-1191 10.1080/20013078.2018.1470442 10.1038/s41592-020-01034-x 10.1038/s41556-018-0040-4 10.1016/bs.acc.2016.07.003 10.1002/elps.201000598 10.1016/j.molonc.2016.10.003 10.3390/bioengineering9080363 10.1016/j.bios.2020.112290 10.1186/s12943-017-0753-1 10.1371/journal.pone.0104490 10.1039/D1NR04015D 10.1038/cgt.2016.77 10.3402/jev.v4.30087 10.1038/s41592-021-01303-3 10.1186/s12943-017-0726-4 10.3402/jev.v5.32570 10.1158/1055-9965.EPI-18-0569 10.1586/14737159.8.5.617 10.1016/j.intimp.2020.106353 10.1038/nrm.2017.125 10.1080/20013078.2019.1643670 10.1038/onc.2014.300 10.1038/s41551-018-0343-6 10.1016/j.cca.2015.12.031 10.1016/j.chemosphere.2018.11.044 10.1038/nature14581 10.1038/nchembio.2422 10.1080/20013078.2018.1461450 10.1186/s12943-021-01440-5 10.1002/1878-0261.12823 10.1158/0008-5472.CAN-14-0109 10.1016/j.ejca.2016.10.011 10.1007/s13277-016-5410-6 10.1111/resp.13479 10.1073/pnas.2108876118 10.1021/acs.chemrev.7b00534 10.1159/000489129 10.1038/s41392-020-00359-5 10.7150/thno.19890 10.1021/pr5003142 |
ContentType | Journal Article |
Copyright | 2023. The Author(s). COPYRIGHT 2023 BioMed Central Ltd. 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2023 |
Copyright_xml | – notice: 2023. The Author(s). – notice: COPYRIGHT 2023 BioMed Central Ltd. – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QO 7TB 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. LK8 M0S M1P M7P P64 PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s12951-023-01908-0 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Mechanical & Transportation Engineering Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1477-3155 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_f6a952fe0e284b4dbdf76c0ec81303d9 PMC10186743 A749447810 37189121 10_1186_s12951_023_01908_0 |
Genre | Journal Article |
GeographicLocations | China United Kingdom--UK United States--US |
GeographicLocations_xml | – name: China – name: United Kingdom--UK – name: United States--US |
GroupedDBID | --- 0R~ 29L 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABDBF ABJCF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADDVE ADMLS ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 D1I DIK DU5 E3Z EBD EBLON EBS EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE I-F IAO IHR INH INR ISR ITC ITG ITH KB. KQ8 LK8 M1P M48 M7P MM. M~E O5R O5S OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV RVI SCM SOJ SV3 TR2 TUS UKHRP WOQ WOW XSB ~8M -A0 3V. ACRMQ ADINQ C24 CGR CUY CVF ECM EIF FRP NPM PMFND 7QO 7TB 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c598t-59c2af764ea5e7c24093ba0daedb2a1ccea7f52c338e4b7fc0eef8be3f3f5fb43 |
IEDL.DBID | M48 |
ISSN | 1477-3155 |
IngestDate | Wed Aug 27 01:25:17 EDT 2025 Thu Aug 21 18:37:05 EDT 2025 Thu Jul 10 22:30:06 EDT 2025 Sat Aug 23 14:44:57 EDT 2025 Tue Jun 17 21:33:19 EDT 2025 Tue Jun 10 20:38:57 EDT 2025 Fri Jun 27 05:45:49 EDT 2025 Wed Feb 19 02:24:41 EST 2025 Thu Apr 24 23:01:36 EDT 2025 Tue Jul 01 01:26:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Extracellular vesicles Metabolomics Early diagnosis Lung cancer |
Language | English |
License | 2023. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c598t-59c2af764ea5e7c24093ba0daedb2a1ccea7f52c338e4b7fc0eef8be3f3f5fb43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12951-023-01908-0 |
PMID | 37189121 |
PQID | 2815642531 |
PQPubID | 44676 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f6a952fe0e284b4dbdf76c0ec81303d9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10186743 proquest_miscellaneous_2814525788 proquest_journals_2815642531 gale_infotracmisc_A749447810 gale_infotracacademiconefile_A749447810 gale_incontextgauss_ISR_A749447810 pubmed_primary_37189121 crossref_citationtrail_10_1186_s12951_023_01908_0 crossref_primary_10_1186_s12951_023_01908_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-16 |
PublicationDateYYYYMMDD | 2023-05-16 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Journal of nanobiotechnology |
PublicationTitleAlternate | J Nanobiotechnology |
PublicationYear | 2023 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | R Nedaeinia (1908_CR24) 2017; 24 SA Melo (1908_CR40) 2015; 523 JL Tao (1908_CR43) 2019; 24 N Iraci (1908_CR33) 2017; 13 Q Zhu (1908_CR20) 2021; 118 1908_CR41 Y Li (1908_CR10) 2011; 32 1908_CR21 1908_CR45 EA Mathé (1908_CR1) 2014; 74 1908_CR22 1908_CR44 1908_CR5 1908_CR13 1908_CR2 JL Palacios-Ferrer (1908_CR36) 2021; 15 1908_CR38 1908_CR3 1908_CR15 Y Zhan (1908_CR17) 2018; 17 GAN Gowda (1908_CR27) 2008; 8 1908_CR37 1908_CR18 D Yuwen (1908_CR7) 2019; 28 1908_CR39 L Chen (1908_CR28) 2021; 18 H Shao (1908_CR4) 2018; 118 1908_CR8 1908_CR6 L Wu (1908_CR25) 2022; 2022 E Lázaro-Ibáñez (1908_CR31) 2017; 17 J Ni (1908_CR23) 2022; 9 1908_CR30 Q Zhu (1908_CR9) 2021; 13 1908_CR32 1908_CR12 1908_CR34 1908_CR11 1908_CR26 1908_CR29 J Zhang (1908_CR42) 2014; 13 J Lee (1908_CR16) 2018; 41 CM Yamamoto (1908_CR19) 2018; 47 M Rodríguez (1908_CR14) 2017; 16 M Puhka (1908_CR35) 2017; 7 |
References_xml | – volume: 17 start-page: 1 year: 2017 ident: 1908_CR31 publication-title: BMC Cancer BMC Cancer doi: 10.1186/s12885-016-3022-6 – ident: 1908_CR21 doi: 10.1002/jev2.12093 – ident: 1908_CR2 doi: 10.1158/1055-9965.EPI-15-1191 – volume: 2022 start-page: 1 year: 2022 ident: 1908_CR25 publication-title: Evidence-based Complement Altern Med Molecular Cancer – ident: 1908_CR13 doi: 10.1080/20013078.2018.1470442 – ident: 1908_CR37 doi: 10.1038/s41592-020-01034-x – ident: 1908_CR5 doi: 10.1038/s41556-018-0040-4 – ident: 1908_CR22 doi: 10.1016/bs.acc.2016.07.003 – volume: 32 start-page: 1976 year: 2011 ident: 1908_CR10 publication-title: Electrophoresis doi: 10.1002/elps.201000598 – volume: 41 start-page: 179 year: 2018 ident: 1908_CR16 publication-title: Mol Cells – ident: 1908_CR11 doi: 10.1016/j.molonc.2016.10.003 – volume: 9 start-page: 363 year: 2022 ident: 1908_CR23 publication-title: Bioengineering doi: 10.3390/bioengineering9080363 – ident: 1908_CR12 doi: 10.1016/j.bios.2020.112290 – volume: 17 start-page: 1 year: 2018 ident: 1908_CR17 publication-title: Mol Cancer Molecular Cancer doi: 10.1186/s12943-017-0753-1 – ident: 1908_CR18 doi: 10.1371/journal.pone.0104490 – volume: 13 start-page: 16457 year: 2021 ident: 1908_CR9 publication-title: Nanoscale doi: 10.1039/D1NR04015D – volume: 24 start-page: 48 year: 2017 ident: 1908_CR24 publication-title: Cancer Gene Ther doi: 10.1038/cgt.2016.77 – ident: 1908_CR41 doi: 10.3402/jev.v4.30087 – volume: 18 start-page: 1377 year: 2021 ident: 1908_CR28 publication-title: Nat Methods Springer US doi: 10.1038/s41592-021-01303-3 – volume: 16 start-page: 4 year: 2017 ident: 1908_CR14 publication-title: Mol Cancer doi: 10.1186/s12943-017-0726-4 – ident: 1908_CR32 doi: 10.3402/jev.v5.32570 – volume: 28 start-page: 163 year: 2019 ident: 1908_CR7 publication-title: Cancer Epidemiol Biomarkers Prev doi: 10.1158/1055-9965.EPI-18-0569 – volume: 8 start-page: 617 year: 2008 ident: 1908_CR27 publication-title: Expert Rev Mol Diagn doi: 10.1586/14737159.8.5.617 – ident: 1908_CR45 doi: 10.1016/j.intimp.2020.106353 – ident: 1908_CR3 doi: 10.1038/nrm.2017.125 – ident: 1908_CR30 doi: 10.1080/20013078.2019.1643670 – ident: 1908_CR8 doi: 10.1038/onc.2014.300 – ident: 1908_CR26 doi: 10.1038/s41551-018-0343-6 – ident: 1908_CR39 doi: 10.1016/j.cca.2015.12.031 – ident: 1908_CR44 doi: 10.1016/j.chemosphere.2018.11.044 – volume: 523 start-page: 177 year: 2015 ident: 1908_CR40 publication-title: Nature doi: 10.1038/nature14581 – volume: 13 start-page: 951 year: 2017 ident: 1908_CR33 publication-title: Nat Chem Biol doi: 10.1038/nchembio.2422 – ident: 1908_CR38 doi: 10.1080/20013078.2018.1461450 – ident: 1908_CR34 doi: 10.1186/s12943-021-01440-5 – volume: 15 start-page: 407 year: 2021 ident: 1908_CR36 publication-title: Mol Oncol doi: 10.1002/1878-0261.12823 – volume: 74 start-page: 3259 year: 2014 ident: 1908_CR1 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-14-0109 – ident: 1908_CR15 doi: 10.1016/j.ejca.2016.10.011 – ident: 1908_CR6 doi: 10.1007/s13277-016-5410-6 – volume: 24 start-page: 572 year: 2019 ident: 1908_CR43 publication-title: Respirology doi: 10.1111/resp.13479 – volume: 118 start-page: 10 year: 2021 ident: 1908_CR20 publication-title: PNAS doi: 10.1073/pnas.2108876118 – volume: 118 start-page: 1917 year: 2018 ident: 1908_CR4 publication-title: Chem Rev doi: 10.1021/acs.chemrev.7b00534 – volume: 47 start-page: 283 year: 2018 ident: 1908_CR19 publication-title: Am J Nephrol doi: 10.1159/000489129 – ident: 1908_CR29 doi: 10.1038/s41392-020-00359-5 – volume: 7 start-page: 3824 year: 2017 ident: 1908_CR35 publication-title: Theranostics doi: 10.7150/thno.19890 – volume: 13 start-page: 3088 year: 2014 ident: 1908_CR42 publication-title: J Proteome Res doi: 10.1021/pr5003142 |
SSID | ssj0022424 |
Score | 2.435758 |
Snippet | Lung cancer is a prevalent cancer type worldwide that often remains asymptomatic in its early stages and is frequently diagnosed at an advanced stage with a... Abstract Lung cancer is a prevalent cancer type worldwide that often remains asymptomatic in its early stages and is frequently diagnosed at an advanced stage... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 153 |
SubjectTerms | Analysis Antibodies Benzenoids Biomarkers Biomarkers, Tumor - metabolism Carcinogenesis Carcinogens Care and treatment Carnitine Cell proliferation Chromatography Diagnosis Early Detection of Cancer Early diagnosis Extracellular vesicles Extracellular Vesicles - metabolism Gene expression Genetic aspects Health aspects Humans Immune response Invasiveness Lipids Lung cancer Lung cancer, Non-small cell Lung Neoplasms - diagnosis Lung Neoplasms - metabolism Machine learning Marker panels Metabolism Metabolites Metabolomics Metastases Organic acids Proteins Reproducibility of Results Tumors Urine Vesicles |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9QwDI7QnuCAeFNYUEBIHFC1bZO0yXFBrBak5QCstLcoSR1YaZSimc6Bf4-ddoapkODCtXFftuNHa39m7JUPMtKot1IFUZVSyK5Ep6dKTJ2jMLUO0VG_88Wn9vxSfrxSVwejvqgmbIIHnhh3EltnVBOhAjSkXva-j10bKgiarG-fW_fQ5-2SqTnVoqaHXYuMbk826NUUps0N1Q4Z-uG_cEMZrf9Pm3zglJYFkwce6OwOuz2Hjvx0euS77Aake-zWAaDgfba6gBGluqJWY379G0JjSHyInD6su_VPjvZ47eiLPZWgciTKpXEcw1cOhHfMexhzhVbiLvUcDQsmu3h9usYKjQMPpCrrB-zy7P3Xd-flPE-hDMrosVQmNA65J8Ep6AL6ciO8q3oHvW9cHQK4LqomYNYK0ncRuQxRexBRRBW9FA_ZURoSPGYcjAu9EbWXmI-o1rtadb1U2tNIKwwbClbv2GvDDDZOMy9WNicdurWTSCyKxGaR2Kpgb_bn_JigNv5K_ZaktqckmOx8AJXHzspj_6U8BXtJMrcEhJGo0uab22429sOXz_a0k0ZSHy7e6fVMFAcSj5sbF5AThJ21oDxeUOJODcvlnWrZ2VJsbJPheho0hQV7sV-mM6n6LcGwzTT0-7nTumCPJk3cv7fA4MLUxHG90NEFY5Yr6fp7xhEnsDbqQXnyP1j5lN1s8v5SZd0es6NxvYVnGK-N_nnemr8AhwQ-uQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOBQ8SZQkEFIHFDUPOzEPqGCqApSOQCV9mb5WSqtkjbJHvj3zHi9jwip1_UkWXvG87BnviHkvbEsYKu3nNu6yFnN2hyMHs8hdA61LIUNGuudz380Zxfs-4Iv0oHbmNIqNzoxKmrXWzwjP64irEkFIvPp-ibHrlF4u5paaNwl9xC6DFO62sUu4MLSh02hjGiOR7BtHILnCjOIJF77z4xRxOz_XzPvmaZ52uSeHTp9SA6TA0lP1hx_RO747jF5sAcr-IQsz_0EvF1iwTG92gFp9B3tA8XjdT38paCVB43n9piISoEoJshRcGKpR9Rj6vwU87Q6qjtHQb1AyAvvx3csQUVQiwIzPCUXp19_fznLU1eF3HIpppxLW-nQNsxr7lsLFl3WRhdOe2cqXVrrdRt4ZSF29cy0wRbeB2F8HerAg2H1M3LQ9Z1_QaiX2jpZl4ZBVMIbo0veOsaFwcZW4DxkpNwsr7IJchw7XyxVDD1Eo9YsUcASFVmiiox83D5zvQbcuJX6M3JtS4lg2fGHfrhUae-p0GjJq-ALD7bYMGccTB-mZQUacCcz8g55rhAOo8N8m0u9Gkf17ddPddIyybAaF770IRGFHtmjU_kCrAQiaM0oj2aUsF_tfHgjWirpi1HtpDsjb7fD-CTmwHW-X0UavIRuhcjI87Ukbuddg4shS1xxMZPR2cLMR7qrPxFNHCHbsBLl5e3_6xW5X8Wdw_OyOSIH07Dyr8Efm8ybuOn-AZahNVQ priority: 102 providerName: ProQuest |
Title | Metabolomic investigation of urinary extracellular vesicles for early detection and screening of lung cancer |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37189121 https://www.proquest.com/docview/2815642531 https://www.proquest.com/docview/2814525788 https://pubmed.ncbi.nlm.nih.gov/PMC10186743 https://doaj.org/article/f6a952fe0e284b4dbdf76c0ec81303d9 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELf2IaHxgPgmMCqDkHhAYfmw4_gBoQ2tDKROaFCpb5bt2GNSlUDaSuy_585NSiMmHnjpQ3JOZd-Xz777HSGvjGUeW73F3OZJzHImYnB6PIbQ2ecyLa3XWO88OS_OpuzzjM92SN_uqFvAxY2hHfaTmrbzt79-Xr8HhX8XFL4sjhbgszgExRlmBkm8zt8l--CZBCrqhG1uFTIshegLZ24cd0Bu5WCsZZqlAz8V4Pz_NtpbXmuYUbnlosZ3yZ1ub0mP18Jwj-y4-j65vYU4-IDMJ24JbJ9jLTK9-oOx0dS08RRP3nV7TcFgtxqP9DFHlQJRyJ2jsL-lDgGRaeWWIYWrprquKFgeiIbh-_iNOVgPalGW2odkOj799uEs7houxJbLchlzaTPtRcGc5k5YcPYyNzqptKtMplNrnRaeZxbCWseM8DZxzpfG5T733BuWPyJ7dVO7J4Q6qW0l89QwCFh4YXTKRcV4abDnFewrIpL2y6tsh0aOTTHmKkQlZaHW3FHAHRW4o5KIvNmM-bHG4vgn9QlybUOJONrhQdNeqk4tlS-05Jl3iQM3bVhlKpg-TMuW6NsrGZGXyHOFSBk1puJc6tVioT59vVDHgkmGhbrwT687It8ge3RX2QArgeBaA8rDASWosh2-7kVL9ZqgsoDnk4GtjMiLzWscielxtWtWgQbvp0VZRuTxWhI38-4FOiLlQEYHCzN8U199D0DjiOaGRSpP_3_oM3KQBQXjcVockr1lu3LPYRu3NCOyK2YCfsvxxxHZPzk9_3IxCkcio6C1vwFXgEpe |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CrlABwQbxYKGATigKLmYSfxAaHyqHZptwdopb25tmOXSqukZLNC_Sm-kRkn2d0Iqbde1xNnPe-J50HIW22Yw1FvATdJGLCEZQEYPR5A6OwSEeXGKax3nh6l4xP2fcZnW-RvXwuDaZW9TvSKuqgMfiPfjX1bkxhY5tPF7wCnRuHtaj9Co2WLA3v5B0K2xcfJV6Dvuzje_3b8ZRx0UwUCw0XeBFyYWLksZVZxmxmwaCLRKiyULXSsImOsyhyPDcRulunMmdBal2ubuMRxp1kC-94gN8HwhihR2Wwd4GGpRV-Yk6e7C7ClHIL1GDOWBKYZDIyfnxHwvyXYMIXDNM0Nu7d_j9ztHFa613LYfbJlywfkzkYbw4dkPrUN8NIcC5zp-bpxR1XSylH8nK_qSwpWoFZ4T4CJrxSAfEIeBaeZWuyyTAvb-LywkqqyoKDOIMSG_XGPOagkapBB60fk5Frw_Zhsl1VpnxJqhTKFSCLNIAriqVYRzwrGc42DtMBZGZGoR680XYtznLQxlz7UyVPZkkQCSaQniQxH5MPqmYu2wceV0J-RaitIbM7tf6jqM9nJunSpEjx2NrRg-zUrdAHHh2OZHB2GQozIG6S5xPYbJeb3nKnlYiEnP3_IvYwJhtW_8Kb3HZCrkDyqK5cATGDHrgHkzgAS9IMZLvesJTv9tJBraRqR16tlfBJz7kpbLT0MXnpneT4iT1pOXJ07AZdGRIjxfMCjA8QMV8rzX757ObaIw8qXZ1f_r1fk1vh4eigPJ0cHz8nt2EsRD6J0h2w39dK-AF-w0S-9AFJyet0S_w9L5XW1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolomic+investigation+of+urinary+extracellular+vesicles+for+early+detection+and+screening+of+lung+cancer&rft.jtitle=Journal+of+nanobiotechnology&rft.au=Yang%2C+Qinsi&rft.au=Luo%2C+Jiaxin&rft.au=Xu%2C+Hao&rft.au=Huang%2C+Liu&rft.date=2023-05-16&rft.pub=BioMed+Central&rft.eissn=1477-3155&rft.volume=21&rft_id=info:doi/10.1186%2Fs12951-023-01908-0&rft_id=info%3Apmid%2F37189121&rft.externalDocID=PMC10186743 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-3155&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-3155&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-3155&client=summon |