Machine-learning screening of luminogens with aggregation-induced emission characteristics for fluorescence imaging

Due to the excellent biocompatible physicochemical performance, luminogens with aggregation-induced emission (AIEgens) characteristics have played a significant role in biomedical fluorescence imaging recently. However, screening AIEgens for special applications takes a lot of time and efforts by us...

Full description

Saved in:
Bibliographic Details
Published inJournal of nanobiotechnology Vol. 21; no. 1; pp. 107 - 17
Main Authors Zhang, Yibin, Fan, Miaozhuang, Xu, Zhourui, Jiang, Yihang, Ding, Huijun, Li, Zhengzheng, Shu, Kaixin, Zhao, Mingyan, Feng, Gang, Yong, Ken-Tye, Dong, Biqin, Zhu, Wei, Xu, Gaixia
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 25.03.2023
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to the excellent biocompatible physicochemical performance, luminogens with aggregation-induced emission (AIEgens) characteristics have played a significant role in biomedical fluorescence imaging recently. However, screening AIEgens for special applications takes a lot of time and efforts by using conventional chemical synthesis route. Fortunately, artificial intelligence techniques that could predict the properties of AIEgen molecules would be helpful and valuable for novel AIEgens design and synthesis. In this work, we applied machine learning (ML) techniques to screen AIEgens with expected excitation and emission wavelength for biomedical deep fluorescence imaging. First, a database of various AIEgens collected from the literature was established. Then, by extracting key features using molecular descriptors and training various state-of-the-art ML models, a multi-modal molecular descriptors strategy has been proposed to extract the structure-property relationships of AIEgens and predict molecular absorption and emission wavelength peaks. Compared to the first principles calculations, the proposed strategy provided greater accuracy at a lower computational cost. Finally, three newly predicted AIEgens with desired absorption and emission wavelength peaks were synthesized successfully and applied for cellular fluorescence imaging and deep penetration imaging. All the results were consistent successfully with our expectations, which demonstrated the above ML has a great potential for screening AIEgens with suitable wavelengths, which could boost the design and development of novel organic fluorescent materials.
AbstractList Due to the excellent biocompatible physicochemical performance, luminogens with aggregation-induced emission (AIEgens) characteristics have played a significant role in biomedical fluorescence imaging recently. However, screening AIEgens for special applications takes a lot of time and efforts by using conventional chemical synthesis route. Fortunately, artificial intelligence techniques that could predict the properties of AIEgen molecules would be helpful and valuable for novel AIEgens design and synthesis. In this work, we applied machine learning (ML) techniques to screen AIEgens with expected excitation and emission wavelength for biomedical deep fluorescence imaging. First, a database of various AIEgens collected from the literature was established. Then, by extracting key features using molecular descriptors and training various state-of-the-art ML models, a multi-modal molecular descriptors strategy has been proposed to extract the structure-property relationships of AIEgens and predict molecular absorption and emission wavelength peaks. Compared to the first principles calculations, the proposed strategy provided greater accuracy at a lower computational cost. Finally, three newly predicted AIEgens with desired absorption and emission wavelength peaks were synthesized successfully and applied for cellular fluorescence imaging and deep penetration imaging. All the results were consistent successfully with our expectations, which demonstrated the above ML has a great potential for screening AIEgens with suitable wavelengths, which could boost the design and development of novel organic fluorescent materials.
Due to the excellent biocompatible physicochemical performance, luminogens with aggregation-induced emission (AIEgens) characteristics have played a significant role in biomedical fluorescence imaging recently. However, screening AIEgens for special applications takes a lot of time and efforts by using conventional chemical synthesis route. Fortunately, artificial intelligence techniques that could predict the properties of AIEgen molecules would be helpful and valuable for novel AIEgens design and synthesis. In this work, we applied machine learning (ML) techniques to screen AIEgens with expected excitation and emission wavelength for biomedical deep fluorescence imaging. First, a database of various AIEgens collected from the literature was established. Then, by extracting key features using molecular descriptors and training various state-of-the-art ML models, a multi-modal molecular descriptors strategy has been proposed to extract the structure-property relationships of AIEgens and predict molecular absorption and emission wavelength peaks. Compared to the first principles calculations, the proposed strategy provided greater accuracy at a lower computational cost. Finally, three newly predicted AIEgens with desired absorption and emission wavelength peaks were synthesized successfully and applied for cellular fluorescence imaging and deep penetration imaging. All the results were consistent successfully with our expectations, which demonstrated the above ML has a great potential for screening AIEgens with suitable wavelengths, which could boost the design and development of novel organic fluorescent materials.Due to the excellent biocompatible physicochemical performance, luminogens with aggregation-induced emission (AIEgens) characteristics have played a significant role in biomedical fluorescence imaging recently. However, screening AIEgens for special applications takes a lot of time and efforts by using conventional chemical synthesis route. Fortunately, artificial intelligence techniques that could predict the properties of AIEgen molecules would be helpful and valuable for novel AIEgens design and synthesis. In this work, we applied machine learning (ML) techniques to screen AIEgens with expected excitation and emission wavelength for biomedical deep fluorescence imaging. First, a database of various AIEgens collected from the literature was established. Then, by extracting key features using molecular descriptors and training various state-of-the-art ML models, a multi-modal molecular descriptors strategy has been proposed to extract the structure-property relationships of AIEgens and predict molecular absorption and emission wavelength peaks. Compared to the first principles calculations, the proposed strategy provided greater accuracy at a lower computational cost. Finally, three newly predicted AIEgens with desired absorption and emission wavelength peaks were synthesized successfully and applied for cellular fluorescence imaging and deep penetration imaging. All the results were consistent successfully with our expectations, which demonstrated the above ML has a great potential for screening AIEgens with suitable wavelengths, which could boost the design and development of novel organic fluorescent materials.
Due to the excellent biocompatible physicochemical performance, luminogens with aggregation-induced emission (AIEgens) characteristics have played a significant role in biomedical fluorescence imaging recently. However, screening AIEgens for special applications takes a lot of time and efforts by using conventional chemical synthesis route. Fortunately, artificial intelligence techniques that could predict the properties of AIEgen molecules would be helpful and valuable for novel AIEgens design and synthesis. In this work, we applied machine learning (ML) techniques to screen AIEgens with expected excitation and emission wavelength for biomedical deep fluorescence imaging. First, a database of various AIEgens collected from the literature was established. Then, by extracting key features using molecular descriptors and training various state-of-the-art ML models, a multi-modal molecular descriptors strategy has been proposed to extract the structure-property relationships of AIEgens and predict molecular absorption and emission wavelength peaks. Compared to the first principles calculations, the proposed strategy provided greater accuracy at a lower computational cost. Finally, three newly predicted AIEgens with desired absorption and emission wavelength peaks were synthesized successfully and applied for cellular fluorescence imaging and deep penetration imaging. All the results were consistent successfully with our expectations, which demonstrated the above ML has a great potential for screening AIEgens with suitable wavelengths, which could boost the design and development of novel organic fluorescent materials. Keywords: Machine learning, Aggregation-induced emission, Artificial intelligence, Fluorescence imaging, Lumiongens
Abstract Due to the excellent biocompatible physicochemical performance, luminogens with aggregation-induced emission (AIEgens) characteristics have played a significant role in biomedical fluorescence imaging recently. However, screening AIEgens for special applications takes a lot of time and efforts by using conventional chemical synthesis route. Fortunately, artificial intelligence techniques that could predict the properties of AIEgen molecules would be helpful and valuable for novel AIEgens design and synthesis. In this work, we applied machine learning (ML) techniques to screen AIEgens with expected excitation and emission wavelength for biomedical deep fluorescence imaging. First, a database of various AIEgens collected from the literature was established. Then, by extracting key features using molecular descriptors and training various state-of-the-art ML models, a multi-modal molecular descriptors strategy has been proposed to extract the structure-property relationships of AIEgens and predict molecular absorption and emission wavelength peaks. Compared to the first principles calculations, the proposed strategy provided greater accuracy at a lower computational cost. Finally, three newly predicted AIEgens with desired absorption and emission wavelength peaks were synthesized successfully and applied for cellular fluorescence imaging and deep penetration imaging. All the results were consistent successfully with our expectations, which demonstrated the above ML has a great potential for screening AIEgens with suitable wavelengths, which could boost the design and development of novel organic fluorescent materials.
ArticleNumber 107
Audience Academic
Author Zhang, Yibin
Xu, Gaixia
Fan, Miaozhuang
Zhao, Mingyan
Feng, Gang
Dong, Biqin
Xu, Zhourui
Li, Zhengzheng
Zhu, Wei
Ding, Huijun
Yong, Ken-Tye
Jiang, Yihang
Shu, Kaixin
Author_xml – sequence: 1
  givenname: Yibin
  surname: Zhang
  fullname: Zhang, Yibin
– sequence: 2
  givenname: Miaozhuang
  surname: Fan
  fullname: Fan, Miaozhuang
– sequence: 3
  givenname: Zhourui
  surname: Xu
  fullname: Xu, Zhourui
– sequence: 4
  givenname: Yihang
  surname: Jiang
  fullname: Jiang, Yihang
– sequence: 5
  givenname: Huijun
  surname: Ding
  fullname: Ding, Huijun
– sequence: 6
  givenname: Zhengzheng
  surname: Li
  fullname: Li, Zhengzheng
– sequence: 7
  givenname: Kaixin
  surname: Shu
  fullname: Shu, Kaixin
– sequence: 8
  givenname: Mingyan
  surname: Zhao
  fullname: Zhao, Mingyan
– sequence: 9
  givenname: Gang
  surname: Feng
  fullname: Feng, Gang
– sequence: 10
  givenname: Ken-Tye
  surname: Yong
  fullname: Yong, Ken-Tye
– sequence: 11
  givenname: Biqin
  surname: Dong
  fullname: Dong, Biqin
– sequence: 12
  givenname: Wei
  surname: Zhu
  fullname: Zhu, Wei
– sequence: 13
  givenname: Gaixia
  surname: Xu
  fullname: Xu, Gaixia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36964565$$D View this record in MEDLINE/PubMed
BookMark eNp9UsluFDEQbaEgssAPcEAtcYFDBy_tbvuEooglUhASy9ly2-UeRz12sLtZ_p6amRAyEUI-uFx-9Vz1_I6rg5giVNVTSk4pld2rQpkStCGMNwTPbaMeVEe07fuGUyEO7sSH1XEpV4Qw1rL2UXXIO9W1ohNHVflg7CpEaCYwOYY41sVmgG2UfD0t6xDTCLHUP8K8qs04ZhjNHFJsQnSLBVfDOpSCidquTDZ2hhzKHGypfcq1n5aUoViIFuqwNiMSP64eejMVeHKzn1Rf3775cv6-ufz47uL87LKxQsm5aXlHjbPeGY7jStsCqB6kGJzqqTfKyr4jw8Ak7Y0TXe-5dWIwwBxYhxPyk-pix-uSudLXGZ_Pv3QyQW8TKY_aZOx0Ai2lB6VaK7hzLbNyMHiSnnIM2eA75Hq947pehjU4nGfOZtoj3b-JYaXH9F1TQrjC7pDhxQ1DTt8WKLNG3SxMk4mQlqJZryjvBW8ZQp_fg16lJUfUSjNJOBGEMvIXNRqcIESf8GG7IdVnfcuUJKgTok7_gcLl8N8sGsoHzO8VvNwrQMwMP-fRLKXoi8-f9rHP7qpyK8cffyGA7QA2p1Iy-FsIJXpjYr0zsUYT662J9ebf5L0iG-at57D1MP2v9DdO9fc7
CitedBy_id crossref_primary_10_1002_adma_202404828
crossref_primary_10_1063_5_0181294
crossref_primary_10_3390_ma17071664
crossref_primary_10_1002_adbi_202400792
crossref_primary_10_1016_j_bios_2024_117066
crossref_primary_10_1021_acs_chemrev_4c00244
crossref_primary_10_1039_D4TB01835D
Cites_doi 10.1021/ct300326f
10.1103/RevModPhys.91.045002
10.1145/2939672.2939785
10.1021/jacs.7b05833
10.1126/science.aaa8415
10.1021/acs.jctc.8b00406
10.1021/acs.chemrev.5b00263
10.1038/s41929-018-0056-y
10.1002/advs.202101074
10.1002/adfm.202004511
10.1021/acs.jctc.7b00675
10.1021/ja110766a
10.1002/anie.201814462
10.1016/j.cej.2022.137604
10.1039/D0TB01806F
10.1103/PhysRevB.84.075144
10.1016/B978-0-12-409547-2.12345-5
10.1002/adma.201903530
10.1109/TIT.1967.1053964
10.1016/j.ejmech.2015.04.055
10.1016/j.cherd.2019.09.005
10.1023/A:1010933404324
10.1016/j.chempr.2020.02.017
10.1021/acs.analchem.9b00107
10.1021/ja9011657
10.1145/1961189.1961199
10.1039/D1SC04254H
10.1021/acs.accounts.6b00517
10.1214/aos/1013203451
10.1021/acs.chemmater.9b01519
10.1002/adfm.202007026
10.1002/asia.200900102
10.1039/C8SC05805A
10.1063/5.0013136
10.1002/adom.202100859
10.1016/j.dyepig.2018.06.024
10.1002/anie.202007525
10.1063/1.4811331
10.1021/cr200355j
10.1039/c1cp22144b
10.1038/nchem.2612
10.1145/3292500.3330701
10.1002/anie.201916729
10.1016/S0962-8924(98)01434-2
10.1021/acsnano.2c01349
10.1002/chem.201403811
10.1021/jp405664m
10.1021/acs.jcim.0c01203
10.1016/j.biomaterials.2019.03.002
10.1039/C4RA09494H
10.1038/s41586-018-0337-2
10.1162/neco.1989.1.4.541
10.1039/c1cs15113d
ContentType Journal Article
Copyright 2023. The Author(s).
COPYRIGHT 2023 BioMed Central Ltd.
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2023
Copyright_xml – notice: 2023. The Author(s).
– notice: COPYRIGHT 2023 BioMed Central Ltd.
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7TB
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
LK8
M0S
M1P
M7P
P64
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s12951-023-01864-9
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale in Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Mechanical & Transportation Engineering Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Materials Science Database
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE



MEDLINE - Academic

Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1477-3155
EndPage 17
ExternalDocumentID oai_doaj_org_article_88fe994c53dd42c8ba9948f13c8b2bf6
PMC10039567
A742980971
36964565
10_1186_s12951_023_01864_9
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62205216
– fundername: Guangdong Natural Science Foundation
  grantid: 2021A1010012159
– fundername: Science, Technology and Innovation Commission of Shenzhen Municipality
  grantid: JCYJ2022053110181403
– fundername: The Science Foundation of Zhejiang Sci-Tech University
  grantid: 22202010-Y
– fundername: ;
  grantid: 62205216
– fundername: ;
  grantid: 22202010-Y
– fundername: ;
  grantid: JCYJ2022053110181403
– fundername: ;
  grantid: 2021A1010012159
GroupedDBID ---
0R~
29L
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADDVE
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EBLON
EBS
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
I-F
IAO
IHR
INH
INR
ISR
ITC
ITG
ITH
KB.
KQ8
LK8
M1P
M48
M7P
MM.
M~E
O5R
O5S
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
RVI
SCM
SOJ
SV3
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PMFND
3V.
7QO
7TB
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c598t-4361adcfda31188c4ee97e85bd971fa9c8760bb2817ad567f3cd5bae2decd3693
IEDL.DBID M48
ISSN 1477-3155
IngestDate Wed Aug 27 01:26:48 EDT 2025
Thu Aug 21 18:38:30 EDT 2025
Tue Aug 05 10:43:10 EDT 2025
Fri Jul 25 19:26:04 EDT 2025
Tue Jun 17 21:18:16 EDT 2025
Tue Jun 10 20:17:10 EDT 2025
Fri Jun 27 05:33:23 EDT 2025
Mon Jul 21 06:05:39 EDT 2025
Thu Apr 24 22:59:03 EDT 2025
Tue Jul 01 01:26:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Fluorescence imaging
Aggregation-induced emission
Lumiongens
Artificial intelligence
Machine learning
Language English
License 2023. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c598t-4361adcfda31188c4ee97e85bd971fa9c8760bb2817ad567f3cd5bae2decd3693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12951-023-01864-9
PMID 36964565
PQID 2803050120
PQPubID 44676
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_88fe994c53dd42c8ba9948f13c8b2bf6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10039567
proquest_miscellaneous_2791375342
proquest_journals_2803050120
gale_infotracmisc_A742980971
gale_infotracacademiconefile_A742980971
gale_incontextgauss_ISR_A742980971
pubmed_primary_36964565
crossref_primary_10_1186_s12951_023_01864_9
crossref_citationtrail_10_1186_s12951_023_01864_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-25
PublicationDateYYYYMMDD 2023-03-25
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-25
  day: 25
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Journal of nanobiotechnology
PublicationTitleAlternate J Nanobiotechnology
PublicationYear 2023
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References A Charaf-Eddin (1864_CR44) 2014; 4
W Ma (1864_CR2) 2020; 30
F Zhang (1864_CR53) 2020; 8
Y Huang (1864_CR49) 2019; 91
S Grimme (1864_CR20) 2013; 138
1864_CR41
DJ Wu (1864_CR51) 2018; 159
JR Kitchin (1864_CR27) 2018; 1
K Morita (1864_CR31) 2020; 153
Y Jiang (1864_CR5) 2022; 448
D Jacquemin (1864_CR22) 2011; 13
M Vendrell (1864_CR1) 2012; 112
BA Pollok (1864_CR11) 1999; 9
S Refaely-Abramson (1864_CR23) 2011; 84
W Zhu (1864_CR52) 2021; 31
H Qian (1864_CR16) 2017; 9
R Hu (1864_CR47) 2019; 203
KT Butler (1864_CR25) 2018; 559
1864_CR54
S Xu (1864_CR40) 2020; 32
G Carleo (1864_CR29) 2019; 91
E Kim (1864_CR9) 2011; 133
AS Klymchenko (1864_CR17) 2017; 50
J Mei (1864_CR4) 2015; 115
MI Jordan (1864_CR32) 2015; 349
F Wurthner (1864_CR8) 2020; 59
D Jacquemin (1864_CR21) 2012; 8
YN Hong (1864_CR46) 2011; 40
JH Friedman (1864_CR36) 2001; 29
RH Xu (1864_CR48) 2022; 13
Z Zhao (1864_CR7) 2020; 59
CC Chang (1864_CR33) 2011; 2
Y Pourshojaei (1864_CR50) 2015; 97
P-F Loos (1864_CR18) 2018; 14
DW Davies (1864_CR30) 2019; 31
Y LeCun (1864_CR39) 1989; 1
J-S Lee (1864_CR3) 2009; 131
J Seibert (1864_CR19) 2017; 139
K Kokado (1864_CR15) 2019; 58
F Sandfort (1864_CR42) 2020; 6
TM Cover (1864_CR34) 1967; 13
W Xu (1864_CR12) 2019; 10
E Kim (1864_CR10) 2009; 4
Y Ding (1864_CR26) 2019; 151
1864_CR35
S Xu (1864_CR28) 2022; 9
NLC Leung (1864_CR14) 2014; 20
M Rubešová (1864_CR24) 2017; 13
1864_CR38
Z Xu (1864_CR6) 2022; 16
L Breiman (1864_CR37) 2001; 45
C-W Ju (1864_CR43) 2021; 61
JB Zhang (1864_CR45) 2013; 117
Z Xu (1864_CR13) 2021; 9
References_xml – volume: 8
  start-page: 2359
  year: 2012
  ident: 1864_CR21
  publication-title: J Chem Theory Comput
  doi: 10.1021/ct300326f
– volume: 91
  start-page: 045002
  year: 2019
  ident: 1864_CR29
  publication-title: Rev Mod Phys
  doi: 10.1103/RevModPhys.91.045002
– ident: 1864_CR35
  doi: 10.1145/2939672.2939785
– volume: 139
  start-page: 11682
  year: 2017
  ident: 1864_CR19
  publication-title: JACS
  doi: 10.1021/jacs.7b05833
– volume: 349
  start-page: 255
  year: 2015
  ident: 1864_CR32
  publication-title: Science
  doi: 10.1126/science.aaa8415
– volume: 14
  start-page: 4360
  year: 2018
  ident: 1864_CR18
  publication-title: J Chem Theory Comput
  doi: 10.1021/acs.jctc.8b00406
– volume: 115
  start-page: 11718
  year: 2015
  ident: 1864_CR4
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.5b00263
– volume: 1
  start-page: 230
  year: 2018
  ident: 1864_CR27
  publication-title: Nat Catal
  doi: 10.1038/s41929-018-0056-y
– volume: 9
  start-page: 2101074
  year: 2022
  ident: 1864_CR28
  publication-title: Adv Sci
  doi: 10.1002/advs.202101074
– volume: 30
  start-page: 2004511
  year: 2020
  ident: 1864_CR2
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202004511
– volume: 13
  start-page: 4972
  year: 2017
  ident: 1864_CR24
  publication-title: J Chem Theory Comput
  doi: 10.1021/acs.jctc.7b00675
– volume: 133
  start-page: 6642
  year: 2011
  ident: 1864_CR9
  publication-title: JACS
  doi: 10.1021/ja110766a
– volume: 58
  start-page: 8632
  year: 2019
  ident: 1864_CR15
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201814462
– volume: 448
  start-page: 137604
  year: 2022
  ident: 1864_CR5
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2022.137604
– volume: 8
  start-page: 9533
  year: 2020
  ident: 1864_CR53
  publication-title: J Mater Chem B
  doi: 10.1039/D0TB01806F
– volume: 84
  start-page: 075144
  year: 2011
  ident: 1864_CR23
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.84.075144
– ident: 1864_CR41
  doi: 10.1016/B978-0-12-409547-2.12345-5
– volume: 32
  start-page: 1903530
  year: 2020
  ident: 1864_CR40
  publication-title: Adv Mater
  doi: 10.1002/adma.201903530
– volume: 13
  start-page: 21
  year: 1967
  ident: 1864_CR34
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.1967.1053964
– volume: 97
  start-page: 181
  year: 2015
  ident: 1864_CR50
  publication-title: Eur J Med Chem
  doi: 10.1016/j.ejmech.2015.04.055
– volume: 151
  start-page: 131
  year: 2019
  ident: 1864_CR26
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2019.09.005
– volume: 45
  start-page: 5
  year: 2001
  ident: 1864_CR37
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 6
  start-page: 1379
  year: 2020
  ident: 1864_CR42
  publication-title: CHEM
  doi: 10.1016/j.chempr.2020.02.017
– volume: 91
  start-page: 8085
  year: 2019
  ident: 1864_CR49
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.9b00107
– volume: 131
  start-page: 10077
  year: 2009
  ident: 1864_CR3
  publication-title: JACS
  doi: 10.1021/ja9011657
– volume: 2
  start-page: 27
  year: 2011
  ident: 1864_CR33
  publication-title: ACM Trans Intell Syst Technol
  doi: 10.1145/1961189.1961199
– volume: 13
  start-page: 1270
  year: 2022
  ident: 1864_CR48
  publication-title: Chem Sci
  doi: 10.1039/D1SC04254H
– volume: 50
  start-page: 366
  year: 2017
  ident: 1864_CR17
  publication-title: Acc Chem Res
  doi: 10.1021/acs.accounts.6b00517
– volume: 29
  start-page: 1189
  year: 2001
  ident: 1864_CR36
  publication-title: Ann Stat
  doi: 10.1214/aos/1013203451
– volume: 31
  start-page: 7221
  year: 2019
  ident: 1864_CR30
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.9b01519
– volume: 31
  start-page: 2007026
  year: 2021
  ident: 1864_CR52
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202007026
– volume: 4
  start-page: 1646
  year: 2009
  ident: 1864_CR10
  publication-title: Chem Asian J
  doi: 10.1002/asia.200900102
– volume: 10
  start-page: 3494
  year: 2019
  ident: 1864_CR12
  publication-title: Chem Sci
  doi: 10.1039/C8SC05805A
– volume: 153
  start-page: 024503
  year: 2020
  ident: 1864_CR31
  publication-title: J Chem Phys
  doi: 10.1063/5.0013136
– volume: 9
  start-page: 6712
  year: 2021
  ident: 1864_CR13
  publication-title: Adv Opt Mater
  doi: 10.1002/adom.202100859
– volume: 159
  start-page: 142
  year: 2018
  ident: 1864_CR51
  publication-title: Dyes Pigm
  doi: 10.1016/j.dyepig.2018.06.024
– volume: 59
  start-page: 14192
  year: 2020
  ident: 1864_CR8
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.202007525
– ident: 1864_CR38
– volume: 138
  start-page: 244104
  year: 2013
  ident: 1864_CR20
  publication-title: J Chem Phys
  doi: 10.1063/1.4811331
– volume: 112
  start-page: 4391
  year: 2012
  ident: 1864_CR1
  publication-title: Chem Rev
  doi: 10.1021/cr200355j
– volume: 13
  start-page: 16987
  year: 2011
  ident: 1864_CR22
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/c1cp22144b
– volume: 9
  start-page: 83
  year: 2017
  ident: 1864_CR16
  publication-title: Nat Chem
  doi: 10.1038/nchem.2612
– ident: 1864_CR54
  doi: 10.1145/3292500.3330701
– volume: 59
  start-page: 9888
  year: 2020
  ident: 1864_CR7
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201916729
– volume: 9
  start-page: 57
  year: 1999
  ident: 1864_CR11
  publication-title: Trends Cell Biol
  doi: 10.1016/S0962-8924(98)01434-2
– volume: 16
  start-page: 6712
  year: 2022
  ident: 1864_CR6
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c01349
– volume: 20
  start-page: 15349
  year: 2014
  ident: 1864_CR14
  publication-title: Chem Eur J
  doi: 10.1002/chem.201403811
– volume: 117
  start-page: 23117
  year: 2013
  ident: 1864_CR45
  publication-title: J Phys Chem C
  doi: 10.1021/jp405664m
– volume: 61
  start-page: 1053
  year: 2021
  ident: 1864_CR43
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.0c01203
– volume: 203
  start-page: 43
  year: 2019
  ident: 1864_CR47
  publication-title: Biomater
  doi: 10.1016/j.biomaterials.2019.03.002
– volume: 4
  start-page: 49449
  year: 2014
  ident: 1864_CR44
  publication-title: RSC Adv
  doi: 10.1039/C4RA09494H
– volume: 559
  start-page: 547
  year: 2018
  ident: 1864_CR25
  publication-title: Nature
  doi: 10.1038/s41586-018-0337-2
– volume: 1
  start-page: 541
  year: 1989
  ident: 1864_CR39
  publication-title: Neural Comput
  doi: 10.1162/neco.1989.1.4.541
– volume: 40
  start-page: 5361
  year: 2011
  ident: 1864_CR46
  publication-title: Chem Soc Rev
  doi: 10.1039/c1cs15113d
SSID ssj0022424
Score 2.4026134
Snippet Due to the excellent biocompatible physicochemical performance, luminogens with aggregation-induced emission (AIEgens) characteristics have played a...
Abstract Due to the excellent biocompatible physicochemical performance, luminogens with aggregation-induced emission (AIEgens) characteristics have played a...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 107
SubjectTerms Absorption
Accuracy
Agglomeration
Aggregation-induced emission
Algorithms
Artificial Intelligence
Biocompatibility
Biomedical materials
Chemical synthesis
Computer applications
Datasets
Emission
Emissions (Pollution)
First principles
Fluorescence
Fluorescence imaging
Fluorescent Dyes - chemistry
Imaging
Imaging systems
Learning algorithms
Lumiongens
Machine Learning
Materials research
Methods
Molecular absorption
Molecular modelling
Molecular structure
Molecular weight
Neural networks
Optical Imaging - methods
Optical properties
Performance evaluation
Screening
Solvents
Support vector machines
Wavelength
Wavelengths
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAQHkECnIREgdkdeNHYh8LomqR4ABU6s1y_FhWahPU7P5_ZhzvaiMkuPSWXY9Xm5nJzHzR-BtC3kHYdQmnBiQAyUymxJmrAfNE2dSYnhdmYvv81pxfyi9X6mpv1Bf2hE30wJPiTrRO0RjplQhBcq87B590qgVc8i5lsm3IeVswVaAWHnrYHpHRzckIWU0BbObYO6QbycwsDWW2_r9j8l5SmjdM7mWgs0fkYSkd6en0lx-Te7F_Qh7sEQoekvFr7o2MrAyDWFKICoBU8WpIFALRqh_AZUaK71-pWwLaXmbbMMDmYOVAcf4bvkGjfk7lTKG6pel6M9xmAigf6eomTzh6Si7PPv_8dM7KWAXmldFrJkVTu-BTcAKUo72M0bRRqy6Ytk7OeAiQi67jum5dUE2bhA-qc5GH6INojHhGDvqhjy8IRX4wQCShk8nJReJGGgH1J272Bn6gIvVWy9YXznEcfXFtM_bQjZ0sY8EyNlvGmop82O35PTFu_FP6IxpvJ4ls2fkL8CFbfMj-z4cq8hZNb5EPo8eGm6XbjKO9-PHdnraQsDUSbVXkfRFKA9yDd-X8AmgCKbRmkkczSbCbny9vPcyWgDFaHBK2UHiSuSLHu2XciU1wfRw2INOaWgC8lLwizyeH3N03jmXE4rwieuaqM8XMV_rVr0wnXuP5bLDzy7tQ5Styn-fHTDCujsjB-nYTX0PZtu7e5Cf0DzSUQKw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeJNSkEFIHJDVTewk9gkVxFKQ4ABU6s1y_EhXKknZ7P7_zjjesBFSb9l4HCWe8Ty8M98Q8hbUrgnYNSBAkMxECAUzOcQ8XlQ5mueFGtE-f1SnZ-LbeXmeDtyGlFa504lRUbve4hn5MXZRWpRY6vnh6i_DrlH472pqoXGb3MnB0mBKl1x-mQIuLH3YFcrI6ngA21ZC8FxgBpGsBFMzYxQx-__XzHumaZ42uWeHlg_I_eRA0pOR4w_JLd89Ivf2YAUfk-F7zJD0LLWEaCnoBohX8aoPFNTRqutBcAaKp7DUtBBzt5FDDCJ04LWj2AUOz9GonQM6U_Bxabjc9usIA2U9Xf2JfY6ekLPl59-fTllqrsBsqeSGCV7lxtngDIfFkVZ4r2ovy8apOg9GWVCTi6YpZF4bV1Z14NaVjfGF89bxSvGn5KDrO_-cUEQJg7jENSIYsQiFEoqDF4qTrYIHZCTfrbK2CXkcG2Bc6hiByEqPnNHAGR05o1VG3k9zrkbcjRupPyLzJkrEzI43-nWr0xbUUgavlLAld04UVjYGfsmQc7gsmlBl5A2yXiMqRodpN63ZDoP--uunPqnBbEuE28rIu0QUevgGa1IVA6wEAmnNKI9mlMA3Ox_eSZhOamPQ_4Q8I6-nYZyJqXCd77dAU6ucQ5Apiow8GwVy-m5szoguekbkTFRnCzMf6VYXEVQ8xypt4PPhze_1gtwt4gbirCiPyMFmvfUvwS3bNK_i3rsGNFc3VA
  priority: 102
  providerName: ProQuest
Title Machine-learning screening of luminogens with aggregation-induced emission characteristics for fluorescence imaging
URI https://www.ncbi.nlm.nih.gov/pubmed/36964565
https://www.proquest.com/docview/2803050120
https://www.proquest.com/docview/2791375342
https://pubmed.ncbi.nlm.nih.gov/PMC10039567
https://doaj.org/article/88fe994c53dd42c8ba9948f13c8b2bf6
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELb2cYED4k2WpTIIiQMKNI6d2AeEdtGWBWlXaKFSb5bjR6lUkqVpJfj3zLhp1YgV4lKl9SRS5uHxuJ7vI-QlTLsmIGtAgCI55SGw1GRQ83heZJieh2qN9nlZnI_554mY7JEN3VGnwPbG0g75pMaL-ZtfP3-_h4B_FwNeFm9byFkCimKGJ4NkwVO1Tw4hM5XIaHDBt_8qMGyFiN1GJe7NCbFpornxGb1EFfH8_561d9JW_0jlTo4a3SV3usUlPVl7wz2y5-v75PYO5OAD0l7E05M-7egiphTmDahl8aoJFKaqWd2AU7UUd2ipmUI9Po3WS6F6Bz9wFBnicI-N2j7YM4X1Lw3zVbOIEFHW09mPyIH0kIxHZ98-nKcd8UJqhZLLlOdFZpwNzuSgHGm596r0UlROlVkwysIUOqwqJrPSOFGUIbdOVMYz563LC5U_Igd1U_snhCKCGNQsruLB8GFgiqscVqh4s1XwgIRkGy1r26GSIznGXMfqRBZ6bRkNltHRMlol5PX2nus1Jsc_pU_ReFtJxNOOPzSLqe7CU0sZvFLcitw5zqysDHyTIcvhklWhSMgLNL1GxIwaj-RMzapt9aevV_qkhJQuEYorIa86odDAO1jTdTiAJhBkqyd53JMEu9n-8MbD9CYiNNKIDQX2Oifk-XYY78RjcrVvViBTqiyHApSzhDxeO-T2vZG4EZfvCZE9V-0ppj9Sz75HwPEMO7jBzkf_o4Wn5BaLYZSnTByTg-Vi5Z_Bwm1ZDch-OSnhU44-Dsjh6dnll6tB3AQZxDj9AwK3Qvg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZWywE4IN4EFjAIxAFF2zhOYh8QWh6lZR8H2JX2Zhw_SqUlWZpWiD_Fb2TGSUojpL3tLY3HUeIZz8Od-YaQF6B2tceuAR6C5Jh7z2KdQMzjeJ6geR7JFu3zKJ-c8M-n2ekW-dPXwmBaZa8Tg6K2tcEz8l3sojTKsNTz7fnPGLtG4b-rfQuNViz23e9fELI1b6YfgL8vGRt_PH4_ibuuArHJpFjGPM0TbY23OgXnWhjunCycyEori8RraUA_jMqSiaTQNssLnxqbldox64xNcwRfApV_hadgybEyffxpHeBhqUVfmCPy3QZsaQbBOsOMJZHzWA6MX-gR8L8l2DCFwzTNDbs3vkludA4r3Wsl7BbZctVtcn0DxvAOaQ5DRqaLuxYUMwq6COJjvKo9BfU3r2oQ1IbiqS_VM4jxZ0Ei4nllQbYsxa5zeG5HzRBAmoJPTf3Zql4E2Cnj6PxH6Kt0l5xcyrLfI9tVXbkHhCIqGcRBtuRe85FnkssUvF6cbCQ8ICJJv8rKdEjn2HDjTIWIR-Sq5YwCzqjAGSUj8no957zF-biQ-h0yb02JGN3hRr2YqW7LKyG8k5KbLLWWMyNKDb-ET1K4ZKXPI_IcWa8QhaPCNJ-ZXjWNmn79ovYKcBMEwntF5FVH5Gv4BqO7qglYCQTuGlDuDCiBb2Y43EuY6tRUo_5tqog8Ww_jTEy9q1y9AppCJikEtZxF5H4rkOvvxmaQGBJERAxEdbAww5Fq_j2AmCdYFQ58fnjxez0lVyfHhwfqYHq0_4hcY2EzpTHLdsj2crFyj8ElXJZPwj6k5Ntlb_y_ZaN2Fg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine-learning+screening+of+luminogens+with+aggregation-induced+emission+characteristics+for+fluorescence+imaging&rft.jtitle=Journal+of+nanobiotechnology&rft.au=Zhang%2C+Yibin&rft.au=Fan%2C+Miaozhuang&rft.au=Xu%2C+Zhourui&rft.au=Jiang%2C+Yihang&rft.date=2023-03-25&rft.pub=BioMed+Central+Ltd&rft.issn=1477-3155&rft.eissn=1477-3155&rft.volume=21&rft.issue=1&rft_id=info:doi/10.1186%2Fs12951-023-01864-9&rft.externalDBID=ISR&rft.externalDocID=A742980971
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-3155&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-3155&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-3155&client=summon