Comparison of baricitinib, upadacitinib, and tofacitinib mediated regulation of cytokine signaling in human leukocyte subpopulations
The in vitro pharmacology of baricitinib, upadacitinib, and tofacitinib was evaluated to understand differences among these JAK inhibitors (JAKis) at the cellular level. Peripheral blood mononuclear cells from healthy donors were incubated with different JAKis, levels of phosphorylated signal transd...
Saved in:
Published in | Arthritis research & therapy Vol. 21; no. 1; pp. 183 - 10 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
02.08.2019
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The in vitro pharmacology of baricitinib, upadacitinib, and tofacitinib was evaluated to understand differences among these JAK inhibitors (JAKis) at the cellular level.
Peripheral blood mononuclear cells from healthy donors were incubated with different JAKis, levels of phosphorylated signal transducer and activator of transcription (pSTAT) were measured following cytokine stimulation, and half maximum inhibitory concentration (IC
) values were calculated in phenotypically gated leukocyte subpopulations. Therapeutic dose relevance of the in vitro analysis was assessed using calculated mean concentration-time profiles over 24 h obtained from JAKi-treated subjects. Time above IC
and average daily percent inhibition of pSTAT formation were calculated for each JAKi, cytokine, and cell type.
Distinct JAKis displayed different in vitro pharmacologic profiles. For example, tofacitinib and upadacitinib were the most potent inhibitors of the JAK1/3-dependent cytokines tested (interleukin [IL]-2, IL-4, IL-15, and IL-21) with lower IC
values and increased time above IC
translating to a greater overall inhibition of STAT signaling during the dosing interval. All JAKis tested inhibited JAK1/2-dependent cytokines (e.g., IL-6 and interferon [IFN]-γ), the JAK1/tyrosine kinase 2 (TYK2)-dependent cytokines IL-10 and IFN-α, the JAK2/2-dependent cytokines IL-3 and granulocyte-macrophage colony-stimulating factor (GM-CSF), and the JAK2/TYK2-dependent cytokine granulocyte colony-stimulating factor (G-CSF), but often to significantly differing degrees.
Different JAKis modulated distinct cytokine pathways to varying degrees, and no agent potently or continuously inhibited an individual cytokine signaling pathway throughout the dosing interval. Notably, baricitinib inhibited JAK1/3 signaling to a lesser extent than upadacitinib and tofacitinib, while upadacitinib, baricitinib, and tofacitinib inhibited the signaling of JAK2/2-dependent cytokines, including GM-CSF and IL-3, as well as the signaling of the JAK2/TYK2-dependent cytokine G-CSF. |
---|---|
AbstractList | Abstract Background The in vitro pharmacology of baricitinib, upadacitinib, and tofacitinib was evaluated to understand differences among these JAK inhibitors (JAKis) at the cellular level. Methods Peripheral blood mononuclear cells from healthy donors were incubated with different JAKis, levels of phosphorylated signal transducer and activator of transcription (pSTAT) were measured following cytokine stimulation, and half maximum inhibitory concentration (IC50) values were calculated in phenotypically gated leukocyte subpopulations. Therapeutic dose relevance of the in vitro analysis was assessed using calculated mean concentration-time profiles over 24 h obtained from JAKi-treated subjects. Time above IC50 and average daily percent inhibition of pSTAT formation were calculated for each JAKi, cytokine, and cell type. Results Distinct JAKis displayed different in vitro pharmacologic profiles. For example, tofacitinib and upadacitinib were the most potent inhibitors of the JAK1/3-dependent cytokines tested (interleukin [IL]-2, IL-4, IL-15, and IL-21) with lower IC50 values and increased time above IC50 translating to a greater overall inhibition of STAT signaling during the dosing interval. All JAKis tested inhibited JAK1/2-dependent cytokines (e.g., IL-6 and interferon [IFN]-γ), the JAK1/tyrosine kinase 2 (TYK2)-dependent cytokines IL-10 and IFN-α, the JAK2/2-dependent cytokines IL-3 and granulocyte-macrophage colony-stimulating factor (GM-CSF), and the JAK2/TYK2-dependent cytokine granulocyte colony-stimulating factor (G-CSF), but often to significantly differing degrees. Conclusions Different JAKis modulated distinct cytokine pathways to varying degrees, and no agent potently or continuously inhibited an individual cytokine signaling pathway throughout the dosing interval. Notably, baricitinib inhibited JAK1/3 signaling to a lesser extent than upadacitinib and tofacitinib, while upadacitinib, baricitinib, and tofacitinib inhibited the signaling of JAK2/2-dependent cytokines, including GM-CSF and IL-3, as well as the signaling of the JAK2/TYK2-dependent cytokine G-CSF. The in vitro pharmacology of baricitinib, upadacitinib, and tofacitinib was evaluated to understand differences among these JAK inhibitors (JAKis) at the cellular level.BACKGROUNDThe in vitro pharmacology of baricitinib, upadacitinib, and tofacitinib was evaluated to understand differences among these JAK inhibitors (JAKis) at the cellular level.Peripheral blood mononuclear cells from healthy donors were incubated with different JAKis, levels of phosphorylated signal transducer and activator of transcription (pSTAT) were measured following cytokine stimulation, and half maximum inhibitory concentration (IC50) values were calculated in phenotypically gated leukocyte subpopulations. Therapeutic dose relevance of the in vitro analysis was assessed using calculated mean concentration-time profiles over 24 h obtained from JAKi-treated subjects. Time above IC50 and average daily percent inhibition of pSTAT formation were calculated for each JAKi, cytokine, and cell type.METHODSPeripheral blood mononuclear cells from healthy donors were incubated with different JAKis, levels of phosphorylated signal transducer and activator of transcription (pSTAT) were measured following cytokine stimulation, and half maximum inhibitory concentration (IC50) values were calculated in phenotypically gated leukocyte subpopulations. Therapeutic dose relevance of the in vitro analysis was assessed using calculated mean concentration-time profiles over 24 h obtained from JAKi-treated subjects. Time above IC50 and average daily percent inhibition of pSTAT formation were calculated for each JAKi, cytokine, and cell type.Distinct JAKis displayed different in vitro pharmacologic profiles. For example, tofacitinib and upadacitinib were the most potent inhibitors of the JAK1/3-dependent cytokines tested (interleukin [IL]-2, IL-4, IL-15, and IL-21) with lower IC50 values and increased time above IC50 translating to a greater overall inhibition of STAT signaling during the dosing interval. All JAKis tested inhibited JAK1/2-dependent cytokines (e.g., IL-6 and interferon [IFN]-γ), the JAK1/tyrosine kinase 2 (TYK2)-dependent cytokines IL-10 and IFN-α, the JAK2/2-dependent cytokines IL-3 and granulocyte-macrophage colony-stimulating factor (GM-CSF), and the JAK2/TYK2-dependent cytokine granulocyte colony-stimulating factor (G-CSF), but often to significantly differing degrees.RESULTSDistinct JAKis displayed different in vitro pharmacologic profiles. For example, tofacitinib and upadacitinib were the most potent inhibitors of the JAK1/3-dependent cytokines tested (interleukin [IL]-2, IL-4, IL-15, and IL-21) with lower IC50 values and increased time above IC50 translating to a greater overall inhibition of STAT signaling during the dosing interval. All JAKis tested inhibited JAK1/2-dependent cytokines (e.g., IL-6 and interferon [IFN]-γ), the JAK1/tyrosine kinase 2 (TYK2)-dependent cytokines IL-10 and IFN-α, the JAK2/2-dependent cytokines IL-3 and granulocyte-macrophage colony-stimulating factor (GM-CSF), and the JAK2/TYK2-dependent cytokine granulocyte colony-stimulating factor (G-CSF), but often to significantly differing degrees.Different JAKis modulated distinct cytokine pathways to varying degrees, and no agent potently or continuously inhibited an individual cytokine signaling pathway throughout the dosing interval. Notably, baricitinib inhibited JAK1/3 signaling to a lesser extent than upadacitinib and tofacitinib, while upadacitinib, baricitinib, and tofacitinib inhibited the signaling of JAK2/2-dependent cytokines, including GM-CSF and IL-3, as well as the signaling of the JAK2/TYK2-dependent cytokine G-CSF.CONCLUSIONSDifferent JAKis modulated distinct cytokine pathways to varying degrees, and no agent potently or continuously inhibited an individual cytokine signaling pathway throughout the dosing interval. Notably, baricitinib inhibited JAK1/3 signaling to a lesser extent than upadacitinib and tofacitinib, while upadacitinib, baricitinib, and tofacitinib inhibited the signaling of JAK2/2-dependent cytokines, including GM-CSF and IL-3, as well as the signaling of the JAK2/TYK2-dependent cytokine G-CSF. The in vitro pharmacology of baricitinib, upadacitinib, and tofacitinib was evaluated to understand differences among these JAK inhibitors (JAKis) at the cellular level. Peripheral blood mononuclear cells from healthy donors were incubated with different JAKis, levels of phosphorylated signal transducer and activator of transcription (pSTAT) were measured following cytokine stimulation, and half maximum inhibitory concentration (IC.sub.50) values were calculated in phenotypically gated leukocyte subpopulations. Therapeutic dose relevance of the in vitro analysis was assessed using calculated mean concentration-time profiles over 24 h obtained from JAKi-treated subjects. Time above IC.sub.50 and average daily percent inhibition of pSTAT formation were calculated for each JAKi, cytokine, and cell type. Distinct JAKis displayed different in vitro pharmacologic profiles. For example, tofacitinib and upadacitinib were the most potent inhibitors of the JAK1/3-dependent cytokines tested (interleukin [IL]-2, IL-4, IL-15, and IL-21) with lower IC.sub.50 values and increased time above IC.sub.50 translating to a greater overall inhibition of STAT signaling during the dosing interval. All JAKis tested inhibited JAK1/2-dependent cytokines (e.g., IL-6 and interferon [IFN]-[gamma]), the JAK1/tyrosine kinase 2 (TYK2)-dependent cytokines IL-10 and IFN-[alpha], the JAK2/2-dependent cytokines IL-3 and granulocyte-macrophage colony-stimulating factor (GM-CSF), and the JAK2/TYK2-dependent cytokine granulocyte colony-stimulating factor (G-CSF), but often to significantly differing degrees. Different JAKis modulated distinct cytokine pathways to varying degrees, and no agent potently or continuously inhibited an individual cytokine signaling pathway throughout the dosing interval. Notably, baricitinib inhibited JAK1/3 signaling to a lesser extent than upadacitinib and tofacitinib, while upadacitinib, baricitinib, and tofacitinib inhibited the signaling of JAK2/2-dependent cytokines, including GM-CSF and IL-3, as well as the signaling of the JAK2/TYK2-dependent cytokine G-CSF. Background The in vitro pharmacology of baricitinib, upadacitinib, and tofacitinib was evaluated to understand differences among these JAK inhibitors (JAKis) at the cellular level. Methods Peripheral blood mononuclear cells from healthy donors were incubated with different JAKis, levels of phosphorylated signal transducer and activator of transcription (pSTAT) were measured following cytokine stimulation, and half maximum inhibitory concentration (IC.sub.50) values were calculated in phenotypically gated leukocyte subpopulations. Therapeutic dose relevance of the in vitro analysis was assessed using calculated mean concentration-time profiles over 24 h obtained from JAKi-treated subjects. Time above IC.sub.50 and average daily percent inhibition of pSTAT formation were calculated for each JAKi, cytokine, and cell type. Results Distinct JAKis displayed different in vitro pharmacologic profiles. For example, tofacitinib and upadacitinib were the most potent inhibitors of the JAK1/3-dependent cytokines tested (interleukin [IL]-2, IL-4, IL-15, and IL-21) with lower IC.sub.50 values and increased time above IC.sub.50 translating to a greater overall inhibition of STAT signaling during the dosing interval. All JAKis tested inhibited JAK1/2-dependent cytokines (e.g., IL-6 and interferon [IFN]-[gamma]), the JAK1/tyrosine kinase 2 (TYK2)-dependent cytokines IL-10 and IFN-[alpha], the JAK2/2-dependent cytokines IL-3 and granulocyte-macrophage colony-stimulating factor (GM-CSF), and the JAK2/TYK2-dependent cytokine granulocyte colony-stimulating factor (G-CSF), but often to significantly differing degrees. Conclusions Different JAKis modulated distinct cytokine pathways to varying degrees, and no agent potently or continuously inhibited an individual cytokine signaling pathway throughout the dosing interval. Notably, baricitinib inhibited JAK1/3 signaling to a lesser extent than upadacitinib and tofacitinib, while upadacitinib, baricitinib, and tofacitinib inhibited the signaling of JAK2/2-dependent cytokines, including GM-CSF and IL-3, as well as the signaling of the JAK2/TYK2-dependent cytokine G-CSF. Keywords: Baricitinib, Cytokine, Janus kinase, Phosphorylated signal transducer and activator of transcription, Potency, Receptor kinase signaling, Rheumatoid arthritis, Selectivity, Tofacitinib, Upadacitinib The in vitro pharmacology of baricitinib, upadacitinib, and tofacitinib was evaluated to understand differences among these JAK inhibitors (JAKis) at the cellular level. Peripheral blood mononuclear cells from healthy donors were incubated with different JAKis, levels of phosphorylated signal transducer and activator of transcription (pSTAT) were measured following cytokine stimulation, and half maximum inhibitory concentration (IC ) values were calculated in phenotypically gated leukocyte subpopulations. Therapeutic dose relevance of the in vitro analysis was assessed using calculated mean concentration-time profiles over 24 h obtained from JAKi-treated subjects. Time above IC and average daily percent inhibition of pSTAT formation were calculated for each JAKi, cytokine, and cell type. Distinct JAKis displayed different in vitro pharmacologic profiles. For example, tofacitinib and upadacitinib were the most potent inhibitors of the JAK1/3-dependent cytokines tested (interleukin [IL]-2, IL-4, IL-15, and IL-21) with lower IC values and increased time above IC translating to a greater overall inhibition of STAT signaling during the dosing interval. All JAKis tested inhibited JAK1/2-dependent cytokines (e.g., IL-6 and interferon [IFN]-γ), the JAK1/tyrosine kinase 2 (TYK2)-dependent cytokines IL-10 and IFN-α, the JAK2/2-dependent cytokines IL-3 and granulocyte-macrophage colony-stimulating factor (GM-CSF), and the JAK2/TYK2-dependent cytokine granulocyte colony-stimulating factor (G-CSF), but often to significantly differing degrees. Different JAKis modulated distinct cytokine pathways to varying degrees, and no agent potently or continuously inhibited an individual cytokine signaling pathway throughout the dosing interval. Notably, baricitinib inhibited JAK1/3 signaling to a lesser extent than upadacitinib and tofacitinib, while upadacitinib, baricitinib, and tofacitinib inhibited the signaling of JAK2/2-dependent cytokines, including GM-CSF and IL-3, as well as the signaling of the JAK2/TYK2-dependent cytokine G-CSF. |
ArticleNumber | 183 |
Audience | Academic |
Author | Zhang, Xin Byers, Nicole L. Rocha, Guilherme Rooney, Terence P. McInnes, Iain B. Lee, Jonathan Macias, William L. Wehrman, Thomas Taylor, Peter C. Zuckerman, Steven H. Ortmann, Robert A. Higgs, Richard E. |
Author_xml | – sequence: 1 givenname: Iain B. surname: McInnes fullname: McInnes, Iain B. – sequence: 2 givenname: Nicole L. surname: Byers fullname: Byers, Nicole L. – sequence: 3 givenname: Richard E. surname: Higgs fullname: Higgs, Richard E. – sequence: 4 givenname: Jonathan surname: Lee fullname: Lee, Jonathan – sequence: 5 givenname: William L. surname: Macias fullname: Macias, William L. – sequence: 7 givenname: Robert A. surname: Ortmann fullname: Ortmann, Robert A. – sequence: 8 givenname: Guilherme surname: Rocha fullname: Rocha, Guilherme – sequence: 9 givenname: Terence P. surname: Rooney fullname: Rooney, Terence P. – sequence: 10 givenname: Thomas surname: Wehrman fullname: Wehrman, Thomas – sequence: 11 givenname: Xin surname: Zhang fullname: Zhang, Xin – sequence: 12 givenname: Steven H. surname: Zuckerman fullname: Zuckerman, Steven H. – sequence: 13 givenname: Peter C. surname: Taylor fullname: Taylor, Peter C. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31375130$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kktv1DAUhSNURB_wA9igSGxYkBLbiR8bpGrEo1IlNrC2_EzdJnaIE6Tu-eHcmcxUHQTywva953zy45wXJzFFVxSvUX2JEKcfMiI1a6saiQoJ2lToWXGGGsYrSig-ebI-Lc5zvqtrjAVuXhSnBBHWgvms-L1Jw6imkFMsky81LE2YQwz6fbmMyqrHnYq2nJM_FMrB2aBmZ8vJdUuv5rASzMOc7kN0ZQ5dVH2IXRliebsMKpa9W-4TCKC56DGNe1t-WTz3qs_u1X6-KH58_vR987W6-fblenN1U5lW8LnCjnuFuHdGN8h75B3jVjS2wcQTLBpHnECIaMQxBiXXmKiaaKYdtlZD-6K4Xrk2qTs5TmFQ04NMKshdIU2dVNMcTO-kQEJQ1hjKWt0oRbgSggvhLEMt1UwA6-PKGhcNT2FcnCfVH0GPOzHcyi79kpQy0ZIt4N0eMKWfi8uzHEI2ru9VdGnJEmPKSc3hLiB9u0o7BUcL0Scgmq1cXrWCtiDaAS__oYJh3RAMJMcHqB8Z3jy9wuPZD-kAAVsFZko5T85L-PzdlwE59BLVcptDueZQQg7lNocSgRP95TzA_-_5A6_74hU |
CitedBy_id | crossref_primary_10_1080_14740338_2020_1774550 crossref_primary_10_1093_rheumatology_keab740 crossref_primary_10_1177_2050640620927345 crossref_primary_10_1093_rheumatology_keac710 crossref_primary_10_3389_fimmu_2024_1365544 crossref_primary_10_1136_rmdopen_2023_003837 crossref_primary_10_3390_molecules28155914 crossref_primary_10_1016_j_phrs_2021_105463 crossref_primary_10_3390_ijms23031496 crossref_primary_10_1007_s00403_024_02958_6 crossref_primary_10_3899_jrheum_221219 crossref_primary_10_1016_j_semarthrit_2023_152327 crossref_primary_10_1021_acs_jmedchem_4c00769 crossref_primary_10_1111_cts_13435 crossref_primary_10_1093_molehr_gaab016 crossref_primary_10_1021_acsomega_1c06715 crossref_primary_10_3389_fmed_2020_607725 crossref_primary_10_1016_j_cyto_2021_155593 crossref_primary_10_1016_j_heliyon_2023_e17002 crossref_primary_10_1038_s41392_021_00733_x crossref_primary_10_1016_j_jaci_2021_08_013 crossref_primary_10_1111_pde_15386 crossref_primary_10_1021_acs_jmedchem_0c01467 crossref_primary_10_1186_s13054_020_03020_3 crossref_primary_10_3389_fimmu_2025_1488357 crossref_primary_10_1152_ajpcell_00298_2022 crossref_primary_10_1007_s40266_021_00857_3 crossref_primary_10_1084_jem_20232005 crossref_primary_10_1093_bjd_ljae375 crossref_primary_10_18632_aging_205922 crossref_primary_10_1111_imr_12840 crossref_primary_10_1186_s13075_022_02960_1 crossref_primary_10_3390_ijms21093330 crossref_primary_10_1016_S2213_2600_21_00331_3 crossref_primary_10_1016_S2213_2600_22_00006_6 crossref_primary_10_1002_art_41611 crossref_primary_10_1136_annrheumdis_2020_218398 crossref_primary_10_1016_j_coph_2020_10_010 crossref_primary_10_1038_s41584_024_01153_1 crossref_primary_10_3390_jcm12134527 crossref_primary_10_1016_j_intimp_2024_113383 crossref_primary_10_25259_IJDVL_1152_2022 crossref_primary_10_3389_fddsv_2023_1304129 crossref_primary_10_1016_j_lfs_2020_118097 crossref_primary_10_4081_reumatismo_2024_1685 crossref_primary_10_3389_fphar_2020_583914 crossref_primary_10_1007_s12325_022_02281_4 crossref_primary_10_1093_rheumatology_keaa864 crossref_primary_10_2147_ITT_S262566 crossref_primary_10_1093_ecco_jcc_jjaa014 crossref_primary_10_1136_annrheumdis_2020_219012 crossref_primary_10_3390_idr14030041 crossref_primary_10_3390_ph15010048 crossref_primary_10_1111_jdv_18225 crossref_primary_10_1080_07853890_2022_2095431 crossref_primary_10_1093_rheumatology_kead448 crossref_primary_10_1001_jamadermatol_2022_0147 crossref_primary_10_1093_ofid_ofac381 crossref_primary_10_31083_j_fbl2902084 crossref_primary_10_47360_1995_4484_2022_131_148 crossref_primary_10_1007_s40744_023_00624_3 crossref_primary_10_1186_s12865_020_00365_w crossref_primary_10_5114_reum_2020_102006 crossref_primary_10_1038_s41540_024_00337_5 crossref_primary_10_2147_CLEP_S422386 crossref_primary_10_1080_25785826_2020_1770948 crossref_primary_10_1159_000519669 crossref_primary_10_1097_RHU_0000000000001515 crossref_primary_10_14412_1996_7012_2022_1_7_13 crossref_primary_10_1007_s10875_022_01346_x crossref_primary_10_1111_1346_8138_16901 crossref_primary_10_14814_phy2_15829 crossref_primary_10_1002_prp2_537 crossref_primary_10_1007_s10067_023_06605_9 crossref_primary_10_3390_v12091039 crossref_primary_10_14412_1995_4484_2020_62_79 crossref_primary_10_1177_17534666221132736 crossref_primary_10_1016_j_jdermsci_2023_12_008 crossref_primary_10_1080_14656566_2021_2006183 crossref_primary_10_1007_s40744_023_00599_1 crossref_primary_10_3389_fphar_2022_1004308 crossref_primary_10_1016_j_autrev_2021_102942 crossref_primary_10_1016_j_heliyon_2023_e16665 crossref_primary_10_1080_17512433_2021_1913050 crossref_primary_10_1136_annrheumdis_2020_219699 crossref_primary_10_1016_j_pharmthera_2022_108153 crossref_primary_10_7759_cureus_34125 crossref_primary_10_1136_jitc_2021_002838 crossref_primary_10_1159_000542062 crossref_primary_10_36691_RJA1546 crossref_primary_10_1007_s00393_020_00853_9 crossref_primary_10_1016_j_mcpro_2022_100425 crossref_primary_10_1001_jamadermatol_2023_1651 crossref_primary_10_1038_s41467_022_30956_7 crossref_primary_10_3389_fimmu_2021_752227 crossref_primary_10_3390_ijms24021027 crossref_primary_10_1371_journal_pone_0288757 crossref_primary_10_1080_1744666X_2022_2042254 crossref_primary_10_1038_s41584_023_01042_z crossref_primary_10_1080_14397595_2020_1782049 crossref_primary_10_1080_09546634_2023_2276043 crossref_primary_10_1002_psp4_12836 crossref_primary_10_3390_pharmaceutics16040476 crossref_primary_10_1038_s41584_021_00726_8 crossref_primary_10_1016_j_jaut_2021_102689 crossref_primary_10_1016_j_det_2021_12_002 crossref_primary_10_1093_rap_rkae141 crossref_primary_10_1136_rmdopen_2022_002671 crossref_primary_10_1016_j_cytogfr_2020_06_013 crossref_primary_10_2478_jtim_2022_0029 crossref_primary_10_1021_acsptsci_3c00043 crossref_primary_10_1002_eji_202451437 crossref_primary_10_2147_CCID_S439053 crossref_primary_10_1002_jcph_1874 crossref_primary_10_1016_j_bmc_2024_117932 crossref_primary_10_1002_art_41906 crossref_primary_10_3390_molecules28124699 crossref_primary_10_3389_fimmu_2021_708848 crossref_primary_10_1080_14656566_2023_2200931 crossref_primary_10_17925_RMD_2022_1_1_5 crossref_primary_10_3389_fimmu_2024_1437512 crossref_primary_10_1002_trc2_12445 crossref_primary_10_1111_1346_8138_16549 crossref_primary_10_1007_s40744_024_00712_y crossref_primary_10_1051_e3sconf_202450004002 crossref_primary_10_3389_fimmu_2024_1341981 crossref_primary_10_3389_fgstr_2023_1251133 crossref_primary_10_1007_s40261_024_01352_4 crossref_primary_10_1016_j_bioorg_2023_106765 crossref_primary_10_3389_fimmu_2021_661323 crossref_primary_10_3390_jcm10071431 crossref_primary_10_1186_s41927_024_00446_y crossref_primary_10_1186_s42358_024_00368_w crossref_primary_10_1007_s12325_023_02507_z crossref_primary_10_1111_ced_15104 crossref_primary_10_1136_rmdopen_2022_002409 crossref_primary_10_1002_eji_202250353 crossref_primary_10_1073_pnas_2401899121 crossref_primary_10_3389_fimmu_2021_738481 crossref_primary_10_47360_1995_4484_2021_693_699 crossref_primary_10_2147_CEG_S367086 crossref_primary_10_1007_s11926_020_00931_6 crossref_primary_10_1080_07391102_2023_2270709 crossref_primary_10_1002_art_42547 crossref_primary_10_1016_j_autrev_2023_103420 crossref_primary_10_1016_j_intimp_2023_111229 crossref_primary_10_1021_acs_jproteome_4c00340 crossref_primary_10_1055_a_1210_4138 crossref_primary_10_3389_fimmu_2024_1464474 crossref_primary_10_3389_fphar_2021_709856 crossref_primary_10_3390_jcm12062201 crossref_primary_10_1007_s13555_021_00596_8 crossref_primary_10_1016_j_smim_2021_101523 crossref_primary_10_1515_med_2021_0010 crossref_primary_10_1080_14397595_2021_1902617 crossref_primary_10_1097_BOR_0000000000000792 crossref_primary_10_1016_j_jid_2021_07_180 crossref_primary_10_1039_D3LC00768E crossref_primary_10_14309_ctg_0000000000000603 crossref_primary_10_1007_s10067_021_05815_3 crossref_primary_10_3389_fimmu_2020_588543 crossref_primary_10_1016_j_intimp_2023_111193 crossref_primary_10_15252_emmm_202012697 crossref_primary_10_1111_all_14845 crossref_primary_10_1002_acr2_11166 crossref_primary_10_1080_09546634_2022_2116926 crossref_primary_10_2147_JIR_S414739 crossref_primary_10_21518_ms2024_055 crossref_primary_10_1002_jpr3_12067 crossref_primary_10_1136_ard_2023_223850 crossref_primary_10_1093_infdis_jiac040 crossref_primary_10_2174_1872210518666230905155459 crossref_primary_10_3390_ijms222111876 crossref_primary_10_1007_s13555_022_00878_9 crossref_primary_10_1016_j_pharmthera_2023_108402 crossref_primary_10_1007_s40264_020_00938_z crossref_primary_10_3390_biom11070993 crossref_primary_10_1186_s12876_024_03336_2 crossref_primary_10_2147_ITT_S360151 crossref_primary_10_3388_jspaci_38_289 crossref_primary_10_1186_s13075_021_02587_8 crossref_primary_10_1002_jmv_29497 crossref_primary_10_1002_cia2_12258 crossref_primary_10_1080_14740338_2023_2248872 crossref_primary_10_1016_j_omtn_2022_09_020 crossref_primary_10_1136_rmdopen_2021_001565 crossref_primary_10_1186_s13075_021_02591_y crossref_primary_10_3389_fimmu_2025_1494283 crossref_primary_10_3389_fimmu_2023_1087986 crossref_primary_10_47360_1995_4484_2020_532_543 crossref_primary_10_7759_cureus_70125 crossref_primary_10_3748_wjg_v27_i48_8242 crossref_primary_10_14412_1995_4484_2020_304_316 crossref_primary_10_1016_j_semarthrit_2023_152314 crossref_primary_10_1038_s41746_024_01396_y crossref_primary_10_1016_j_cbi_2023_110398 |
Cites_doi | 10.1021/jm401490p 10.1038/nmeth872 10.1016/j.tips.2011.09.004 10.1038/nrrheum.2015.161 10.3904/kjim.2015.137 10.1002/art.39801 10.1016/S0140-6736(08)60453-5 10.1038/nrrheum.2015.171 10.1016/j.coi.2015.02.010 10.1056/NEJMra1004965 10.1007/s40262-017-0605-6 10.4049/jimmunol.0902819 10.1002/psp4.12251 10.1002/art.40680 10.1146/annurev.immunol.16.1.293 10.1136/annrheumdis-2017-eular.3224 10.1038/nrrheum.2015.167 10.1136/annrheumdis-2016-210715 10.1002/art.39808 10.1136/annrheumdis-2012-202450 10.4049/jimmunol.1601192 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2019 BioMed Central Ltd. The Author(s). 2019 |
Copyright_xml | – notice: COPYRIGHT 2019 BioMed Central Ltd. – notice: The Author(s). 2019 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1186/s13075-019-1964-1 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1478-6362 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_9199674c675b4aa38a99899ed7156b79 PMC6679539 A596588239 31375130 10_1186_s13075_019_1964_1 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; |
GroupedDBID | --- .GJ 0R~ 23N 2WC 4.4 5GY 5VS 6J9 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABUWG ACGFS ACJQM ADBBV ADUKV AEGXH AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIAM AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK E3Z EBD EBLON EJD EMOBN F5P FYUFA GROUPED_DOAJ GX1 HMCUK HYE HZ~ INH INR ITC KQ8 M1P O5R O5S O9- PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ ROL RPM RSV SMD SOJ SV3 TR2 U2A UKHRP WOQ -5E -5G -A0 -BR 3V. ACRMQ ADINQ C24 IAO IHR NPM Z7U PMFND 7X8 PJZUB PPXIY 5PM PUEGO |
ID | FETCH-LOGICAL-c598t-2e8fa18fecb41ff1fe78d94d423f3294e3e9113b18228fa8b23a03b7be2ddb4e3 |
IEDL.DBID | DOA |
ISSN | 1478-6362 1478-6354 |
IngestDate | Wed Aug 27 01:25:21 EDT 2025 Thu Aug 21 18:30:27 EDT 2025 Mon Jul 21 10:25:58 EDT 2025 Tue Jun 17 20:51:15 EDT 2025 Tue Jun 10 20:24:43 EDT 2025 Thu Jan 02 22:58:20 EST 2025 Thu Apr 24 23:08:57 EDT 2025 Tue Jul 01 04:00:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Receptor kinase signaling Tofacitinib Rheumatoid arthritis Cytokine Janus kinase Potency Selectivity Upadacitinib Phosphorylated signal transducer and activator of transcription Baricitinib |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c598t-2e8fa18fecb41ff1fe78d94d423f3294e3e9113b18228fa8b23a03b7be2ddb4e3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://doaj.org/article/9199674c675b4aa38a99899ed7156b79 |
PMID | 31375130 |
PQID | 2268308822 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9199674c675b4aa38a99899ed7156b79 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6679539 proquest_miscellaneous_2268308822 gale_infotracmisc_A596588239 gale_infotracacademiconefile_A596588239 pubmed_primary_31375130 crossref_citationtrail_10_1186_s13075_019_1964_1 crossref_primary_10_1186_s13075_019_1964_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-02 |
PublicationDateYYYYMMDD | 2019-08-02 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Arthritis research & therapy |
PublicationTitleAlternate | Arthritis Res Ther |
PublicationYear | 2019 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | IB McInnes (1964_CR5) 2016; 12 PO Krutzik (1964_CR10) 2006; 3 GR Burmester (1964_CR21) 2013; 72 IB McInnes (1964_CR22) 2011; 365 JS Smolen (1964_CR2) 2017; 76 WJ Leonard (1964_CR1) 1998; 16 JS Smolen (1964_CR23) 2008; 371 X Zhang (1964_CR11) 2017; 6 1964_CR14 JM Kremer (1964_CR18) 2016; 68 1964_CR12 Y Tanaka (1964_CR3) 2016; 31 IP Wicks (1964_CR20) 2016; 12 SG Tangye (1964_CR16) 2015; 34 JD Clark (1964_CR7) 2014; 57 P Castillo (1964_CR24) 2016; 197 DM Schwartz (1964_CR4) 2016; 12 MC Genovese (1964_CR9) 2016; 68 Y Tanaka (1964_CR19) 2018; 70 B Klunder (1964_CR13) 2018; 57 JA Hodge (1964_CR17) 2016; 34 Jason C. Steel (1964_CR15) 2012; 33 1964_CR8 JS Fridman (1964_CR6) 2010; 184 |
References_xml | – volume: 57 start-page: 5023 issue: 12 year: 2014 ident: 1964_CR7 publication-title: J Med Chem doi: 10.1021/jm401490p – volume: 3 start-page: 361 issue: 5 year: 2006 ident: 1964_CR10 publication-title: Nat Methods doi: 10.1038/nmeth872 – volume: 33 start-page: 35 issue: 1 year: 2012 ident: 1964_CR15 publication-title: Trends in Pharmacological Sciences doi: 10.1016/j.tips.2011.09.004 – volume: 12 start-page: 37 issue: 1 year: 2016 ident: 1964_CR20 publication-title: Nat Rev Rheumatol doi: 10.1038/nrrheum.2015.161 – volume: 31 start-page: 210 issue: 2 year: 2016 ident: 1964_CR3 publication-title: Korean J Intern Med doi: 10.3904/kjim.2015.137 – volume: 68 start-page: 2867 issue: 12 year: 2016 ident: 1964_CR18 publication-title: Arthritis Rheumatol doi: 10.1002/art.39801 – ident: 1964_CR8 – volume: 371 start-page: 987 issue: 9617 year: 2008 ident: 1964_CR23 publication-title: Lancet doi: 10.1016/S0140-6736(08)60453-5 – volume: 12 start-page: 63 issue: 1 year: 2016 ident: 1964_CR5 publication-title: Nat Rev Rheumatol doi: 10.1038/nrrheum.2015.171 – volume: 34 start-page: 107 year: 2015 ident: 1964_CR16 publication-title: Curr Opin Immunol doi: 10.1016/j.coi.2015.02.010 – volume: 365 start-page: 2205 issue: 23 year: 2011 ident: 1964_CR22 publication-title: N Engl J Med doi: 10.1056/NEJMra1004965 – volume: 57 start-page: 977 issue: 8 year: 2018 ident: 1964_CR13 publication-title: Clin Pharmacokinet doi: 10.1007/s40262-017-0605-6 – volume: 184 start-page: 5298 issue: 9 year: 2010 ident: 1964_CR6 publication-title: J Immunol doi: 10.4049/jimmunol.0902819 – volume: 6 start-page: 804 year: 2017 ident: 1964_CR11 publication-title: CPT Pharmacometrics Syst Pharmacol doi: 10.1002/psp4.12251 – volume: 70 start-page: 1923 issue: 12 year: 2018 ident: 1964_CR19 publication-title: Arthritis Rheumatol doi: 10.1002/art.40680 – ident: 1964_CR14 – volume: 16 start-page: 293 year: 1998 ident: 1964_CR1 publication-title: Annu Rev Immunol doi: 10.1146/annurev.immunol.16.1.293 – ident: 1964_CR12 doi: 10.1136/annrheumdis-2017-eular.3224 – volume: 12 start-page: 25 issue: 1 year: 2016 ident: 1964_CR4 publication-title: Nat Rev Rheumatol doi: 10.1038/nrrheum.2015.167 – volume: 76 start-page: 960 issue: 6 year: 2017 ident: 1964_CR2 publication-title: Ann Rheum Dis doi: 10.1136/annrheumdis-2016-210715 – volume: 68 start-page: 2857 issue: 12 year: 2016 ident: 1964_CR9 publication-title: Arthritis Rheumatol doi: 10.1002/art.39808 – volume: 72 start-page: 1445 issue: 9 year: 2013 ident: 1964_CR21 publication-title: Ann Rheum Dis doi: 10.1136/annrheumdis-2012-202450 – volume: 197 start-page: 1529 issue: 5 year: 2016 ident: 1964_CR24 publication-title: J Immunol doi: 10.4049/jimmunol.1601192 – volume: 34 start-page: 318 issue: 2 year: 2016 ident: 1964_CR17 publication-title: Clin Exp Rheumatol |
SSID | ssj0022924 |
Score | 2.6415863 |
Snippet | The in vitro pharmacology of baricitinib, upadacitinib, and tofacitinib was evaluated to understand differences among these JAK inhibitors (JAKis) at the... Background The in vitro pharmacology of baricitinib, upadacitinib, and tofacitinib was evaluated to understand differences among these JAK inhibitors (JAKis)... Abstract Background The in vitro pharmacology of baricitinib, upadacitinib, and tofacitinib was evaluated to understand differences among these JAK inhibitors... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 183 |
SubjectTerms | Arthritis B cells Baricitinib Biological response modifiers Comparative analysis Cytokine Cytokines Dosage and administration Granulocyte colony-stimulating factor Interferon Interleukins Janus kinase Macrophage colony stimulating factor Macrophages Pharmacology Phosphorylated signal transducer and activator of transcription Potency Receptor kinase signaling Rheumatoid factor Tofacitinib |
Title | Comparison of baricitinib, upadacitinib, and tofacitinib mediated regulation of cytokine signaling in human leukocyte subpopulations |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31375130 https://www.proquest.com/docview/2268308822 https://pubmed.ncbi.nlm.nih.gov/PMC6679539 https://doaj.org/article/9199674c675b4aa38a99899ed7156b79 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG50BfEivje6Di0Ighh2-pF093F22WURXEQcmFvTTwy7JMNOcvDuD7c6yYQJgl68DDOpSuhHdVd9k-qvEHrvmZTWS5J7tSxyDj4uV84A5hHpL0jjDTd9lu91ebXmnzfF5qDUV8oJG-iBh4E7VSlNVnAHga3lxjBpACAoFbwA5GFFf3QPfN4eTI1QiwKsGN9hElme7mCnFilJTeWJgConMy_Uk_X_uSUf-KR5vuSBA7p8gh6PkSNeDS1-iu6F-hl6-GV8N_4c_TqfSgriJmILX13VVnVlP-FuC-Mx_TK1x20T9xdwf3oEIk98NxSmr4YnuJ9tcwOPxinHw6Rj67iqcV_UD9-G7qYBBRB2djsVAdu9QOvLi-_nV_lYYyF3hZJtToOMhsgYnOUkRhKDkF5xD1FWZFTxwAJsh8wCDKGgKS1lZsmssIF6b0H8Eh3VTR2OEYYbIyeBMaMiF9QYCb4fsLohwlkbTYaW-zHXbiQgT3UwbnUPRGSph2nSME06TZMmGfo43bId2Df-pnyWJnJSTMTZ_QUwJz2ak_6XOWXoQzIDnZY3NM6Z8ZQCdDERZelVkdhyJGWgeTLThGXpZuJ3e0PSSZRy2erQdDsNAa9kCdnQDL0aDGtqMyNMFNCxDImZyc06NZfU1Y-eFbwshSqYev0_RuENekTTYkmpMfQEHbV3XXgLwVdrF-i-2IgFenB2cf3126JfdfC5pqvf1Ykw3A |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+baricitinib%2C+upadacitinib%2C+and+tofacitinib+mediated+regulation+of+cytokine+signaling+in+human+leukocyte+subpopulations&rft.jtitle=Arthritis+research+%26+therapy&rft.au=McInnes%2C+Iain+B&rft.au=Byers%2C+Nicole+L&rft.au=Higgs%2C+Richard+E&rft.au=Lee%2C+Jonathan&rft.date=2019-08-02&rft.pub=BioMed+Central+Ltd&rft.issn=1478-6354&rft.volume=21&rft.issue=1&rft_id=info:doi/10.1186%2Fs13075-019-1964-1&rft.externalDocID=A596588239 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1478-6362&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1478-6362&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1478-6362&client=summon |