Comparison of baricitinib, upadacitinib, and tofacitinib mediated regulation of cytokine signaling in human leukocyte subpopulations

The in vitro pharmacology of baricitinib, upadacitinib, and tofacitinib was evaluated to understand differences among these JAK inhibitors (JAKis) at the cellular level. Peripheral blood mononuclear cells from healthy donors were incubated with different JAKis, levels of phosphorylated signal transd...

Full description

Saved in:
Bibliographic Details
Published inArthritis research & therapy Vol. 21; no. 1; pp. 183 - 10
Main Authors McInnes, Iain B., Byers, Nicole L., Higgs, Richard E., Lee, Jonathan, Macias, William L., Ortmann, Robert A., Rocha, Guilherme, Rooney, Terence P., Wehrman, Thomas, Zhang, Xin, Zuckerman, Steven H., Taylor, Peter C.
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 02.08.2019
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The in vitro pharmacology of baricitinib, upadacitinib, and tofacitinib was evaluated to understand differences among these JAK inhibitors (JAKis) at the cellular level. Peripheral blood mononuclear cells from healthy donors were incubated with different JAKis, levels of phosphorylated signal transducer and activator of transcription (pSTAT) were measured following cytokine stimulation, and half maximum inhibitory concentration (IC ) values were calculated in phenotypically gated leukocyte subpopulations. Therapeutic dose relevance of the in vitro analysis was assessed using calculated mean concentration-time profiles over 24 h obtained from JAKi-treated subjects. Time above IC and average daily percent inhibition of pSTAT formation were calculated for each JAKi, cytokine, and cell type. Distinct JAKis displayed different in vitro pharmacologic profiles. For example, tofacitinib and upadacitinib were the most potent inhibitors of the JAK1/3-dependent cytokines tested (interleukin [IL]-2, IL-4, IL-15, and IL-21) with lower IC values and increased time above IC translating to a greater overall inhibition of STAT signaling during the dosing interval. All JAKis tested inhibited JAK1/2-dependent cytokines (e.g., IL-6 and interferon [IFN]-γ), the JAK1/tyrosine kinase 2 (TYK2)-dependent cytokines IL-10 and IFN-α, the JAK2/2-dependent cytokines IL-3 and granulocyte-macrophage colony-stimulating factor (GM-CSF), and the JAK2/TYK2-dependent cytokine granulocyte colony-stimulating factor (G-CSF), but often to significantly differing degrees. Different JAKis modulated distinct cytokine pathways to varying degrees, and no agent potently or continuously inhibited an individual cytokine signaling pathway throughout the dosing interval. Notably, baricitinib inhibited JAK1/3 signaling to a lesser extent than upadacitinib and tofacitinib, while upadacitinib, baricitinib, and tofacitinib inhibited the signaling of JAK2/2-dependent cytokines, including GM-CSF and IL-3, as well as the signaling of the JAK2/TYK2-dependent cytokine G-CSF.
AbstractList Abstract Background The in vitro pharmacology of baricitinib, upadacitinib, and tofacitinib was evaluated to understand differences among these JAK inhibitors (JAKis) at the cellular level. Methods Peripheral blood mononuclear cells from healthy donors were incubated with different JAKis, levels of phosphorylated signal transducer and activator of transcription (pSTAT) were measured following cytokine stimulation, and half maximum inhibitory concentration (IC50) values were calculated in phenotypically gated leukocyte subpopulations. Therapeutic dose relevance of the in vitro analysis was assessed using calculated mean concentration-time profiles over 24 h obtained from JAKi-treated subjects. Time above IC50 and average daily percent inhibition of pSTAT formation were calculated for each JAKi, cytokine, and cell type. Results Distinct JAKis displayed different in vitro pharmacologic profiles. For example, tofacitinib and upadacitinib were the most potent inhibitors of the JAK1/3-dependent cytokines tested (interleukin [IL]-2, IL-4, IL-15, and IL-21) with lower IC50 values and increased time above IC50 translating to a greater overall inhibition of STAT signaling during the dosing interval. All JAKis tested inhibited JAK1/2-dependent cytokines (e.g., IL-6 and interferon [IFN]-γ), the JAK1/tyrosine kinase 2 (TYK2)-dependent cytokines IL-10 and IFN-α, the JAK2/2-dependent cytokines IL-3 and granulocyte-macrophage colony-stimulating factor (GM-CSF), and the JAK2/TYK2-dependent cytokine granulocyte colony-stimulating factor (G-CSF), but often to significantly differing degrees. Conclusions Different JAKis modulated distinct cytokine pathways to varying degrees, and no agent potently or continuously inhibited an individual cytokine signaling pathway throughout the dosing interval. Notably, baricitinib inhibited JAK1/3 signaling to a lesser extent than upadacitinib and tofacitinib, while upadacitinib, baricitinib, and tofacitinib inhibited the signaling of JAK2/2-dependent cytokines, including GM-CSF and IL-3, as well as the signaling of the JAK2/TYK2-dependent cytokine G-CSF.
The in vitro pharmacology of baricitinib, upadacitinib, and tofacitinib was evaluated to understand differences among these JAK inhibitors (JAKis) at the cellular level.BACKGROUNDThe in vitro pharmacology of baricitinib, upadacitinib, and tofacitinib was evaluated to understand differences among these JAK inhibitors (JAKis) at the cellular level.Peripheral blood mononuclear cells from healthy donors were incubated with different JAKis, levels of phosphorylated signal transducer and activator of transcription (pSTAT) were measured following cytokine stimulation, and half maximum inhibitory concentration (IC50) values were calculated in phenotypically gated leukocyte subpopulations. Therapeutic dose relevance of the in vitro analysis was assessed using calculated mean concentration-time profiles over 24 h obtained from JAKi-treated subjects. Time above IC50 and average daily percent inhibition of pSTAT formation were calculated for each JAKi, cytokine, and cell type.METHODSPeripheral blood mononuclear cells from healthy donors were incubated with different JAKis, levels of phosphorylated signal transducer and activator of transcription (pSTAT) were measured following cytokine stimulation, and half maximum inhibitory concentration (IC50) values were calculated in phenotypically gated leukocyte subpopulations. Therapeutic dose relevance of the in vitro analysis was assessed using calculated mean concentration-time profiles over 24 h obtained from JAKi-treated subjects. Time above IC50 and average daily percent inhibition of pSTAT formation were calculated for each JAKi, cytokine, and cell type.Distinct JAKis displayed different in vitro pharmacologic profiles. For example, tofacitinib and upadacitinib were the most potent inhibitors of the JAK1/3-dependent cytokines tested (interleukin [IL]-2, IL-4, IL-15, and IL-21) with lower IC50 values and increased time above IC50 translating to a greater overall inhibition of STAT signaling during the dosing interval. All JAKis tested inhibited JAK1/2-dependent cytokines (e.g., IL-6 and interferon [IFN]-γ), the JAK1/tyrosine kinase 2 (TYK2)-dependent cytokines IL-10 and IFN-α, the JAK2/2-dependent cytokines IL-3 and granulocyte-macrophage colony-stimulating factor (GM-CSF), and the JAK2/TYK2-dependent cytokine granulocyte colony-stimulating factor (G-CSF), but often to significantly differing degrees.RESULTSDistinct JAKis displayed different in vitro pharmacologic profiles. For example, tofacitinib and upadacitinib were the most potent inhibitors of the JAK1/3-dependent cytokines tested (interleukin [IL]-2, IL-4, IL-15, and IL-21) with lower IC50 values and increased time above IC50 translating to a greater overall inhibition of STAT signaling during the dosing interval. All JAKis tested inhibited JAK1/2-dependent cytokines (e.g., IL-6 and interferon [IFN]-γ), the JAK1/tyrosine kinase 2 (TYK2)-dependent cytokines IL-10 and IFN-α, the JAK2/2-dependent cytokines IL-3 and granulocyte-macrophage colony-stimulating factor (GM-CSF), and the JAK2/TYK2-dependent cytokine granulocyte colony-stimulating factor (G-CSF), but often to significantly differing degrees.Different JAKis modulated distinct cytokine pathways to varying degrees, and no agent potently or continuously inhibited an individual cytokine signaling pathway throughout the dosing interval. Notably, baricitinib inhibited JAK1/3 signaling to a lesser extent than upadacitinib and tofacitinib, while upadacitinib, baricitinib, and tofacitinib inhibited the signaling of JAK2/2-dependent cytokines, including GM-CSF and IL-3, as well as the signaling of the JAK2/TYK2-dependent cytokine G-CSF.CONCLUSIONSDifferent JAKis modulated distinct cytokine pathways to varying degrees, and no agent potently or continuously inhibited an individual cytokine signaling pathway throughout the dosing interval. Notably, baricitinib inhibited JAK1/3 signaling to a lesser extent than upadacitinib and tofacitinib, while upadacitinib, baricitinib, and tofacitinib inhibited the signaling of JAK2/2-dependent cytokines, including GM-CSF and IL-3, as well as the signaling of the JAK2/TYK2-dependent cytokine G-CSF.
The in vitro pharmacology of baricitinib, upadacitinib, and tofacitinib was evaluated to understand differences among these JAK inhibitors (JAKis) at the cellular level. Peripheral blood mononuclear cells from healthy donors were incubated with different JAKis, levels of phosphorylated signal transducer and activator of transcription (pSTAT) were measured following cytokine stimulation, and half maximum inhibitory concentration (IC.sub.50) values were calculated in phenotypically gated leukocyte subpopulations. Therapeutic dose relevance of the in vitro analysis was assessed using calculated mean concentration-time profiles over 24 h obtained from JAKi-treated subjects. Time above IC.sub.50 and average daily percent inhibition of pSTAT formation were calculated for each JAKi, cytokine, and cell type. Distinct JAKis displayed different in vitro pharmacologic profiles. For example, tofacitinib and upadacitinib were the most potent inhibitors of the JAK1/3-dependent cytokines tested (interleukin [IL]-2, IL-4, IL-15, and IL-21) with lower IC.sub.50 values and increased time above IC.sub.50 translating to a greater overall inhibition of STAT signaling during the dosing interval. All JAKis tested inhibited JAK1/2-dependent cytokines (e.g., IL-6 and interferon [IFN]-[gamma]), the JAK1/tyrosine kinase 2 (TYK2)-dependent cytokines IL-10 and IFN-[alpha], the JAK2/2-dependent cytokines IL-3 and granulocyte-macrophage colony-stimulating factor (GM-CSF), and the JAK2/TYK2-dependent cytokine granulocyte colony-stimulating factor (G-CSF), but often to significantly differing degrees. Different JAKis modulated distinct cytokine pathways to varying degrees, and no agent potently or continuously inhibited an individual cytokine signaling pathway throughout the dosing interval. Notably, baricitinib inhibited JAK1/3 signaling to a lesser extent than upadacitinib and tofacitinib, while upadacitinib, baricitinib, and tofacitinib inhibited the signaling of JAK2/2-dependent cytokines, including GM-CSF and IL-3, as well as the signaling of the JAK2/TYK2-dependent cytokine G-CSF.
Background The in vitro pharmacology of baricitinib, upadacitinib, and tofacitinib was evaluated to understand differences among these JAK inhibitors (JAKis) at the cellular level. Methods Peripheral blood mononuclear cells from healthy donors were incubated with different JAKis, levels of phosphorylated signal transducer and activator of transcription (pSTAT) were measured following cytokine stimulation, and half maximum inhibitory concentration (IC.sub.50) values were calculated in phenotypically gated leukocyte subpopulations. Therapeutic dose relevance of the in vitro analysis was assessed using calculated mean concentration-time profiles over 24 h obtained from JAKi-treated subjects. Time above IC.sub.50 and average daily percent inhibition of pSTAT formation were calculated for each JAKi, cytokine, and cell type. Results Distinct JAKis displayed different in vitro pharmacologic profiles. For example, tofacitinib and upadacitinib were the most potent inhibitors of the JAK1/3-dependent cytokines tested (interleukin [IL]-2, IL-4, IL-15, and IL-21) with lower IC.sub.50 values and increased time above IC.sub.50 translating to a greater overall inhibition of STAT signaling during the dosing interval. All JAKis tested inhibited JAK1/2-dependent cytokines (e.g., IL-6 and interferon [IFN]-[gamma]), the JAK1/tyrosine kinase 2 (TYK2)-dependent cytokines IL-10 and IFN-[alpha], the JAK2/2-dependent cytokines IL-3 and granulocyte-macrophage colony-stimulating factor (GM-CSF), and the JAK2/TYK2-dependent cytokine granulocyte colony-stimulating factor (G-CSF), but often to significantly differing degrees. Conclusions Different JAKis modulated distinct cytokine pathways to varying degrees, and no agent potently or continuously inhibited an individual cytokine signaling pathway throughout the dosing interval. Notably, baricitinib inhibited JAK1/3 signaling to a lesser extent than upadacitinib and tofacitinib, while upadacitinib, baricitinib, and tofacitinib inhibited the signaling of JAK2/2-dependent cytokines, including GM-CSF and IL-3, as well as the signaling of the JAK2/TYK2-dependent cytokine G-CSF. Keywords: Baricitinib, Cytokine, Janus kinase, Phosphorylated signal transducer and activator of transcription, Potency, Receptor kinase signaling, Rheumatoid arthritis, Selectivity, Tofacitinib, Upadacitinib
The in vitro pharmacology of baricitinib, upadacitinib, and tofacitinib was evaluated to understand differences among these JAK inhibitors (JAKis) at the cellular level. Peripheral blood mononuclear cells from healthy donors were incubated with different JAKis, levels of phosphorylated signal transducer and activator of transcription (pSTAT) were measured following cytokine stimulation, and half maximum inhibitory concentration (IC ) values were calculated in phenotypically gated leukocyte subpopulations. Therapeutic dose relevance of the in vitro analysis was assessed using calculated mean concentration-time profiles over 24 h obtained from JAKi-treated subjects. Time above IC and average daily percent inhibition of pSTAT formation were calculated for each JAKi, cytokine, and cell type. Distinct JAKis displayed different in vitro pharmacologic profiles. For example, tofacitinib and upadacitinib were the most potent inhibitors of the JAK1/3-dependent cytokines tested (interleukin [IL]-2, IL-4, IL-15, and IL-21) with lower IC values and increased time above IC translating to a greater overall inhibition of STAT signaling during the dosing interval. All JAKis tested inhibited JAK1/2-dependent cytokines (e.g., IL-6 and interferon [IFN]-γ), the JAK1/tyrosine kinase 2 (TYK2)-dependent cytokines IL-10 and IFN-α, the JAK2/2-dependent cytokines IL-3 and granulocyte-macrophage colony-stimulating factor (GM-CSF), and the JAK2/TYK2-dependent cytokine granulocyte colony-stimulating factor (G-CSF), but often to significantly differing degrees. Different JAKis modulated distinct cytokine pathways to varying degrees, and no agent potently or continuously inhibited an individual cytokine signaling pathway throughout the dosing interval. Notably, baricitinib inhibited JAK1/3 signaling to a lesser extent than upadacitinib and tofacitinib, while upadacitinib, baricitinib, and tofacitinib inhibited the signaling of JAK2/2-dependent cytokines, including GM-CSF and IL-3, as well as the signaling of the JAK2/TYK2-dependent cytokine G-CSF.
ArticleNumber 183
Audience Academic
Author Zhang, Xin
Byers, Nicole L.
Rocha, Guilherme
Rooney, Terence P.
McInnes, Iain B.
Lee, Jonathan
Macias, William L.
Wehrman, Thomas
Taylor, Peter C.
Zuckerman, Steven H.
Ortmann, Robert A.
Higgs, Richard E.
Author_xml – sequence: 1
  givenname: Iain B.
  surname: McInnes
  fullname: McInnes, Iain B.
– sequence: 2
  givenname: Nicole L.
  surname: Byers
  fullname: Byers, Nicole L.
– sequence: 3
  givenname: Richard E.
  surname: Higgs
  fullname: Higgs, Richard E.
– sequence: 4
  givenname: Jonathan
  surname: Lee
  fullname: Lee, Jonathan
– sequence: 5
  givenname: William L.
  surname: Macias
  fullname: Macias, William L.
– sequence: 7
  givenname: Robert A.
  surname: Ortmann
  fullname: Ortmann, Robert A.
– sequence: 8
  givenname: Guilherme
  surname: Rocha
  fullname: Rocha, Guilherme
– sequence: 9
  givenname: Terence P.
  surname: Rooney
  fullname: Rooney, Terence P.
– sequence: 10
  givenname: Thomas
  surname: Wehrman
  fullname: Wehrman, Thomas
– sequence: 11
  givenname: Xin
  surname: Zhang
  fullname: Zhang, Xin
– sequence: 12
  givenname: Steven H.
  surname: Zuckerman
  fullname: Zuckerman, Steven H.
– sequence: 13
  givenname: Peter C.
  surname: Taylor
  fullname: Taylor, Peter C.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31375130$$D View this record in MEDLINE/PubMed
BookMark eNp1kktv1DAUhSNURB_wA9igSGxYkBLbiR8bpGrEo1IlNrC2_EzdJnaIE6Tu-eHcmcxUHQTywva953zy45wXJzFFVxSvUX2JEKcfMiI1a6saiQoJ2lToWXGGGsYrSig-ebI-Lc5zvqtrjAVuXhSnBBHWgvms-L1Jw6imkFMsky81LE2YQwz6fbmMyqrHnYq2nJM_FMrB2aBmZ8vJdUuv5rASzMOc7kN0ZQ5dVH2IXRliebsMKpa9W-4TCKC56DGNe1t-WTz3qs_u1X6-KH58_vR987W6-fblenN1U5lW8LnCjnuFuHdGN8h75B3jVjS2wcQTLBpHnECIaMQxBiXXmKiaaKYdtlZD-6K4Xrk2qTs5TmFQ04NMKshdIU2dVNMcTO-kQEJQ1hjKWt0oRbgSggvhLEMt1UwA6-PKGhcNT2FcnCfVH0GPOzHcyi79kpQy0ZIt4N0eMKWfi8uzHEI2ru9VdGnJEmPKSc3hLiB9u0o7BUcL0Scgmq1cXrWCtiDaAS__oYJh3RAMJMcHqB8Z3jy9wuPZD-kAAVsFZko5T85L-PzdlwE59BLVcptDueZQQg7lNocSgRP95TzA_-_5A6_74hU
CitedBy_id crossref_primary_10_1080_14740338_2020_1774550
crossref_primary_10_1093_rheumatology_keab740
crossref_primary_10_1177_2050640620927345
crossref_primary_10_1093_rheumatology_keac710
crossref_primary_10_3389_fimmu_2024_1365544
crossref_primary_10_1136_rmdopen_2023_003837
crossref_primary_10_3390_molecules28155914
crossref_primary_10_1016_j_phrs_2021_105463
crossref_primary_10_3390_ijms23031496
crossref_primary_10_1007_s00403_024_02958_6
crossref_primary_10_3899_jrheum_221219
crossref_primary_10_1016_j_semarthrit_2023_152327
crossref_primary_10_1021_acs_jmedchem_4c00769
crossref_primary_10_1111_cts_13435
crossref_primary_10_1093_molehr_gaab016
crossref_primary_10_1021_acsomega_1c06715
crossref_primary_10_3389_fmed_2020_607725
crossref_primary_10_1016_j_cyto_2021_155593
crossref_primary_10_1016_j_heliyon_2023_e17002
crossref_primary_10_1038_s41392_021_00733_x
crossref_primary_10_1016_j_jaci_2021_08_013
crossref_primary_10_1111_pde_15386
crossref_primary_10_1021_acs_jmedchem_0c01467
crossref_primary_10_1186_s13054_020_03020_3
crossref_primary_10_3389_fimmu_2025_1488357
crossref_primary_10_1152_ajpcell_00298_2022
crossref_primary_10_1007_s40266_021_00857_3
crossref_primary_10_1084_jem_20232005
crossref_primary_10_1093_bjd_ljae375
crossref_primary_10_18632_aging_205922
crossref_primary_10_1111_imr_12840
crossref_primary_10_1186_s13075_022_02960_1
crossref_primary_10_3390_ijms21093330
crossref_primary_10_1016_S2213_2600_21_00331_3
crossref_primary_10_1016_S2213_2600_22_00006_6
crossref_primary_10_1002_art_41611
crossref_primary_10_1136_annrheumdis_2020_218398
crossref_primary_10_1016_j_coph_2020_10_010
crossref_primary_10_1038_s41584_024_01153_1
crossref_primary_10_3390_jcm12134527
crossref_primary_10_1016_j_intimp_2024_113383
crossref_primary_10_25259_IJDVL_1152_2022
crossref_primary_10_3389_fddsv_2023_1304129
crossref_primary_10_1016_j_lfs_2020_118097
crossref_primary_10_4081_reumatismo_2024_1685
crossref_primary_10_3389_fphar_2020_583914
crossref_primary_10_1007_s12325_022_02281_4
crossref_primary_10_1093_rheumatology_keaa864
crossref_primary_10_2147_ITT_S262566
crossref_primary_10_1093_ecco_jcc_jjaa014
crossref_primary_10_1136_annrheumdis_2020_219012
crossref_primary_10_3390_idr14030041
crossref_primary_10_3390_ph15010048
crossref_primary_10_1111_jdv_18225
crossref_primary_10_1080_07853890_2022_2095431
crossref_primary_10_1093_rheumatology_kead448
crossref_primary_10_1001_jamadermatol_2022_0147
crossref_primary_10_1093_ofid_ofac381
crossref_primary_10_31083_j_fbl2902084
crossref_primary_10_47360_1995_4484_2022_131_148
crossref_primary_10_1007_s40744_023_00624_3
crossref_primary_10_1186_s12865_020_00365_w
crossref_primary_10_5114_reum_2020_102006
crossref_primary_10_1038_s41540_024_00337_5
crossref_primary_10_2147_CLEP_S422386
crossref_primary_10_1080_25785826_2020_1770948
crossref_primary_10_1159_000519669
crossref_primary_10_1097_RHU_0000000000001515
crossref_primary_10_14412_1996_7012_2022_1_7_13
crossref_primary_10_1007_s10875_022_01346_x
crossref_primary_10_1111_1346_8138_16901
crossref_primary_10_14814_phy2_15829
crossref_primary_10_1002_prp2_537
crossref_primary_10_1007_s10067_023_06605_9
crossref_primary_10_3390_v12091039
crossref_primary_10_14412_1995_4484_2020_62_79
crossref_primary_10_1177_17534666221132736
crossref_primary_10_1016_j_jdermsci_2023_12_008
crossref_primary_10_1080_14656566_2021_2006183
crossref_primary_10_1007_s40744_023_00599_1
crossref_primary_10_3389_fphar_2022_1004308
crossref_primary_10_1016_j_autrev_2021_102942
crossref_primary_10_1016_j_heliyon_2023_e16665
crossref_primary_10_1080_17512433_2021_1913050
crossref_primary_10_1136_annrheumdis_2020_219699
crossref_primary_10_1016_j_pharmthera_2022_108153
crossref_primary_10_7759_cureus_34125
crossref_primary_10_1136_jitc_2021_002838
crossref_primary_10_1159_000542062
crossref_primary_10_36691_RJA1546
crossref_primary_10_1007_s00393_020_00853_9
crossref_primary_10_1016_j_mcpro_2022_100425
crossref_primary_10_1001_jamadermatol_2023_1651
crossref_primary_10_1038_s41467_022_30956_7
crossref_primary_10_3389_fimmu_2021_752227
crossref_primary_10_3390_ijms24021027
crossref_primary_10_1371_journal_pone_0288757
crossref_primary_10_1080_1744666X_2022_2042254
crossref_primary_10_1038_s41584_023_01042_z
crossref_primary_10_1080_14397595_2020_1782049
crossref_primary_10_1080_09546634_2023_2276043
crossref_primary_10_1002_psp4_12836
crossref_primary_10_3390_pharmaceutics16040476
crossref_primary_10_1038_s41584_021_00726_8
crossref_primary_10_1016_j_jaut_2021_102689
crossref_primary_10_1016_j_det_2021_12_002
crossref_primary_10_1093_rap_rkae141
crossref_primary_10_1136_rmdopen_2022_002671
crossref_primary_10_1016_j_cytogfr_2020_06_013
crossref_primary_10_2478_jtim_2022_0029
crossref_primary_10_1021_acsptsci_3c00043
crossref_primary_10_1002_eji_202451437
crossref_primary_10_2147_CCID_S439053
crossref_primary_10_1002_jcph_1874
crossref_primary_10_1016_j_bmc_2024_117932
crossref_primary_10_1002_art_41906
crossref_primary_10_3390_molecules28124699
crossref_primary_10_3389_fimmu_2021_708848
crossref_primary_10_1080_14656566_2023_2200931
crossref_primary_10_17925_RMD_2022_1_1_5
crossref_primary_10_3389_fimmu_2024_1437512
crossref_primary_10_1002_trc2_12445
crossref_primary_10_1111_1346_8138_16549
crossref_primary_10_1007_s40744_024_00712_y
crossref_primary_10_1051_e3sconf_202450004002
crossref_primary_10_3389_fimmu_2024_1341981
crossref_primary_10_3389_fgstr_2023_1251133
crossref_primary_10_1007_s40261_024_01352_4
crossref_primary_10_1016_j_bioorg_2023_106765
crossref_primary_10_3389_fimmu_2021_661323
crossref_primary_10_3390_jcm10071431
crossref_primary_10_1186_s41927_024_00446_y
crossref_primary_10_1186_s42358_024_00368_w
crossref_primary_10_1007_s12325_023_02507_z
crossref_primary_10_1111_ced_15104
crossref_primary_10_1136_rmdopen_2022_002409
crossref_primary_10_1002_eji_202250353
crossref_primary_10_1073_pnas_2401899121
crossref_primary_10_3389_fimmu_2021_738481
crossref_primary_10_47360_1995_4484_2021_693_699
crossref_primary_10_2147_CEG_S367086
crossref_primary_10_1007_s11926_020_00931_6
crossref_primary_10_1080_07391102_2023_2270709
crossref_primary_10_1002_art_42547
crossref_primary_10_1016_j_autrev_2023_103420
crossref_primary_10_1016_j_intimp_2023_111229
crossref_primary_10_1021_acs_jproteome_4c00340
crossref_primary_10_1055_a_1210_4138
crossref_primary_10_3389_fimmu_2024_1464474
crossref_primary_10_3389_fphar_2021_709856
crossref_primary_10_3390_jcm12062201
crossref_primary_10_1007_s13555_021_00596_8
crossref_primary_10_1016_j_smim_2021_101523
crossref_primary_10_1515_med_2021_0010
crossref_primary_10_1080_14397595_2021_1902617
crossref_primary_10_1097_BOR_0000000000000792
crossref_primary_10_1016_j_jid_2021_07_180
crossref_primary_10_1039_D3LC00768E
crossref_primary_10_14309_ctg_0000000000000603
crossref_primary_10_1007_s10067_021_05815_3
crossref_primary_10_3389_fimmu_2020_588543
crossref_primary_10_1016_j_intimp_2023_111193
crossref_primary_10_15252_emmm_202012697
crossref_primary_10_1111_all_14845
crossref_primary_10_1002_acr2_11166
crossref_primary_10_1080_09546634_2022_2116926
crossref_primary_10_2147_JIR_S414739
crossref_primary_10_21518_ms2024_055
crossref_primary_10_1002_jpr3_12067
crossref_primary_10_1136_ard_2023_223850
crossref_primary_10_1093_infdis_jiac040
crossref_primary_10_2174_1872210518666230905155459
crossref_primary_10_3390_ijms222111876
crossref_primary_10_1007_s13555_022_00878_9
crossref_primary_10_1016_j_pharmthera_2023_108402
crossref_primary_10_1007_s40264_020_00938_z
crossref_primary_10_3390_biom11070993
crossref_primary_10_1186_s12876_024_03336_2
crossref_primary_10_2147_ITT_S360151
crossref_primary_10_3388_jspaci_38_289
crossref_primary_10_1186_s13075_021_02587_8
crossref_primary_10_1002_jmv_29497
crossref_primary_10_1002_cia2_12258
crossref_primary_10_1080_14740338_2023_2248872
crossref_primary_10_1016_j_omtn_2022_09_020
crossref_primary_10_1136_rmdopen_2021_001565
crossref_primary_10_1186_s13075_021_02591_y
crossref_primary_10_3389_fimmu_2025_1494283
crossref_primary_10_3389_fimmu_2023_1087986
crossref_primary_10_47360_1995_4484_2020_532_543
crossref_primary_10_7759_cureus_70125
crossref_primary_10_3748_wjg_v27_i48_8242
crossref_primary_10_14412_1995_4484_2020_304_316
crossref_primary_10_1016_j_semarthrit_2023_152314
crossref_primary_10_1038_s41746_024_01396_y
crossref_primary_10_1016_j_cbi_2023_110398
Cites_doi 10.1021/jm401490p
10.1038/nmeth872
10.1016/j.tips.2011.09.004
10.1038/nrrheum.2015.161
10.3904/kjim.2015.137
10.1002/art.39801
10.1016/S0140-6736(08)60453-5
10.1038/nrrheum.2015.171
10.1016/j.coi.2015.02.010
10.1056/NEJMra1004965
10.1007/s40262-017-0605-6
10.4049/jimmunol.0902819
10.1002/psp4.12251
10.1002/art.40680
10.1146/annurev.immunol.16.1.293
10.1136/annrheumdis-2017-eular.3224
10.1038/nrrheum.2015.167
10.1136/annrheumdis-2016-210715
10.1002/art.39808
10.1136/annrheumdis-2012-202450
10.4049/jimmunol.1601192
ContentType Journal Article
Copyright COPYRIGHT 2019 BioMed Central Ltd.
The Author(s). 2019
Copyright_xml – notice: COPYRIGHT 2019 BioMed Central Ltd.
– notice: The Author(s). 2019
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1186/s13075-019-1964-1
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1478-6362
EndPage 10
ExternalDocumentID oai_doaj_org_article_9199674c675b4aa38a99899ed7156b79
PMC6679539
A596588239
31375130
10_1186_s13075_019_1964_1
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
GroupedDBID ---
.GJ
0R~
23N
2WC
4.4
5GY
5VS
6J9
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABUWG
ACGFS
ACJQM
ADBBV
ADUKV
AEGXH
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIAM
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
E3Z
EBD
EBLON
EJD
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
HZ~
INH
INR
ITC
KQ8
M1P
O5R
O5S
O9-
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
U2A
UKHRP
WOQ
-5E
-5G
-A0
-BR
3V.
ACRMQ
ADINQ
C24
IAO
IHR
NPM
Z7U
PMFND
7X8
PJZUB
PPXIY
5PM
PUEGO
ID FETCH-LOGICAL-c598t-2e8fa18fecb41ff1fe78d94d423f3294e3e9113b18228fa8b23a03b7be2ddb4e3
IEDL.DBID DOA
ISSN 1478-6362
1478-6354
IngestDate Wed Aug 27 01:25:21 EDT 2025
Thu Aug 21 18:30:27 EDT 2025
Mon Jul 21 10:25:58 EDT 2025
Tue Jun 17 20:51:15 EDT 2025
Tue Jun 10 20:24:43 EDT 2025
Thu Jan 02 22:58:20 EST 2025
Thu Apr 24 23:08:57 EDT 2025
Tue Jul 01 04:00:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Receptor kinase signaling
Tofacitinib
Rheumatoid arthritis
Cytokine
Janus kinase
Potency
Selectivity
Upadacitinib
Phosphorylated signal transducer and activator of transcription
Baricitinib
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c598t-2e8fa18fecb41ff1fe78d94d423f3294e3e9113b18228fa8b23a03b7be2ddb4e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://doaj.org/article/9199674c675b4aa38a99899ed7156b79
PMID 31375130
PQID 2268308822
PQPubID 23479
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_9199674c675b4aa38a99899ed7156b79
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6679539
proquest_miscellaneous_2268308822
gale_infotracmisc_A596588239
gale_infotracacademiconefile_A596588239
pubmed_primary_31375130
crossref_citationtrail_10_1186_s13075_019_1964_1
crossref_primary_10_1186_s13075_019_1964_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-02
PublicationDateYYYYMMDD 2019-08-02
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-02
  day: 02
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Arthritis research & therapy
PublicationTitleAlternate Arthritis Res Ther
PublicationYear 2019
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References IB McInnes (1964_CR5) 2016; 12
PO Krutzik (1964_CR10) 2006; 3
GR Burmester (1964_CR21) 2013; 72
IB McInnes (1964_CR22) 2011; 365
JS Smolen (1964_CR2) 2017; 76
WJ Leonard (1964_CR1) 1998; 16
JS Smolen (1964_CR23) 2008; 371
X Zhang (1964_CR11) 2017; 6
1964_CR14
JM Kremer (1964_CR18) 2016; 68
1964_CR12
Y Tanaka (1964_CR3) 2016; 31
IP Wicks (1964_CR20) 2016; 12
SG Tangye (1964_CR16) 2015; 34
JD Clark (1964_CR7) 2014; 57
P Castillo (1964_CR24) 2016; 197
DM Schwartz (1964_CR4) 2016; 12
MC Genovese (1964_CR9) 2016; 68
Y Tanaka (1964_CR19) 2018; 70
B Klunder (1964_CR13) 2018; 57
JA Hodge (1964_CR17) 2016; 34
Jason C. Steel (1964_CR15) 2012; 33
1964_CR8
JS Fridman (1964_CR6) 2010; 184
References_xml – volume: 57
  start-page: 5023
  issue: 12
  year: 2014
  ident: 1964_CR7
  publication-title: J Med Chem
  doi: 10.1021/jm401490p
– volume: 3
  start-page: 361
  issue: 5
  year: 2006
  ident: 1964_CR10
  publication-title: Nat Methods
  doi: 10.1038/nmeth872
– volume: 33
  start-page: 35
  issue: 1
  year: 2012
  ident: 1964_CR15
  publication-title: Trends in Pharmacological Sciences
  doi: 10.1016/j.tips.2011.09.004
– volume: 12
  start-page: 37
  issue: 1
  year: 2016
  ident: 1964_CR20
  publication-title: Nat Rev Rheumatol
  doi: 10.1038/nrrheum.2015.161
– volume: 31
  start-page: 210
  issue: 2
  year: 2016
  ident: 1964_CR3
  publication-title: Korean J Intern Med
  doi: 10.3904/kjim.2015.137
– volume: 68
  start-page: 2867
  issue: 12
  year: 2016
  ident: 1964_CR18
  publication-title: Arthritis Rheumatol
  doi: 10.1002/art.39801
– ident: 1964_CR8
– volume: 371
  start-page: 987
  issue: 9617
  year: 2008
  ident: 1964_CR23
  publication-title: Lancet
  doi: 10.1016/S0140-6736(08)60453-5
– volume: 12
  start-page: 63
  issue: 1
  year: 2016
  ident: 1964_CR5
  publication-title: Nat Rev Rheumatol
  doi: 10.1038/nrrheum.2015.171
– volume: 34
  start-page: 107
  year: 2015
  ident: 1964_CR16
  publication-title: Curr Opin Immunol
  doi: 10.1016/j.coi.2015.02.010
– volume: 365
  start-page: 2205
  issue: 23
  year: 2011
  ident: 1964_CR22
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1004965
– volume: 57
  start-page: 977
  issue: 8
  year: 2018
  ident: 1964_CR13
  publication-title: Clin Pharmacokinet
  doi: 10.1007/s40262-017-0605-6
– volume: 184
  start-page: 5298
  issue: 9
  year: 2010
  ident: 1964_CR6
  publication-title: J Immunol
  doi: 10.4049/jimmunol.0902819
– volume: 6
  start-page: 804
  year: 2017
  ident: 1964_CR11
  publication-title: CPT Pharmacometrics Syst Pharmacol
  doi: 10.1002/psp4.12251
– volume: 70
  start-page: 1923
  issue: 12
  year: 2018
  ident: 1964_CR19
  publication-title: Arthritis Rheumatol
  doi: 10.1002/art.40680
– ident: 1964_CR14
– volume: 16
  start-page: 293
  year: 1998
  ident: 1964_CR1
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev.immunol.16.1.293
– ident: 1964_CR12
  doi: 10.1136/annrheumdis-2017-eular.3224
– volume: 12
  start-page: 25
  issue: 1
  year: 2016
  ident: 1964_CR4
  publication-title: Nat Rev Rheumatol
  doi: 10.1038/nrrheum.2015.167
– volume: 76
  start-page: 960
  issue: 6
  year: 2017
  ident: 1964_CR2
  publication-title: Ann Rheum Dis
  doi: 10.1136/annrheumdis-2016-210715
– volume: 68
  start-page: 2857
  issue: 12
  year: 2016
  ident: 1964_CR9
  publication-title: Arthritis Rheumatol
  doi: 10.1002/art.39808
– volume: 72
  start-page: 1445
  issue: 9
  year: 2013
  ident: 1964_CR21
  publication-title: Ann Rheum Dis
  doi: 10.1136/annrheumdis-2012-202450
– volume: 197
  start-page: 1529
  issue: 5
  year: 2016
  ident: 1964_CR24
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1601192
– volume: 34
  start-page: 318
  issue: 2
  year: 2016
  ident: 1964_CR17
  publication-title: Clin Exp Rheumatol
SSID ssj0022924
Score 2.6415863
Snippet The in vitro pharmacology of baricitinib, upadacitinib, and tofacitinib was evaluated to understand differences among these JAK inhibitors (JAKis) at the...
Background The in vitro pharmacology of baricitinib, upadacitinib, and tofacitinib was evaluated to understand differences among these JAK inhibitors (JAKis)...
Abstract Background The in vitro pharmacology of baricitinib, upadacitinib, and tofacitinib was evaluated to understand differences among these JAK inhibitors...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 183
SubjectTerms Arthritis
B cells
Baricitinib
Biological response modifiers
Comparative analysis
Cytokine
Cytokines
Dosage and administration
Granulocyte colony-stimulating factor
Interferon
Interleukins
Janus kinase
Macrophage colony stimulating factor
Macrophages
Pharmacology
Phosphorylated signal transducer and activator of transcription
Potency
Receptor kinase signaling
Rheumatoid factor
Tofacitinib
Title Comparison of baricitinib, upadacitinib, and tofacitinib mediated regulation of cytokine signaling in human leukocyte subpopulations
URI https://www.ncbi.nlm.nih.gov/pubmed/31375130
https://www.proquest.com/docview/2268308822
https://pubmed.ncbi.nlm.nih.gov/PMC6679539
https://doaj.org/article/9199674c675b4aa38a99899ed7156b79
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG50BfEivje6Di0Ighh2-pF093F22WURXEQcmFvTTwy7JMNOcvDuD7c6yYQJgl68DDOpSuhHdVd9k-qvEHrvmZTWS5J7tSxyDj4uV84A5hHpL0jjDTd9lu91ebXmnzfF5qDUV8oJG-iBh4E7VSlNVnAHga3lxjBpACAoFbwA5GFFf3QPfN4eTI1QiwKsGN9hElme7mCnFilJTeWJgConMy_Uk_X_uSUf-KR5vuSBA7p8gh6PkSNeDS1-iu6F-hl6-GV8N_4c_TqfSgriJmILX13VVnVlP-FuC-Mx_TK1x20T9xdwf3oEIk98NxSmr4YnuJ9tcwOPxinHw6Rj67iqcV_UD9-G7qYBBRB2djsVAdu9QOvLi-_nV_lYYyF3hZJtToOMhsgYnOUkRhKDkF5xD1FWZFTxwAJsh8wCDKGgKS1lZsmssIF6b0H8Eh3VTR2OEYYbIyeBMaMiF9QYCb4fsLohwlkbTYaW-zHXbiQgT3UwbnUPRGSph2nSME06TZMmGfo43bId2Df-pnyWJnJSTMTZ_QUwJz2ak_6XOWXoQzIDnZY3NM6Z8ZQCdDERZelVkdhyJGWgeTLThGXpZuJ3e0PSSZRy2erQdDsNAa9kCdnQDL0aDGtqMyNMFNCxDImZyc06NZfU1Y-eFbwshSqYev0_RuENekTTYkmpMfQEHbV3XXgLwVdrF-i-2IgFenB2cf3126JfdfC5pqvf1Ykw3A
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+baricitinib%2C+upadacitinib%2C+and+tofacitinib+mediated+regulation+of+cytokine+signaling+in+human+leukocyte+subpopulations&rft.jtitle=Arthritis+research+%26+therapy&rft.au=McInnes%2C+Iain+B&rft.au=Byers%2C+Nicole+L&rft.au=Higgs%2C+Richard+E&rft.au=Lee%2C+Jonathan&rft.date=2019-08-02&rft.pub=BioMed+Central+Ltd&rft.issn=1478-6354&rft.volume=21&rft.issue=1&rft_id=info:doi/10.1186%2Fs13075-019-1964-1&rft.externalDocID=A596588239
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1478-6362&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1478-6362&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1478-6362&client=summon