In vitro inflammation and toxicity assessment of pre- and post-incinerated organomodified nanoclays to macrophages using high-throughput screening approaches

Organomodified nanoclays (ONC), two-dimensional montmorillonite with organic coatings, are increasingly used to improve nanocomposite properties. However, little is known about pulmonary health risks along the nanoclay life cycle even with increased evidence of airborne particulate exposures in occu...

Full description

Saved in:
Bibliographic Details
Published inParticle and fibre toxicology Vol. 21; no. 1; pp. 16 - 28
Main Authors Stueckle, Todd A., Jensen, Jake, Coyle, Jayme P., Derk, Raymond, Wagner, Alixandra, Dinu, Cerasela Zoica, Kornberg, Tiffany G., Friend, Sherri A., Dozier, Alan, Agarwal, Sushant, Gupta, Rakesh K., Rojanasakul, Liying W.
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 21.03.2024
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Organomodified nanoclays (ONC), two-dimensional montmorillonite with organic coatings, are increasingly used to improve nanocomposite properties. However, little is known about pulmonary health risks along the nanoclay life cycle even with increased evidence of airborne particulate exposures in occupational environments. Recently, oropharyngeal aspiration exposure to pre- and post-incinerated ONC in mice caused low grade, persistent lung inflammation with a pro-fibrotic signaling response with unknown mode(s) of action. We hypothesized that the organic coating presence and incineration status of nanoclays determine the inflammatory cytokine secretary profile and cytotoxic response of macrophages. To test this hypothesis differentiated human macrophages (THP-1) were acutely exposed (0-20 µg/cm ) to pristine, uncoated nanoclay (CloisNa), an ONC (Clois30B), their incinerated byproducts (I-CloisNa and I-Clois30B), and crystalline silica (CS) followed by cytotoxicity and inflammatory endpoints. Macrophages were co-exposed to lipopolysaccharide (LPS) or LPS-free medium to assess the role of priming the NF-κB pathway in macrophage response to nanoclay treatment. Data were compared to inflammatory responses in male C57Bl/6J mice following 30 and 300 µg/mouse aspiration exposure to the same particles. In LPS-free media, CloisNa exposure caused mitochondrial depolarization while Clois30B exposure caused reduced macrophage viability, greater cytotoxicity, and significant damage-associated molecular patterns (IL-1α and ATP) release compared to CloisNa and unexposed controls. LPS priming with low CloisNa doses caused elevated cathepsin B/Caspage-1/IL-1β release while higher doses resulted in apoptosis. Clois30B exposure caused dose-dependent THP-1 cell pyroptosis evidenced by Cathepsin B and IL-1β release and Gasdermin D cleavage. Incineration ablated the cytotoxic and inflammatory effects of Clois30B while I-CloisNa still retained some mild inflammatory potential. Comparative analyses suggested that in vitro macrophage cell viability, inflammasome endpoints, and pro-inflammatory cytokine profiles significantly correlated to mouse bronchioalveolar lavage inflammation metrics including inflammatory cell recruitment. Presence of organic coating and incineration status influenced inflammatory and cytotoxic responses following exposure to human macrophages. Clois30B, with a quaternary ammonium tallow coating, induced a robust cell membrane damage and pyroptosis effect which was eliminated after incineration. Conversely, incinerated nanoclay exposure primarily caused elevated inflammatory cytokine release from THP-1 cells. Collectively, pre-incinerated nanoclay displayed interaction with macrophage membrane components (molecular initiating event), increased pro-inflammatory mediators, and increased inflammatory cell recruitment (two key events) in the lung fibrosis adverse outcome pathway.
AbstractList Abstract Background Organomodified nanoclays (ONC), two-dimensional montmorillonite with organic coatings, are increasingly used to improve nanocomposite properties. However, little is known about pulmonary health risks along the nanoclay life cycle even with increased evidence of airborne particulate exposures in occupational environments. Recently, oropharyngeal aspiration exposure to pre- and post-incinerated ONC in mice caused low grade, persistent lung inflammation with a pro-fibrotic signaling response with unknown mode(s) of action. We hypothesized that the organic coating presence and incineration status of nanoclays determine the inflammatory cytokine secretary profile and cytotoxic response of macrophages. To test this hypothesis differentiated human macrophages (THP-1) were acutely exposed (0–20 µg/cm2) to pristine, uncoated nanoclay (CloisNa), an ONC (Clois30B), their incinerated byproducts (I-CloisNa and I-Clois30B), and crystalline silica (CS) followed by cytotoxicity and inflammatory endpoints. Macrophages were co-exposed to lipopolysaccharide (LPS) or LPS-free medium to assess the role of priming the NF-κB pathway in macrophage response to nanoclay treatment. Data were compared to inflammatory responses in male C57Bl/6J mice following 30 and 300 µg/mouse aspiration exposure to the same particles. Results In LPS-free media, CloisNa exposure caused mitochondrial depolarization while Clois30B exposure caused reduced macrophage viability, greater cytotoxicity, and significant damage-associated molecular patterns (IL-1α and ATP) release compared to CloisNa and unexposed controls. LPS priming with low CloisNa doses caused elevated cathepsin B/Caspage-1/IL-1β release while higher doses resulted in apoptosis. Clois30B exposure caused dose-dependent THP-1 cell pyroptosis evidenced by Cathepsin B and IL-1β release and Gasdermin D cleavage. Incineration ablated the cytotoxic and inflammatory effects of Clois30B while I-CloisNa still retained some mild inflammatory potential. Comparative analyses suggested that in vitro macrophage cell viability, inflammasome endpoints, and pro-inflammatory cytokine profiles significantly correlated to mouse bronchioalveolar lavage inflammation metrics including inflammatory cell recruitment. Conclusions Presence of organic coating and incineration status influenced inflammatory and cytotoxic responses following exposure to human macrophages. Clois30B, with a quaternary ammonium tallow coating, induced a robust cell membrane damage and pyroptosis effect which was eliminated after incineration. Conversely, incinerated nanoclay exposure primarily caused elevated inflammatory cytokine release from THP-1 cells. Collectively, pre-incinerated nanoclay displayed interaction with macrophage membrane components (molecular initiating event), increased pro-inflammatory mediators, and increased inflammatory cell recruitment (two key events) in the lung fibrosis adverse outcome pathway.
Organomodified nanoclays (ONC), two-dimensional montmorillonite with organic coatings, are increasingly used to improve nanocomposite properties. However, little is known about pulmonary health risks along the nanoclay life cycle even with increased evidence of airborne particulate exposures in occupational environments. Recently, oropharyngeal aspiration exposure to pre- and post-incinerated ONC in mice caused low grade, persistent lung inflammation with a pro-fibrotic signaling response with unknown mode(s) of action. We hypothesized that the organic coating presence and incineration status of nanoclays determine the inflammatory cytokine secretary profile and cytotoxic response of macrophages. To test this hypothesis differentiated human macrophages (THP-1) were acutely exposed (0-20 µg/cm2) to pristine, uncoated nanoclay (CloisNa), an ONC (Clois30B), their incinerated byproducts (I-CloisNa and I-Clois30B), and crystalline silica (CS) followed by cytotoxicity and inflammatory endpoints. Macrophages were co-exposed to lipopolysaccharide (LPS) or LPS-free medium to assess the role of priming the NF-κB pathway in macrophage response to nanoclay treatment. Data were compared to inflammatory responses in male C57Bl/6J mice following 30 and 300 µg/mouse aspiration exposure to the same particles.BACKGROUNDOrganomodified nanoclays (ONC), two-dimensional montmorillonite with organic coatings, are increasingly used to improve nanocomposite properties. However, little is known about pulmonary health risks along the nanoclay life cycle even with increased evidence of airborne particulate exposures in occupational environments. Recently, oropharyngeal aspiration exposure to pre- and post-incinerated ONC in mice caused low grade, persistent lung inflammation with a pro-fibrotic signaling response with unknown mode(s) of action. We hypothesized that the organic coating presence and incineration status of nanoclays determine the inflammatory cytokine secretary profile and cytotoxic response of macrophages. To test this hypothesis differentiated human macrophages (THP-1) were acutely exposed (0-20 µg/cm2) to pristine, uncoated nanoclay (CloisNa), an ONC (Clois30B), their incinerated byproducts (I-CloisNa and I-Clois30B), and crystalline silica (CS) followed by cytotoxicity and inflammatory endpoints. Macrophages were co-exposed to lipopolysaccharide (LPS) or LPS-free medium to assess the role of priming the NF-κB pathway in macrophage response to nanoclay treatment. Data were compared to inflammatory responses in male C57Bl/6J mice following 30 and 300 µg/mouse aspiration exposure to the same particles.In LPS-free media, CloisNa exposure caused mitochondrial depolarization while Clois30B exposure caused reduced macrophage viability, greater cytotoxicity, and significant damage-associated molecular patterns (IL-1α and ATP) release compared to CloisNa and unexposed controls. LPS priming with low CloisNa doses caused elevated cathepsin B/Caspage-1/IL-1β release while higher doses resulted in apoptosis. Clois30B exposure caused dose-dependent THP-1 cell pyroptosis evidenced by Cathepsin B and IL-1β release and Gasdermin D cleavage. Incineration ablated the cytotoxic and inflammatory effects of Clois30B while I-CloisNa still retained some mild inflammatory potential. Comparative analyses suggested that in vitro macrophage cell viability, inflammasome endpoints, and pro-inflammatory cytokine profiles significantly correlated to mouse bronchioalveolar lavage inflammation metrics including inflammatory cell recruitment.RESULTSIn LPS-free media, CloisNa exposure caused mitochondrial depolarization while Clois30B exposure caused reduced macrophage viability, greater cytotoxicity, and significant damage-associated molecular patterns (IL-1α and ATP) release compared to CloisNa and unexposed controls. LPS priming with low CloisNa doses caused elevated cathepsin B/Caspage-1/IL-1β release while higher doses resulted in apoptosis. Clois30B exposure caused dose-dependent THP-1 cell pyroptosis evidenced by Cathepsin B and IL-1β release and Gasdermin D cleavage. Incineration ablated the cytotoxic and inflammatory effects of Clois30B while I-CloisNa still retained some mild inflammatory potential. Comparative analyses suggested that in vitro macrophage cell viability, inflammasome endpoints, and pro-inflammatory cytokine profiles significantly correlated to mouse bronchioalveolar lavage inflammation metrics including inflammatory cell recruitment.Presence of organic coating and incineration status influenced inflammatory and cytotoxic responses following exposure to human macrophages. Clois30B, with a quaternary ammonium tallow coating, induced a robust cell membrane damage and pyroptosis effect which was eliminated after incineration. Conversely, incinerated nanoclay exposure primarily caused elevated inflammatory cytokine release from THP-1 cells. Collectively, pre-incinerated nanoclay displayed interaction with macrophage membrane components (molecular initiating event), increased pro-inflammatory mediators, and increased inflammatory cell recruitment (two key events) in the lung fibrosis adverse outcome pathway.CONCLUSIONSPresence of organic coating and incineration status influenced inflammatory and cytotoxic responses following exposure to human macrophages. Clois30B, with a quaternary ammonium tallow coating, induced a robust cell membrane damage and pyroptosis effect which was eliminated after incineration. Conversely, incinerated nanoclay exposure primarily caused elevated inflammatory cytokine release from THP-1 cells. Collectively, pre-incinerated nanoclay displayed interaction with macrophage membrane components (molecular initiating event), increased pro-inflammatory mediators, and increased inflammatory cell recruitment (two key events) in the lung fibrosis adverse outcome pathway.
Organomodified nanoclays (ONC), two-dimensional montmorillonite with organic coatings, are increasingly used to improve nanocomposite properties. However, little is known about pulmonary health risks along the nanoclay life cycle even with increased evidence of airborne particulate exposures in occupational environments. Recently, oropharyngeal aspiration exposure to pre- and post-incinerated ONC in mice caused low grade, persistent lung inflammation with a pro-fibrotic signaling response with unknown mode(s) of action. We hypothesized that the organic coating presence and incineration status of nanoclays determine the inflammatory cytokine secretary profile and cytotoxic response of macrophages. To test this hypothesis differentiated human macrophages (THP-1) were acutely exposed (0-20 µg/cm ) to pristine, uncoated nanoclay (CloisNa), an ONC (Clois30B), their incinerated byproducts (I-CloisNa and I-Clois30B), and crystalline silica (CS) followed by cytotoxicity and inflammatory endpoints. Macrophages were co-exposed to lipopolysaccharide (LPS) or LPS-free medium to assess the role of priming the NF-κB pathway in macrophage response to nanoclay treatment. Data were compared to inflammatory responses in male C57Bl/6J mice following 30 and 300 µg/mouse aspiration exposure to the same particles. In LPS-free media, CloisNa exposure caused mitochondrial depolarization while Clois30B exposure caused reduced macrophage viability, greater cytotoxicity, and significant damage-associated molecular patterns (IL-1α and ATP) release compared to CloisNa and unexposed controls. LPS priming with low CloisNa doses caused elevated cathepsin B/Caspage-1/IL-1β release while higher doses resulted in apoptosis. Clois30B exposure caused dose-dependent THP-1 cell pyroptosis evidenced by Cathepsin B and IL-1β release and Gasdermin D cleavage. Incineration ablated the cytotoxic and inflammatory effects of Clois30B while I-CloisNa still retained some mild inflammatory potential. Comparative analyses suggested that in vitro macrophage cell viability, inflammasome endpoints, and pro-inflammatory cytokine profiles significantly correlated to mouse bronchioalveolar lavage inflammation metrics including inflammatory cell recruitment. Presence of organic coating and incineration status influenced inflammatory and cytotoxic responses following exposure to human macrophages. Clois30B, with a quaternary ammonium tallow coating, induced a robust cell membrane damage and pyroptosis effect which was eliminated after incineration. Conversely, incinerated nanoclay exposure primarily caused elevated inflammatory cytokine release from THP-1 cells. Collectively, pre-incinerated nanoclay displayed interaction with macrophage membrane components (molecular initiating event), increased pro-inflammatory mediators, and increased inflammatory cell recruitment (two key events) in the lung fibrosis adverse outcome pathway.
BackgroundOrganomodified nanoclays (ONC), two-dimensional montmorillonite with organic coatings, are increasingly used to improve nanocomposite properties. However, little is known about pulmonary health risks along the nanoclay life cycle even with increased evidence of airborne particulate exposures in occupational environments. Recently, oropharyngeal aspiration exposure to pre- and post-incinerated ONC in mice caused low grade, persistent lung inflammation with a pro-fibrotic signaling response with unknown mode(s) of action. We hypothesized that the organic coating presence and incineration status of nanoclays determine the inflammatory cytokine secretary profile and cytotoxic response of macrophages. To test this hypothesis differentiated human macrophages (THP-1) were acutely exposed (0–20 µg/cm2) to pristine, uncoated nanoclay (CloisNa), an ONC (Clois30B), their incinerated byproducts (I-CloisNa and I-Clois30B), and crystalline silica (CS) followed by cytotoxicity and inflammatory endpoints. Macrophages were co-exposed to lipopolysaccharide (LPS) or LPS-free medium to assess the role of priming the NF-κB pathway in macrophage response to nanoclay treatment. Data were compared to inflammatory responses in male C57Bl/6J mice following 30 and 300 µg/mouse aspiration exposure to the same particles.ResultsIn LPS-free media, CloisNa exposure caused mitochondrial depolarization while Clois30B exposure caused reduced macrophage viability, greater cytotoxicity, and significant damage-associated molecular patterns (IL-1α and ATP) release compared to CloisNa and unexposed controls. LPS priming with low CloisNa doses caused elevated cathepsin B/Caspage-1/IL-1β release while higher doses resulted in apoptosis. Clois30B exposure caused dose-dependent THP-1 cell pyroptosis evidenced by Cathepsin B and IL-1β release and Gasdermin D cleavage. Incineration ablated the cytotoxic and inflammatory effects of Clois30B while I-CloisNa still retained some mild inflammatory potential. Comparative analyses suggested that in vitro macrophage cell viability, inflammasome endpoints, and pro-inflammatory cytokine profiles significantly correlated to mouse bronchioalveolar lavage inflammation metrics including inflammatory cell recruitment.ConclusionsPresence of organic coating and incineration status influenced inflammatory and cytotoxic responses following exposure to human macrophages. Clois30B, with a quaternary ammonium tallow coating, induced a robust cell membrane damage and pyroptosis effect which was eliminated after incineration. Conversely, incinerated nanoclay exposure primarily caused elevated inflammatory cytokine release from THP-1 cells. Collectively, pre-incinerated nanoclay displayed interaction with macrophage membrane components (molecular initiating event), increased pro-inflammatory mediators, and increased inflammatory cell recruitment (two key events) in the lung fibrosis adverse outcome pathway.
Organomodified nanoclays (ONC), two-dimensional montmorillonite with organic coatings, are increasingly used to improve nanocomposite properties. However, little is known about pulmonary health risks along the nanoclay life cycle even with increased evidence of airborne particulate exposures in occupational environments. Recently, oropharyngeal aspiration exposure to pre- and post-incinerated ONC in mice caused low grade, persistent lung inflammation with a pro-fibrotic signaling response with unknown mode(s) of action. We hypothesized that the organic coating presence and incineration status of nanoclays determine the inflammatory cytokine secretary profile and cytotoxic response of macrophages. To test this hypothesis differentiated human macrophages (THP-1) were acutely exposed (0-20 [micro]g/cm.sup.2) to pristine, uncoated nanoclay (CloisNa), an ONC (Clois30B), their incinerated byproducts (I-CloisNa and I-Clois30B), and crystalline silica (CS) followed by cytotoxicity and inflammatory endpoints. Macrophages were co-exposed to lipopolysaccharide (LPS) or LPS-free medium to assess the role of priming the NF-κB pathway in macrophage response to nanoclay treatment. Data were compared to inflammatory responses in male C57Bl/6J mice following 30 and 300 [micro]g/mouse aspiration exposure to the same particles. In LPS-free media, CloisNa exposure caused mitochondrial depolarization while Clois30B exposure caused reduced macrophage viability, greater cytotoxicity, and significant damage-associated molecular patterns (IL-1[alpha] and ATP) release compared to CloisNa and unexposed controls. LPS priming with low CloisNa doses caused elevated cathepsin B/Caspage-1/IL-1[beta] release while higher doses resulted in apoptosis. Clois30B exposure caused dose-dependent THP-1 cell pyroptosis evidenced by Cathepsin B and IL-1[beta] release and Gasdermin D cleavage. Incineration ablated the cytotoxic and inflammatory effects of Clois30B while I-CloisNa still retained some mild inflammatory potential. Comparative analyses suggested that in vitro macrophage cell viability, inflammasome endpoints, and pro-inflammatory cytokine profiles significantly correlated to mouse bronchioalveolar lavage inflammation metrics including inflammatory cell recruitment. Presence of organic coating and incineration status influenced inflammatory and cytotoxic responses following exposure to human macrophages. Clois30B, with a quaternary ammonium tallow coating, induced a robust cell membrane damage and pyroptosis effect which was eliminated after incineration. Conversely, incinerated nanoclay exposure primarily caused elevated inflammatory cytokine release from THP-1 cells. Collectively, pre-incinerated nanoclay displayed interaction with macrophage membrane components (molecular initiating event), increased pro-inflammatory mediators, and increased inflammatory cell recruitment (two key events) in the lung fibrosis adverse outcome pathway.
Background Organomodified nanoclays (ONC), two-dimensional montmorillonite with organic coatings, are increasingly used to improve nanocomposite properties. However, little is known about pulmonary health risks along the nanoclay life cycle even with increased evidence of airborne particulate exposures in occupational environments. Recently, oropharyngeal aspiration exposure to pre- and post-incinerated ONC in mice caused low grade, persistent lung inflammation with a pro-fibrotic signaling response with unknown mode(s) of action. We hypothesized that the organic coating presence and incineration status of nanoclays determine the inflammatory cytokine secretary profile and cytotoxic response of macrophages. To test this hypothesis differentiated human macrophages (THP-1) were acutely exposed (0-20 [micro]g/cm.sup.2) to pristine, uncoated nanoclay (CloisNa), an ONC (Clois30B), their incinerated byproducts (I-CloisNa and I-Clois30B), and crystalline silica (CS) followed by cytotoxicity and inflammatory endpoints. Macrophages were co-exposed to lipopolysaccharide (LPS) or LPS-free medium to assess the role of priming the NF-κB pathway in macrophage response to nanoclay treatment. Data were compared to inflammatory responses in male C57Bl/6J mice following 30 and 300 [micro]g/mouse aspiration exposure to the same particles. Results In LPS-free media, CloisNa exposure caused mitochondrial depolarization while Clois30B exposure caused reduced macrophage viability, greater cytotoxicity, and significant damage-associated molecular patterns (IL-1[alpha] and ATP) release compared to CloisNa and unexposed controls. LPS priming with low CloisNa doses caused elevated cathepsin B/Caspage-1/IL-1[beta] release while higher doses resulted in apoptosis. Clois30B exposure caused dose-dependent THP-1 cell pyroptosis evidenced by Cathepsin B and IL-1[beta] release and Gasdermin D cleavage. Incineration ablated the cytotoxic and inflammatory effects of Clois30B while I-CloisNa still retained some mild inflammatory potential. Comparative analyses suggested that in vitro macrophage cell viability, inflammasome endpoints, and pro-inflammatory cytokine profiles significantly correlated to mouse bronchioalveolar lavage inflammation metrics including inflammatory cell recruitment. Conclusions Presence of organic coating and incineration status influenced inflammatory and cytotoxic responses following exposure to human macrophages. Clois30B, with a quaternary ammonium tallow coating, induced a robust cell membrane damage and pyroptosis effect which was eliminated after incineration. Conversely, incinerated nanoclay exposure primarily caused elevated inflammatory cytokine release from THP-1 cells. Collectively, pre-incinerated nanoclay displayed interaction with macrophage membrane components (molecular initiating event), increased pro-inflammatory mediators, and increased inflammatory cell recruitment (two key events) in the lung fibrosis adverse outcome pathway. Keywords: Nanoclay, Organic coating, Incineration, Silicates, In vitro models, High-throughput screening, Human lung cells, Mouse
ArticleNumber 16
Audience Academic
Author Wagner, Alixandra
Friend, Sherri A.
Derk, Raymond
Coyle, Jayme P.
Agarwal, Sushant
Kornberg, Tiffany G.
Dinu, Cerasela Zoica
Gupta, Rakesh K.
Dozier, Alan
Rojanasakul, Liying W.
Stueckle, Todd A.
Jensen, Jake
Author_xml – sequence: 1
  givenname: Todd A.
  surname: Stueckle
  fullname: Stueckle, Todd A.
– sequence: 2
  givenname: Jake
  surname: Jensen
  fullname: Jensen, Jake
– sequence: 3
  givenname: Jayme P.
  surname: Coyle
  fullname: Coyle, Jayme P.
– sequence: 4
  givenname: Raymond
  surname: Derk
  fullname: Derk, Raymond
– sequence: 5
  givenname: Alixandra
  surname: Wagner
  fullname: Wagner, Alixandra
– sequence: 6
  givenname: Cerasela Zoica
  surname: Dinu
  fullname: Dinu, Cerasela Zoica
– sequence: 7
  givenname: Tiffany G.
  surname: Kornberg
  fullname: Kornberg, Tiffany G.
– sequence: 8
  givenname: Sherri A.
  surname: Friend
  fullname: Friend, Sherri A.
– sequence: 9
  givenname: Alan
  surname: Dozier
  fullname: Dozier, Alan
– sequence: 10
  givenname: Sushant
  surname: Agarwal
  fullname: Agarwal, Sushant
– sequence: 11
  givenname: Rakesh K.
  surname: Gupta
  fullname: Gupta, Rakesh K.
– sequence: 12
  givenname: Liying W.
  surname: Rojanasakul
  fullname: Rojanasakul, Liying W.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38509617$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu3CAUhq0qVXNpX6CLylI37cIpGBhgVUVRLyNFqtTLGh1jbDOywQUcJQ_Tdy0zk6aZqKpYcDnf_9sc_tPiyHlniuIlRucYi9W7iGspZIVqWiHEOK_4k-IEc0oqITk_erA-Lk5j3CBEmGD4WXFMBENyhflJ8Wvtymubgi-t60aYJkjWuxJcWyZ_Y7VNtyXEaGKcjEul78o5mGpXn31MlXXaOhMgmbb0oQfnJ9_azuatyxs9wm3MTuUEOvh5gN7EconW9eVg-6FKQ_BLP8xLKqMOxrhtBeY5eNCDic-Lpx2M0by4m8-KHx8_fL_8XF19-bS-vLiqNJMiVdSwutENRXWndQ01B91RKYDTVhDT1bLBxFBoCRVIMENaLiWYZoWQRC00HTkr1nvf1sNGzcFOEG6VB6t2B_liCkKyejSKcSFZh7DWrKUrJiQiHSMUGtIa2eI6e73fe81LM5lW57YFGA9MDyvODqr31wojyVY1ZdnhzZ1D8D8XE5OabNRmHMEZv0RVS04wwgLRjL5-hG78ElzulSKIcMEZZewv1UO-QX5onz-st6bqgouVpAKzVabO_0Hl0ZrJ6hy9zubzA8HbA0FmkrlJPSwxqvW3r4fsq4dduW_HnyRmoN4DOScxBtPdIxipbdzVPu4qx13t4q62IvFIlAO7S3D-dTv-T_obAHkGtA
CitedBy_id crossref_primary_10_3390_nano14181470
Cites_doi 10.4049/jimmunol.172.7.4618
10.1016/j.molimm.2018.09.010
10.1021/acs.chemrestox.6b00409
10.1007/978-1-4939-7357-6_2
10.1186/s12989-020-00371-1
10.3109/17435390.2015.1132346
10.1016/j.mrgentox.2021.503405
10.1016/j.actbio.2020.03.017
10.1016/j.tiv.2011.12.006
10.1007/BF02704606
10.1038/s41419-023-05786-0
10.7150/thno.34065
10.1038/s41577-019-0165-0
10.4049/jimmunol.1302470
10.1039/C8EN00420J
10.1186/s12989-016-0162-4
10.1186/s12989-023-00516-y
10.1016/j.envres.2014.12.024
10.1146/annurev-immunol-032712-095937
10.3390/ijms20133328
10.1007/s00204-019-02604-5
10.1053/ai.1994.v94.a52646
10.1016/j.progsurf.2014.08.002
10.1084/jem.181.5.1661
10.4103/ed.ed_16_18
10.1016/j.impact.2016.11.001
10.1180/claymin.2009.044.2.161
10.1016/S0300-483X(00)00415-7
10.1007/s00204-005-0013-9
10.1590/S1516-14392013005000114
10.2478/s13382-013-0137-8
10.1021/acs.chemrestox.9b00277
10.1016/j.mrgentox.2014.04.023
10.1016/j.taap.2017.01.012
10.1016/j.envpol.2023.122950
10.1021/nn102734s
10.1016/j.taap.2013.11.012
10.1186/1743-8977-11-17
10.3390/toxics10050232
10.1093/toxsci/kfu199
10.4049/jimmunol.0900459
10.1063/1.4937927
10.1152/ajplung.00329.2004
10.1016/j.impact.2017.12.002
10.1038/s41598-018-28884-y
10.1042/CBI20100587
10.1007/s11051-012-0989-z
10.1080/17435390.2020.1771786
10.1007/978-1-4939-7357-6_3
10.1080/17435390.2017.1287313
10.1021/acsami.7b06657
10.1186/1743-8977-7-39
10.1080/08958370252870998
10.1021/acsnano.7b07281
10.1186/1743-8977-10-26
10.1016/j.bbagen.2016.09.003
10.1021/ar300022h
10.1002/adv.21368
10.1016/j.mrgentox.2012.10.006
10.1016/j.mrgentox.2010.04.021
10.1016/j.envpol.2023.122997
10.1089/107999003321455453
10.1289/ehp.1306561
10.18637/jss.v012.i05
10.1016/j.fct.2013.03.043
10.1152/ajpcell.00298.2015
10.1038/ncomms4514
10.1007/s10453-010-9179-6
10.4209/aaqr.2008.01.0001
10.3389/fimmu.2018.01120
10.1615/CritRevTherDrugCarrierSyst.v21.i4.10
10.1038/nature18629
10.15252/embj.2019102065
10.1186/s12989-020-00345-3
10.1164/ajrccm/146.2.454
10.1186/s12989-014-0069-x
10.1515/msp-2015-0008
10.1007/s00011-007-6115-5
10.1007/s11051-017-3850-6
10.1016/j.jhazmat.2015.10.018
10.1073/pnas.1015476108
10.3389/fimmu.2016.00097
10.1016/j.diff.2022.10.001
10.1111/imr.12577
10.1002/jcp.29268
10.1016/j.ccc.2010.12.005
10.1002/(SICI)1097-4636(20000315)49:4<469::AID-JBM5>3.0.CO;2-A
10.1002/wnan.1794
10.1186/rr177
10.3109/17435390.2013.776123
10.1007/s10495-012-0798-y
10.1002/wnan.1413
10.1016/S0300-483X(02)00061-6
10.1186/1743-8977-10-5
10.1080/15287390590912612
10.1038/ni.2215
ContentType Journal Article
Copyright 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
COPYRIGHT 2024 BioMed Central Ltd.
2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024
Copyright_xml – notice: 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
– notice: COPYRIGHT 2024 BioMed Central Ltd.
– notice: 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7SR
7U7
7X7
7XB
88E
8FD
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JG9
K9.
KB.
KR7
L6V
M0S
M1P
M7S
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
7X8
5PM
DOA
DOI 10.1186/s12989-024-00577-7
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Engineered Materials Abstracts
Toxicology Abstracts
Health & Medical Complete (ProQuest Database)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
ProQuest Health & Medical Collection
Medical Database
Engineering Database
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Materials Science Collection
Civil Engineering Abstracts
Toxicology Abstracts
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Publicly Available Content Database



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1743-8977
EndPage 28
ExternalDocumentID oai_doaj_org_article_57895f01cc5d4658903f534ab3de9d12
PMC10956245
A786948156
38509617
10_1186_s12989_024_00577_7
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, U.S. Gov't, P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United Kingdom
United States
GeographicLocations_xml – name: United Kingdom
– name: United States
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: R01 ES022968
– fundername: National Science Foundation
  grantid: 1454230
– fundername: NIOSH Nanotechnology Research Center
  grantid: 939051L
– fundername: NIOSH Nanotechnology Research Center
  grantid: 921043S
– fundername: National Science Foundation
  grantid: 1434503
GroupedDBID ---
0R~
123
29O
2WC
2XV
4P2
53G
5VS
7X7
7XC
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABJCF
ABUWG
ACGFO
ACGFS
ACIWK
ACPRK
ADBBV
ADRAZ
ADUKV
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ATCPS
BAPOH
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EBLON
EBS
EDH
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IHR
INH
INR
ISR
ITC
KB.
KQ8
L6V
M1P
M48
M7S
M~E
O5R
O5S
OK1
OVT
PATMY
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
UKHRP
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PMFND
3V.
7SR
7U7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
JG9
K9.
KR7
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c598t-4e52bcb402fcc2a27acf498a74d83ef29b13e4ad348085e3d799aeb60090dabf3
IEDL.DBID M48
ISSN 1743-8977
IngestDate Wed Aug 27 01:29:38 EDT 2025
Thu Aug 21 18:35:08 EDT 2025
Fri Jul 11 00:05:43 EDT 2025
Fri Jul 25 10:44:34 EDT 2025
Tue Jun 17 22:13:20 EDT 2025
Tue Jun 10 21:14:04 EDT 2025
Fri Jun 27 06:01:44 EDT 2025
Mon Jul 21 05:46:08 EDT 2025
Tue Jul 01 01:46:07 EDT 2025
Thu Apr 24 23:12:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords In vitro models
Incineration
Mouse
Human lung cells
High-throughput screening
Silicates
Nanoclay
Organic coating
Language English
License 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c598t-4e52bcb402fcc2a27acf498a74d83ef29b13e4ad348085e3d799aeb60090dabf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12989-024-00577-7
PMID 38509617
PQID 3037875455
PQPubID 55352
PageCount 28
ParticipantIDs doaj_primary_oai_doaj_org_article_57895f01cc5d4658903f534ab3de9d12
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10956245
proquest_miscellaneous_2973101804
proquest_journals_3037875455
gale_infotracmisc_A786948156
gale_infotracacademiconefile_A786948156
gale_incontextgauss_ISR_A786948156
pubmed_primary_38509617
crossref_primary_10_1186_s12989_024_00577_7
crossref_citationtrail_10_1186_s12989_024_00577_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-21
PublicationDateYYYYMMDD 2024-03-21
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-21
  day: 21
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Particle and fibre toxicology
PublicationTitleAlternate Part Fibre Toxicol
PublicationYear 2024
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References TA Stueckle (577_CR17) 2018; 12
ZN Mohd Yasin (577_CR33) 2022; 128
N Kelley (577_CR65) 2019; 20
TT Le (577_CR92) 2014; 193
A Wagner (577_CR19) 2017; 9
KM Pollard (577_CR27) 2016; 7
DW Porter (577_CR24) 2002; 175
GN Joshi (577_CR61) 2013; 18
D Napierska (577_CR101) 2010; 7
G Janer (577_CR22) 2014; 8
S George (577_CR50) 2011; 5
S Tsai (577_CR8) 2008; 8
R Swiercz (577_CR89) 2013; 26
G DeLoid (577_CR41) 2014; 5
DL Villeneuve (577_CR29) 2014; 142
S Maisanaba (577_CR15) 2015; 138
Y Huang (577_CR4) 2013; 751
A Mackevica (577_CR6) 2016; 10
J Pourchez (577_CR10) 2018; 5
L Caceres (577_CR64) 2024; 341
AC Lopes (577_CR12) 2014; 89
C Ritz (577_CR52) 2005; 12
MA Katsnelson (577_CR60) 2016; 311
X Yuan (577_CR63) 2020; 10
S Maisanaba (577_CR21) 2016; 304
R Landsiedel (577_CR104) 2017; 19
C Degobbi (577_CR36) 2011; 27
G Wick (577_CR86) 2013; 31
MC Floody (577_CR11) 2009; 44
LB Zhuo (577_CR67) 2024; 341
S Maisanaba (577_CR71) 2013; 57
SL Re (577_CR81) 2010; 184
Z Xie (577_CR62) 2023; 14
Y Chen (577_CR82) 2014; 275
C Pavan (577_CR14) 2017; 30
V Wilhelmi (577_CR70) 2012; 26
577_CR37
N Zamzami (577_CR68) 1991; 181
LJ Cross (577_CR77) 2011; 27
MP Keane (577_CR91) 2002; 3
577_CR38
A Hubbs (577_CR46) 2005; 68
AR Collins (577_CR103) 2017; 9
S Geh (577_CR56) 2006; 80
D Yang (577_CR78) 2017; 280
P McLean (577_CR31) 2023; 20
KV Swanson (577_CR58) 2019; 19
DW Porter (577_CR100) 2002; 14
S Deville (577_CR69) 2020; 94
577_CR1
577_CR2
AM Gram (577_CR74) 2019; 38
F Jessop (577_CR59) 2017; 318
F Lu (577_CR34) 2020; 235
Q Liu (577_CR66) 2018; 103
S Lordan (577_CR57) 2012; 36
T Otsuki (577_CR80) 2007; 4
577_CR87
M Munasir (577_CR99) 2015; 33
F Mor (577_CR95) 2004; 172
A Wagner (577_CR16) 2017; 1861
KM Chambers (577_CR48) 2018; 1683
JR Roberts (577_CR76) 2013; 10
DS Lang (577_CR94) 2001; 159
AU Daniels (577_CR54) 2000; 49
CS-J Tsai (577_CR7) 2012; 14
E Di Ianni (577_CR25) 2020; 14
M Fei (577_CR96) 2011; 108
A Wagner (577_CR20) 2018; 8
TA Stueckle (577_CR18) 2019; 32
AK Sharma (577_CR23) 2014; 770
HA Patel (577_CR3) 2006; 29
V Rabolli (577_CR75) 2014; 11
X Liu (577_CR51) 2016; 535
Y Shang (577_CR35) 2018; 3
Z Adamis (577_CR13) 2005
X Chang (577_CR30) 2022; 10
CS Shi (577_CR79) 2012; 13
E Di Ianni (577_CR26) 2021; 872
TA Stueckle (577_CR45) 2017; 6
577_CR105
T Skuland (577_CR83) 2020; 17
T Morishige (577_CR102) 2010; 31
SM Fitzgerald (577_CR93) 2003; 23
D Simberg (577_CR73) 2004; 21
D Breznan (577_CR84) 2017; 11
EK Park (577_CR44) 2007; 56
A Nel (577_CR53) 2013; 46
E Jämsen (577_CR55) 2020; 108
JPDR Coyle (577_CR40) 2020; 17
JM Cohen (577_CR39) 2018; 10
KC Stone (577_CR47) 1992; 146
T Xia (577_CR43) 2013; 121
SJ Froggett (577_CR9) 2014; 11
BS Mandavilli (577_CR49) 2018; 1683
C Brandenberger (577_CR88) 2013; 10
R Ullah (577_CR97) 2014; 4
L Bieseki (577_CR98) 2013; 16
J Dong (577_CR85) 2018; 9
Y Yue (577_CR42) 2015; 107
AK Sharma (577_CR72) 2010; 700
E Di Ianni (577_CR32) 2022; 14
JA Bernstein (577_CR90) 1994; 94
M Sayan (577_CR28) 2016; 13
SLYZY Zeng (577_CR5) 1998; 16
References_xml – volume: 172
  start-page: 4618
  issue: 7
  year: 2004
  ident: 577_CR95
  publication-title: J Immunol (Baltimore, Md: 1950)
  doi: 10.4049/jimmunol.172.7.4618
– volume: 103
  start-page: 115
  year: 2018
  ident: 577_CR66
  publication-title: Mol Immunol
  doi: 10.1016/j.molimm.2018.09.010
– volume: 30
  start-page: 469
  issue: 1
  year: 2017
  ident: 577_CR14
  publication-title: Chem Res Toxicol
  doi: 10.1021/acs.chemrestox.6b00409
– volume: 1683
  start-page: 21
  year: 2018
  ident: 577_CR48
  publication-title: Methods Mol Biol (Clifton, NJ)
  doi: 10.1007/978-1-4939-7357-6_2
– volume: 17
  start-page: 1
  year: 2020
  ident: 577_CR40
  publication-title: Part Fibre Toxicol
  doi: 10.1186/s12989-020-00371-1
– volume: 10
  start-page: 641
  issue: 6
  year: 2016
  ident: 577_CR6
  publication-title: Nanotoxicology
  doi: 10.3109/17435390.2015.1132346
– volume: 872
  start-page: 503405
  year: 2021
  ident: 577_CR26
  publication-title: Mutat Res Genet Toxicol Environ Mutagen
  doi: 10.1016/j.mrgentox.2021.503405
– volume: 108
  start-page: 347
  year: 2020
  ident: 577_CR55
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2020.03.017
– volume: 26
  start-page: 323
  issue: 2
  year: 2012
  ident: 577_CR70
  publication-title: Toxicol In Vitro
  doi: 10.1016/j.tiv.2011.12.006
– volume-title: Bentonite, kaolin and selected clay minerals
  year: 2005
  ident: 577_CR13
– volume: 29
  start-page: 133
  issue: 2
  year: 2006
  ident: 577_CR3
  publication-title: Bull Mater Sci
  doi: 10.1007/BF02704606
– volume: 14
  start-page: 255
  issue: 4
  year: 2023
  ident: 577_CR62
  publication-title: Cell Death Disease
  doi: 10.1038/s41419-023-05786-0
– volume: 10
  start-page: 4589
  issue: 10
  year: 2020
  ident: 577_CR63
  publication-title: Theranostics
  doi: 10.7150/thno.34065
– volume: 19
  start-page: 477
  issue: 8
  year: 2019
  ident: 577_CR58
  publication-title: Nat Rev Immunol
  doi: 10.1038/s41577-019-0165-0
– volume: 193
  start-page: 3755
  issue: 7
  year: 2014
  ident: 577_CR92
  publication-title: J Immunol (Baltimore, Md: 1950)
  doi: 10.4049/jimmunol.1302470
– volume: 5
  start-page: 1951
  issue: 8
  year: 2018
  ident: 577_CR10
  publication-title: Environ Sci Nano
  doi: 10.1039/C8EN00420J
– volume: 13
  start-page: 51
  issue: 1
  year: 2016
  ident: 577_CR28
  publication-title: Part Fibre Toxicol
  doi: 10.1186/s12989-016-0162-4
– volume: 20
  start-page: 5
  issue: 1
  year: 2023
  ident: 577_CR31
  publication-title: Part Fibre Toxicol
  doi: 10.1186/s12989-023-00516-y
– volume: 138
  start-page: 233
  year: 2015
  ident: 577_CR15
  publication-title: Environ Res
  doi: 10.1016/j.envres.2014.12.024
– volume: 31
  start-page: 107
  year: 2013
  ident: 577_CR86
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev-immunol-032712-095937
– volume: 20
  start-page: 3328
  issue: 13
  year: 2019
  ident: 577_CR65
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms20133328
– volume: 94
  start-page: 173
  issue: 1
  year: 2020
  ident: 577_CR69
  publication-title: Arch Toxicol
  doi: 10.1007/s00204-019-02604-5
– volume: 94
  start-page: 257
  issue: 2 Pt 1
  year: 1994
  ident: 577_CR90
  publication-title: J Allergy Clin Immunol
  doi: 10.1053/ai.1994.v94.a52646
– volume: 89
  start-page: 239
  issue: 3
  year: 2014
  ident: 577_CR12
  publication-title: Prog Surf Sci
  doi: 10.1016/j.progsurf.2014.08.002
– volume: 181
  start-page: 1661
  issue: 5
  year: 1991
  ident: 577_CR68
  publication-title: J Exp Med
  doi: 10.1084/jem.181.5.1661
– volume: 3
  start-page: 57
  issue: 3
  year: 2018
  ident: 577_CR35
  publication-title: Environ Dis
  doi: 10.4103/ed.ed_16_18
– volume: 6
  start-page: 39
  year: 2017
  ident: 577_CR45
  publication-title: NanoImpact
  doi: 10.1016/j.impact.2016.11.001
– volume: 44
  start-page: 161
  issue: 2
  year: 2009
  ident: 577_CR11
  publication-title: Clay Miner
  doi: 10.1180/claymin.2009.044.2.161
– volume: 159
  start-page: 81
  issue: 1–2
  year: 2001
  ident: 577_CR94
  publication-title: Toxicology
  doi: 10.1016/S0300-483X(00)00415-7
– volume: 80
  start-page: 98
  issue: 2
  year: 2006
  ident: 577_CR56
  publication-title: Arch Toxicol
  doi: 10.1007/s00204-005-0013-9
– volume: 16
  start-page: 1122
  issue: 5
  year: 2013
  ident: 577_CR98
  publication-title: Mater Res
  doi: 10.1590/S1516-14392013005000114
– volume: 26
  start-page: 647
  issue: 4
  year: 2013
  ident: 577_CR89
  publication-title: Int J Occup Med Environ Health
  doi: 10.2478/s13382-013-0137-8
– volume: 32
  start-page: 2445
  issue: 12
  year: 2019
  ident: 577_CR18
  publication-title: Chem Res Toxicol
  doi: 10.1021/acs.chemrestox.9b00277
– volume: 770
  start-page: 66
  year: 2014
  ident: 577_CR23
  publication-title: Mutat Res Genet Toxicol Environ Mutagen
  doi: 10.1016/j.mrgentox.2014.04.023
– volume: 318
  start-page: 58
  year: 2017
  ident: 577_CR59
  publication-title: Toxicol Appl Pharmacol
  doi: 10.1016/j.taap.2017.01.012
– volume: 341
  start-page: 122950
  year: 2024
  ident: 577_CR67
  publication-title: Environ Pollut (Barking, Essex: 1987)
  doi: 10.1016/j.envpol.2023.122950
– ident: 577_CR38
– volume: 5
  start-page: 1805
  issue: 3
  year: 2011
  ident: 577_CR50
  publication-title: ACS Nano
  doi: 10.1021/nn102734s
– volume: 275
  start-page: 62
  issue: 1
  year: 2014
  ident: 577_CR82
  publication-title: Toxicol Appl Pharmacol
  doi: 10.1016/j.taap.2013.11.012
– volume: 11
  start-page: 17
  year: 2014
  ident: 577_CR9
  publication-title: Part Fibre Toxicol
  doi: 10.1186/1743-8977-11-17
– volume: 10
  start-page: 232
  issue: 5
  year: 2022
  ident: 577_CR30
  publication-title: Toxics
  doi: 10.3390/toxics10050232
– volume: 142
  start-page: 312
  issue: 2
  year: 2014
  ident: 577_CR29
  publication-title: Toxicol Sci
  doi: 10.1093/toxsci/kfu199
– volume: 184
  start-page: 6367
  issue: 11
  year: 2010
  ident: 577_CR81
  publication-title: J Immunol
  doi: 10.4049/jimmunol.0900459
– volume: 107
  start-page: 253103
  issue: 25
  year: 2015
  ident: 577_CR42
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4937927
– ident: 577_CR87
  doi: 10.1152/ajplung.00329.2004
– volume: 10
  start-page: 81
  year: 2018
  ident: 577_CR39
  publication-title: NanoImpact
  doi: 10.1016/j.impact.2017.12.002
– volume: 8
  start-page: 10709
  issue: 1
  year: 2018
  ident: 577_CR20
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-28884-y
– volume: 36
  start-page: 57
  issue: 1
  year: 2012
  ident: 577_CR57
  publication-title: Cell Biol Int
  doi: 10.1042/CBI20100587
– volume: 14
  start-page: 989
  issue: 7
  year: 2012
  ident: 577_CR7
  publication-title: J Nanopart Res
  doi: 10.1007/s11051-012-0989-z
– volume: 14
  start-page: 869
  issue: 7
  year: 2020
  ident: 577_CR25
  publication-title: Nanotoxicology
  doi: 10.1080/17435390.2020.1771786
– volume: 1683
  start-page: 33
  year: 2018
  ident: 577_CR49
  publication-title: Methods in molecular biology (Clifton, NJ)
  doi: 10.1007/978-1-4939-7357-6_3
– volume: 16
  start-page: 177
  year: 1998
  ident: 577_CR5
  publication-title: Chin J Ind Hyg Occup Dis
– volume: 11
  start-page: 223
  issue: 2
  year: 2017
  ident: 577_CR84
  publication-title: Nanotoxicology
  doi: 10.1080/17435390.2017.1287313
– volume: 9
  start-page: 32323
  issue: 37
  year: 2017
  ident: 577_CR19
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.7b06657
– volume: 7
  start-page: 39
  issue: 1
  year: 2010
  ident: 577_CR101
  publication-title: Part Fibre Toxicol
  doi: 10.1186/1743-8977-7-39
– volume: 4
  start-page: 135
  issue: 2
  year: 2014
  ident: 577_CR97
  publication-title: Int J Compos Mater
– volume: 14
  start-page: 349
  issue: 4
  year: 2002
  ident: 577_CR100
  publication-title: Inhalation Toxicol
  doi: 10.1080/08958370252870998
– volume: 12
  start-page: 2292
  issue: 3
  year: 2018
  ident: 577_CR17
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b07281
– ident: 577_CR37
– volume: 10
  start-page: 26
  year: 2013
  ident: 577_CR88
  publication-title: Part Fibre Toxicol
  doi: 10.1186/1743-8977-10-26
– volume: 1861
  start-page: 3406
  issue: 1 Pt A
  year: 2017
  ident: 577_CR16
  publication-title: Biochim Biophys Acta Gen Subj
  doi: 10.1016/j.bbagen.2016.09.003
– volume: 46
  start-page: 607
  issue: 3
  year: 2013
  ident: 577_CR53
  publication-title: Acc Chem Res
  doi: 10.1021/ar300022h
– ident: 577_CR2
  doi: 10.1002/adv.21368
– volume: 751
  start-page: 40
  issue: 1
  year: 2013
  ident: 577_CR4
  publication-title: Mutat Res Genet Toxicol Environ Mutagen
  doi: 10.1016/j.mrgentox.2012.10.006
– volume: 700
  start-page: 18
  issue: 1–2
  year: 2010
  ident: 577_CR72
  publication-title: Mutat Res
  doi: 10.1016/j.mrgentox.2010.04.021
– volume: 341
  start-page: 122997
  year: 2024
  ident: 577_CR64
  publication-title: Environ Pollut (Barking, Essex: 1987)
  doi: 10.1016/j.envpol.2023.122997
– volume: 23
  start-page: 57
  issue: 2
  year: 2003
  ident: 577_CR93
  publication-title: J Interferon Cytokine Res
  doi: 10.1089/107999003321455453
– volume: 121
  start-page: 683
  issue: 6
  year: 2013
  ident: 577_CR43
  publication-title: Environ Health Perspect
  doi: 10.1289/ehp.1306561
– volume: 12
  start-page: 1
  issue: 5
  year: 2005
  ident: 577_CR52
  publication-title: J Stat Softw
  doi: 10.18637/jss.v012.i05
– volume: 57
  start-page: 266
  year: 2013
  ident: 577_CR71
  publication-title: Food Chem Toxicol
  doi: 10.1016/j.fct.2013.03.043
– volume: 311
  start-page: C83
  issue: 1
  year: 2016
  ident: 577_CR60
  publication-title: Am J Physiol Cell Physiol
  doi: 10.1152/ajpcell.00298.2015
– ident: 577_CR1
– volume: 5
  start-page: 3514
  year: 2014
  ident: 577_CR41
  publication-title: Nat Commun
  doi: 10.1038/ncomms4514
– volume: 27
  start-page: 97
  year: 2011
  ident: 577_CR36
  publication-title: Aerobiologia
  doi: 10.1007/s10453-010-9179-6
– volume: 8
  start-page: 160
  issue: 2
  year: 2008
  ident: 577_CR8
  publication-title: Aerosol Air Qual Res
  doi: 10.4209/aaqr.2008.01.0001
– volume: 9
  start-page: 1120
  year: 2018
  ident: 577_CR85
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.01120
– volume: 21
  start-page: 257
  issue: 4
  year: 2004
  ident: 577_CR73
  publication-title: Crit Rev Ther Drug Carrier Syst
  doi: 10.1615/CritRevTherDrugCarrierSyst.v21.i4.10
– volume: 535
  start-page: 153
  issue: 7610
  year: 2016
  ident: 577_CR51
  publication-title: Nature
  doi: 10.1038/nature18629
– ident: 577_CR105
– volume: 38
  start-page: e102065
  issue: 10
  year: 2019
  ident: 577_CR74
  publication-title: EMBO J
  doi: 10.15252/embj.2019102065
– volume: 17
  start-page: 13
  issue: 1
  year: 2020
  ident: 577_CR83
  publication-title: Part Fibre Toxicol
  doi: 10.1186/s12989-020-00345-3
– volume: 146
  start-page: 454
  issue: 2
  year: 1992
  ident: 577_CR47
  publication-title: Am Rev Respir Dis
  doi: 10.1164/ajrccm/146.2.454
– volume: 11
  start-page: 69
  year: 2014
  ident: 577_CR75
  publication-title: Part Fibre Toxicol
  doi: 10.1186/s12989-014-0069-x
– volume: 33
  start-page: 47
  issue: 1
  year: 2015
  ident: 577_CR99
  publication-title: Mater Sci Pol
  doi: 10.1515/msp-2015-0008
– volume: 56
  start-page: 45
  issue: 1
  year: 2007
  ident: 577_CR44
  publication-title: Inflamm Res
  doi: 10.1007/s00011-007-6115-5
– volume: 19
  start-page: 171
  issue: 5
  year: 2017
  ident: 577_CR104
  publication-title: J Nanopart Res
  doi: 10.1007/s11051-017-3850-6
– volume: 304
  start-page: 425
  year: 2016
  ident: 577_CR21
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2015.10.018
– volume: 108
  start-page: 5360
  issue: 13
  year: 2011
  ident: 577_CR96
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1015476108
– volume: 7
  start-page: 97
  year: 2016
  ident: 577_CR27
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2016.00097
– volume: 128
  start-page: 67
  year: 2022
  ident: 577_CR33
  publication-title: Differentiation
  doi: 10.1016/j.diff.2022.10.001
– volume: 280
  start-page: 41
  issue: 1
  year: 2017
  ident: 577_CR78
  publication-title: Immunol Rev
  doi: 10.1111/imr.12577
– volume: 235
  start-page: 3207
  issue: 4
  year: 2020
  ident: 577_CR34
  publication-title: J Cell Physiol
  doi: 10.1002/jcp.29268
– volume: 27
  start-page: 355
  issue: 2
  year: 2011
  ident: 577_CR77
  publication-title: Crit Care Clin
  doi: 10.1016/j.ccc.2010.12.005
– volume: 49
  start-page: 469
  issue: 4
  year: 2000
  ident: 577_CR54
  publication-title: J Biomed Mater Res
  doi: 10.1002/(SICI)1097-4636(20000315)49:4<469::AID-JBM5>3.0.CO;2-A
– volume: 14
  start-page: e1794
  issue: 6
  year: 2022
  ident: 577_CR32
  publication-title: Wiley Interdisc Rev Nanomed Nanobiotechnol
  doi: 10.1002/wnan.1794
– volume: 31
  start-page: 6833
  issue: 26
  year: 2010
  ident: 577_CR102
  publication-title: ROS Prod Endosomal Rupture Biomater
– volume: 4
  start-page: 261
  issue: 4
  year: 2007
  ident: 577_CR80
  publication-title: Cell Mol Immunol
– volume: 3
  start-page: 5
  issue: 1
  year: 2002
  ident: 577_CR91
  publication-title: Respir Res
  doi: 10.1186/rr177
– volume: 8
  start-page: 279
  issue: 3
  year: 2014
  ident: 577_CR22
  publication-title: Nanotoxicology
  doi: 10.3109/17435390.2013.776123
– volume: 18
  start-page: 271
  issue: 3
  year: 2013
  ident: 577_CR61
  publication-title: Apoptosis
  doi: 10.1007/s10495-012-0798-y
– volume: 9
  start-page: e1413
  issue: 1
  year: 2017
  ident: 577_CR103
  publication-title: Wiley Interdiscip Rev Nanomed Nanobiotechnol
  doi: 10.1002/wnan.1413
– volume: 175
  start-page: 63
  issue: 1–3
  year: 2002
  ident: 577_CR24
  publication-title: Toxicology
  doi: 10.1016/S0300-483X(02)00061-6
– volume: 10
  start-page: 5
  issue: 1
  year: 2013
  ident: 577_CR76
  publication-title: Part Fibre Toxicol
  doi: 10.1186/1743-8977-10-5
– volume: 68
  start-page: 999
  issue: 11–12
  year: 2005
  ident: 577_CR46
  publication-title: J Toxicol Environ Health A
  doi: 10.1080/15287390590912612
– volume: 13
  start-page: 255
  issue: 3
  year: 2012
  ident: 577_CR79
  publication-title: Nat Immunol
  doi: 10.1038/ni.2215
SSID ssj0035851
Score 2.3848069
Snippet Organomodified nanoclays (ONC), two-dimensional montmorillonite with organic coatings, are increasingly used to improve nanocomposite properties. However,...
Background Organomodified nanoclays (ONC), two-dimensional montmorillonite with organic coatings, are increasingly used to improve nanocomposite properties....
BackgroundOrganomodified nanoclays (ONC), two-dimensional montmorillonite with organic coatings, are increasingly used to improve nanocomposite properties....
Abstract Background Organomodified nanoclays (ONC), two-dimensional montmorillonite with organic coatings, are increasingly used to improve nanocomposite...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 16
SubjectTerms Ablation
Air pollution
Airborne particulates
Ammonium
Animals
Apoptosis
Cathepsin B
Cathepsin B - metabolism
Cathepsin B - pharmacology
Cathepsins
Cell membranes
Cell viability
Clay
Coatings
Combustion
Comparative analysis
Composite materials
Cytokines
Cytokines - metabolism
Cytotoxicity
Damage patterns
Depolarization
Development and progression
Environmental aspects
Exposure
Fibrosis
Fourier transforms
Health aspects
Health risks
High-throughput screening
High-Throughput Screening Assays
Humans
IL-1β
Immune system
In vitro models
Incineration
Inflammasomes
Inflammation
Inflammation - chemically induced
Inflammation - metabolism
Interleukin-1beta - metabolism
Lavage
Life cycles
Lipopolysaccharides
Lipopolysaccharides - pharmacology
Lung diseases
Lungs
Macrophages
Male
Mice
Montmorillonite
Morphology
Nanoclay
Nanocomposites
Nanoparticles
NF-κB protein
Occupational exposure
Organic coating
Organic coatings
Priming
Pyroptosis
Risk factors
Silica
Silicates
Surface chemistry
Toxicity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9VAEF-kJ0HEb6NVVhE8SDDZ3SS7xyqWVtCDWuht2c_2QZs8mjxp_xj_V2c2yeMFQS8eX3YSXmZm52Mz8xtC3tSscCwql5sImY6wyQ56mUvjuIPwuZIGzyG_fK2PTsTn0-p0Z9QX1oSN8MAj4yBhl6qKRelc5QW4S1XwWHFhLPdB-TRfmIHPm5Op0QZz_Ng1t8jI-n1fslQaxESO3ZdN3izcUELr_9Mm7zilZcHkjgc6vEfuTqEjPRj_8n1yK7QPyJ3x3I2O7UQPya_jlv5cDVcdBdUBaY-didS0ng7d9cpB0E3NFo2TdpFiHUhaX3f9kOPROwJRQyBK08Sn7rLzqwiBKm3hh7swNz08iV4anP11Dtaop1g7f0YR-Difxv6sNwMFewQ5Mq7MuOWhf0RODj_9-HiUTyMYclcpOeQiVMw6C0lmdI4Z1hgXhZKmEV7yEJmyJQ_CeC4kxG6B-0YpEyxEUarwxkb-mOy1XRueEupiWfgoBTcyiMZXFpIfaW1Re-atZGVGylki2k345Dgm40KnPEXWepSiBinqJEXdZOTd9p71iM7xV-oPKOgtJSJrpwvATj3pm_6XvmXkNaqJRuyMFotzzsym7_Xx92_6oJF1Ar-pM_J2IoodvIMzU68DcALhthaU-wtK2NxuuTxro56MS68h6gAzC6FvlZFX22W8Ewvm2tBtep1GkiE4m8jIk1F5t-_NJWL-lMAPuVDrBWOWK-3qPEGPl4hbyUT17H-w8jm5zdKW5Dkr98necLUJLyDEG-zLtJt_A6hvUEQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXJAQ4k2gIIOQOKCoie0kzgkVxNIiwQGo1JvlZ7tSmyxNFsGP4b8y4zxohNTjxpNo4xl_Hk9mviHkVckyy0JtUx3gpCNMxEEnU6ktt-A-F1JjHPLzl_LgSHw6Lo7HgFs3plVOmBiB2rUWY-R7ALVgW7DfF283P1LsGoVfV8cWGtfJjRx2GkzpkquPExJz_OQ1FcrIcq_LWUwQYiLFGswqrRabUeTs_x-ZL21Ny7TJS_vQ6g65PTqQdH_Q-F1yzTf3yK0h-kaHoqL75M9hQ3-u-4uWggGBzof6RKobR_v219qC6031zMlJ20AxGySOb9quTzEAj3TU4I7S2PepPW_dOoC7Shv4Yc_07w6eRM81dgA7BUzqKGbQn1CkP07H5j-bbU8BleCkjCMTe7nvHpCj1Yfv7w_SsRFDaota9qnwBTPWwFEzWMs0q7QNopa6Ek5yH1htcu6FdlxI8OA8d1Vda2_Al6ozp03gD8lO0zb-MaE25JkLUnAtvahcYeAIJI3JSseckSxPSD5pRNmRpRybZZypeFqRpRq0qECLKmpRVQl5M9-zGTg6rpR-h4qeJZFfO16A6VTjclWAY3URstzawglw0uqMh4ILbbjztctZQl6imShk0GgwRedEb7tOHX77qvYrWUYKnDIhr0eh0MI7WD1WPMBMIOnWQnJ3IQlL3C6HJ2tUI8R06t-CSMiLeRjvxLS5xrfbTsXGZEjRJhLyaDDe-b25ROafHOZDLsx6MTHLkWZ9GgnIc2SvZKJ4cvX_ekpusrjYeMryXbLTX2z9M3DhevM8rtO_4K5IYg
  priority: 102
  providerName: ProQuest
Title In vitro inflammation and toxicity assessment of pre- and post-incinerated organomodified nanoclays to macrophages using high-throughput screening approaches
URI https://www.ncbi.nlm.nih.gov/pubmed/38509617
https://www.proquest.com/docview/3037875455
https://www.proquest.com/docview/2973101804
https://pubmed.ncbi.nlm.nih.gov/PMC10956245
https://doaj.org/article/57895f01cc5d4658903f534ab3de9d12
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZ5XAql9F236aKWQg_FrS3JtnwoJSnZJoWEknZhb0LWI1nY2Nu1tyQ_pv-1I_lBTENPvSx4JRk0mhl9I4--QehNSiJFbK5CaSHSYYX3g5qHXCqqAD4nXLpzyJPT9GjGvs6T-Rbqyx11AqxvDe1cPanZevn-6uf1JzD4j97gefqhjolP_CEsdHcrszDbRruwM2WuosEJG74qUPcJrL84c-u40ebkOfz_9tQ3tqpxGuWNfWl6H93rACXebzXgAdoy5UN0tz2Nw-0lo0fo93GJfy2adYVhiqAD7X1FLEuNm-pqoQCKYzlwdOLKYpcd4ttXVd2E7kDe0VMDPMW-DlR1WemFBfiKS3hQS3ldw5vwpXQVwS7AR9XYZdSfY0eHHHbFgFabBoOXgsjZtfRs5qZ-jGbTwx-fj8KuMEOokpw3ITMJKVQBoadVikiSSWVZzmXGNKfGkryIqWFSU8YB0RmqszyXpgBslUdaFpY-QTtlVZpnCCsbR9pyRiU3LNNJASERL4oo1UQXnMQBivsVEapjLXfFM5bCRy88Fe0qClhF4VdRZAF6N4xZtZwd_-x94BZ66On4tv0fIE7Rma8Av5YnNoqVSjQD0JZH1CaUyYJqk-uYBOi1UxPhGDVKl7JzLjd1LY6_n4n9jKeeEicN0Nuuk61gDkp2NyBAEo6Ea9Rzb9QTTF6Nm3ttFL3FCMAi4HwBECcBejU0u5Euja401aYWvlCZo2xjAXraKu8wb8odE1AM8uAjtR4JZtxSLi48IXns2CwJS57_D1G-QHeIN0kakngP7TTrjXkJwK8pJmg7m2fwy6dfJmj34PD029nEH6JMvJ3_AbFdXKc
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOYCEEG8WChgE4oCibmwncQ4IlUfp0scBWqk31_GjXalNliYL9MfwF_iNzDjJ0giptx43dqKNZ_zNjDPzDSEvUzY2zOcm0h4iHVEEHLQyktpwA-5zIjWeQ27vpBt74st-sr9E_vS1MJhW2WNiAGpbGTwjXwWoBd0Ce5-8m32PsGsUfl3tW2i0arHpzn5CyFa_nXwE-b5ibP3T7oeNqOsqEJkkl00kXMIKU0Dc5I1hmmXaeJFLnQkrufMsL2LuhLZcSHBHHLdZnmtXgGOQj60uPIfnXiFXBQdLjpXp65975Of4ia0vzJHpah2zkJDERIQ1n1mUDYxf6BHwvyU4ZwqHaZrn7N76LXKzc1jpWqtht8mSK--QG-1pH22LmO6S35OS_pg2pxUFhQUda-shqS4tbapfUwOuPtULDlBaeYrZJ2F8VtVNhAf-SH8N7i8Nfaaqk8pOPbjHtIQf5lif1fAkeqKx49gRYGBNMWP_kCLdctQ1G5rNGwooCJE5jvRs6a6-R_YuRUT3yXJZle4hocbHY-ul4Fo6kdmkgJBLFsU4tcwWksUjEvcSUaZjRcfmHMcqREcyVa0UFUhRBSmqbETeLO6ZtZwgF85-j4JezEQ-73ABllN18KAAN_PEj2NjEivAKczH3Cdc6IJbl9uYjcgLVBOFjB0lpgQd6nldq8m3r2otk2mg3ElH5HU3yVfwDkZ3FRawEkjyNZi5MpgJkGKGw702qg7SavVvA47I88Uw3olpeqWr5rUKjdCQEk6MyINWeRfvzSUyDcWwHnKg1oOFGY6U06NAeB4jWyYTyaOL_9czcm1jd3tLbU12Nh-T6yxsPB6xeIUsN6dz9wTcx6Z4GvYsJQeXDRJ_ARzvhpQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vitro+inflammation+and+toxicity+assessment+of+pre-+and+post-incinerated+organomodified+nanoclays+to+macrophages+using+high-throughput+screening+approaches&rft.jtitle=Particle+and+fibre+toxicology&rft.au=Todd+A.+Stueckle&rft.au=Jake+Jensen&rft.au=Jayme+P.+Coyle&rft.au=Raymond+Derk&rft.date=2024-03-21&rft.pub=BMC&rft.eissn=1743-8977&rft.volume=21&rft.issue=1&rft.spage=1&rft.epage=28&rft_id=info:doi/10.1186%2Fs12989-024-00577-7&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_57895f01cc5d4658903f534ab3de9d12
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1743-8977&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1743-8977&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1743-8977&client=summon