A genetic linkage map and improved genome assembly of the termite symbiont Termitomyces cryptogamus
The termite-fungus symbiosis is an ancient stable mutualism of two partners that reproduce and disperse independently. With the founding of each termite colony the symbiotic association must be re-established with a new fungus partner. Complementarity in the ability to break down plant substrate may...
Saved in:
Published in | BMC genomics Vol. 24; no. 1; pp. 123 - 16 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
16.03.2023
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The termite-fungus symbiosis is an ancient stable mutualism of two partners that reproduce and disperse independently. With the founding of each termite colony the symbiotic association must be re-established with a new fungus partner. Complementarity in the ability to break down plant substrate may help to stabilize this symbiosis despite horizontal symbiont transmission. An alternative, non-exclusive, hypothesis is that a reduced rate of evolution may contribute to stabilize the symbiosis, the so-called Red King Effect.
To explore this concept, we produced the first linkage map of a species of Termitomyces, using genotyping by sequencing (GBS) of 88 homokaryotic offspring. We constructed a highly contiguous genome assembly using PacBio data and a de-novo evidence-based annotation. This improved genome assembly and linkage map allowed for examination of the recombination landscape and its potential effect on the mutualistic lifestyle.
Our linkage map resulted in a genome-wide recombination rate of 22 cM/Mb, lower than that of other related fungi. However, the total map length of 1370 cM was similar to that of other related fungi.
The apparently decreased rate of recombination is primarily due to genome expansion of islands of gene-poor repetitive sequences. This study highlights the importance of inclusion of genomic context in cross-species comparisons of recombination rate. |
---|---|
AbstractList | Background The termite-fungus symbiosis is an ancient stable mutualism of two partners that reproduce and disperse independently. With the founding of each termite colony the symbiotic association must be re-established with a new fungus partner. Complementarity in the ability to break down plant substrate may help to stabilize this symbiosis despite horizontal symbiont transmission. An alternative, non-exclusive, hypothesis is that a reduced rate of evolution may contribute to stabilize the symbiosis, the so-called Red King Effect. Methods To explore this concept, we produced the first linkage map of a species of Termitomyces, using genotyping by sequencing (GBS) of 88 homokaryotic offspring. We constructed a highly contiguous genome assembly using PacBio data and a de-novo evidence-based annotation. This improved genome assembly and linkage map allowed for examination of the recombination landscape and its potential effect on the mutualistic lifestyle. Results Our linkage map resulted in a genome-wide recombination rate of 22 cM/Mb, lower than that of other related fungi. However, the total map length of 1370 cM was similar to that of other related fungi. Conclusions The apparently decreased rate of recombination is primarily due to genome expansion of islands of gene-poor repetitive sequences. This study highlights the importance of inclusion of genomic context in cross-species comparisons of recombination rate. Keywords: GBS, Recombination, Basidiomycete, Mutualistic symbiosis BackgroundThe termite-fungus symbiosis is an ancient stable mutualism of two partners that reproduce and disperse independently. With the founding of each termite colony the symbiotic association must be re-established with a new fungus partner. Complementarity in the ability to break down plant substrate may help to stabilize this symbiosis despite horizontal symbiont transmission. An alternative, non-exclusive, hypothesis is that a reduced rate of evolution may contribute to stabilize the symbiosis, the so-called Red King Effect.MethodsTo explore this concept, we produced the first linkage map of a species of Termitomyces, using genotyping by sequencing (GBS) of 88 homokaryotic offspring. We constructed a highly contiguous genome assembly using PacBio data and a de-novo evidence-based annotation. This improved genome assembly and linkage map allowed for examination of the recombination landscape and its potential effect on the mutualistic lifestyle.ResultsOur linkage map resulted in a genome-wide recombination rate of 22 cM/Mb, lower than that of other related fungi. However, the total map length of 1370 cM was similar to that of other related fungi.ConclusionsThe apparently decreased rate of recombination is primarily due to genome expansion of islands of gene-poor repetitive sequences. This study highlights the importance of inclusion of genomic context in cross-species comparisons of recombination rate. The termite-fungus symbiosis is an ancient stable mutualism of two partners that reproduce and disperse independently. With the founding of each termite colony the symbiotic association must be re-established with a new fungus partner. Complementarity in the ability to break down plant substrate may help to stabilize this symbiosis despite horizontal symbiont transmission. An alternative, non-exclusive, hypothesis is that a reduced rate of evolution may contribute to stabilize the symbiosis, the so-called Red King Effect. To explore this concept, we produced the first linkage map of a species of Termitomyces, using genotyping by sequencing (GBS) of 88 homokaryotic offspring. We constructed a highly contiguous genome assembly using PacBio data and a de-novo evidence-based annotation. This improved genome assembly and linkage map allowed for examination of the recombination landscape and its potential effect on the mutualistic lifestyle. Our linkage map resulted in a genome-wide recombination rate of 22 cM/Mb, lower than that of other related fungi. However, the total map length of 1370 cM was similar to that of other related fungi. The apparently decreased rate of recombination is primarily due to genome expansion of islands of gene-poor repetitive sequences. This study highlights the importance of inclusion of genomic context in cross-species comparisons of recombination rate. The termite-fungus symbiosis is an ancient stable mutualism of two partners that reproduce and disperse independently. With the founding of each termite colony the symbiotic association must be re-established with a new fungus partner. Complementarity in the ability to break down plant substrate may help to stabilize this symbiosis despite horizontal symbiont transmission. An alternative, non-exclusive, hypothesis is that a reduced rate of evolution may contribute to stabilize the symbiosis, the so-called Red King Effect.BACKGROUNDThe termite-fungus symbiosis is an ancient stable mutualism of two partners that reproduce and disperse independently. With the founding of each termite colony the symbiotic association must be re-established with a new fungus partner. Complementarity in the ability to break down plant substrate may help to stabilize this symbiosis despite horizontal symbiont transmission. An alternative, non-exclusive, hypothesis is that a reduced rate of evolution may contribute to stabilize the symbiosis, the so-called Red King Effect.To explore this concept, we produced the first linkage map of a species of Termitomyces, using genotyping by sequencing (GBS) of 88 homokaryotic offspring. We constructed a highly contiguous genome assembly using PacBio data and a de-novo evidence-based annotation. This improved genome assembly and linkage map allowed for examination of the recombination landscape and its potential effect on the mutualistic lifestyle.METHODSTo explore this concept, we produced the first linkage map of a species of Termitomyces, using genotyping by sequencing (GBS) of 88 homokaryotic offspring. We constructed a highly contiguous genome assembly using PacBio data and a de-novo evidence-based annotation. This improved genome assembly and linkage map allowed for examination of the recombination landscape and its potential effect on the mutualistic lifestyle.Our linkage map resulted in a genome-wide recombination rate of 22 cM/Mb, lower than that of other related fungi. However, the total map length of 1370 cM was similar to that of other related fungi.RESULTSOur linkage map resulted in a genome-wide recombination rate of 22 cM/Mb, lower than that of other related fungi. However, the total map length of 1370 cM was similar to that of other related fungi.The apparently decreased rate of recombination is primarily due to genome expansion of islands of gene-poor repetitive sequences. This study highlights the importance of inclusion of genomic context in cross-species comparisons of recombination rate.CONCLUSIONSThe apparently decreased rate of recombination is primarily due to genome expansion of islands of gene-poor repetitive sequences. This study highlights the importance of inclusion of genomic context in cross-species comparisons of recombination rate. Abstract Background The termite-fungus symbiosis is an ancient stable mutualism of two partners that reproduce and disperse independently. With the founding of each termite colony the symbiotic association must be re-established with a new fungus partner. Complementarity in the ability to break down plant substrate may help to stabilize this symbiosis despite horizontal symbiont transmission. An alternative, non-exclusive, hypothesis is that a reduced rate of evolution may contribute to stabilize the symbiosis, the so-called Red King Effect. Methods To explore this concept, we produced the first linkage map of a species of Termitomyces, using genotyping by sequencing (GBS) of 88 homokaryotic offspring. We constructed a highly contiguous genome assembly using PacBio data and a de-novo evidence-based annotation. This improved genome assembly and linkage map allowed for examination of the recombination landscape and its potential effect on the mutualistic lifestyle. Results Our linkage map resulted in a genome-wide recombination rate of 22 cM/Mb, lower than that of other related fungi. However, the total map length of 1370 cM was similar to that of other related fungi. Conclusions The apparently decreased rate of recombination is primarily due to genome expansion of islands of gene-poor repetitive sequences. This study highlights the importance of inclusion of genomic context in cross-species comparisons of recombination rate. The termite-fungus symbiosis is an ancient stable mutualism of two partners that reproduce and disperse independently. With the founding of each termite colony the symbiotic association must be re-established with a new fungus partner. Complementarity in the ability to break down plant substrate may help to stabilize this symbiosis despite horizontal symbiont transmission. An alternative, non-exclusive, hypothesis is that a reduced rate of evolution may contribute to stabilize the symbiosis, the so-called Red King Effect. To explore this concept, we produced the first linkage map of a species of Termitomyces, using genotyping by sequencing (GBS) of 88 homokaryotic offspring. We constructed a highly contiguous genome assembly using PacBio data and a de-novo evidence-based annotation. This improved genome assembly and linkage map allowed for examination of the recombination landscape and its potential effect on the mutualistic lifestyle. Our linkage map resulted in a genome-wide recombination rate of 22 cM/Mb, lower than that of other related fungi. However, the total map length of 1370 cM was similar to that of other related fungi. The apparently decreased rate of recombination is primarily due to genome expansion of islands of gene-poor repetitive sequences. This study highlights the importance of inclusion of genomic context in cross-species comparisons of recombination rate. |
ArticleNumber | 123 |
Audience | Academic |
Author | van den Heuvel, Joost Jacobs, Bas Bourke, Peter M. Vreeburg, Sabine M. E. Aanen, Duur K. Zwaan, Bas J. Auxier, Ben |
Author_xml | – sequence: 1 givenname: Sabine M. E. surname: Vreeburg fullname: Vreeburg, Sabine M. E. – sequence: 2 givenname: Ben surname: Auxier fullname: Auxier, Ben – sequence: 3 givenname: Bas surname: Jacobs fullname: Jacobs, Bas – sequence: 4 givenname: Peter M. surname: Bourke fullname: Bourke, Peter M. – sequence: 5 givenname: Joost surname: van den Heuvel fullname: van den Heuvel, Joost – sequence: 6 givenname: Bas J. surname: Zwaan fullname: Zwaan, Bas J. – sequence: 7 givenname: Duur K. surname: Aanen fullname: Aanen, Duur K. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36927388$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1u3CAUha0qVfPTvkAXFVI36cKpwTaYVTWK2mSkSJXadI0wXDtMjZkCjmbevngmaTNRVbEALt85iMs5zY5GN0KWvcXFBcYN_RgwaWiVF6TMC05wkW9eZCe4YjgnmFZHT9bH2WkIq6LArCH1q-y4pJywsmlOMrVAPYwQjUKDGX_KHpCVayRHjYxde3cPegacBSRDANsOW-Q6FO8ARfDWREBha1vjxohudwVntwoCUn67jq6Xdgqvs5edHAK8eZjPsh9fPt9eXuc3X6-Wl4ubXNW8iXmpJSUUdM0IU4zrTlWE0qZUmLQdlliytgUsq1rzhhS4ZZTCvOGyqBhwXZ5ly72vdnIl1t5Y6bfCSSN2Bed7IX166QCCk1bVbccx6eqKkZKDrDTVsi0hmdEqeX3ae62n1oJWMEYvhwPTw5PR3Ine3QtcFARzPjucPzh492uCEIU1QcEwyBHcFARhTcN4zTlP6Ptn6MpNfky92lFVnb6w_kv1Mr3AjJ1LF6vZVCxYhSkrSz5TF_-g0tBgjUoB6kyqHwg-HAgSE2ETezmFIJbfvx2y75525U87HvOUgGYPKO9C8NAJZaKMczy8NEPqjpijK_bRFSm6YhddsUlS8kz66P4f0W_90PAI |
CitedBy_id | crossref_primary_10_1038_s42003_024_06887_y |
Cites_doi | 10.1073/pnas.1319718111 10.1093/bioinformatics/bth315 10.1007/978-3-642-19974-5_6 10.1111/mpp.12384 10.1080/10942912.2010.506017 10.1073/pnas.1003391107 10.1038/nbt.1643 10.1007/BF02223870 10.1093/bioinformatics/btp352 10.1186/s12915-015-0187-4 10.1128/9781555815837.ch19 10.1093/bioinformatics/btx494 10.1534/genetics.104.027235 10.1016/j.funeco.2018.08.009 10.1017/S0953756202006275 10.3390/insects11080527 10.1007/s00265-002-0559-y 10.1038/s41437-020-0306-z 10.1007/978-94-017-3223-9_14 10.1017/S0953756204001844 10.1038/s41598-020-71043-5 10.1002/food.200390048 10.1126/science.1173462 10.1111/j.1095-8312.1983.tb01876.x 10.1080/00222938100770541 10.1128/9781555819583.ch7 10.1371/journal.pone.0112963 10.1007/s00040-011-0154-1 10.1016/j.fgb.2015.08.010 10.1093/bioinformatics/btq033 10.1093/bioinformatics/btx576 10.1093/nar/gky1085 10.3390/insects3010307 10.1534/genetics.118.300885 10.1128/AEM.66.12.5290-5300.2000 10.1073/pnas.1817482116 10.1111/j.1365-294X.2006.03008.x 10.1093/gbe/evz122 10.1186/1471-2148-14-121 10.1098/rspb.1996.0052 10.5248/137.41 10.1128/spectrum.01234-22 10.1016/S0022-2836(05)80360-2 10.1098/rstb.2016.0455 10.1146/annurev-genet-040119-093957 10.1089/cmb.2012.0021 10.1093/bioinformatics/btt086 10.1093/nar/gky418 10.1186/s12864-015-1344-4 10.1101/gr.215087.116 10.1016/j.cub.2005.03.043 10.1371/journal.pone.0019379 10.1016/j.funeco.2020.100917 10.1093/bioinformatics/bty371 10.1093/nar/gkaa977 10.1534/genetics.105.051128 10.1093/gbe/evab126 10.1016/S0953-7562(09)80949-0 10.1007/BF02224496 10.1128/mBio.00936-15 10.1016/S0169-5347(98)01529-8 10.1093/nar/gkz991 10.1073/pnas.0134966100 10.1016/j.jgg.2021.01.002 10.1186/1471-2156-12-97 10.1094/MPMI-06-14-0173-R 10.1007/s10577-012-9290-3 10.1098/rsbl.2020.0394 10.1093/bioinformatics/bty191 10.1093/bioinformatics/btm308 10.1111/j.2517-6161.1995.tb02031.x 10.1186/gb-2006-7-s1-s11 10.1101/gr.094557.109 10.1111/j.1365-294X.2011.05064.x 10.1038/nbt.1754 10.1073/pnas.222313099 10.1186/1471-2148-7-115 10.1016/0308-8146(82)90028-0 |
ContentType | Journal Article |
Copyright | 2023. The Author(s). COPYRIGHT 2023 BioMed Central Ltd. 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2023 |
Copyright_xml | – notice: 2023. The Author(s). – notice: COPYRIGHT 2023 BioMed Central Ltd. – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QP 7QR 7SS 7TK 7U7 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM DOA |
DOI | 10.1186/s12864-023-09210-x |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Toxicology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2164 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_92bc5bf912f547239ea4d6dab3e04764 PMC10021994 A741673395 36927388 10_1186_s12864_023_09210_x |
Genre | Journal Article |
GeographicLocations | Netherlands |
GeographicLocations_xml | – name: Netherlands |
GrantInformation_xml | – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek grantid: ALWGR.2017.010 – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek grantid: VICI 86514007 – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek grantid: 824.01.002 – fundername: Topconsortium voor Kennis en Innovatie grantid: BO-26.03-009-004 – fundername: ; grantid: BO-26.03-009-004 – fundername: ; grantid: 824.01.002; ALWGR.2017.010; VICI 86514007 |
GroupedDBID | --- 0R~ 23N 2WC 2XV 53G 5VS 6J9 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK IAO IGS IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB -A0 3V. ACRMQ ADINQ AIXEN C24 CGR CUY CVF ECM EIF NPM PMFND 7QP 7QR 7SS 7TK 7U7 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c598t-3da626ed5727c79dfc426683c12bf1a1a7bbe1a45d98201b766e45d99a047e9d3 |
IEDL.DBID | M48 |
ISSN | 1471-2164 |
IngestDate | Wed Aug 27 01:11:55 EDT 2025 Thu Aug 21 18:37:29 EDT 2025 Fri Jul 11 05:32:13 EDT 2025 Fri Jul 25 10:36:17 EDT 2025 Tue Jun 17 21:42:18 EDT 2025 Tue Jun 10 20:44:18 EDT 2025 Fri Jun 27 05:59:42 EDT 2025 Thu Jan 02 22:53:44 EST 2025 Tue Jul 01 00:39:22 EDT 2025 Thu Apr 24 23:04:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Basidiomycete GBS Mutualistic symbiosis Recombination |
Language | English |
License | 2023. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c598t-3da626ed5727c79dfc426683c12bf1a1a7bbe1a45d98201b766e45d99a047e9d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12864-023-09210-x |
PMID | 36927388 |
PQID | 2788451645 |
PQPubID | 44682 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_92bc5bf912f547239ea4d6dab3e04764 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10021994 proquest_miscellaneous_2788795999 proquest_journals_2788451645 gale_infotracmisc_A741673395 gale_infotracacademiconefile_A741673395 gale_incontextgauss_ISR_A741673395 pubmed_primary_36927388 crossref_citationtrail_10_1186_s12864_023_09210_x crossref_primary_10_1186_s12864_023_09210_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-16 |
PublicationDateYYYYMMDD | 2023-03-16 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC genomics |
PublicationTitleAlternate | BMC Genomics |
PublicationYear | 2023 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | R Sieber (9210_CR26) 1983; 30 S Koren (9210_CR39) 2017; 27 F Ahmad (9210_CR23) 2022; 10 H Li (9210_CR45) 2013 C Zheng (9210_CR70) 2018; 210 JB Anderson (9210_CR74) 2007 J Korb (9210_CR13) 2003; 53 WH Majoros (9210_CR55) 2004; 20 LA Ouellette (9210_CR49) 2018; 34 M Wisselink (9210_CR73) 2020; 11 LJJ van de Peppel (9210_CR33) 2022; 137 SP Otto (9210_CR29) 2019; 53 PJ Bradbury (9210_CR47) 2007; 23 RJ Elshire (9210_CR38) 2011; 6 S Lu (9210_CR51) 2020; 48 SA Frank (9210_CR16) 1996; 263 MJ Orbach (9210_CR80) 1988; 8 RR da Costa (9210_CR19) 2019; 38 9210_CR87 K Terashima (9210_CR86) 2002; 106 CT Bergstrom (9210_CR28) 2003; 100 DK Aanen (9210_CR67) 2007; 7 M Stanke (9210_CR56) 2006; 7 JE Stajich (9210_CR62) 2010; 107 BJ Walker (9210_CR40) 2014; 9 TY James (9210_CR77) 2006; 172 PM Bourke (9210_CR48) 2018; 34 ASM Sonnenberg (9210_CR30) 2020; 10 DK Aanen (9210_CR10) 2002; 99 T Nobre (9210_CR14) 2011; 20 KM Smith (9210_CR79) 2012; 20 LJJ van de Peppel (9210_CR18) 2020; 45 G Kansci (9210_CR6) 2003; 47 H Li (9210_CR43) 2018; 34 JALV Kan (9210_CR83) 2017; 18 C Rouland-Lefèvre (9210_CR4) 2011 NA Koné (9210_CR9) 2011; 58 L Faino (9210_CR81) 2015; 6 JECP Darlington (9210_CR1) 1994 TA Clark (9210_CR72) 2004; 167 JT Robinson (9210_CR52) 2011; 29 SF Altschul (9210_CR50) 1990; 215 H Zhang (9210_CR60) 2018; 46 J Stapley (9210_CR84) 2017; 372 C Veller (9210_CR88) 2019; 116 M Nieuwenhuis (9210_CR37) 2019; 11 M Seppey (9210_CR42) 2019 HH de Fine Licht (9210_CR20) 2006; 15 RA Ohm (9210_CR63) 2010; 28 WJ Botha (9210_CR5) 1992; 96 U Kües (9210_CR78) 2011 J Palmer (9210_CR54) 2017 DK Aanen (9210_CR17) 2009; 326 Y Benjamini (9210_CR53) 1995; 57 HH de Fine Licht (9210_CR75) 2005; 109 E Garrison (9210_CR46) 2012 P Lavelle (9210_CR2) 1997; 33 9210_CR3 C Rouland-Lefèvre (9210_CR22) 2000 BPHJ Thomma (9210_CR31) 2016; 90 H Zhan (9210_CR71) 2011; 12 C Li (9210_CR69) 2015; 13 9210_CR66 MA Coelho (9210_CR76) 2017 AR Quinlan (9210_CR61) 2010; 26 9210_CR64 A Bankevich (9210_CR36) 2012; 19 HA Lewin (9210_CR32) 2009; 19 DK Aanen (9210_CR11) 2005; 15 J Huerta-Cepas (9210_CR59) 2019; 47 T Nobre (9210_CR21) 2012; 3 MF Seidl (9210_CR82) 2014; 28 A Gurevich (9210_CR41) 2013; 29 R Law (9210_CR27) 1983; 20 R Heinzelmann (9210_CR65) 2020; 124 LM Larraya (9210_CR85) 2000; 66 EA Herre (9210_CR15) 1999; 14 M Blum (9210_CR58) 2021; 49 T Nobre (9210_CR35) 2014; 14 SME Vreeburg (9210_CR34) 2020; 16 P Rastas (9210_CR68) 2017; 33 H Li (9210_CR44) 2009; 25 SNA Malek (9210_CR7) 2012; 15 RA Johnson (9210_CR12) 1981; 15 WA Sands (9210_CR25) 1960; 7 SK Ogundana (9210_CR8) 1982; 8 M Poulsen (9210_CR24) 2014; 111 AC Testa (9210_CR57) 2015; 16 |
References_xml | – volume: 111 start-page: 14500 year: 2014 ident: 9210_CR24 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1319718111 – volume: 20 start-page: 2878 year: 2004 ident: 9210_CR55 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth315 – start-page: 97 volume-title: Evolution of fungi and fungal-like organisms year: 2011 ident: 9210_CR78 doi: 10.1007/978-3-642-19974-5_6 – volume: 18 start-page: 75 year: 2017 ident: 9210_CR83 publication-title: Mol Plant Pathol doi: 10.1111/mpp.12384 – volume: 15 start-page: 809 year: 2012 ident: 9210_CR7 publication-title: Int J Food Prop doi: 10.1080/10942912.2010.506017 – volume: 107 start-page: 11889 year: 2010 ident: 9210_CR62 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1003391107 – volume: 28 start-page: 957 year: 2010 ident: 9210_CR63 publication-title: Nat Biotechnol doi: 10.1038/nbt.1643 – volume: 30 start-page: 204 year: 1983 ident: 9210_CR26 publication-title: Insect Soc doi: 10.1007/BF02223870 – volume: 25 start-page: 2078 year: 2009 ident: 9210_CR44 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 13 start-page: 78 year: 2015 ident: 9210_CR69 publication-title: BMC Biol doi: 10.1186/s12915-015-0187-4 – start-page: 105 volume-title: Nourishment and evolution in insect societies year: 1994 ident: 9210_CR1 – ident: 9210_CR66 doi: 10.1128/9781555815837.ch19 – volume: 33 start-page: 3726 year: 2017 ident: 9210_CR68 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx494 – volume: 167 start-page: 1663 year: 2004 ident: 9210_CR72 publication-title: Genetics doi: 10.1534/genetics.104.027235 – ident: 9210_CR3 – volume: 38 start-page: 54 year: 2019 ident: 9210_CR19 publication-title: Fungal Ecol doi: 10.1016/j.funeco.2018.08.009 – volume: 106 start-page: 911 year: 2002 ident: 9210_CR86 publication-title: Mycol Res doi: 10.1017/S0953756202006275 – volume: 11 start-page: 527 year: 2020 ident: 9210_CR73 publication-title: Insects doi: 10.3390/insects11080527 – volume: 53 start-page: 65 year: 2003 ident: 9210_CR13 publication-title: Behav Ecol Sociobiol doi: 10.1007/s00265-002-0559-y – volume: 124 start-page: 699 year: 2020 ident: 9210_CR65 publication-title: Heredity doi: 10.1038/s41437-020-0306-z – volume: 33 start-page: 159 year: 1997 ident: 9210_CR2 publication-title: Eur J Soil Biol – start-page: 289 volume-title: Termites: evolution, sociality, symbioses, ecology year: 2000 ident: 9210_CR22 doi: 10.1007/978-94-017-3223-9_14 – volume: 109 start-page: 314 year: 2005 ident: 9210_CR75 publication-title: Mycol Res doi: 10.1017/S0953756204001844 – volume: 10 start-page: 14653 year: 2020 ident: 9210_CR30 publication-title: Sci Rep doi: 10.1038/s41598-020-71043-5 – volume-title: Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv13033997 Q-Bio year: 2013 ident: 9210_CR45 – volume: 47 start-page: 213 year: 2003 ident: 9210_CR6 publication-title: Food Nahr doi: 10.1002/food.200390048 – volume: 326 start-page: 1103 year: 2009 ident: 9210_CR17 publication-title: Science doi: 10.1126/science.1173462 – volume: 20 start-page: 249 year: 1983 ident: 9210_CR27 publication-title: Biol J Linn Soc doi: 10.1111/j.1095-8312.1983.tb01876.x – volume: 15 start-page: 751 year: 1981 ident: 9210_CR12 publication-title: J Nat Hist doi: 10.1080/00222938100770541 – start-page: 147 volume-title: The fungal kingdom year: 2017 ident: 9210_CR76 doi: 10.1128/9781555819583.ch7 – volume: 9 start-page: e112963 year: 2014 ident: 9210_CR40 publication-title: PLoS One doi: 10.1371/journal.pone.0112963 – start-page: 227 volume-title: Gene prediction: methods and protocols year: 2019 ident: 9210_CR42 – volume: 58 start-page: 371 year: 2011 ident: 9210_CR9 publication-title: Insect Soc doi: 10.1007/s00040-011-0154-1 – volume: 90 start-page: 24 year: 2016 ident: 9210_CR31 publication-title: Fungal Genet Biol doi: 10.1016/j.fgb.2015.08.010 – volume: 26 start-page: 841 year: 2010 ident: 9210_CR61 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq033 – volume: 34 start-page: 306 year: 2018 ident: 9210_CR49 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx576 – volume: 47 start-page: D309 year: 2019 ident: 9210_CR59 publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1085 – volume: 3 start-page: 307 year: 2012 ident: 9210_CR21 publication-title: Insects doi: 10.3390/insects3010307 – volume: 210 start-page: 71 year: 2018 ident: 9210_CR70 publication-title: Genetics doi: 10.1534/genetics.118.300885 – volume: 66 start-page: 5290 year: 2000 ident: 9210_CR85 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.66.12.5290-5300.2000 – volume: 116 start-page: 1659 year: 2019 ident: 9210_CR88 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1817482116 – volume: 15 start-page: 3131 year: 2006 ident: 9210_CR20 publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2006.03008.x – volume: 11 start-page: 1857 year: 2019 ident: 9210_CR37 publication-title: Genome Biol Evol doi: 10.1093/gbe/evz122 – volume: 14 start-page: 121 year: 2014 ident: 9210_CR35 publication-title: BMC Evol Biol doi: 10.1186/1471-2148-14-121 – volume: 263 start-page: 339 year: 1996 ident: 9210_CR16 publication-title: Proc R Soc Lond B Biol Sci doi: 10.1098/rspb.1996.0052 – volume: 137 start-page: 41 year: 2022 ident: 9210_CR33 publication-title: Mycotaxon doi: 10.5248/137.41 – volume: 10 start-page: e01234 issue: 6 year: 2022 ident: 9210_CR23 publication-title: Microbiol Spectr doi: 10.1128/spectrum.01234-22 – volume: 215 start-page: 403 year: 1990 ident: 9210_CR50 publication-title: J Mol Biol doi: 10.1016/S0022-2836(05)80360-2 – volume: 372 start-page: 20160455 year: 2017 ident: 9210_CR84 publication-title: Philos Trans R Soc B Biol Sci doi: 10.1098/rstb.2016.0455 – volume: 53 start-page: 19 year: 2019 ident: 9210_CR29 publication-title: Annu Rev Genet doi: 10.1146/annurev-genet-040119-093957 – volume: 19 start-page: 455 year: 2012 ident: 9210_CR36 publication-title: J Comput Biol doi: 10.1089/cmb.2012.0021 – volume: 8 start-page: 1469 year: 1988 ident: 9210_CR80 publication-title: Mol Cell Biol – volume: 29 start-page: 1072 year: 2013 ident: 9210_CR41 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt086 – volume-title: Funannotate: eukaryotic genome annotation pipeline year: 2017 ident: 9210_CR54 – volume: 46 start-page: W95 year: 2018 ident: 9210_CR60 publication-title: Nucleic Acids Res doi: 10.1093/nar/gky418 – volume: 16 start-page: 170 year: 2015 ident: 9210_CR57 publication-title: BMC Genomics doi: 10.1186/s12864-015-1344-4 – volume: 27 start-page: 722 year: 2017 ident: 9210_CR39 publication-title: Genome Res doi: 10.1101/gr.215087.116 – volume: 15 start-page: 851 year: 2005 ident: 9210_CR11 publication-title: Curr Biol doi: 10.1016/j.cub.2005.03.043 – volume: 6 start-page: e19379 year: 2011 ident: 9210_CR38 publication-title: PLoS One doi: 10.1371/journal.pone.0019379 – volume: 45 start-page: 100917 year: 2020 ident: 9210_CR18 publication-title: Fungal Ecol doi: 10.1016/j.funeco.2020.100917 – volume: 34 start-page: 3496 year: 2018 ident: 9210_CR48 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty371 – volume-title: Haplotype-based variant detection from short-read sequencing. ArXiv12073907 Q-Bio year: 2012 ident: 9210_CR46 – volume: 49 start-page: D344 year: 2021 ident: 9210_CR58 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkaa977 – volume: 172 start-page: 1877 year: 2006 ident: 9210_CR77 publication-title: Genetics doi: 10.1534/genetics.105.051128 – ident: 9210_CR87 doi: 10.1093/gbe/evab126 – volume: 96 start-page: 350 year: 1992 ident: 9210_CR5 publication-title: Mycol Res doi: 10.1016/S0953-7562(09)80949-0 – volume: 7 start-page: 251 year: 1960 ident: 9210_CR25 publication-title: Insect Soc doi: 10.1007/BF02224496 – volume: 6 start-page: e00936 issue: 4 year: 2015 ident: 9210_CR81 publication-title: mBio doi: 10.1128/mBio.00936-15 – volume: 14 start-page: 49 year: 1999 ident: 9210_CR15 publication-title: Trends Ecol Evol doi: 10.1016/S0169-5347(98)01529-8 – volume: 48 start-page: D265 year: 2020 ident: 9210_CR51 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz991 – volume: 100 start-page: 593 year: 2003 ident: 9210_CR28 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0134966100 – ident: 9210_CR64 doi: 10.1016/j.jgg.2021.01.002 – start-page: 499 volume-title: Biology of termites: a modern synthesis year: 2011 ident: 9210_CR4 – start-page: 333 volume-title: Sex in fungi year: 2007 ident: 9210_CR74 – volume: 12 start-page: 97 year: 2011 ident: 9210_CR71 publication-title: BMC Genet doi: 10.1186/1471-2156-12-97 – volume: 28 start-page: 362 year: 2014 ident: 9210_CR82 publication-title: Mol Plant-Microbe Interact doi: 10.1094/MPMI-06-14-0173-R – volume: 20 start-page: 635 year: 2012 ident: 9210_CR79 publication-title: Chromosom Res doi: 10.1007/s10577-012-9290-3 – volume: 16 start-page: 20200394 year: 2020 ident: 9210_CR34 publication-title: Biol Lett doi: 10.1098/rsbl.2020.0394 – volume: 34 start-page: 3094 year: 2018 ident: 9210_CR43 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty191 – volume: 23 start-page: 2633 year: 2007 ident: 9210_CR47 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm308 – volume: 57 start-page: 289 year: 1995 ident: 9210_CR53 publication-title: J R Stat Soc Ser B Methodol doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 7 start-page: S11 year: 2006 ident: 9210_CR56 publication-title: Genome Biol doi: 10.1186/gb-2006-7-s1-s11 – volume: 19 start-page: 1925 year: 2009 ident: 9210_CR32 publication-title: Genome Res doi: 10.1101/gr.094557.109 – volume: 20 start-page: 2023 year: 2011 ident: 9210_CR14 publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2011.05064.x – volume: 29 start-page: 24 year: 2011 ident: 9210_CR52 publication-title: Nat Biotechnol doi: 10.1038/nbt.1754 – volume: 99 start-page: 14887 year: 2002 ident: 9210_CR10 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.222313099 – volume: 7 start-page: 115 year: 2007 ident: 9210_CR67 publication-title: BMC Evol Biol doi: 10.1186/1471-2148-7-115 – volume: 8 start-page: 263 year: 1982 ident: 9210_CR8 publication-title: Food Chem doi: 10.1016/0308-8146(82)90028-0 |
SSID | ssj0017825 |
Score | 2.3992076 |
Snippet | The termite-fungus symbiosis is an ancient stable mutualism of two partners that reproduce and disperse independently. With the founding of each termite colony... The termite-fungus symbiosis is an ancient stable mutualism of two partners that reproduce and disperse independently. With the founding of each termite colony... Background The termite-fungus symbiosis is an ancient stable mutualism of two partners that reproduce and disperse independently. With the founding of each... BackgroundThe termite-fungus symbiosis is an ancient stable mutualism of two partners that reproduce and disperse independently. With the founding of each... Abstract Background The termite-fungus symbiosis is an ancient stable mutualism of two partners that reproduce and disperse independently. With the founding of... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 123 |
SubjectTerms | Analysis Animals Annotations Assembly Basidiomycete Chromosomes Complementarity Fungi Fungi - genetics GBS Gene mapping Gene sequencing Genetic aspects Genetic crosses Genetic Linkage Genomes Genomics Genotyping Health aspects Isoptera - genetics Isoptera - microbiology Linkage (Genetics) Mushrooms Mutualism Mutualistic symbiosis Offspring Polymorphism Recombination Species comparisons Substrates Symbiosis Symbiosis - genetics Taxonomy Termites Termitomyces Termitomyces - genetics |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kIPgiWr-irawi-CChl-xX9vEUSxX0QVvo27JfqYUmOZoc9P57Zza544KgLz4mOwvJzOx8JDO_IeSd0tq7YEEC0S5yLjTLtYScx8eqkJ4ryEmwUfjbd3l2wb9eisu9UV9YEzbCA4-MO9Gl88LVuihrAVuZjpYHGaxjccGVTEig4PO2ydT0_wD8nti2yFTypAcrLHkO_ilfaEhy8ruZG0po_X_a5D2nNC-Y3PNAp4_Iwyl0pMvxkR-Te7E9JPfHYZKbJ8QvKSgD9iRS_CsLdoI2dkVtG-h1-nIQAxJ0TaQQMMfG3WxoV1MIAGmqiBki7TeNAzkN9Dzd6JoNWBHqbzerobuyzbp_Si5OP59_OsunEQq5F7oachYsZCwxCAhTvNKh9uiRK-aL0tWFLaxyLhaWi6AxFHBKyogX2gJzow7sGTlouza-INQL5UsH8Z2tS64819YidE6tHQ-OlTEjxZajxk_44jjm4sakPKOSZpSCASmYJAVzl5EPuz2rEV3jr9QfUVA7SkTGTjdAX8ykL-Zf-pKRtyhmg9gXLRbXXNl135svP3-YJUanijEtMvJ-Iqo7eAdvp14F4ATCZc0oj2aUcDj9fHmrTWYyDr0pVVXhfGQOy292y7gTC97a2K1HGhwDr3VGno_Kt3tvJjU2VFUZqWZqOWPMfKW9_pWgwxFwF9GgX_4PVr4iD8p0pFheyCNyMNyu4zGEaIN7nU7jb-pvOGA priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF-0IvgifptaZRXBBwm9ZD-SfZJTLFXQB23h3pb9yllokvOSg95_35lN7mwQ-pjsBLI7s_OxO_MbQt4XSjnrDXAgmFnKhWKpkhDzuFBm0vECYhIsFP7xU56e8-8LsRgP3LoxrXKnE6Oi9q3DM_LjHGI1bCrLxafV3xS7RuHt6thC4y65h9BlmNJVLPYBVwbWT-wKZUp53IEuljwFK5XOFIQ66dXEGEXM_v818w3TNE2bvGGHTh6Rh6MDSecDxx-TO6F5Qu4PLSW3T4mbUxAJrEykeDcL2oLWZkVN4-lFPD8IHgnaOlBwm0NtL7e0rSi4gTTmxfSBdtvaArd6ehZftPUWdAl16-2qb5em3nTPyPnJ17Mvp-nYSCF1QpV9yryBuCV4Ac6KK5SvHNrlkrkst1VmMlNYGzLDhVfoENhCyoAPysx4EZRnz8lB0zbhJaFOFC634OWZKueF48oYBNCplOXesjwkJNutqHYjyjg2u7jUMdoopR64oIELOnJBXyXk4_6b1YCxcSv1Z2TUnhLxseOLdr3U43bTKrdO2EpleSVA4JgKhnvpjWUBpiR5Qt4hmzUiYDSYYrM0m67T337_0nP0UQvGlEjIh5GoamEOzowVC7ASCJo1oTyaUMIWddPhnTTpUUV0-p9AJ-Ttfhi_xLS3JrSbgQabwSuVkBeD8O3nzaTCsqoyIeVELCcLMx1pLv5EAHGE3UVM6MPb_-sVeZDHzcLSTB6Rg369Ca_BBevtm7jPrgE_YS_V priority: 102 providerName: ProQuest |
Title | A genetic linkage map and improved genome assembly of the termite symbiont Termitomyces cryptogamus |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36927388 https://www.proquest.com/docview/2788451645 https://www.proquest.com/docview/2788795999 https://pubmed.ncbi.nlm.nih.gov/PMC10021994 https://doaj.org/article/92bc5bf912f547239ea4d6dab3e04764 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKK1AviG8CZWUQEgcU2CROHB8Q2qJWBakVKl2pN8t2nKXSJlk2Wan598w4ydKIigPHxOODPTOeN4nnDSFvuRBGZwo0YNXUZ7GIfJFAzmNsGiSGcchJsFD49Cw5mbNvl_HlDhnaHfUbWN-a2mE_qfl6-eH6V_sZHP6Tc_g0-VjDGZswH6KPPxWQwviAKfcgMnF01FP2568CRMN4KJy5dd4-uRclAqtV0lGccnT-fx_aN6LW-EbljRB1_IDc77ElnXXG8JDs2PIRudt1m2wfEzOjYC1YtEjxty0cJLRQK6rKjF65Tws2Q4GqsBQQtS30sqVVTgEhUndlprG0bgsNimzohXtRFS0cM9Ss21VTLVSxqZ-Q-fHRxZcTv--x4JtYpI0fZQpSGpvFgGMMF1luMGSnkQlCnQcqUFxrGygWZwKxguZJYvFBqCnjVmTRU7JbVqV9TqiJuQk1AECVh4wbJpRCbp1caJbpKLQeCYYdlaYnIMc-GEvpEpE0kZ1CJChEOoXIa4-8385ZdfQb_5Q-REVtJZE6272o1gvZe6IUoTaxzkUQ5jHYYiSsYlmSKR1ZWFLCPPIG1SyRHKPE2zcLtalr-fXHuZwhfOVRJGKPvOuF8grWYFRfzAA7gXxaI8mDkSR4rxkPD9YkB-OXIU9TbKDMYPj1dhhn4o240labTgb7xAvhkWed8W3XPdiwR9KRWY42ZjxSXv103OLIyIt00S_-f-pLsh86n4r8IDkgu816Y18Bcmv0hNzhl3xC9g6Pzr6fT9z3j4lz0d8CmkQu |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BqdELwg7gQGGATiAUVrEseJHxDqYFPLtgqNTdqbZztOmbQkpWnF8lN8I-fkUhYh7W2PiY-j2Odunwsh7yIhjE4UYMCqoctCEbiCg89jbOxxwyLwSTBR-HDKxyfs22l4ukH-dLkwGFbZycRaUCeFwTPybR98NWwqy8LP818udo3C29WuhUZDFvu2-g0uW_lp8hXw-97393aPv4zdtquAa0IRL90gUWDE2yQEzW0ikaQGlVQcGM_Xqac8FWltPcXCRKB21BHnFh-EGrLIiiSA794imywAV2ZANnd2p9-P1vcWoG_DLjUn5tslSH_OXNCL7lCAc-Ve9tRf3SXgf11wRRn2AzWvaL69--Rea7LSUUNjD8iGzR-S200Ty-oRMSMKRIi5kBRvg0E-0UzNqcoTel6fWNgEAYrMUjDUbaYvKlqkFAxPWkfiLC0tq0wDfSzpcf2iyCqQXtQsqvmymKlsVT4mJzeyyU_IIC9y-4xQE0bG12BXqtRnkWFCKSzZkwrNEh341iFet6PStHXNsb3Ghaz9m5jLBgsSsCBrLMhLh3xcz5k3VT2uhd5BRK0hsSJ3_aJYzGTL4FL42oQ6FZ6fhkDigbCKJTxROrCwJM4c8hbRLLHmRo5BPTO1Kks5-XEkR2gVR0EgQod8aIHSAtZgVJsjATuBZbp6kFs9SBAKpj_cUZNshVIp_7GQQ96sh3EmBtrltlg1MNh-XgiHPG2Ib73ugAtM5IodEvfIsrcx_ZH8_GddshwL_WIV6ufX_9drcmd8fHggDybT_Rfkrl8zTuB6fIsMlouVfQkG4FK_armOkrObZvS_sc5t_g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+genetic+linkage+map+and+improved+genome+assembly+of+the+termite+symbiont+Termitomyces+cryptogamus&rft.jtitle=BMC+genomics&rft.au=Vreeburg%2C+Sabine+M.+E.&rft.au=Auxier%2C+Ben&rft.au=Jacobs%2C+Bas&rft.au=Bourke%2C+Peter+M.&rft.date=2023-03-16&rft.pub=BioMed+Central&rft.eissn=1471-2164&rft.volume=24&rft_id=info:doi/10.1186%2Fs12864-023-09210-x&rft_id=info%3Apmid%2F36927388&rft.externalDocID=PMC10021994 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon |