On Bayesian mechanics: a physics of and by beliefs

The aim of this paper is to introduce a field of study that has emerged over the last decade, called Bayesian mechanics. Bayesian mechanics is a probabilistic mechanics, comprising tools that enable us to model systems endowed with a particular partition (i.e. into particles), where the internal sta...

Full description

Saved in:
Bibliographic Details
Published inInterface focus Vol. 13; no. 3; p. 20220029
Main Authors Ramstead, Maxwell J. D., Sakthivadivel, Dalton A. R., Heins, Conor, Koudahl, Magnus, Millidge, Beren, Da Costa, Lancelot, Klein, Brennan, Friston, Karl J.
Format Journal Article
LanguageEnglish
Published England The Royal Society 14.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The aim of this paper is to introduce a field of study that has emerged over the last decade, called Bayesian mechanics. Bayesian mechanics is a probabilistic mechanics, comprising tools that enable us to model systems endowed with a particular partition (i.e. into particles), where the internal states (or the trajectories of internal states) of a particular system encode the parameters of beliefs about external states (or their trajectories). These tools allow us to write down mechanical theories for systems that look as if they are estimating posterior probability distributions over the causes of their sensory states. This provides a formal language for modelling the constraints, forces, potentials and other quantities determining the dynamics of such systems, especially as they entail dynamics on a space of beliefs (i.e. on a statistical manifold). Here, we will review the state of the art in the literature on the free energy principle, distinguishing between three ways in which Bayesian mechanics has been applied to particular systems (i.e. path-tracking, mode-tracking and mode-matching). We go on to examine a duality between the free energy principle and the constrained maximum entropy principle, both of which lie at the heart of Bayesian mechanics, and discuss its implications.
AbstractList The aim of this paper is to introduce a field of study that has emerged over the last decade, called Bayesian mechanics. Bayesian mechanics is a probabilistic mechanics, comprising tools that enable us to model systems endowed with a particular partition (i.e. into particles), where the internal states (or the trajectories of internal states) of a particular system encode the parameters of beliefs about external states (or their trajectories). These tools allow us to write down mechanical theories for systems that look as if they are estimating posterior probability distributions over the causes of their sensory states. This provides a formal language for modelling the constraints, forces, potentials and other quantities determining the dynamics of such systems, especially as they entail dynamics on a space of beliefs (i.e. on a statistical manifold). Here, we will review the state of the art in the literature on the free energy principle, distinguishing between three ways in which Bayesian mechanics has been applied to particular systems (i.e. path-tracking, mode-tracking and mode-matching). We go on to examine a duality between the free energy principle and the constrained maximum entropy principle, both of which lie at the heart of Bayesian mechanics, and discuss its implications.The aim of this paper is to introduce a field of study that has emerged over the last decade, called Bayesian mechanics. Bayesian mechanics is a probabilistic mechanics, comprising tools that enable us to model systems endowed with a particular partition (i.e. into particles), where the internal states (or the trajectories of internal states) of a particular system encode the parameters of beliefs about external states (or their trajectories). These tools allow us to write down mechanical theories for systems that look as if they are estimating posterior probability distributions over the causes of their sensory states. This provides a formal language for modelling the constraints, forces, potentials and other quantities determining the dynamics of such systems, especially as they entail dynamics on a space of beliefs (i.e. on a statistical manifold). Here, we will review the state of the art in the literature on the free energy principle, distinguishing between three ways in which Bayesian mechanics has been applied to particular systems (i.e. path-tracking, mode-tracking and mode-matching). We go on to examine a duality between the free energy principle and the constrained maximum entropy principle, both of which lie at the heart of Bayesian mechanics, and discuss its implications.
The aim of this paper is to introduce a field of study that has emerged over the last decade, called Bayesian mechanics. Bayesian mechanics is a probabilistic mechanics, comprising tools that enable us to model systems endowed with a particular partition (i.e. into particles), where the internal states (or the trajectories of internal states) of a particular system encode the parameters of beliefs about external states (or their trajectories). These tools allow us to write down mechanical theories for systems that look as if they are estimating posterior probability distributions over the causes of their sensory states. This provides a formal language for modelling the constraints, forces, potentials and other quantities determining the dynamics of such systems, especially as they entail dynamics on a space of beliefs (i.e. on a statistical manifold). Here, we will review the state of the art in the literature on the free energy principle, distinguishing between three ways in which Bayesian mechanics has been applied to particular systems (i.e. path-tracking, mode-tracking and mode-matching). We go on to examine a duality between the free energy principle and the constrained maximum entropy principle, both of which lie at the heart of Bayesian mechanics, and discuss its implications.
Author Heins, Conor
Koudahl, Magnus
Ramstead, Maxwell J. D.
Millidge, Beren
Da Costa, Lancelot
Klein, Brennan
Sakthivadivel, Dalton A. R.
Friston, Karl J.
Author_xml – sequence: 1
  givenname: Maxwell J. D.
  surname: Ramstead
  fullname: Ramstead, Maxwell J. D.
  organization: VERSES Research Lab, Los Angeles, CA 90016, USA, Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK
– sequence: 2
  givenname: Dalton A. R.
  orcidid: 0000-0002-7907-7611
  surname: Sakthivadivel
  fullname: Sakthivadivel, Dalton A. R.
  organization: VERSES Research Lab, Los Angeles, CA 90016, USA, Department of Mathematics, Stony Brook University, Stony Brook, NY, USA, Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
– sequence: 3
  givenname: Conor
  surname: Heins
  fullname: Heins, Conor
  organization: VERSES Research Lab, Los Angeles, CA 90016, USA, Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany, Department of Biology, University of Konstanz, 78464 Konstanz, Germany, Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
– sequence: 4
  givenname: Magnus
  surname: Koudahl
  fullname: Koudahl, Magnus
  organization: VERSES Research Lab, Los Angeles, CA 90016, USA, Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
– sequence: 5
  givenname: Beren
  surname: Millidge
  fullname: Millidge, Beren
  organization: VERSES Research Lab, Los Angeles, CA 90016, USA, Brain Network Dynamics Unit, University of Oxford, Oxford, UK
– sequence: 6
  givenname: Lancelot
  orcidid: 0000-0003-0126-4588
  surname: Da Costa
  fullname: Da Costa, Lancelot
  organization: Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK, Department of Mathematics, Imperial College London, London SW7 2AZ, UK
– sequence: 7
  givenname: Brennan
  surname: Klein
  fullname: Klein, Brennan
  organization: VERSES Research Lab, Los Angeles, CA 90016, USA, Network Science Institute, Northeastern University, Boston, MA, USA
– sequence: 8
  givenname: Karl J.
  orcidid: 0000-0001-7984-8909
  surname: Friston
  fullname: Friston, Karl J.
  organization: VERSES Research Lab, Los Angeles, CA 90016, USA, Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37213925$$D View this record in MEDLINE/PubMed
BookMark eNp1Uc1LwzAUDzJxc-7qUXL00pqkrUm8iA6_YLCLnkOaDxdp09l0Qv97U7bJFHyX9-D3Be93Cka-8QaAc4xSjDi7aoMNKUGEpAgRfgQmBOUkYRzh0cE9BrMQPlCc_BozRE7AOKMEZ5wUE0CWHt7L3gQnPayNWknvVLiBEq5XfYgnbCyUXsOyh6WpnLHhDBxbWQUz2-0peHt8eJ0_J4vl08v8bpGogrMuIcyWrFBKckIJyyi1mhS4sBmKiMYmyzVSWmlTKpRrKa20pcowxRpjJjnOpuB267velLXRyviulZVYt66WbS8a6cRvxLuVeG--BEaYM1Lk0eFy59A2nxsTOlG7oExVSW-aTRCEYUopx4hG6sVh2E_K_lORkG8Jqm1CaI0VynWyc82Q7aoYKoZOxNCJGDoRQydRlv6R7Z3_EXwD7ECOYQ
CitedBy_id crossref_primary_10_1177_17456916231188000
crossref_primary_10_1016_j_biopsycho_2024_108891
crossref_primary_10_1080_09515089_2025_2460502
crossref_primary_10_3390_e26040287
crossref_primary_10_1017_S0140525X24000396
crossref_primary_10_1177_26339137231222481
crossref_primary_10_3390_e25070964
crossref_primary_10_1007_s11098_024_02182_y
crossref_primary_10_1016_j_plrev_2023_10_027
crossref_primary_10_1016_j_concog_2023_103579
crossref_primary_10_1162_neco_a_01738
crossref_primary_10_1093_nc_niae040
crossref_primary_10_1098_rsfs_2023_0015
crossref_primary_10_3389_fsoc_2023_1269621
crossref_primary_10_3389_fpsyg_2024_1354719
crossref_primary_10_1109_TMBMC_2023_3272158
crossref_primary_10_1007_s11097_024_10028_5
crossref_primary_10_1093_cercor_bhae416
crossref_primary_10_3390_e25091275
crossref_primary_10_3390_e26060481
crossref_primary_10_1162_neco_a_01642
crossref_primary_10_1007_s10773_023_05406_9
crossref_primary_10_1016_j_jmp_2024_102869
crossref_primary_10_1016_j_neunet_2024_107075
crossref_primary_10_1371_journal_pone_0297128
crossref_primary_10_1007_s13752_024_00467_3
crossref_primary_10_1017_S0140525X2200276X
crossref_primary_10_1016_j_plrev_2023_12_001
crossref_primary_10_1007_s11229_023_04292_2
crossref_primary_10_3758_s13415_024_01189_6
crossref_primary_10_1038_s41598_024_56811_x
crossref_primary_10_3390_e26080622
crossref_primary_10_3390_g15050030
crossref_primary_10_1016_j_plrev_2024_04_007
crossref_primary_10_3389_fncom_2023_1169772
crossref_primary_10_3390_e26040303
crossref_primary_10_1098_rsfs_2023_0060
crossref_primary_10_1016_j_neubiorev_2023_105500
crossref_primary_10_1098_rstb_2022_0411
Cites_doi 10.1016/j.plrev.2017.12.009
10.1007/s00422-019-00805-w
10.1086/661755
10.1016/j.plrev.2022.05.002
10.1177/1059712319862774
10.1007/978-3-030-64919-7_1
10.3389/fnsys.2022.768201
10.1016/j.plrev.2022.06.001
10.1007/978-4-431-55978-8
10.1002/cplx.20191
10.1007/BF02478302
10.1103/PhysRevLett.109.120604
10.1017/S0140525X22000310
10.1063/1.4818538
10.1002/9783527658701.ch11
10.1098/rsta.2009.0227
10.1007/978-3-031-28719-0_6
10.1016/0550-3213(95)00158-O
10.1007/s10539-021-09807-0
10.1016/j.physrep.2023.07.001
10.3390/e23030293
10.1088/0034-4885/75/12/126001
10.3390/e21121211
10.1016/j.plrev.2017.09.001
10.1098/rsta.2019.0159
10.1155/2010/621670
10.1016/j.plrev.2021.09.001
10.1093/oso/9780198743040.001.0001
10.1080/01621459.2017.1285773
10.1371/journal.pbio.1002400
10.1101/2022.10.03.510742
10.1016/j.plrev.2021.11.001
10.1103/PhysRev.106.620
10.21203/rs.3.rs-3152338/v1
10.1162/neco_a_01354
10.1016/j.plrev.2022.05.006
10.3390/e23081076
10.1016/j.shpsa.2022.02.005
10.3389/fpsyg.2019.02688
10.1137/080721340
10.1093/bjps/axm011
10.1007/978-1-4939-1323-7
10.3390/e23091115
10.1016/bs.host.2022.03.005
10.1068/p030123
10.1017/S0140525X22000334
10.1073/pnas.231499798
10.1002/j.1538-7305.1948.tb01338.x
10.3390/e22080889
10.3390/e14112100
10.1007/s10539-021-09818-x
10.1098/rstb.2005.1622
10.1016/j.tics.2011.11.018
10.3390/e23091220
10.1038/nrn2787
10.1209/0295-5075/97/30003
10.1016/j.plrev.2018.12.002
10.1098/rsif.2013.0475
10.1103/RevModPhys.85.1115
10.1016/j.biosystems.2022.104714
10.3390/e22050516
10.1007/BF02477890
10.1098/rsif.2014.1383
10.1098/rspa.2021.0518
10.1007/978-3-662-06791-8_1
10.15607/RSS.2012.VIII.045
10.1111/sjp.12096
10.1002/bies.201900228
10.1142/2324
10.1017/S0140525X98001733
10.1109/TIT.1980.1056144
10.1007/s100510051129
10.1038/nnano.2015.250
10.1126/science.201.4358.777
10.1017/S0140525X22000139
10.1016/j.plrev.2023.08.016
ContentType Journal Article
Copyright 2023 The Authors.
2023 The Authors. 2023
Copyright_xml – notice: 2023 The Authors.
– notice: 2023 The Authors. 2023
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1098/rsfs.2022.0029
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate On Bayesian mechanics: a physics of and by beliefs
EISSN 2042-8901
ExternalDocumentID PMC10198254
37213925
10_1098_rsfs_2022_0029
Genre Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 205103/Z/16/Z
– fundername: ;
  grantid: 205103/Z/16/Z
– fundername: ;
  grantid: 13568875
– fundername: ;
  grantid: 61780
– fundername: ;
  grantid: BB/s006338/1
– fundername: ;
  grantid: EP/S023925/1
– fundername: ;
  grantid: N00014-19-1-2556
– fundername: ;
  grantid: ES/T01279X/1
– fundername: ;
  grantid: MC UU 00003/1
GroupedDBID 0R~
4.4
53G
5VS
AAKDD
AAYXX
ACQIA
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
ALMYZ
AOIJS
BAWUL
BTFSW
CITATION
DIK
EBS
H13
HYE
HZ~
ICLEN
KQ8
MV1
NSAHA
O9-
OK1
OP1
RPM
RRY
V1E
NPM
7X8
5PM
ID FETCH-LOGICAL-c598t-28fb85cca92728377fd2515f3028fd1e34d0cdcdebc04daafafbc3171d118a913
ISSN 2042-8901
2042-8898
IngestDate Thu Aug 21 18:37:03 EDT 2025
Fri Jul 11 13:02:54 EDT 2025
Sat May 31 02:13:32 EDT 2025
Thu Apr 24 23:00:34 EDT 2025
Tue Jul 01 02:38:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords gauge theory
maximum entropy
free energy principle
active inference
information geometry
Bayesian mechanics
Language English
License 2023 The Authors.
Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c598t-28fb85cca92728377fd2515f3028fd1e34d0cdcdebc04daafafbc3171d118a913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this study.
One contribution of 15 to a theme issue ‘Making and breaking symmetries in mind and life’.
ORCID 0000-0003-0126-4588
0000-0001-7984-8909
0000-0002-7907-7611
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC10198254
PMID 37213925
PQID 2817779107
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10198254
proquest_miscellaneous_2817779107
pubmed_primary_37213925
crossref_citationtrail_10_1098_rsfs_2022_0029
crossref_primary_10_1098_rsfs_2022_0029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-14
PublicationDateYYYYMMDD 2023-04-14
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-14
  day: 14
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Interface focus
PublicationTitleAlternate Interface Focus
PublicationYear 2023
Publisher The Royal Society
Publisher_xml – name: The Royal Society
References e_1_3_7_83_2
e_1_3_7_60_2
e_1_3_7_22_2
e_1_3_7_64_2
e_1_3_7_26_2
e_1_3_7_45_2
e_1_3_7_68_2
e_1_3_7_49_2
e_1_3_7_103_2
e_1_3_7_107_2
Bridgman PW (e_1_3_7_116_2) 1954; 79
e_1_3_7_91_2
e_1_3_7_119_2
e_1_3_7_72_2
e_1_3_7_30_2
e_1_3_7_76_2
e_1_3_7_11_2
e_1_3_7_53_2
e_1_3_7_95_2
e_1_3_7_34_2
MacKay DJC (e_1_3_7_20_2) 2003
e_1_3_7_15_2
e_1_3_7_19_2
e_1_3_7_4_2
e_1_3_7_111_2
e_1_3_7_8_2
e_1_3_7_61_2
e_1_3_7_84_2
e_1_3_7_65_2
e_1_3_7_88_2
e_1_3_7_42_2
e_1_3_7_23_2
e_1_3_7_69_2
e_1_3_7_46_2
e_1_3_7_27_2
e_1_3_7_102_2
Attias H (e_1_3_7_87_2) 2003; 4
e_1_3_7_106_2
e_1_3_7_9_2
e_1_3_7_50_2
e_1_3_7_73_2
e_1_3_7_96_2
e_1_3_7_31_2
e_1_3_7_54_2
e_1_3_7_77_2
e_1_3_7_92_2
e_1_3_7_12_2
e_1_3_7_35_2
e_1_3_7_58_2
Rubakov V (e_1_3_7_99_2) 2002
e_1_3_7_39_2
Weinberg S (e_1_3_7_52_2) 1977
e_1_3_7_110_2
e_1_3_7_118_2
e_1_3_7_5_2
Jankélévitch V (e_1_3_7_109_2) 1924; 97
e_1_3_7_62_2
Perunov N (e_1_3_7_13_2) 2016; 6
e_1_3_7_81_2
van Es T (e_1_3_7_114_2) 2020; 29
e_1_3_7_43_2
e_1_3_7_66_2
e_1_3_7_85_2
e_1_3_7_24_2
e_1_3_7_47_2
e_1_3_7_89_2
e_1_3_7_28_2
Di Paolo E (e_1_3_7_78_2) 2022; 3
e_1_3_7_105_2
Balaji B (e_1_3_7_74_2) 2011; 8050
Clark A (e_1_3_7_38_2) 2015
e_1_3_7_51_2
e_1_3_7_97_2
e_1_3_7_55_2
e_1_3_7_93_2
e_1_3_7_32_2
e_1_3_7_59_2
e_1_3_7_36_2
e_1_3_7_17_2
e_1_3_7_2_2
Weisberg M (e_1_3_7_48_2) 2012
e_1_3_7_113_2
e_1_3_7_6_2
e_1_3_7_117_2
Fields C (e_1_3_7_70_2) 2017; 12
Chemero AP (e_1_3_7_41_2) 2011
e_1_3_7_108_2
e_1_3_7_40_2
e_1_3_7_82_2
e_1_3_7_44_2
Nakahara M (e_1_3_7_100_2) 2003
e_1_3_7_63_2
e_1_3_7_86_2
e_1_3_7_21_2
e_1_3_7_25_2
e_1_3_7_67_2
e_1_3_7_29_2
Cook AH (e_1_3_7_115_2) 1994
Nicolis G (e_1_3_7_16_2) 1977
e_1_3_7_104_2
e_1_3_7_90_2
Giancoli DC (e_1_3_7_101_2) 2008
e_1_3_7_71_2
e_1_3_7_98_2
Markowich PA (e_1_3_7_57_2) 2000; 19
e_1_3_7_10_2
e_1_3_7_33_2
e_1_3_7_75_2
e_1_3_7_94_2
e_1_3_7_14_2
e_1_3_7_37_2
e_1_3_7_56_2
e_1_3_7_79_2
Hohwy J (e_1_3_7_80_2) 2016; 50
e_1_3_7_18_2
e_1_3_7_112_2
e_1_3_7_3_2
e_1_3_7_7_2
References_xml – volume: 79
  start-page: 224
  year: 1954
  ident: e_1_3_7_116_2
  article-title: Remarks on the present state of operationalism
  publication-title: Sci. Mon.
– volume: 12
  start-page: 265
  year: 2017
  ident: e_1_3_7_70_2
  article-title: Eigenforms, interfaces and holographic encoding
  publication-title: Constructivist Found.
– ident: e_1_3_7_62_2
  doi: 10.1016/j.plrev.2017.12.009
– ident: e_1_3_7_119_2
  doi: 10.1007/s00422-019-00805-w
– ident: e_1_3_7_51_2
  doi: 10.1086/661755
– ident: e_1_3_7_97_2
  doi: 10.1016/j.plrev.2022.05.002
– ident: e_1_3_7_9_2
  doi: 10.1177/1059712319862774
– ident: e_1_3_7_89_2
– ident: e_1_3_7_86_2
  doi: 10.1007/978-3-030-64919-7_1
– ident: e_1_3_7_90_2
  doi: 10.3389/fnsys.2022.768201
– ident: e_1_3_7_44_2
– ident: e_1_3_7_93_2
– ident: e_1_3_7_69_2
  doi: 10.1016/j.plrev.2022.06.001
– ident: e_1_3_7_21_2
  doi: 10.1007/978-4-431-55978-8
– ident: e_1_3_7_58_2
– volume-title: Self-organization in nonequilibrium systems: from dissipative structures to order through fluctuations
  year: 1977
  ident: e_1_3_7_16_2
– ident: e_1_3_7_11_2
  doi: 10.1002/cplx.20191
– volume-title: Geometry, topology and physics
  year: 2003
  ident: e_1_3_7_100_2
– ident: e_1_3_7_39_2
  doi: 10.1007/BF02478302
– volume: 50
  start-page: 259
  year: 2016
  ident: e_1_3_7_80_2
  article-title: The self–evidencing brain
  publication-title: Nou^s
– ident: e_1_3_7_12_2
  doi: 10.1103/PhysRevLett.109.120604
– ident: e_1_3_7_46_2
  doi: 10.1017/S0140525X22000310
– ident: e_1_3_7_43_2
– ident: e_1_3_7_30_2
– volume-title: Information theory, inference and learning algorithms
  year: 2003
  ident: e_1_3_7_20_2
– ident: e_1_3_7_110_2
  doi: 10.1063/1.4818538
– ident: e_1_3_7_33_2
  doi: 10.1002/9783527658701.ch11
– ident: e_1_3_7_53_2
  doi: 10.1098/rsta.2009.0227
– ident: e_1_3_7_60_2
  doi: 10.1007/978-3-031-28719-0_6
– ident: e_1_3_7_105_2
  doi: 10.1007/978-3-030-64919-7_1
– ident: e_1_3_7_118_2
  doi: 10.1016/0550-3213(95)00158-O
– ident: e_1_3_7_113_2
– volume-title: Classical theory of gauge fields
  year: 2002
  ident: e_1_3_7_99_2
– ident: e_1_3_7_45_2
  doi: 10.1007/s10539-021-09807-0
– ident: e_1_3_7_71_2
  doi: 10.1016/j.physrep.2023.07.001
– volume: 3
  start-page: 20229187
  year: 2022
  ident: e_1_3_7_78_2
  article-title: Laying down a forking path: tensions between enaction and the free energy principle
  publication-title: Phil. Mind Sci.
– ident: e_1_3_7_95_2
  doi: 10.3390/e23030293
– ident: e_1_3_7_31_2
  doi: 10.1088/0034-4885/75/12/126001
– volume-title: Radical embodied cognitive science
  year: 2011
  ident: e_1_3_7_41_2
– volume-title: Observational foundations of physics
  year: 1994
  ident: e_1_3_7_115_2
– ident: e_1_3_7_14_2
  doi: 10.3390/e21121211
– ident: e_1_3_7_107_2
  doi: 10.1016/j.plrev.2017.09.001
– ident: e_1_3_7_22_2
  doi: 10.1098/rsta.2019.0159
– ident: e_1_3_7_75_2
  doi: 10.1155/2010/621670
– ident: e_1_3_7_103_2
  doi: 10.1016/j.plrev.2021.09.001
– ident: e_1_3_7_56_2
  doi: 10.1093/oso/9780198743040.001.0001
– ident: e_1_3_7_36_2
  doi: 10.1080/01621459.2017.1285773
– ident: e_1_3_7_10_2
– ident: e_1_3_7_55_2
– ident: e_1_3_7_29_2
  doi: 10.1371/journal.pbio.1002400
– volume: 6
  start-page: 021036
  year: 2016
  ident: e_1_3_7_13_2
  article-title: Statistical physics of adaptation
  publication-title: Phys. Rev. X
– ident: e_1_3_7_82_2
  doi: 10.1101/2022.10.03.510742
– ident: e_1_3_7_84_2
  doi: 10.1016/j.plrev.2021.11.001
– ident: e_1_3_7_19_2
  doi: 10.1103/PhysRev.106.620
– ident: e_1_3_7_34_2
  doi: 10.21203/rs.3.rs-3152338/v1
– volume: 8050
  start-page: 716
  year: 2011
  ident: e_1_3_7_74_2
  article-title: Bayesian state estimation using generalized coordinates
  publication-title: Signal Process. Sensor Fusion Target Recogn. XX
– volume: 4
  start-page: 9
  year: 2003
  ident: e_1_3_7_87_2
  article-title: Planning by probabilistic inference
  publication-title: Proc. Mach. Learn. Res.
– ident: e_1_3_7_85_2
  doi: 10.1162/neco_a_01354
– ident: e_1_3_7_23_2
– ident: e_1_3_7_92_2
  doi: 10.1016/j.plrev.2022.05.006
– ident: e_1_3_7_42_2
– ident: e_1_3_7_6_2
– ident: e_1_3_7_64_2
  doi: 10.3390/e23081076
– ident: e_1_3_7_112_2
  doi: 10.1016/j.shpsa.2022.02.005
– volume: 19
  start-page: 1
  year: 2000
  ident: e_1_3_7_57_2
  article-title: On the trend to equilibrium for the Fokker-Planck equation: an interplay between physics and functional analysis
  publication-title: Matemática Contemporânea (SBM)
– ident: e_1_3_7_61_2
  doi: 10.3389/fpsyg.2019.02688
– ident: e_1_3_7_91_2
  doi: 10.1137/080721340
– ident: e_1_3_7_47_2
  doi: 10.1093/bjps/axm011
– volume: 29
  start-page: 105971232091867
  year: 2020
  ident: e_1_3_7_114_2
  article-title: Living models or life modelled? On the use of models in the free energy principle
  publication-title: Adapt. Behav.
– ident: e_1_3_7_83_2
  doi: 10.1007/978-1-4939-1323-7
– ident: e_1_3_7_15_2
  doi: 10.3390/e23091115
– volume-title: Simulation and similarity: using models to understand the world
  year: 2012
  ident: e_1_3_7_48_2
– ident: e_1_3_7_7_2
– ident: e_1_3_7_77_2
  doi: 10.1016/bs.host.2022.03.005
– ident: e_1_3_7_24_2
  doi: 10.1068/p030123
– ident: e_1_3_7_68_2
  doi: 10.1017/S0140525X22000334
– ident: e_1_3_7_25_2
  doi: 10.1073/pnas.231499798
– ident: e_1_3_7_49_2
– ident: e_1_3_7_35_2
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– ident: e_1_3_7_8_2
  doi: 10.3390/e22080889
– ident: e_1_3_7_72_2
  doi: 10.3390/e14112100
– ident: e_1_3_7_79_2
  doi: 10.1007/s10539-021-09818-x
– ident: e_1_3_7_104_2
  doi: 10.1098/rstb.2005.1622
– ident: e_1_3_7_26_2
  doi: 10.1016/j.tics.2011.11.018
– ident: e_1_3_7_4_2
  doi: 10.3390/e23091220
– ident: e_1_3_7_65_2
– ident: e_1_3_7_73_2
  doi: 10.1038/nrn2787
– ident: e_1_3_7_27_2
  doi: 10.1209/0295-5075/97/30003
– ident: e_1_3_7_81_2
  doi: 10.1016/j.plrev.2018.12.002
– volume-title: Surfing uncertainty: prediction, action, and the embodied mind
  year: 2015
  ident: e_1_3_7_38_2
– ident: e_1_3_7_63_2
  doi: 10.1177/1059712319862774
– ident: e_1_3_7_96_2
  doi: 10.1098/rsif.2013.0475
– ident: e_1_3_7_59_2
  doi: 10.1103/RevModPhys.85.1115
– volume-title: Physics for scientists and engineers with modern physics
  year: 2008
  ident: e_1_3_7_101_2
– ident: e_1_3_7_117_2
  doi: 10.1016/j.biosystems.2022.104714
– ident: e_1_3_7_94_2
  doi: 10.3390/e22050516
– ident: e_1_3_7_40_2
  doi: 10.1007/BF02477890
– ident: e_1_3_7_28_2
  doi: 10.1098/rsif.2014.1383
– ident: e_1_3_7_3_2
  doi: 10.1098/rspa.2021.0518
– ident: e_1_3_7_54_2
  doi: 10.1007/978-3-662-06791-8_1
– ident: e_1_3_7_88_2
  doi: 10.15607/RSS.2012.VIII.045
– volume-title: The search for unity: notes for a history of quantum field theory
  year: 1977
  ident: e_1_3_7_52_2
– ident: e_1_3_7_111_2
  doi: 10.1111/sjp.12096
– ident: e_1_3_7_108_2
  doi: 10.1002/bies.201900228
– ident: e_1_3_7_66_2
– ident: e_1_3_7_98_2
  doi: 10.1142/2324
– ident: e_1_3_7_50_2
  doi: 10.1017/S0140525X98001733
– ident: e_1_3_7_102_2
  doi: 10.1109/TIT.1980.1056144
– ident: e_1_3_7_32_2
  doi: 10.1098/rsta.2019.0159
– volume: 97
  start-page: 402
  year: 1924
  ident: e_1_3_7_109_2
  article-title: Deux philosophes de la vie Bergson, Guyau
  publication-title: Revue Philosophique de la France et de l’Étranger
– ident: e_1_3_7_76_2
  doi: 10.1007/s100510051129
– ident: e_1_3_7_18_2
  doi: 10.1038/nnano.2015.250
– ident: e_1_3_7_17_2
  doi: 10.1126/science.201.4358.777
– ident: e_1_3_7_2_2
– ident: e_1_3_7_37_2
– ident: e_1_3_7_5_2
– ident: e_1_3_7_106_2
  doi: 10.1017/S0140525X22000139
– ident: e_1_3_7_67_2
  doi: 10.1016/j.plrev.2023.08.016
SSID ssj0000461802
Score 2.5138986
Snippet The aim of this paper is to introduce a field of study that has emerged over the last decade, called Bayesian mechanics. Bayesian mechanics is a probabilistic...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 20220029
Title On Bayesian mechanics: a physics of and by beliefs
URI https://www.ncbi.nlm.nih.gov/pubmed/37213925
https://www.proquest.com/docview/2817779107
https://pubmed.ncbi.nlm.nih.gov/PMC10198254
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMT7Ll4KEBKhKaWyncXgbHajbVIbQJu0t8uc60SVobRHjr-cucd0GhgR7iSLXcaq78-nul7ufCXmZ6dQlVDJIcqiL-ZCpWKVmGFvGLc85mgxCA5NPw_Ex3z9JTzqdvY2qpeVC9fXPK_tKrqNVGAO9Ypfsf2g2LAoDcA_6hStoGK7_pOPDsvdeXtq6D_LcYg8vlv3U7csNYlHXaSA0DkGmshBuuvlmNFrDgU5qJP7Wy3XVuzwPup_IHzW8t9_v7fYDHCO_LqZn36UBVzlrKuPxcOreTr_3JUwaWw9lj6qyCiXAB9XSyOmsWfq0bMMOlOEXlGQNO6IRNwCHry5d-y2KHT9CNIdL9-3GWO5xi5XjZRsGxq7054McexQu5g6Z1Slyq3p8pM2R_XkyAteSY7Z7g9ykkDHgYRa7ewcBbkNeeVFXoIa_Fyg8xdv2C9ohyh95x-_lsxvxyNEdctsnEtFOYxXbpGPLu2Tbu-p59Nrzib-5R-hhGa3MJApm8i6SkTeSqHIRGEmkLiNvJPfJ8ccPR6Nx7I_KiHWai0VMhVMihd2Y0wz5jDJnIHBNHYPw0ZkEdp4ZaKONVXrAjZROOqUhdEwMJJgyT9gDslVWpX1EIp4qcMuGcaU5l7lTnIkht7lxqVA5VV0Sr6RTaM8jj8eZzIqmnkEUKM0CpVmgNLvkVZj_rWFQ-evMFythF-Dk8MuVLG21hCkiybIMItusSx42wg9rsYxCFkPTLhEttYQJSKDe_qU8m9ZE6iubeXz9R5-QW-vd8ZRsLS6W9hmEqQv1vDbAX0Rkk7Y
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Bayesian+mechanics%3A+a+physics+of+and+by+beliefs&rft.jtitle=Interface+focus&rft.au=Ramstead%2C+Maxwell+J.+D.&rft.au=Sakthivadivel%2C+Dalton+A.+R.&rft.au=Heins%2C+Conor&rft.au=Koudahl%2C+Magnus&rft.date=2023-04-14&rft.pub=The+Royal+Society&rft.issn=2042-8898&rft.eissn=2042-8901&rft.volume=13&rft.issue=3&rft_id=info:doi/10.1098%2Frsfs.2022.0029&rft.externalDocID=PMC10198254
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2042-8901&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2042-8901&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2042-8901&client=summon