A genetic linkage map and improved genome assembly of the termite symbiont Termitomyces cryptogamus

The termite-fungus symbiosis is an ancient stable mutualism of two partners that reproduce and disperse independently. With the founding of each termite colony the symbiotic association must be re-established with a new fungus partner. Complementarity in the ability to break down plant substrate may...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 24; no. 1; pp. 123 - 16
Main Authors Vreeburg, Sabine M. E., Auxier, Ben, Jacobs, Bas, Bourke, Peter M., van den Heuvel, Joost, Zwaan, Bas J., Aanen, Duur K.
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 16.03.2023
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The termite-fungus symbiosis is an ancient stable mutualism of two partners that reproduce and disperse independently. With the founding of each termite colony the symbiotic association must be re-established with a new fungus partner. Complementarity in the ability to break down plant substrate may help to stabilize this symbiosis despite horizontal symbiont transmission. An alternative, non-exclusive, hypothesis is that a reduced rate of evolution may contribute to stabilize the symbiosis, the so-called Red King Effect. To explore this concept, we produced the first linkage map of a species of Termitomyces, using genotyping by sequencing (GBS) of 88 homokaryotic offspring. We constructed a highly contiguous genome assembly using PacBio data and a de-novo evidence-based annotation. This improved genome assembly and linkage map allowed for examination of the recombination landscape and its potential effect on the mutualistic lifestyle. Our linkage map resulted in a genome-wide recombination rate of 22 cM/Mb, lower than that of other related fungi. However, the total map length of 1370 cM was similar to that of other related fungi. The apparently decreased rate of recombination is primarily due to genome expansion of islands of gene-poor repetitive sequences. This study highlights the importance of inclusion of genomic context in cross-species comparisons of recombination rate.
AbstractList Background The termite-fungus symbiosis is an ancient stable mutualism of two partners that reproduce and disperse independently. With the founding of each termite colony the symbiotic association must be re-established with a new fungus partner. Complementarity in the ability to break down plant substrate may help to stabilize this symbiosis despite horizontal symbiont transmission. An alternative, non-exclusive, hypothesis is that a reduced rate of evolution may contribute to stabilize the symbiosis, the so-called Red King Effect. Methods To explore this concept, we produced the first linkage map of a species of Termitomyces, using genotyping by sequencing (GBS) of 88 homokaryotic offspring. We constructed a highly contiguous genome assembly using PacBio data and a de-novo evidence-based annotation. This improved genome assembly and linkage map allowed for examination of the recombination landscape and its potential effect on the mutualistic lifestyle. Results Our linkage map resulted in a genome-wide recombination rate of 22 cM/Mb, lower than that of other related fungi. However, the total map length of 1370 cM was similar to that of other related fungi. Conclusions The apparently decreased rate of recombination is primarily due to genome expansion of islands of gene-poor repetitive sequences. This study highlights the importance of inclusion of genomic context in cross-species comparisons of recombination rate. Keywords: GBS, Recombination, Basidiomycete, Mutualistic symbiosis
BackgroundThe termite-fungus symbiosis is an ancient stable mutualism of two partners that reproduce and disperse independently. With the founding of each termite colony the symbiotic association must be re-established with a new fungus partner. Complementarity in the ability to break down plant substrate may help to stabilize this symbiosis despite horizontal symbiont transmission. An alternative, non-exclusive, hypothesis is that a reduced rate of evolution may contribute to stabilize the symbiosis, the so-called Red King Effect.MethodsTo explore this concept, we produced the first linkage map of a species of Termitomyces, using genotyping by sequencing (GBS) of 88 homokaryotic offspring. We constructed a highly contiguous genome assembly using PacBio data and a de-novo evidence-based annotation. This improved genome assembly and linkage map allowed for examination of the recombination landscape and its potential effect on the mutualistic lifestyle.ResultsOur linkage map resulted in a genome-wide recombination rate of 22 cM/Mb, lower than that of other related fungi. However, the total map length of 1370 cM was similar to that of other related fungi.ConclusionsThe apparently decreased rate of recombination is primarily due to genome expansion of islands of gene-poor repetitive sequences. This study highlights the importance of inclusion of genomic context in cross-species comparisons of recombination rate.
The termite-fungus symbiosis is an ancient stable mutualism of two partners that reproduce and disperse independently. With the founding of each termite colony the symbiotic association must be re-established with a new fungus partner. Complementarity in the ability to break down plant substrate may help to stabilize this symbiosis despite horizontal symbiont transmission. An alternative, non-exclusive, hypothesis is that a reduced rate of evolution may contribute to stabilize the symbiosis, the so-called Red King Effect. To explore this concept, we produced the first linkage map of a species of Termitomyces, using genotyping by sequencing (GBS) of 88 homokaryotic offspring. We constructed a highly contiguous genome assembly using PacBio data and a de-novo evidence-based annotation. This improved genome assembly and linkage map allowed for examination of the recombination landscape and its potential effect on the mutualistic lifestyle. Our linkage map resulted in a genome-wide recombination rate of 22 cM/Mb, lower than that of other related fungi. However, the total map length of 1370 cM was similar to that of other related fungi. The apparently decreased rate of recombination is primarily due to genome expansion of islands of gene-poor repetitive sequences. This study highlights the importance of inclusion of genomic context in cross-species comparisons of recombination rate.
The termite-fungus symbiosis is an ancient stable mutualism of two partners that reproduce and disperse independently. With the founding of each termite colony the symbiotic association must be re-established with a new fungus partner. Complementarity in the ability to break down plant substrate may help to stabilize this symbiosis despite horizontal symbiont transmission. An alternative, non-exclusive, hypothesis is that a reduced rate of evolution may contribute to stabilize the symbiosis, the so-called Red King Effect.BACKGROUNDThe termite-fungus symbiosis is an ancient stable mutualism of two partners that reproduce and disperse independently. With the founding of each termite colony the symbiotic association must be re-established with a new fungus partner. Complementarity in the ability to break down plant substrate may help to stabilize this symbiosis despite horizontal symbiont transmission. An alternative, non-exclusive, hypothesis is that a reduced rate of evolution may contribute to stabilize the symbiosis, the so-called Red King Effect.To explore this concept, we produced the first linkage map of a species of Termitomyces, using genotyping by sequencing (GBS) of 88 homokaryotic offspring. We constructed a highly contiguous genome assembly using PacBio data and a de-novo evidence-based annotation. This improved genome assembly and linkage map allowed for examination of the recombination landscape and its potential effect on the mutualistic lifestyle.METHODSTo explore this concept, we produced the first linkage map of a species of Termitomyces, using genotyping by sequencing (GBS) of 88 homokaryotic offspring. We constructed a highly contiguous genome assembly using PacBio data and a de-novo evidence-based annotation. This improved genome assembly and linkage map allowed for examination of the recombination landscape and its potential effect on the mutualistic lifestyle.Our linkage map resulted in a genome-wide recombination rate of 22 cM/Mb, lower than that of other related fungi. However, the total map length of 1370 cM was similar to that of other related fungi.RESULTSOur linkage map resulted in a genome-wide recombination rate of 22 cM/Mb, lower than that of other related fungi. However, the total map length of 1370 cM was similar to that of other related fungi.The apparently decreased rate of recombination is primarily due to genome expansion of islands of gene-poor repetitive sequences. This study highlights the importance of inclusion of genomic context in cross-species comparisons of recombination rate.CONCLUSIONSThe apparently decreased rate of recombination is primarily due to genome expansion of islands of gene-poor repetitive sequences. This study highlights the importance of inclusion of genomic context in cross-species comparisons of recombination rate.
Abstract Background The termite-fungus symbiosis is an ancient stable mutualism of two partners that reproduce and disperse independently. With the founding of each termite colony the symbiotic association must be re-established with a new fungus partner. Complementarity in the ability to break down plant substrate may help to stabilize this symbiosis despite horizontal symbiont transmission. An alternative, non-exclusive, hypothesis is that a reduced rate of evolution may contribute to stabilize the symbiosis, the so-called Red King Effect. Methods To explore this concept, we produced the first linkage map of a species of Termitomyces, using genotyping by sequencing (GBS) of 88 homokaryotic offspring. We constructed a highly contiguous genome assembly using PacBio data and a de-novo evidence-based annotation. This improved genome assembly and linkage map allowed for examination of the recombination landscape and its potential effect on the mutualistic lifestyle. Results Our linkage map resulted in a genome-wide recombination rate of 22 cM/Mb, lower than that of other related fungi. However, the total map length of 1370 cM was similar to that of other related fungi. Conclusions The apparently decreased rate of recombination is primarily due to genome expansion of islands of gene-poor repetitive sequences. This study highlights the importance of inclusion of genomic context in cross-species comparisons of recombination rate.
The termite-fungus symbiosis is an ancient stable mutualism of two partners that reproduce and disperse independently. With the founding of each termite colony the symbiotic association must be re-established with a new fungus partner. Complementarity in the ability to break down plant substrate may help to stabilize this symbiosis despite horizontal symbiont transmission. An alternative, non-exclusive, hypothesis is that a reduced rate of evolution may contribute to stabilize the symbiosis, the so-called Red King Effect. To explore this concept, we produced the first linkage map of a species of Termitomyces, using genotyping by sequencing (GBS) of 88 homokaryotic offspring. We constructed a highly contiguous genome assembly using PacBio data and a de-novo evidence-based annotation. This improved genome assembly and linkage map allowed for examination of the recombination landscape and its potential effect on the mutualistic lifestyle. Our linkage map resulted in a genome-wide recombination rate of 22 cM/Mb, lower than that of other related fungi. However, the total map length of 1370 cM was similar to that of other related fungi. The apparently decreased rate of recombination is primarily due to genome expansion of islands of gene-poor repetitive sequences. This study highlights the importance of inclusion of genomic context in cross-species comparisons of recombination rate.
ArticleNumber 123
Audience Academic
Author van den Heuvel, Joost
Jacobs, Bas
Bourke, Peter M.
Vreeburg, Sabine M. E.
Aanen, Duur K.
Zwaan, Bas J.
Auxier, Ben
Author_xml – sequence: 1
  givenname: Sabine M. E.
  surname: Vreeburg
  fullname: Vreeburg, Sabine M. E.
– sequence: 2
  givenname: Ben
  surname: Auxier
  fullname: Auxier, Ben
– sequence: 3
  givenname: Bas
  surname: Jacobs
  fullname: Jacobs, Bas
– sequence: 4
  givenname: Peter M.
  surname: Bourke
  fullname: Bourke, Peter M.
– sequence: 5
  givenname: Joost
  surname: van den Heuvel
  fullname: van den Heuvel, Joost
– sequence: 6
  givenname: Bas J.
  surname: Zwaan
  fullname: Zwaan, Bas J.
– sequence: 7
  givenname: Duur K.
  surname: Aanen
  fullname: Aanen, Duur K.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36927388$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u3CAUha0qVfPTvkAXFVI36cKpwTaYVTWK2mSkSJXadI0wXDtMjZkCjmbevngmaTNRVbEALt85iMs5zY5GN0KWvcXFBcYN_RgwaWiVF6TMC05wkW9eZCe4YjgnmFZHT9bH2WkIq6LArCH1q-y4pJywsmlOMrVAPYwQjUKDGX_KHpCVayRHjYxde3cPegacBSRDANsOW-Q6FO8ARfDWREBha1vjxohudwVntwoCUn67jq6Xdgqvs5edHAK8eZjPsh9fPt9eXuc3X6-Wl4ubXNW8iXmpJSUUdM0IU4zrTlWE0qZUmLQdlliytgUsq1rzhhS4ZZTCvOGyqBhwXZ5ly72vdnIl1t5Y6bfCSSN2Bed7IX166QCCk1bVbccx6eqKkZKDrDTVsi0hmdEqeX3ae62n1oJWMEYvhwPTw5PR3Ine3QtcFARzPjucPzh492uCEIU1QcEwyBHcFARhTcN4zTlP6Ptn6MpNfky92lFVnb6w_kv1Mr3AjJ1LF6vZVCxYhSkrSz5TF_-g0tBgjUoB6kyqHwg-HAgSE2ETezmFIJbfvx2y75525U87HvOUgGYPKO9C8NAJZaKMczy8NEPqjpijK_bRFSm6YhddsUlS8kz66P4f0W_90PAI
CitedBy_id crossref_primary_10_1038_s42003_024_06887_y
Cites_doi 10.1073/pnas.1319718111
10.1093/bioinformatics/bth315
10.1007/978-3-642-19974-5_6
10.1111/mpp.12384
10.1080/10942912.2010.506017
10.1073/pnas.1003391107
10.1038/nbt.1643
10.1007/BF02223870
10.1093/bioinformatics/btp352
10.1186/s12915-015-0187-4
10.1128/9781555815837.ch19
10.1093/bioinformatics/btx494
10.1534/genetics.104.027235
10.1016/j.funeco.2018.08.009
10.1017/S0953756202006275
10.3390/insects11080527
10.1007/s00265-002-0559-y
10.1038/s41437-020-0306-z
10.1007/978-94-017-3223-9_14
10.1017/S0953756204001844
10.1038/s41598-020-71043-5
10.1002/food.200390048
10.1126/science.1173462
10.1111/j.1095-8312.1983.tb01876.x
10.1080/00222938100770541
10.1128/9781555819583.ch7
10.1371/journal.pone.0112963
10.1007/s00040-011-0154-1
10.1016/j.fgb.2015.08.010
10.1093/bioinformatics/btq033
10.1093/bioinformatics/btx576
10.1093/nar/gky1085
10.3390/insects3010307
10.1534/genetics.118.300885
10.1128/AEM.66.12.5290-5300.2000
10.1073/pnas.1817482116
10.1111/j.1365-294X.2006.03008.x
10.1093/gbe/evz122
10.1186/1471-2148-14-121
10.1098/rspb.1996.0052
10.5248/137.41
10.1128/spectrum.01234-22
10.1016/S0022-2836(05)80360-2
10.1098/rstb.2016.0455
10.1146/annurev-genet-040119-093957
10.1089/cmb.2012.0021
10.1093/bioinformatics/btt086
10.1093/nar/gky418
10.1186/s12864-015-1344-4
10.1101/gr.215087.116
10.1016/j.cub.2005.03.043
10.1371/journal.pone.0019379
10.1016/j.funeco.2020.100917
10.1093/bioinformatics/bty371
10.1093/nar/gkaa977
10.1534/genetics.105.051128
10.1093/gbe/evab126
10.1016/S0953-7562(09)80949-0
10.1007/BF02224496
10.1128/mBio.00936-15
10.1016/S0169-5347(98)01529-8
10.1093/nar/gkz991
10.1073/pnas.0134966100
10.1016/j.jgg.2021.01.002
10.1186/1471-2156-12-97
10.1094/MPMI-06-14-0173-R
10.1007/s10577-012-9290-3
10.1098/rsbl.2020.0394
10.1093/bioinformatics/bty191
10.1093/bioinformatics/btm308
10.1111/j.2517-6161.1995.tb02031.x
10.1186/gb-2006-7-s1-s11
10.1101/gr.094557.109
10.1111/j.1365-294X.2011.05064.x
10.1038/nbt.1754
10.1073/pnas.222313099
10.1186/1471-2148-7-115
10.1016/0308-8146(82)90028-0
ContentType Journal Article
Copyright 2023. The Author(s).
COPYRIGHT 2023 BioMed Central Ltd.
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2023
Copyright_xml – notice: 2023. The Author(s).
– notice: COPYRIGHT 2023 BioMed Central Ltd.
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QP
7QR
7SS
7TK
7U7
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOA
DOI 10.1186/s12864-023-09210-x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database


MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
EndPage 16
ExternalDocumentID oai_doaj_org_article_92bc5bf912f547239ea4d6dab3e04764
PMC10021994
A741673395
36927388
10_1186_s12864_023_09210_x
Genre Journal Article
GeographicLocations Netherlands
GeographicLocations_xml – name: Netherlands
GrantInformation_xml – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek
  grantid: ALWGR.2017.010
– fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek
  grantid: VICI 86514007
– fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek
  grantid: 824.01.002
– fundername: Topconsortium voor Kennis en Innovatie
  grantid: BO-26.03-009-004
– fundername: ;
  grantid: BO-26.03-009-004
– fundername: ;
  grantid: 824.01.002; ALWGR.2017.010; VICI 86514007
GroupedDBID ---
0R~
23N
2WC
2XV
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
-A0
3V.
ACRMQ
ADINQ
AIXEN
C24
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7QP
7QR
7SS
7TK
7U7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c598t-3da626ed5727c79dfc426683c12bf1a1a7bbe1a45d98201b766e45d99a047e9d3
IEDL.DBID M48
ISSN 1471-2164
IngestDate Wed Aug 27 01:11:55 EDT 2025
Thu Aug 21 18:37:29 EDT 2025
Fri Jul 11 05:32:13 EDT 2025
Fri Jul 25 10:36:17 EDT 2025
Tue Jun 17 21:42:18 EDT 2025
Tue Jun 10 20:44:18 EDT 2025
Fri Jun 27 05:59:42 EDT 2025
Thu Jan 02 22:53:44 EST 2025
Tue Jul 01 00:39:22 EDT 2025
Thu Apr 24 23:04:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Basidiomycete
GBS
Mutualistic symbiosis
Recombination
Language English
License 2023. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c598t-3da626ed5727c79dfc426683c12bf1a1a7bbe1a45d98201b766e45d99a047e9d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12864-023-09210-x
PMID 36927388
PQID 2788451645
PQPubID 44682
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_92bc5bf912f547239ea4d6dab3e04764
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10021994
proquest_miscellaneous_2788795999
proquest_journals_2788451645
gale_infotracmisc_A741673395
gale_infotracacademiconefile_A741673395
gale_incontextgauss_ISR_A741673395
pubmed_primary_36927388
crossref_citationtrail_10_1186_s12864_023_09210_x
crossref_primary_10_1186_s12864_023_09210_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-16
PublicationDateYYYYMMDD 2023-03-16
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-16
  day: 16
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2023
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References R Sieber (9210_CR26) 1983; 30
S Koren (9210_CR39) 2017; 27
F Ahmad (9210_CR23) 2022; 10
H Li (9210_CR45) 2013
C Zheng (9210_CR70) 2018; 210
JB Anderson (9210_CR74) 2007
J Korb (9210_CR13) 2003; 53
WH Majoros (9210_CR55) 2004; 20
LA Ouellette (9210_CR49) 2018; 34
M Wisselink (9210_CR73) 2020; 11
LJJ van de Peppel (9210_CR33) 2022; 137
SP Otto (9210_CR29) 2019; 53
PJ Bradbury (9210_CR47) 2007; 23
RJ Elshire (9210_CR38) 2011; 6
S Lu (9210_CR51) 2020; 48
SA Frank (9210_CR16) 1996; 263
MJ Orbach (9210_CR80) 1988; 8
RR da Costa (9210_CR19) 2019; 38
9210_CR87
K Terashima (9210_CR86) 2002; 106
CT Bergstrom (9210_CR28) 2003; 100
DK Aanen (9210_CR67) 2007; 7
M Stanke (9210_CR56) 2006; 7
JE Stajich (9210_CR62) 2010; 107
BJ Walker (9210_CR40) 2014; 9
TY James (9210_CR77) 2006; 172
PM Bourke (9210_CR48) 2018; 34
ASM Sonnenberg (9210_CR30) 2020; 10
DK Aanen (9210_CR10) 2002; 99
T Nobre (9210_CR14) 2011; 20
KM Smith (9210_CR79) 2012; 20
LJJ van de Peppel (9210_CR18) 2020; 45
G Kansci (9210_CR6) 2003; 47
H Li (9210_CR43) 2018; 34
JALV Kan (9210_CR83) 2017; 18
C Rouland-Lefèvre (9210_CR4) 2011
NA Koné (9210_CR9) 2011; 58
L Faino (9210_CR81) 2015; 6
JECP Darlington (9210_CR1) 1994
TA Clark (9210_CR72) 2004; 167
JT Robinson (9210_CR52) 2011; 29
SF Altschul (9210_CR50) 1990; 215
H Zhang (9210_CR60) 2018; 46
J Stapley (9210_CR84) 2017; 372
C Veller (9210_CR88) 2019; 116
M Nieuwenhuis (9210_CR37) 2019; 11
M Seppey (9210_CR42) 2019
HH de Fine Licht (9210_CR20) 2006; 15
RA Ohm (9210_CR63) 2010; 28
WJ Botha (9210_CR5) 1992; 96
U Kües (9210_CR78) 2011
J Palmer (9210_CR54) 2017
DK Aanen (9210_CR17) 2009; 326
Y Benjamini (9210_CR53) 1995; 57
HH de Fine Licht (9210_CR75) 2005; 109
E Garrison (9210_CR46) 2012
P Lavelle (9210_CR2) 1997; 33
9210_CR3
C Rouland-Lefèvre (9210_CR22) 2000
BPHJ Thomma (9210_CR31) 2016; 90
H Zhan (9210_CR71) 2011; 12
C Li (9210_CR69) 2015; 13
9210_CR66
MA Coelho (9210_CR76) 2017
AR Quinlan (9210_CR61) 2010; 26
9210_CR64
A Bankevich (9210_CR36) 2012; 19
HA Lewin (9210_CR32) 2009; 19
DK Aanen (9210_CR11) 2005; 15
J Huerta-Cepas (9210_CR59) 2019; 47
T Nobre (9210_CR21) 2012; 3
MF Seidl (9210_CR82) 2014; 28
A Gurevich (9210_CR41) 2013; 29
R Law (9210_CR27) 1983; 20
R Heinzelmann (9210_CR65) 2020; 124
LM Larraya (9210_CR85) 2000; 66
EA Herre (9210_CR15) 1999; 14
M Blum (9210_CR58) 2021; 49
T Nobre (9210_CR35) 2014; 14
SME Vreeburg (9210_CR34) 2020; 16
P Rastas (9210_CR68) 2017; 33
H Li (9210_CR44) 2009; 25
SNA Malek (9210_CR7) 2012; 15
RA Johnson (9210_CR12) 1981; 15
WA Sands (9210_CR25) 1960; 7
SK Ogundana (9210_CR8) 1982; 8
M Poulsen (9210_CR24) 2014; 111
AC Testa (9210_CR57) 2015; 16
References_xml – volume: 111
  start-page: 14500
  year: 2014
  ident: 9210_CR24
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1319718111
– volume: 20
  start-page: 2878
  year: 2004
  ident: 9210_CR55
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth315
– start-page: 97
  volume-title: Evolution of fungi and fungal-like organisms
  year: 2011
  ident: 9210_CR78
  doi: 10.1007/978-3-642-19974-5_6
– volume: 18
  start-page: 75
  year: 2017
  ident: 9210_CR83
  publication-title: Mol Plant Pathol
  doi: 10.1111/mpp.12384
– volume: 15
  start-page: 809
  year: 2012
  ident: 9210_CR7
  publication-title: Int J Food Prop
  doi: 10.1080/10942912.2010.506017
– volume: 107
  start-page: 11889
  year: 2010
  ident: 9210_CR62
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1003391107
– volume: 28
  start-page: 957
  year: 2010
  ident: 9210_CR63
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1643
– volume: 30
  start-page: 204
  year: 1983
  ident: 9210_CR26
  publication-title: Insect Soc
  doi: 10.1007/BF02223870
– volume: 25
  start-page: 2078
  year: 2009
  ident: 9210_CR44
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
– volume: 13
  start-page: 78
  year: 2015
  ident: 9210_CR69
  publication-title: BMC Biol
  doi: 10.1186/s12915-015-0187-4
– start-page: 105
  volume-title: Nourishment and evolution in insect societies
  year: 1994
  ident: 9210_CR1
– ident: 9210_CR66
  doi: 10.1128/9781555815837.ch19
– volume: 33
  start-page: 3726
  year: 2017
  ident: 9210_CR68
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx494
– volume: 167
  start-page: 1663
  year: 2004
  ident: 9210_CR72
  publication-title: Genetics
  doi: 10.1534/genetics.104.027235
– ident: 9210_CR3
– volume: 38
  start-page: 54
  year: 2019
  ident: 9210_CR19
  publication-title: Fungal Ecol
  doi: 10.1016/j.funeco.2018.08.009
– volume: 106
  start-page: 911
  year: 2002
  ident: 9210_CR86
  publication-title: Mycol Res
  doi: 10.1017/S0953756202006275
– volume: 11
  start-page: 527
  year: 2020
  ident: 9210_CR73
  publication-title: Insects
  doi: 10.3390/insects11080527
– volume: 53
  start-page: 65
  year: 2003
  ident: 9210_CR13
  publication-title: Behav Ecol Sociobiol
  doi: 10.1007/s00265-002-0559-y
– volume: 124
  start-page: 699
  year: 2020
  ident: 9210_CR65
  publication-title: Heredity
  doi: 10.1038/s41437-020-0306-z
– volume: 33
  start-page: 159
  year: 1997
  ident: 9210_CR2
  publication-title: Eur J Soil Biol
– start-page: 289
  volume-title: Termites: evolution, sociality, symbioses, ecology
  year: 2000
  ident: 9210_CR22
  doi: 10.1007/978-94-017-3223-9_14
– volume: 109
  start-page: 314
  year: 2005
  ident: 9210_CR75
  publication-title: Mycol Res
  doi: 10.1017/S0953756204001844
– volume: 10
  start-page: 14653
  year: 2020
  ident: 9210_CR30
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-71043-5
– volume-title: Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv13033997 Q-Bio
  year: 2013
  ident: 9210_CR45
– volume: 47
  start-page: 213
  year: 2003
  ident: 9210_CR6
  publication-title: Food Nahr
  doi: 10.1002/food.200390048
– volume: 326
  start-page: 1103
  year: 2009
  ident: 9210_CR17
  publication-title: Science
  doi: 10.1126/science.1173462
– volume: 20
  start-page: 249
  year: 1983
  ident: 9210_CR27
  publication-title: Biol J Linn Soc
  doi: 10.1111/j.1095-8312.1983.tb01876.x
– volume: 15
  start-page: 751
  year: 1981
  ident: 9210_CR12
  publication-title: J Nat Hist
  doi: 10.1080/00222938100770541
– start-page: 147
  volume-title: The fungal kingdom
  year: 2017
  ident: 9210_CR76
  doi: 10.1128/9781555819583.ch7
– volume: 9
  start-page: e112963
  year: 2014
  ident: 9210_CR40
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0112963
– start-page: 227
  volume-title: Gene prediction: methods and protocols
  year: 2019
  ident: 9210_CR42
– volume: 58
  start-page: 371
  year: 2011
  ident: 9210_CR9
  publication-title: Insect Soc
  doi: 10.1007/s00040-011-0154-1
– volume: 90
  start-page: 24
  year: 2016
  ident: 9210_CR31
  publication-title: Fungal Genet Biol
  doi: 10.1016/j.fgb.2015.08.010
– volume: 26
  start-page: 841
  year: 2010
  ident: 9210_CR61
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq033
– volume: 34
  start-page: 306
  year: 2018
  ident: 9210_CR49
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx576
– volume: 47
  start-page: D309
  year: 2019
  ident: 9210_CR59
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1085
– volume: 3
  start-page: 307
  year: 2012
  ident: 9210_CR21
  publication-title: Insects
  doi: 10.3390/insects3010307
– volume: 210
  start-page: 71
  year: 2018
  ident: 9210_CR70
  publication-title: Genetics
  doi: 10.1534/genetics.118.300885
– volume: 66
  start-page: 5290
  year: 2000
  ident: 9210_CR85
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.66.12.5290-5300.2000
– volume: 116
  start-page: 1659
  year: 2019
  ident: 9210_CR88
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1817482116
– volume: 15
  start-page: 3131
  year: 2006
  ident: 9210_CR20
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2006.03008.x
– volume: 11
  start-page: 1857
  year: 2019
  ident: 9210_CR37
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evz122
– volume: 14
  start-page: 121
  year: 2014
  ident: 9210_CR35
  publication-title: BMC Evol Biol
  doi: 10.1186/1471-2148-14-121
– volume: 263
  start-page: 339
  year: 1996
  ident: 9210_CR16
  publication-title: Proc R Soc Lond B Biol Sci
  doi: 10.1098/rspb.1996.0052
– volume: 137
  start-page: 41
  year: 2022
  ident: 9210_CR33
  publication-title: Mycotaxon
  doi: 10.5248/137.41
– volume: 10
  start-page: e01234
  issue: 6
  year: 2022
  ident: 9210_CR23
  publication-title: Microbiol Spectr
  doi: 10.1128/spectrum.01234-22
– volume: 215
  start-page: 403
  year: 1990
  ident: 9210_CR50
  publication-title: J Mol Biol
  doi: 10.1016/S0022-2836(05)80360-2
– volume: 372
  start-page: 20160455
  year: 2017
  ident: 9210_CR84
  publication-title: Philos Trans R Soc B Biol Sci
  doi: 10.1098/rstb.2016.0455
– volume: 53
  start-page: 19
  year: 2019
  ident: 9210_CR29
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev-genet-040119-093957
– volume: 19
  start-page: 455
  year: 2012
  ident: 9210_CR36
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2012.0021
– volume: 8
  start-page: 1469
  year: 1988
  ident: 9210_CR80
  publication-title: Mol Cell Biol
– volume: 29
  start-page: 1072
  year: 2013
  ident: 9210_CR41
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt086
– volume-title: Funannotate: eukaryotic genome annotation pipeline
  year: 2017
  ident: 9210_CR54
– volume: 46
  start-page: W95
  year: 2018
  ident: 9210_CR60
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky418
– volume: 16
  start-page: 170
  year: 2015
  ident: 9210_CR57
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-1344-4
– volume: 27
  start-page: 722
  year: 2017
  ident: 9210_CR39
  publication-title: Genome Res
  doi: 10.1101/gr.215087.116
– volume: 15
  start-page: 851
  year: 2005
  ident: 9210_CR11
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2005.03.043
– volume: 6
  start-page: e19379
  year: 2011
  ident: 9210_CR38
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0019379
– volume: 45
  start-page: 100917
  year: 2020
  ident: 9210_CR18
  publication-title: Fungal Ecol
  doi: 10.1016/j.funeco.2020.100917
– volume: 34
  start-page: 3496
  year: 2018
  ident: 9210_CR48
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty371
– volume-title: Haplotype-based variant detection from short-read sequencing. ArXiv12073907 Q-Bio
  year: 2012
  ident: 9210_CR46
– volume: 49
  start-page: D344
  year: 2021
  ident: 9210_CR58
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa977
– volume: 172
  start-page: 1877
  year: 2006
  ident: 9210_CR77
  publication-title: Genetics
  doi: 10.1534/genetics.105.051128
– ident: 9210_CR87
  doi: 10.1093/gbe/evab126
– volume: 96
  start-page: 350
  year: 1992
  ident: 9210_CR5
  publication-title: Mycol Res
  doi: 10.1016/S0953-7562(09)80949-0
– volume: 7
  start-page: 251
  year: 1960
  ident: 9210_CR25
  publication-title: Insect Soc
  doi: 10.1007/BF02224496
– volume: 6
  start-page: e00936
  issue: 4
  year: 2015
  ident: 9210_CR81
  publication-title: mBio
  doi: 10.1128/mBio.00936-15
– volume: 14
  start-page: 49
  year: 1999
  ident: 9210_CR15
  publication-title: Trends Ecol Evol
  doi: 10.1016/S0169-5347(98)01529-8
– volume: 48
  start-page: D265
  year: 2020
  ident: 9210_CR51
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz991
– volume: 100
  start-page: 593
  year: 2003
  ident: 9210_CR28
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0134966100
– ident: 9210_CR64
  doi: 10.1016/j.jgg.2021.01.002
– start-page: 499
  volume-title: Biology of termites: a modern synthesis
  year: 2011
  ident: 9210_CR4
– start-page: 333
  volume-title: Sex in fungi
  year: 2007
  ident: 9210_CR74
– volume: 12
  start-page: 97
  year: 2011
  ident: 9210_CR71
  publication-title: BMC Genet
  doi: 10.1186/1471-2156-12-97
– volume: 28
  start-page: 362
  year: 2014
  ident: 9210_CR82
  publication-title: Mol Plant-Microbe Interact
  doi: 10.1094/MPMI-06-14-0173-R
– volume: 20
  start-page: 635
  year: 2012
  ident: 9210_CR79
  publication-title: Chromosom Res
  doi: 10.1007/s10577-012-9290-3
– volume: 16
  start-page: 20200394
  year: 2020
  ident: 9210_CR34
  publication-title: Biol Lett
  doi: 10.1098/rsbl.2020.0394
– volume: 34
  start-page: 3094
  year: 2018
  ident: 9210_CR43
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty191
– volume: 23
  start-page: 2633
  year: 2007
  ident: 9210_CR47
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm308
– volume: 57
  start-page: 289
  year: 1995
  ident: 9210_CR53
  publication-title: J R Stat Soc Ser B Methodol
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 7
  start-page: S11
  year: 2006
  ident: 9210_CR56
  publication-title: Genome Biol
  doi: 10.1186/gb-2006-7-s1-s11
– volume: 19
  start-page: 1925
  year: 2009
  ident: 9210_CR32
  publication-title: Genome Res
  doi: 10.1101/gr.094557.109
– volume: 20
  start-page: 2023
  year: 2011
  ident: 9210_CR14
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2011.05064.x
– volume: 29
  start-page: 24
  year: 2011
  ident: 9210_CR52
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1754
– volume: 99
  start-page: 14887
  year: 2002
  ident: 9210_CR10
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.222313099
– volume: 7
  start-page: 115
  year: 2007
  ident: 9210_CR67
  publication-title: BMC Evol Biol
  doi: 10.1186/1471-2148-7-115
– volume: 8
  start-page: 263
  year: 1982
  ident: 9210_CR8
  publication-title: Food Chem
  doi: 10.1016/0308-8146(82)90028-0
SSID ssj0017825
Score 2.3992076
Snippet The termite-fungus symbiosis is an ancient stable mutualism of two partners that reproduce and disperse independently. With the founding of each termite colony...
The termite-fungus symbiosis is an ancient stable mutualism of two partners that reproduce and disperse independently. With the founding of each termite colony...
Background The termite-fungus symbiosis is an ancient stable mutualism of two partners that reproduce and disperse independently. With the founding of each...
BackgroundThe termite-fungus symbiosis is an ancient stable mutualism of two partners that reproduce and disperse independently. With the founding of each...
Abstract Background The termite-fungus symbiosis is an ancient stable mutualism of two partners that reproduce and disperse independently. With the founding of...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 123
SubjectTerms Analysis
Animals
Annotations
Assembly
Basidiomycete
Chromosomes
Complementarity
Fungi
Fungi - genetics
GBS
Gene mapping
Gene sequencing
Genetic aspects
Genetic crosses
Genetic Linkage
Genomes
Genomics
Genotyping
Health aspects
Isoptera - genetics
Isoptera - microbiology
Linkage (Genetics)
Mushrooms
Mutualism
Mutualistic symbiosis
Offspring
Polymorphism
Recombination
Species comparisons
Substrates
Symbiosis
Symbiosis - genetics
Taxonomy
Termites
Termitomyces
Termitomyces - genetics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kIPgiWr-irawi-CChl-xX9vEUSxX0QVvo27JfqYUmOZoc9P57Zza544KgLz4mOwvJzOx8JDO_IeSd0tq7YEEC0S5yLjTLtYScx8eqkJ4ryEmwUfjbd3l2wb9eisu9UV9YEzbCA4-MO9Gl88LVuihrAVuZjpYHGaxjccGVTEig4PO2ydT0_wD8nti2yFTypAcrLHkO_ilfaEhy8ruZG0po_X_a5D2nNC-Y3PNAp4_Iwyl0pMvxkR-Te7E9JPfHYZKbJ8QvKSgD9iRS_CsLdoI2dkVtG-h1-nIQAxJ0TaQQMMfG3WxoV1MIAGmqiBki7TeNAzkN9Dzd6JoNWBHqbzerobuyzbp_Si5OP59_OsunEQq5F7oachYsZCwxCAhTvNKh9uiRK-aL0tWFLaxyLhaWi6AxFHBKyogX2gJzow7sGTlouza-INQL5UsH8Z2tS64819YidE6tHQ-OlTEjxZajxk_44jjm4sakPKOSZpSCASmYJAVzl5EPuz2rEV3jr9QfUVA7SkTGTjdAX8ykL-Zf-pKRtyhmg9gXLRbXXNl135svP3-YJUanijEtMvJ-Iqo7eAdvp14F4ATCZc0oj2aUcDj9fHmrTWYyDr0pVVXhfGQOy292y7gTC97a2K1HGhwDr3VGno_Kt3tvJjU2VFUZqWZqOWPMfKW9_pWgwxFwF9GgX_4PVr4iD8p0pFheyCNyMNyu4zGEaIN7nU7jb-pvOGA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF-0IvgifptaZRXBBwm9ZD-SfZJTLFXQB23h3pb9yllokvOSg95_35lN7mwQ-pjsBLI7s_OxO_MbQt4XSjnrDXAgmFnKhWKpkhDzuFBm0vECYhIsFP7xU56e8-8LsRgP3LoxrXKnE6Oi9q3DM_LjHGI1bCrLxafV3xS7RuHt6thC4y65h9BlmNJVLPYBVwbWT-wKZUp53IEuljwFK5XOFIQ66dXEGEXM_v818w3TNE2bvGGHTh6Rh6MDSecDxx-TO6F5Qu4PLSW3T4mbUxAJrEykeDcL2oLWZkVN4-lFPD8IHgnaOlBwm0NtL7e0rSi4gTTmxfSBdtvaArd6ehZftPUWdAl16-2qb5em3nTPyPnJ17Mvp-nYSCF1QpV9yryBuCV4Ac6KK5SvHNrlkrkst1VmMlNYGzLDhVfoENhCyoAPysx4EZRnz8lB0zbhJaFOFC634OWZKueF48oYBNCplOXesjwkJNutqHYjyjg2u7jUMdoopR64oIELOnJBXyXk4_6b1YCxcSv1Z2TUnhLxseOLdr3U43bTKrdO2EpleSVA4JgKhnvpjWUBpiR5Qt4hmzUiYDSYYrM0m67T337_0nP0UQvGlEjIh5GoamEOzowVC7ASCJo1oTyaUMIWddPhnTTpUUV0-p9AJ-Ttfhi_xLS3JrSbgQabwSuVkBeD8O3nzaTCsqoyIeVELCcLMx1pLv5EAHGE3UVM6MPb_-sVeZDHzcLSTB6Rg369Ca_BBevtm7jPrgE_YS_V
  priority: 102
  providerName: ProQuest
Title A genetic linkage map and improved genome assembly of the termite symbiont Termitomyces cryptogamus
URI https://www.ncbi.nlm.nih.gov/pubmed/36927388
https://www.proquest.com/docview/2788451645
https://www.proquest.com/docview/2788795999
https://pubmed.ncbi.nlm.nih.gov/PMC10021994
https://doaj.org/article/92bc5bf912f547239ea4d6dab3e04764
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKK1AviG8CZWUQEgcU2CROHB8Q2qJWBakVKl2pN8t2nKXSJlk2Wan598w4ydKIigPHxOODPTOeN4nnDSFvuRBGZwo0YNXUZ7GIfJFAzmNsGiSGcchJsFD49Cw5mbNvl_HlDhnaHfUbWN-a2mE_qfl6-eH6V_sZHP6Tc_g0-VjDGZswH6KPPxWQwviAKfcgMnF01FP2568CRMN4KJy5dd4-uRclAqtV0lGccnT-fx_aN6LW-EbljRB1_IDc77ElnXXG8JDs2PIRudt1m2wfEzOjYC1YtEjxty0cJLRQK6rKjF65Tws2Q4GqsBQQtS30sqVVTgEhUndlprG0bgsNimzohXtRFS0cM9Ss21VTLVSxqZ-Q-fHRxZcTv--x4JtYpI0fZQpSGpvFgGMMF1luMGSnkQlCnQcqUFxrGygWZwKxguZJYvFBqCnjVmTRU7JbVqV9TqiJuQk1AECVh4wbJpRCbp1caJbpKLQeCYYdlaYnIMc-GEvpEpE0kZ1CJChEOoXIa4-8385ZdfQb_5Q-REVtJZE6272o1gvZe6IUoTaxzkUQ5jHYYiSsYlmSKR1ZWFLCPPIG1SyRHKPE2zcLtalr-fXHuZwhfOVRJGKPvOuF8grWYFRfzAA7gXxaI8mDkSR4rxkPD9YkB-OXIU9TbKDMYPj1dhhn4o240labTgb7xAvhkWed8W3XPdiwR9KRWY42ZjxSXv103OLIyIt00S_-f-pLsh86n4r8IDkgu816Y18Bcmv0hNzhl3xC9g6Pzr6fT9z3j4lz0d8CmkQu
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BqdELwg7gQGGATiAUVrEseJHxDqYFPLtgqNTdqbZztOmbQkpWnF8lN8I-fkUhYh7W2PiY-j2Odunwsh7yIhjE4UYMCqoctCEbiCg89jbOxxwyLwSTBR-HDKxyfs22l4ukH-dLkwGFbZycRaUCeFwTPybR98NWwqy8LP818udo3C29WuhUZDFvu2-g0uW_lp8hXw-97393aPv4zdtquAa0IRL90gUWDE2yQEzW0ikaQGlVQcGM_Xqac8FWltPcXCRKB21BHnFh-EGrLIiiSA794imywAV2ZANnd2p9-P1vcWoG_DLjUn5tslSH_OXNCL7lCAc-Ve9tRf3SXgf11wRRn2AzWvaL69--Rea7LSUUNjD8iGzR-S200Ty-oRMSMKRIi5kBRvg0E-0UzNqcoTel6fWNgEAYrMUjDUbaYvKlqkFAxPWkfiLC0tq0wDfSzpcf2iyCqQXtQsqvmymKlsVT4mJzeyyU_IIC9y-4xQE0bG12BXqtRnkWFCKSzZkwrNEh341iFet6PStHXNsb3Ghaz9m5jLBgsSsCBrLMhLh3xcz5k3VT2uhd5BRK0hsSJ3_aJYzGTL4FL42oQ6FZ6fhkDigbCKJTxROrCwJM4c8hbRLLHmRo5BPTO1Kks5-XEkR2gVR0EgQod8aIHSAtZgVJsjATuBZbp6kFs9SBAKpj_cUZNshVIp_7GQQ96sh3EmBtrltlg1MNh-XgiHPG2Ib73ugAtM5IodEvfIsrcx_ZH8_GddshwL_WIV6ufX_9drcmd8fHggDybT_Rfkrl8zTuB6fIsMlouVfQkG4FK_armOkrObZvS_sc5t_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+genetic+linkage+map+and+improved+genome+assembly+of+the+termite+symbiont+Termitomyces+cryptogamus&rft.jtitle=BMC+genomics&rft.au=Vreeburg%2C+Sabine+M.+E.&rft.au=Auxier%2C+Ben&rft.au=Jacobs%2C+Bas&rft.au=Bourke%2C+Peter+M.&rft.date=2023-03-16&rft.pub=BioMed+Central&rft.eissn=1471-2164&rft.volume=24&rft_id=info:doi/10.1186%2Fs12864-023-09210-x&rft_id=info%3Apmid%2F36927388&rft.externalDocID=PMC10021994
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon