Mutation in the putative ketoacyl-ACP reductase CaKR1 induces loss of pungency in Capsicum

Key message A putative ketoacyl-ACP reductase ( CaKR1 ) that was not previously known to be associated with pungency of Capsicum was identified from map-based cloning and functional characterization. The pungency of chili pepper fruits is due to the presence of capsaicinoids, which are synthesized t...

Full description

Saved in:
Bibliographic Details
Published inTheoretical and applied genetics Vol. 132; no. 1; pp. 65 - 80
Main Authors Koeda, Sota, Sato, Kosuke, Saito, Hiroki, Nagano, Atsushi J., Yasugi, Masaki, Kudoh, Hiroshi, Tanaka, Yoshiyuki
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2019
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Key message A putative ketoacyl-ACP reductase ( CaKR1 ) that was not previously known to be associated with pungency of Capsicum was identified from map-based cloning and functional characterization. The pungency of chili pepper fruits is due to the presence of capsaicinoids, which are synthesized through the convergence of the phenylpropanoid and branched-chain fatty acid pathways. The extensive, global use of pungent and non-pungent peppers underlines the importance of understanding the genetic mechanism underlying capsaicinoid biosynthesis for breeding pepper cultivars. Although Capsicum is one of the earliest domesticated plant genera, the only reported genetic causes of its loss of pungency are mutations in acyltransferase ( Pun1 ) and putative aminotransferase ( pAMT ). In this study, a single recessive gene responsible for the non-pungency of pepper No.3341 ( C. chinense ) was identified on chromosome 10 using an F 2 population derived from a cross between Habanero and No.3341. Five candidate genes were identified in the target region, within a distance of 220 kb. A candidate gene, a putative ketoacyl-ACP reductase ( CaKR1 ), of No.3341 had an insertion of a 4.5-kb transposable element (TE) sequence in the first intron, resulting in the production of a truncated transcript missing the region coding the catalytic domain. Virus-induced gene silencing of CaKR1 in pungent peppers resulted in the decreased accumulation of capsaicinoids, a phenotype consistent with No.3341. Moreover, GC–MS analysis of 8-methyl-6-nonenoic acid, which is predicted to be synthesized during the elongation cycle of branched-chain fatty acid biosynthesis, revealed that its deficiency in No.3341. Genetic, genomic, transcriptional, silencing, and biochemical precursor analyses performed in combination provide a solid ground for the conclusion that CaKR1 is involved in capsaicinoid biosynthesis and that its disruption results in a loss of pungency.
AbstractList Key message
KEY MESSAGE: A putative ketoacyl-ACP reductase (CaKR1) that was not previously known to be associated with pungency of Capsicum was identified from map-based cloning and functional characterization. The pungency of chili pepper fruits is due to the presence of capsaicinoids, which are synthesized through the convergence of the phenylpropanoid and branched-chain fatty acid pathways. The extensive, global use of pungent and non-pungent peppers underlines the importance of understanding the genetic mechanism underlying capsaicinoid biosynthesis for breeding pepper cultivars. Although Capsicum is one of the earliest domesticated plant genera, the only reported genetic causes of its loss of pungency are mutations in acyltransferase (Pun1) and putative aminotransferase (pAMT). In this study, a single recessive gene responsible for the non-pungency of pepper No.3341 (C. chinense) was identified on chromosome 10 using an F₂ population derived from a cross between Habanero and No.3341. Five candidate genes were identified in the target region, within a distance of 220 kb. A candidate gene, a putative ketoacyl-ACP reductase (CaKR1), of No.3341 had an insertion of a 4.5-kb transposable element (TE) sequence in the first intron, resulting in the production of a truncated transcript missing the region coding the catalytic domain. Virus-induced gene silencing of CaKR1 in pungent peppers resulted in the decreased accumulation of capsaicinoids, a phenotype consistent with No.3341. Moreover, GC–MS analysis of 8-methyl-6-nonenoic acid, which is predicted to be synthesized during the elongation cycle of branched-chain fatty acid biosynthesis, revealed that its deficiency in No.3341. Genetic, genomic, transcriptional, silencing, and biochemical precursor analyses performed in combination provide a solid ground for the conclusion that CaKR1 is involved in capsaicinoid biosynthesis and that its disruption results in a loss of pungency.
Key message A putative ketoacyl-ACP reductase (CaKR1) that was not previously known to be associated with pungency of Capsicum was identified from map-based cloning and functional characterization. The pungency of chili pepper fruits is due to the presence of capsaicinoids, which are synthesized through the convergence of the phenylpropanoid and branched-chain fatty acid pathways. The extensive, global use of pungent and non-pungent peppers underlines the importance of understanding the genetic mechanism underlying capsaicinoid biosynthesis for breeding pepper cultivars. Although Capsicum is one of the earliest domesticated plant genera, the only reported genetic causes of its loss of pungency are mutations in acyltransferase (Pun1) and putative aminotransferase (pAMT). In this study, a single recessive gene responsible for the non-pungency of pepper No.3341 (C. chinense) was identified on chromosome 10 using an F.sub.2 population derived from a cross between Habanero and No.3341. Five candidate genes were identified in the target region, within a distance of 220 kb. A candidate gene, a putative ketoacyl-ACP reductase (CaKR1), of No.3341 had an insertion of a 4.5-kb transposable element (TE) sequence in the first intron, resulting in the production of a truncated transcript missing the region coding the catalytic domain. Virus-induced gene silencing of CaKR1 in pungent peppers resulted in the decreased accumulation of capsaicinoids, a phenotype consistent with No.3341. Moreover, GC-MS analysis of 8-methyl-6-nonenoic acid, which is predicted to be synthesized during the elongation cycle of branched-chain fatty acid biosynthesis, revealed that its deficiency in No.3341. Genetic, genomic, transcriptional, silencing, and biochemical precursor analyses performed in combination provide a solid ground for the conclusion that CaKR1 is involved in capsaicinoid biosynthesis and that its disruption results in a loss of pungency.
Key message A putative ketoacyl-ACP reductase ( CaKR1 ) that was not previously known to be associated with pungency of Capsicum was identified from map-based cloning and functional characterization. The pungency of chili pepper fruits is due to the presence of capsaicinoids, which are synthesized through the convergence of the phenylpropanoid and branched-chain fatty acid pathways. The extensive, global use of pungent and non-pungent peppers underlines the importance of understanding the genetic mechanism underlying capsaicinoid biosynthesis for breeding pepper cultivars. Although Capsicum is one of the earliest domesticated plant genera, the only reported genetic causes of its loss of pungency are mutations in acyltransferase ( Pun1 ) and putative aminotransferase ( pAMT ). In this study, a single recessive gene responsible for the non-pungency of pepper No.3341 ( C. chinense ) was identified on chromosome 10 using an F 2 population derived from a cross between Habanero and No.3341. Five candidate genes were identified in the target region, within a distance of 220 kb. A candidate gene, a putative ketoacyl-ACP reductase ( CaKR1 ), of No.3341 had an insertion of a 4.5-kb transposable element (TE) sequence in the first intron, resulting in the production of a truncated transcript missing the region coding the catalytic domain. Virus-induced gene silencing of CaKR1 in pungent peppers resulted in the decreased accumulation of capsaicinoids, a phenotype consistent with No.3341. Moreover, GC–MS analysis of 8-methyl-6-nonenoic acid, which is predicted to be synthesized during the elongation cycle of branched-chain fatty acid biosynthesis, revealed that its deficiency in No.3341. Genetic, genomic, transcriptional, silencing, and biochemical precursor analyses performed in combination provide a solid ground for the conclusion that CaKR1 is involved in capsaicinoid biosynthesis and that its disruption results in a loss of pungency.
Key messageA putative ketoacyl-ACP reductase (CaKR1) that was not previously known to be associated with pungency of Capsicum was identified from map-based cloning and functional characterization.The pungency of chili pepper fruits is due to the presence of capsaicinoids, which are synthesized through the convergence of the phenylpropanoid and branched-chain fatty acid pathways. The extensive, global use of pungent and non-pungent peppers underlines the importance of understanding the genetic mechanism underlying capsaicinoid biosynthesis for breeding pepper cultivars. Although Capsicum is one of the earliest domesticated plant genera, the only reported genetic causes of its loss of pungency are mutations in acyltransferase (Pun1) and putative aminotransferase (pAMT). In this study, a single recessive gene responsible for the non-pungency of pepper No.3341 (C. chinense) was identified on chromosome 10 using an F2 population derived from a cross between Habanero and No.3341. Five candidate genes were identified in the target region, within a distance of 220 kb. A candidate gene, a putative ketoacyl-ACP reductase (CaKR1), of No.3341 had an insertion of a 4.5-kb transposable element (TE) sequence in the first intron, resulting in the production of a truncated transcript missing the region coding the catalytic domain. Virus-induced gene silencing of CaKR1 in pungent peppers resulted in the decreased accumulation of capsaicinoids, a phenotype consistent with No.3341. Moreover, GC–MS analysis of 8-methyl-6-nonenoic acid, which is predicted to be synthesized during the elongation cycle of branched-chain fatty acid biosynthesis, revealed that its deficiency in No.3341. Genetic, genomic, transcriptional, silencing, and biochemical precursor analyses performed in combination provide a solid ground for the conclusion that CaKR1 is involved in capsaicinoid biosynthesis and that its disruption results in a loss of pungency.
A putative ketoacyl-ACP reductase (CaKR1) that was not previously known to be associated with pungency of Capsicum was identified from map-based cloning and functional characterization. The pungency of chili pepper fruits is due to the presence of capsaicinoids, which are synthesized through the convergence of the phenylpropanoid and branched-chain fatty acid pathways. The extensive, global use of pungent and non-pungent peppers underlines the importance of understanding the genetic mechanism underlying capsaicinoid biosynthesis for breeding pepper cultivars. Although Capsicum is one of the earliest domesticated plant genera, the only reported genetic causes of its loss of pungency are mutations in acyltransferase (Pun1) and putative aminotransferase (pAMT). In this study, a single recessive gene responsible for the non-pungency of pepper No.3341 (C. chinense) was identified on chromosome 10 using an F2 population derived from a cross between Habanero and No.3341. Five candidate genes were identified in the target region, within a distance of 220 kb. A candidate gene, a putative ketoacyl-ACP reductase (CaKR1), of No.3341 had an insertion of a 4.5-kb transposable element (TE) sequence in the first intron, resulting in the production of a truncated transcript missing the region coding the catalytic domain. Virus-induced gene silencing of CaKR1 in pungent peppers resulted in the decreased accumulation of capsaicinoids, a phenotype consistent with No.3341. Moreover, GC-MS analysis of 8-methyl-6-nonenoic acid, which is predicted to be synthesized during the elongation cycle of branched-chain fatty acid biosynthesis, revealed that its deficiency in No.3341. Genetic, genomic, transcriptional, silencing, and biochemical precursor analyses performed in combination provide a solid ground for the conclusion that CaKR1 is involved in capsaicinoid biosynthesis and that its disruption results in a loss of pungency.KEY MESSAGEA putative ketoacyl-ACP reductase (CaKR1) that was not previously known to be associated with pungency of Capsicum was identified from map-based cloning and functional characterization. The pungency of chili pepper fruits is due to the presence of capsaicinoids, which are synthesized through the convergence of the phenylpropanoid and branched-chain fatty acid pathways. The extensive, global use of pungent and non-pungent peppers underlines the importance of understanding the genetic mechanism underlying capsaicinoid biosynthesis for breeding pepper cultivars. Although Capsicum is one of the earliest domesticated plant genera, the only reported genetic causes of its loss of pungency are mutations in acyltransferase (Pun1) and putative aminotransferase (pAMT). In this study, a single recessive gene responsible for the non-pungency of pepper No.3341 (C. chinense) was identified on chromosome 10 using an F2 population derived from a cross between Habanero and No.3341. Five candidate genes were identified in the target region, within a distance of 220 kb. A candidate gene, a putative ketoacyl-ACP reductase (CaKR1), of No.3341 had an insertion of a 4.5-kb transposable element (TE) sequence in the first intron, resulting in the production of a truncated transcript missing the region coding the catalytic domain. Virus-induced gene silencing of CaKR1 in pungent peppers resulted in the decreased accumulation of capsaicinoids, a phenotype consistent with No.3341. Moreover, GC-MS analysis of 8-methyl-6-nonenoic acid, which is predicted to be synthesized during the elongation cycle of branched-chain fatty acid biosynthesis, revealed that its deficiency in No.3341. Genetic, genomic, transcriptional, silencing, and biochemical precursor analyses performed in combination provide a solid ground for the conclusion that CaKR1 is involved in capsaicinoid biosynthesis and that its disruption results in a loss of pungency.
A putative ketoacyl-ACP reductase (CaKR1) that was not previously known to be associated with pungency of Capsicum was identified from map-based cloning and functional characterization. The pungency of chili pepper fruits is due to the presence of capsaicinoids, which are synthesized through the convergence of the phenylpropanoid and branched-chain fatty acid pathways. The extensive, global use of pungent and non-pungent peppers underlines the importance of understanding the genetic mechanism underlying capsaicinoid biosynthesis for breeding pepper cultivars. Although Capsicum is one of the earliest domesticated plant genera, the only reported genetic causes of its loss of pungency are mutations in acyltransferase (Pun1) and putative aminotransferase (pAMT). In this study, a single recessive gene responsible for the non-pungency of pepper No.3341 (C. chinense) was identified on chromosome 10 using an F population derived from a cross between Habanero and No.3341. Five candidate genes were identified in the target region, within a distance of 220 kb. A candidate gene, a putative ketoacyl-ACP reductase (CaKR1), of No.3341 had an insertion of a 4.5-kb transposable element (TE) sequence in the first intron, resulting in the production of a truncated transcript missing the region coding the catalytic domain. Virus-induced gene silencing of CaKR1 in pungent peppers resulted in the decreased accumulation of capsaicinoids, a phenotype consistent with No.3341. Moreover, GC-MS analysis of 8-methyl-6-nonenoic acid, which is predicted to be synthesized during the elongation cycle of branched-chain fatty acid biosynthesis, revealed that its deficiency in No.3341. Genetic, genomic, transcriptional, silencing, and biochemical precursor analyses performed in combination provide a solid ground for the conclusion that CaKR1 is involved in capsaicinoid biosynthesis and that its disruption results in a loss of pungency.
Audience Academic
Author Sato, Kosuke
Koeda, Sota
Saito, Hiroki
Nagano, Atsushi J.
Tanaka, Yoshiyuki
Yasugi, Masaki
Kudoh, Hiroshi
Author_xml – sequence: 1
  givenname: Sota
  orcidid: 0000-0001-5921-8432
  surname: Koeda
  fullname: Koeda, Sota
  email: 818sota@nara.kindai.ac.jp
  organization: Faculty of Agriculture, Kindai University, Experimental Farm, Graduate School of Agriculture, Kyoto University
– sequence: 2
  givenname: Kosuke
  surname: Sato
  fullname: Sato, Kosuke
  organization: Experimental Farm, Graduate School of Agriculture, Kyoto University
– sequence: 3
  givenname: Hiroki
  surname: Saito
  fullname: Saito, Hiroki
  organization: Experimental Farm, Graduate School of Agriculture, Kyoto University, Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences
– sequence: 4
  givenname: Atsushi J.
  orcidid: 0000-0001-7891-5049
  surname: Nagano
  fullname: Nagano, Atsushi J.
  organization: Faculty of Agriculture, Ryukoku University
– sequence: 5
  givenname: Masaki
  surname: Yasugi
  fullname: Yasugi, Masaki
  organization: Faculty of Engineering, Utsunomiya University
– sequence: 6
  givenname: Hiroshi
  orcidid: 0000-0001-9777-4886
  surname: Kudoh
  fullname: Kudoh, Hiroshi
  organization: Center for Ecological Research, Kyoto University
– sequence: 7
  givenname: Yoshiyuki
  surname: Tanaka
  fullname: Tanaka, Yoshiyuki
  organization: Graduate School of Environmental and Life Science, Okayama University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30267113$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhi1URLeFH8AFReICh5QZ24mT4yrio6IIVODCxfI6k8UlH0vsIPbf45AWtBUf8sEa63lfjWfeE3bUDz0x9hDhDAHUMw-AnKeARSqwzFJ-h61QCp5yLvkRWwFISDOV8WN24v0VAPAMxD12LIDnClGs2Kc3UzDBDX3i-iR8pmT3s_5GyRcKg7H7Nl1X75KR6skG4ympzOtLjHCsySft4H0yNFHVb6m3-9mlMjvv7NTdZ3cb03p6cH2fso8vnn-oXqUXb1-eV-uL1GZlEVIEyetNrZSpqTDEN0I0BhVKBblt6tg0FspmDZIUQgmoJRgspCgzXstN04hT9mTx3Y3D14l80J3zltrW9DRMXnPOETKlkP8fRZR5WXKBEX18C70aprGPH5kpkReFjE38oramJe36ZgijsbOpXmd5IUpU5Uyd_YGKp6bO2bjTxsX3A8HTA0FkAn0PWzN5r8_fXx6yj64bnTYd1Xo3us6Me32z4wioBbBj3NZIjbZu2XnswrUaQc9p0kuadBy3ntOk53HhLeWN-b80fNH4yMZQjL_n9nfRD7LU1iQ
CitedBy_id crossref_primary_10_1080_13102818_2022_2071633
crossref_primary_10_1186_s12870_024_05591_7
crossref_primary_10_1016_j_scienta_2022_111456
crossref_primary_10_1016_j_cpb_2023_100303
crossref_primary_10_1038_s41598_020_75271_7
crossref_primary_10_1021_acs_jafc_3c01901
crossref_primary_10_3389_fpls_2021_783496
crossref_primary_10_1080_07391102_2024_2317991
crossref_primary_10_1007_s00438_021_01763_4
crossref_primary_10_1007_s00438_022_01975_2
crossref_primary_10_2503_hortj_QH_100
crossref_primary_10_1007_s40415_019_00575_6
crossref_primary_10_2503_hortj_UTD_282
crossref_primary_10_2503_hortj_UTD_184
crossref_primary_10_3389_fgene_2020_598183
crossref_primary_10_1007_s10681_022_02970_9
crossref_primary_10_1007_s00122_024_04602_3
crossref_primary_10_1111_tpj_14462
crossref_primary_10_3390_molecules28062644
crossref_primary_10_1038_s41438_020_00381_2
crossref_primary_10_15547_tjs_2022_01_005
crossref_primary_10_1007_s00122_018_3238_8
crossref_primary_10_1021_acs_jafc_9b04179
crossref_primary_10_1111_tpj_16573
crossref_primary_10_1007_s00122_022_04125_9
crossref_primary_10_1007_s00122_018_03275_z
crossref_primary_10_1007_s11103_021_01159_3
crossref_primary_10_1007_s00299_023_03064_z
crossref_primary_10_32604_phyton_2023_046943
crossref_primary_10_1080_07352689_2021_1941605
crossref_primary_10_2139_ssrn_4135296
crossref_primary_10_1007_s00299_021_02750_0
crossref_primary_10_1016_j_ijbiomac_2024_135592
crossref_primary_10_1007_s00122_021_03870_7
crossref_primary_10_1039_D2NP00003B
crossref_primary_10_3389_fpls_2022_1039393
crossref_primary_10_2503_hortj_UTD_216
crossref_primary_10_1080_10408398_2022_2097195
crossref_primary_10_3390_agriculture11090819
Cites_doi 10.1007/s11295-015-0944-0
10.1007/s00299-010-0968-8
10.1002/pmic.200600326
10.1104/pp.17.00506
10.1111/j.1365-313X.2005.02410.x
10.1007/BF00021431
10.1093/jxb/erl243
10.1093/molbev/msw054
10.1007/s00018-008-8588-y
10.1093/bioinformatics/btu170
10.1023/A:1002913228101
10.1007/s00425-007-0651-7
10.1104/pp.109.136549
10.1007/s11032-015-0339-9
10.1021/jf052085z
10.1080/0735-260291044269
10.1007/s00438-015-1071-1
10.1111/j.1742-4658.2007.05642.x
10.1016/j.molp.2014.11.024
10.1534/g3.111.000240
10.2503/hortj.OKD-115
10.1093/bfgp/elu002
10.1016/S0969-2126(00)00115-5
10.1186/s12870-015-0476-7
10.1046/j.1365-313x.2001.00993.x
10.1073/pnas.1400975111
10.1038/srep38081
10.1104/pp.121.2.479
10.4236/ajps.2015.68127
10.1146/annurev.biochem.74.082803.133524
10.1039/j39680000442
10.1016/j.biotechadv.2009.08.005
10.2503/jjshs.58.353
10.1126/science.1136914
10.1093/aob/mcw079
10.1016/0092-8674(93)90522-R
10.1016/0092-8674(90)90721-P
10.1080/10408398509527412
10.1016/S0009-2797(02)00223-5
10.1038/hdy.2009.131
10.2503/hortj.MI-148
10.1007/s00122-004-1625-9
10.1007/s00438-005-0083-7
10.1021/jf1019642
10.1186/s13007-016-0151-5
10.1021/ja01026a049
10.1007/BF00197589
10.1093/bioinformatics/btm404
10.1007/s00122-016-2723-1
10.1093/jxb/erg176
10.1371/journal.pone.0048156
10.1002/j.1460-2075.1986.tb04517.x
10.2503/jjshs1.CH-105
10.1038/ng.2877
10.1111/pbi.12894
10.1111/j.1365-313X.2009.03921.x
10.2503/hortj.MI-049
10.1021/jf903282r
10.1016/S0168-9452(99)00118-1
10.1242/dev.126.3.435
10.1016/S1016-8478(23)17027-0
10.1016/S1016-8478(23)13054-8
10.1155/2014/194812
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2018
COPYRIGHT 2019 Springer
Theoretical and Applied Genetics is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018
– notice: COPYRIGHT 2019 Springer
– notice: Theoretical and Applied Genetics is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7SS
7TK
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
7S9
L.6
DOI 10.1007/s00122-018-3195-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA


ProQuest Central Student
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
EISSN 1432-2242
EndPage 80
ExternalDocumentID A568391794
30267113
10_1007_s00122_018_3195_2
Genre Journal Article
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  grantid: 25850018; 16K07605
– fundername: Japan Society for the Promotion of Science
  grantid: 16K07605
– fundername: Japan Society for the Promotion of Science
  grantid: 25850018
GroupedDBID ---
-4W
-56
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29Q
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67N
67Z
6NX
78A
7X7
88A
88E
8AO
8FE
8FH
8FI
8FJ
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IFM
IHE
IHR
IJ-
IKXTQ
INH
INR
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M0L
M1P
M4Y
M7P
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P0-
P19
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
Y6R
YLTOR
Z45
Z7S
Z7U
Z7V
Z7W
Z7Y
Z83
Z85
Z87
Z8N
Z8O
Z8P
Z8Q
Z8S
Z8W
Z8Z
Z91
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
AEIIB
PMFND
7SS
7TK
7XB
8FD
8FK
ABRTQ
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c598t-1042dbd77ade8ae2b33fa1714706cfd000187c5f1e433730d40a1843952d4bff3
IEDL.DBID 7X7
ISSN 0040-5752
1432-2242
IngestDate Thu Jul 10 22:38:45 EDT 2025
Thu Jul 10 18:31:18 EDT 2025
Fri Jul 25 09:34:58 EDT 2025
Tue Jun 17 21:39:15 EDT 2025
Tue Jun 10 20:38:15 EDT 2025
Fri Jun 27 04:16:33 EDT 2025
Thu Apr 03 07:07:18 EDT 2025
Tue Jul 01 04:18:26 EDT 2025
Thu Apr 24 23:00:16 EDT 2025
Fri Feb 21 02:35:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c598t-1042dbd77ade8ae2b33fa1714706cfd000187c5f1e433730d40a1843952d4bff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5921-8432
0000-0001-7891-5049
0000-0001-9777-4886
PMID 30267113
PQID 2113688484
PQPubID 54040
PageCount 16
ParticipantIDs proquest_miscellaneous_2221057712
proquest_miscellaneous_2114699231
proquest_journals_2113688484
gale_infotracmisc_A568391794
gale_infotracacademiconefile_A568391794
gale_incontextgauss_ISR_A568391794
pubmed_primary_30267113
crossref_citationtrail_10_1007_s00122_018_3195_2
crossref_primary_10_1007_s00122_018_3195_2
springer_journals_10_1007_s00122_018_3195_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationSubtitle International Journal of Plant Breeding Research
PublicationTitle Theoretical and applied genetics
PublicationTitleAbbrev Theor Appl Genet
PublicationTitleAlternate Theor Appl Genet
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References Borovsky, Oren-Shamir, Ovadia, De Jong, Paran (CR10) 2004; 109
Liu, Parrott, Hildebrand, Collins, Williams (CR39) 1990; 9
Maligeppagol, Manjula, Navale, Babu, Kumbar, Laxman (CR42) 2016; 15
Bolger, Lohse, Usadel (CR9) 2014; 30
Kothari, Joshi, Kachhwaha, Ochoa-Alejo (CR33) 2010; 28
Brosché, Strid (CR12) 1999; 121
Lang, Kisaka, Sugiyama, Nomura, Morita, Watanabe, Tanaka, Yazawa, Miwa (CR35) 2009; 59
Curry, Aluru, Mendoza, Nevarez, Melendrez, O’Connell (CR17) 1999; 148
Tanaka, Fukuta, Koeda, Goto, Yoshida, Yasuba (CR62) 2018; 87
Picton, Gray, Barton, AbuBakar, Lowe, Grierson (CR51) 1993; 23
Arce-Rodríguez, Ochoa-Alejo (CR4) 2017; 174
Abraham-Juarez, Rocha-Granados, López, Rivera-Bustamante, Ochoa-Alejo (CR1) 2008; 227
DeLong, Calderon-Urrea, Dellaporta (CR18) 1993; 74
Larkin, Blackshields, Brown (CR36) 2007; 23
Calderon-Urrea, Dellaporta (CR13) 1999; 126
Pickersgill (CR50) 1997; 96
Andrews (CR3) 1984
Kirii, Goto, Yoshida, Yasuba, Tanaka (CR29) 2017; 86
Tanaka, Hosokawa, Miwa, Watanabe, Yazawa (CR60) 2010; 58
Wessler, Baran, Varagona, Dellaporta (CR64) 1986; 5
Narasimha Prasad, Gururaj, Kumar, Giridhar, Parimalan, Sharma, Ravishankar (CR45) 2006; 54
Qin, Yu, Shen (CR52) 2014; 111
Aza-Gonzalez, Nunez-Palenius, Ochoa-Alejo (CR5) 2011; 30
Carrizo García, Barfuss, Sehr, Barboza, Samuel, Moscone, Ehrendorfer (CR14) 2016; 118
Kim, Park, Jeong, Lee, Choi (CR28) 2017; 13
Bhattacharyya, Smith, Ellis (CR8) 1990; 60
Sakaguchi, Sugino, Tsumura (CR53) 2015; 11
Stewart, Mazourek, Stellari, O’Connell, Jahn (CR58) 2007; 58
Wu, Knapp, Stamp, Stammers, Jörnvall, Dellaporta, Oppermann (CR66) 2007; 274
Hadacek (CR22) 2002; 21
Liu, Li, Wu, Chen, Lei (CR40) 2013; 8
Liu, Venkatesh, Jo, Koeda, Hosokawa, Kang, Goritschnig, Kang (CR41) 2016; 129
White, Zheng, Zhang, Rock (CR65) 2005; 74
Zhang, Zhao, Liu, Huang, Cao, Cheng, Lin (CR68) 2016; 6
CR54
Bosland, Votava (CR11) 2000
Kavanagh, Jörnvall, Persson, Oppermann (CR25) 2008; 65
Ogawa, Murota, Shimura, Furuya, Togawa, Matsumura, Masuta (CR46) 2015; 15
Jacobsen, Olszewski (CR24) 1996; 198
Vitte, Fustier, Alix, Tenaillon (CR63) 2014; 13
Fisher, Kroon, Martindale, Stuitje, Slabas, Rafferty (CR20) 2000; 15
Mazourek, Pujar, Borovsky, Paran, Mueller, Jahn (CR43) 2009; 150
Stellari, Mazourek, Jahn (CR56) 2010; 104
Tanaka, Sonoyama, Muraga, Koeda, Goto, Yoshida, Yasuba (CR61) 2015; 35
Catchen, Amores, Hohenlohe, Cresko, Postlethwait (CR15) 2011; 1
Fernandez-Pozo, Rosli, Martin, Mueller (CR19) 2015; 8
Koeda, Sato, Tanaka, Takisawa, Kitajima (CR32) 2015; 6
Koeda, Sato, Tomi, Tanaka, Takisawa, Hosokawa, Doi, Nakazaki, Kitajima (CR30) 2014; 83
Bennett, Kirby (CR7) 1968; 4
Stewart, Kang, Liu, Mazourek, Moore, Eun, Kim, Paran, Jahn (CR57) 2005; 42
Steinitz, Wolf, Matzevitch-Josef, Zelcer (CR55) 1999; 18
Chung, Seong, Kim, Chung, Oh, Lee, Park, Joung, Choi (CR16) 2004; 17
Tanaka, Hosokawa, Miwa, Watanabe, Yazawa (CR59) 2010; 58
Park, Nishikawa, Minami, Nemoto, Iwasaki, Matsushima (CR47) 2015; 290
Han, Lee, Ro, Hur, Lee, Kwon, Kang (CR23) 2018
Lee, Kim, Lee, Yoo, Cho, Cho, Kim, Bahk (CR37) 2006; 6
Aluru, Mazourek, Landry, Curry, Jahn, O’Connell (CR2) 2003; 54
Nakatsuka, Nishihara, Mishiba, Hirano, Yamamura (CR44) 2006; 275
Persson, Kallberg, Oppermann, Jörnvall (CR49) 2003; 143–144
Yazawa, Ueda, Suetome, Namiki (CR67) 1989; 58
Kim, Kim, Kim, Kim (CR26) 2001; 11
Kim, Park, Yeom (CR27) 2014; 46
Perry, Dickau, Zarrillo (CR48) 2007; 315
Govindarajan (CR21) 1985; 22
Leete, Louden (CR38) 1968; 9
Koeda, Sato, Takisawa, Kitajima (CR31) 2015; 84
Kumar, Stecher, Tamura (CR34) 2016; 33
Bachem, Horvath, Trindade, Claassens, Davelaar, Jordi, Visser (CR6) 2001; 25
KL Kavanagh (3195_CR25) 2008; 65
A DeLong (3195_CR18) 1993; 74
C Aza-Gonzalez (3195_CR5) 2011; 30
B Steinitz (3195_CR55) 1999; 18
B Persson (3195_CR49) 2003; 143–144
M Maligeppagol (3195_CR42) 2016; 15
K Ogawa (3195_CR46) 2015; 15
VS Govindarajan (3195_CR21) 1985; 22
J Curry (3195_CR17) 1999; 148
DJ Bennett (3195_CR7) 1968; 4
GM Stellari (3195_CR56) 2010; 104
C Stewart Jr (3195_CR57) 2005; 42
J Andrews (3195_CR3) 1984
A Calderon-Urrea (3195_CR13) 1999; 126
Y Tanaka (3195_CR62) 2018; 87
S Yazawa (3195_CR67) 1989; 58
C Vitte (3195_CR63) 2014; 13
Y Lang (3195_CR35) 2009; 59
M Brosché (3195_CR12) 1999; 121
S Koeda (3195_CR31) 2015; 84
MR Aluru (3195_CR2) 2003; 54
Y Borovsky (3195_CR10) 2004; 109
SE Jacobsen (3195_CR24) 1996; 198
F Hadacek (3195_CR22) 2002; 21
T Nakatsuka (3195_CR44) 2006; 275
PW Bosland (3195_CR11) 2000
MA Larkin (3195_CR36) 2007; 23
ZX Zhang (3195_CR68) 2016; 6
CW Bachem (3195_CR6) 2001; 25
ML Arce-Rodríguez (3195_CR4) 2017; 174
S Koeda (3195_CR32) 2015; 6
MD Abraham-Juarez (3195_CR1) 2008; 227
S Liu (3195_CR40) 2013; 8
C Stewart Jr (3195_CR58) 2007; 58
3195_CR54
SW White (3195_CR65) 2005; 74
W Liu (3195_CR39) 1990; 9
J Kim (3195_CR28) 2017; 13
S Kumar (3195_CR34) 2016; 33
Y Tanaka (3195_CR60) 2010; 58
B Pickersgill (3195_CR50) 1997; 96
S Koeda (3195_CR30) 2014; 83
N Fernandez-Pozo (3195_CR19) 2015; 8
SL Kothari (3195_CR33) 2010; 28
L Perry (3195_CR48) 2007; 315
S Picton (3195_CR51) 1993; 23
E Leete (3195_CR38) 1968; 9
M Kim (3195_CR26) 2001; 11
BC Narasimha Prasad (3195_CR45) 2006; 54
C Carrizo García (3195_CR14) 2016; 118
E Chung (3195_CR16) 2004; 17
AM Bolger (3195_CR9) 2014; 30
S Sakaguchi (3195_CR53) 2015; 11
E Kirii (3195_CR29) 2017; 86
M Mazourek (3195_CR43) 2009; 150
Y Tanaka (3195_CR61) 2015; 35
M Fisher (3195_CR20) 2000; 15
C Qin (3195_CR52) 2014; 111
JM Lee (3195_CR37) 2006; 6
L Liu (3195_CR41) 2016; 129
Y Tanaka (3195_CR59) 2010; 58
X Wu (3195_CR66) 2007; 274
K Han (3195_CR23) 2018
S Kim (3195_CR27) 2014; 46
JM Catchen (3195_CR15) 2011; 1
YJ Park (3195_CR47) 2015; 290
MK Bhattacharyya (3195_CR8) 1990; 60
SR Wessler (3195_CR64) 1986; 5
References_xml – volume: 11
  start-page: 121
  year: 2015
  ident: CR53
  article-title: High-throughput linkage mapping of Australian white cypress pine ( ) and map transferability to related species
  publication-title: Tree Genet Genom
  doi: 10.1007/s11295-015-0944-0
– volume: 30
  start-page: 695
  year: 2011
  end-page: 706
  ident: CR5
  article-title: Molecular biology of capsaicinoid biosynthesis in chili pepper ( spp.)
  publication-title: Plant Cell Rep
  doi: 10.1007/s00299-010-0968-8
– volume: 17
  start-page: 377
  year: 2004
  end-page: 380
  ident: CR16
  article-title: A method of high frequency virus-induced gene silencing in chili pepper ( L. cv. Bukang)
  publication-title: Mol Cells
– volume: 6
  start-page: 5248
  year: 2006
  end-page: 5259
  ident: CR37
  article-title: A differentially expressed proteomic analysis in placental tissues in relation to pungency during the pepper fruit development
  publication-title: Proteomics
  doi: 10.1002/pmic.200600326
– volume: 174
  start-page: 1359
  year: 2017
  end-page: 1370
  ident: CR4
  article-title: An R2R3-MYB transcription factor regulates capsaicinoid biosynthesis
  publication-title: Plant Physiol
  doi: 10.1104/pp.17.00506
– volume: 42
  start-page: 675
  year: 2005
  end-page: 688
  ident: CR57
  article-title: The gene for pungency in pepper encodes a putative acyltransferase
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2005.02410.x
– volume: 23
  start-page: 193
  year: 1993
  end-page: 207
  ident: CR51
  article-title: cDNA cloning and characterisation of novel ripening-related mRNAs with altered patterns of accumulation in the ( ) tomato ripening mutant
  publication-title: Plant Mol Biol
  doi: 10.1007/BF00021431
– volume: 58
  start-page: 979
  year: 2007
  end-page: 991
  ident: CR58
  article-title: Genetic control of pungency in via the locus
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erl243
– year: 2000
  ident: CR11
  publication-title: Peppers: vegetable and spice capsicums
– volume: 33
  start-page: 1870
  year: 2016
  end-page: 1874
  ident: CR34
  article-title: MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msw054
– volume: 126
  start-page: 435
  year: 1999
  end-page: 441
  ident: CR13
  article-title: Cell death and cell protection genes determine the fate of pistils in maize
  publication-title: Development
– volume: 65
  start-page: 3895
  year: 2008
  end-page: 3906
  ident: CR25
  article-title: Medium- and short-chain dehydrogenase/reductase gene and protein families: the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-008-8588-y
– volume: 18
  start-page: 9
  year: 1999
  end-page: 15
  ident: CR55
  article-title: Regeneration in vitro and genetic transformation of pepper ( spp.): the current state of the art
  publication-title: Capsicum Eggplant Plant Newsl
– ident: CR54
– volume: 30
  start-page: 2114
  year: 2014
  end-page: 2120
  ident: CR9
  article-title: Trimmomatic: a flexible trimmer for illumina sequence data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu170
– volume: 96
  start-page: 129
  year: 1997
  end-page: 133
  ident: CR50
  article-title: Genetic resources and breeding of Capsicum spp
  publication-title: Euphytica
  doi: 10.1023/A:1002913228101
– volume: 227
  start-page: 681
  year: 2008
  end-page: 695
  ident: CR1
  article-title: Virus-induced silencing of , and genes results in a reduction of capsaicinoid accumulation in chili pepper fruits
  publication-title: Planta
  doi: 10.1007/s00425-007-0651-7
– volume: 150
  start-page: 1806
  year: 2009
  end-page: 1821
  ident: CR43
  article-title: A dynamic interface for capsaicinoid systems biology
  publication-title: Plant Physiol
  doi: 10.1104/pp.109.136549
– volume: 35
  start-page: 142
  year: 2015
  ident: CR61
  article-title: Multiple loss-of-function putative aminotransferase alleles contribute to low pungency and capsinoid biosynthesis in
  publication-title: Mol Breed
  doi: 10.1007/s11032-015-0339-9
– volume: 54
  start-page: 1854
  year: 2006
  end-page: 1859
  ident: CR45
  article-title: Influence of 8-methyl-nonenoic acid on capsaicin biosynthesis in in vivo and in vitro cell cultures of spp
  publication-title: J Agric Food Chem
  doi: 10.1021/jf052085z
– volume: 21
  start-page: 273
  year: 2002
  end-page: 322
  ident: CR22
  article-title: Secondary metabolites as plant traits: current assessment and future perspective
  publication-title: Crit Rev Plant Sci
  doi: 10.1080/0735-260291044269
– volume: 290
  start-page: 2217
  year: 2015
  end-page: 2224
  ident: CR47
  article-title: A low-pungency S3212 genotype of caused by a mutation in the ( - ) gene
  publication-title: Mol Genet Genom
  doi: 10.1007/s00438-015-1071-1
– volume: 274
  start-page: 1172
  year: 2007
  end-page: 1182
  ident: CR66
  article-title: Biochemical characterization of TASSELSEED 2, an essential plant short-chain dehydrogenase/reductase with broad spectrum activities
  publication-title: FEBS J
  doi: 10.1111/j.1742-4658.2007.05642.x
– volume: 8
  start-page: 486
  year: 2015
  end-page: 488
  ident: CR19
  article-title: The SGN VIGS tool: user-friendly software to design virus-induced gene silencing (VIGS) constructs for functional genomics
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2014.11.024
– volume: 1
  start-page: 171
  year: 2011
  end-page: 182
  ident: CR15
  article-title: Stacks: building and genotyping loci De Novo from short-read sequences
  publication-title: G3
  doi: 10.1534/g3.111.000240
– volume: 87
  start-page: 222
  year: 2018
  end-page: 228
  ident: CR62
  article-title: Identification of a novel mutant allele responsible for low-pungency and capsinoid production in chili pepper accession ‘No.4034’ ( )
  publication-title: Hort J
  doi: 10.2503/hortj.OKD-115
– volume: 13
  start-page: 276
  year: 2014
  end-page: 295
  ident: CR63
  article-title: The bright side of transposons in crop evolution
  publication-title: Brief Funct Genom
  doi: 10.1093/bfgp/elu002
– volume: 15
  start-page: 339
  year: 2000
  end-page: 347
  ident: CR20
  article-title: The X-ray structure of beta-keto acyl carrier protein reductase and its implications for substrate binding and catalysis
  publication-title: Structure
  doi: 10.1016/S0969-2126(00)00115-5
– volume: 9
  start-page: 360
  year: 1990
  end-page: 364
  ident: CR39
  article-title: Agrobacterium induced gall formation in bell pepper ( L.) and formation of shoot-like structures expressing introduced genes
  publication-title: Plant Cell Rep
– volume: 15
  start-page: 93
  year: 2015
  ident: CR46
  article-title: Evidence of capsaicin synthase activity of the -encoded protein and its role as a determinant of capsaicinoid accumulation in pepper
  publication-title: BMC Plant Biol
  doi: 10.1186/s12870-015-0476-7
– volume: 25
  start-page: 595
  year: 2001
  end-page: 604
  ident: CR6
  article-title: A potato tuber-expressed mRNA with homology to steroid dehydrogenases affects gibberellin levels and plant development
  publication-title: Plant J
  doi: 10.1046/j.1365-313x.2001.00993.x
– volume: 111
  start-page: 5135
  year: 2014
  end-page: 5140
  ident: CR52
  article-title: Whole-genome sequencing of cultivated and wild peppers provides insights into domestication and specialization
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1400975111
– volume: 6
  start-page: 38081
  year: 2016
  ident: CR68
  article-title: Discovery of putative capsaicin biosynthetic genes by RNA-Seq and digital gene expression analysis of pepper
  publication-title: Sci Rep
  doi: 10.1038/srep38081
– volume: 121
  start-page: 479
  year: 1999
  end-page: 487
  ident: CR12
  article-title: Cloning, expression, and molecular characterization of a small pea gene family regulated by low levels of ultraviolet B radiation and other stresses
  publication-title: Plant Physiol
  doi: 10.1104/pp.121.2.479
– volume: 11
  start-page: 213
  year: 2001
  end-page: 219
  ident: CR26
  article-title: Isolation of cDNA clones differentially accumulated in the placenta of pungent pepper by suppression subtractive hybridization
  publication-title: Mol Cells
– volume: 6
  start-page: 1243
  year: 2015
  end-page: 1255
  ident: CR32
  article-title: A loss of function mutation is insufficient for loss of pungency in
  publication-title: Am J Plant Sci
  doi: 10.4236/ajps.2015.68127
– volume: 74
  start-page: 791
  year: 2005
  end-page: 831
  ident: CR65
  article-title: The structural biology of type II fatty acid biosynthesis
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.74.082803.133524
– volume: 4
  start-page: 442
  year: 1968
  end-page: 446
  ident: CR7
  article-title: Constitution and biosynthesis of capsaicin
  publication-title: J Chem Soc C
  doi: 10.1039/j39680000442
– volume: 28
  start-page: 35
  year: 2010
  end-page: 48
  ident: CR33
  article-title: Chilli peppers—a review on tissue culture and transgenesis
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2009.08.005
– volume: 58
  start-page: 353
  year: 1989
  end-page: 360
  ident: CR67
  article-title: Capsaicinoids content in the fruit of interspecific hybrids in
  publication-title: J Jpn Soc Hort Sci
  doi: 10.2503/jjshs.58.353
– volume: 315
  start-page: 986
  year: 2007
  end-page: 988
  ident: CR48
  article-title: Starch fossils and the domestication and dispersal of chili peppers ( spp. L.) in the Americas
  publication-title: Science
  doi: 10.1126/science.1136914
– volume: 118
  start-page: 35
  year: 2016
  end-page: 51
  ident: CR14
  article-title: Phylogenetic relationships, diversification and expansion of chili peppers ( , Solanaceae)
  publication-title: Ann Bot
  doi: 10.1093/aob/mcw079
– volume: 74
  start-page: 757
  year: 1993
  end-page: 768
  ident: CR18
  article-title: Sex determination gene of maize encodes a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90522-R
– volume: 60
  start-page: 115
  year: 1990
  end-page: 122
  ident: CR8
  article-title: The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme
  publication-title: Cell
  doi: 10.1016/0092-8674(90)90721-P
– volume: 22
  start-page: 109
  year: 1985
  end-page: 176
  ident: CR21
  article-title: : production, technology, chemistry and quality. 1. History, botany, cultivation and primary processing
  publication-title: Crit Rev Food Sci Nutr
  doi: 10.1080/10408398509527412
– volume: 143–144
  start-page: 271
  year: 2003
  end-page: 278
  ident: CR49
  article-title: Coenzyme-based functional assignments of short-chain dehydrogenases/reductases (SDRs)
  publication-title: Chem Biol Interact
  doi: 10.1016/S0009-2797(02)00223-5
– volume: 104
  start-page: 460
  year: 2010
  end-page: 471
  ident: CR56
  article-title: Contrasting modes for loss of pungency between cultivated and wild species of
  publication-title: Heredity
  doi: 10.1038/hdy.2009.131
– volume: 86
  start-page: 61
  year: 2017
  end-page: 69
  ident: CR29
  article-title: Non-pungency in a Japanese chili pepper landrace ( ) is caused by a novel loss-of-function allele
  publication-title: Hort J
  doi: 10.2503/hortj.MI-148
– volume: 109
  start-page: 23
  year: 2004
  end-page: 29
  ident: CR10
  article-title: The locus that controls anthocyanin accumulation in pepper encodes a transcription factor homologous to of
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-004-1625-9
– volume: 275
  start-page: 231
  year: 2006
  end-page: 241
  ident: CR44
  article-title: Two different transposable elements inserted in flavonoid 3′,5′-hydroxylase gene contribute to pink flower coloration in
  publication-title: Mol Genet Genom
  doi: 10.1007/s00438-005-0083-7
– volume: 58
  start-page: 11762
  year: 2010
  end-page: 11767
  ident: CR60
  article-title: Novel loss-of-function putative aminotransferase alleles cause biosynthesis of capsinoids, non-pungent capsaicinoid analogues, in mildly pungent chili peppers ( )
  publication-title: J Agric Food Chem
  doi: 10.1021/jf1019642
– volume: 13
  start-page: 3
  year: 2017
  ident: CR28
  article-title: Harnessing anthocyanin-rich fruit: a visible reporter for tracing virus-induced gene silencing in pepper fruit
  publication-title: Plant Methods
  doi: 10.1186/s13007-016-0151-5
– volume: 9
  start-page: 6837
  year: 1968
  end-page: 6841
  ident: CR38
  article-title: Biosynthesis of capsaicin and dihydrocapsaicin in
  publication-title: J Am Chem Soc
  doi: 10.1021/ja01026a049
– volume: 198
  start-page: 78
  year: 1996
  end-page: 86
  ident: CR24
  article-title: Gibberellins regulate the abundance of RNAs with sequence similarity to proteinase inhibitors, dioxygenases and dehydrogenases
  publication-title: Planta
  doi: 10.1007/BF00197589
– volume: 23
  start-page: 2947
  year: 2007
  end-page: 2948
  ident: CR36
  article-title: Clustal W and Clustal X version 2.0
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm404
– volume: 129
  start-page: 1541
  year: 2016
  end-page: 1556
  ident: CR41
  article-title: Fine mapping and identification of candidate genes for the - locus in a temperature-sensitive chili pepper ( )
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-016-2723-1
– volume: 54
  start-page: 1655
  year: 2003
  end-page: 1664
  ident: CR2
  article-title: Differential expression of fatty acid synthase genes, , and , in fruit
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erg176
– volume: 8
  start-page: e48156
  year: 2013
  ident: CR40
  article-title: transcriptome assembly in chili pepper ( ) to identify genes involved in the biosynthesis of capsaicinoids
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0048156
– year: 1984
  ident: CR3
  publication-title: Peppers: the domesticated Capsicums
– volume: 15
  start-page: 17
  year: 2016
  end-page: 24
  ident: CR42
  article-title: Genetic transformation of chilli ( L.) with Dreb1A transcription factor known to impart drought tolerance
  publication-title: Indian J Biotechnol
– volume: 5
  start-page: 2427
  year: 1986
  end-page: 2432
  ident: CR64
  article-title: Excision of Ds produces waxy proteins with a range of enzymatic activities
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1986.tb04517.x
– volume: 83
  start-page: 244
  year: 2014
  end-page: 251
  ident: CR30
  article-title: Analysis of non-pungency, aroma, and origin of a cultivar from a Caribbean island
  publication-title: J Jpn Soc Hort Sci
  doi: 10.2503/jjshs1.CH-105
– volume: 46
  start-page: 270
  year: 2014
  end-page: 278
  ident: CR27
  article-title: Genome sequence of the hot pepper provides insights into the evolution of pungency in species
  publication-title: Nat Genet
  doi: 10.1038/ng.2877
– year: 2018
  ident: CR23
  article-title: QTL mapping and GWAS reveal candidate genes controlling capsaicinoid content in
  publication-title: Plant Biotechnol J
  doi: 10.1111/pbi.12894
– volume: 59
  start-page: 953
  year: 2009
  end-page: 961
  ident: CR35
  article-title: Functional loss of pAMT results in biosynthesis of capsinoids, capsaicinoid analogs, in cv. CH-19 sweet
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2009.03921.x
– volume: 84
  start-page: 323
  year: 2015
  end-page: 326
  ident: CR31
  article-title: Inheritance of non-pungency in ‘No.3341’ ( )
  publication-title: Hort J
  doi: 10.2503/hortj.MI-049
– volume: 58
  start-page: 1761
  year: 2010
  end-page: 1767
  ident: CR59
  article-title: Newly mutated putative-aminotransferase in non-pungent pepper ( ) results in biosynthesis of capsinoids, capsaicinoid analogues
  publication-title: J Agric Food Chem
  doi: 10.1021/jf903282r
– volume: 148
  start-page: 47
  year: 1999
  end-page: 57
  ident: CR17
  article-title: Transcripts for possible capsaicinoid biosynthetic genes are differentially accumulated in pungent and non-pungent spp
  publication-title: Plant Sci
  doi: 10.1016/S0168-9452(99)00118-1
– volume: 58
  start-page: 353
  year: 1989
  ident: 3195_CR67
  publication-title: J Jpn Soc Hort Sci
  doi: 10.2503/jjshs.58.353
– volume: 8
  start-page: e48156
  year: 2013
  ident: 3195_CR40
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0048156
– volume: 35
  start-page: 142
  year: 2015
  ident: 3195_CR61
  publication-title: Mol Breed
  doi: 10.1007/s11032-015-0339-9
– volume: 6
  start-page: 38081
  year: 2016
  ident: 3195_CR68
  publication-title: Sci Rep
  doi: 10.1038/srep38081
– volume-title: Peppers: the domesticated Capsicums
  year: 1984
  ident: 3195_CR3
– volume: 6
  start-page: 1243
  year: 2015
  ident: 3195_CR32
  publication-title: Am J Plant Sci
  doi: 10.4236/ajps.2015.68127
– volume: 126
  start-page: 435
  year: 1999
  ident: 3195_CR13
  publication-title: Development
  doi: 10.1242/dev.126.3.435
– volume: 21
  start-page: 273
  year: 2002
  ident: 3195_CR22
  publication-title: Crit Rev Plant Sci
  doi: 10.1080/0735-260291044269
– volume: 74
  start-page: 757
  year: 1993
  ident: 3195_CR18
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90522-R
– volume: 8
  start-page: 486
  year: 2015
  ident: 3195_CR19
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2014.11.024
– volume: 104
  start-page: 460
  year: 2010
  ident: 3195_CR56
  publication-title: Heredity
  doi: 10.1038/hdy.2009.131
– volume: 274
  start-page: 1172
  year: 2007
  ident: 3195_CR66
  publication-title: FEBS J
  doi: 10.1111/j.1742-4658.2007.05642.x
– volume: 11
  start-page: 213
  year: 2001
  ident: 3195_CR26
  publication-title: Mol Cells
  doi: 10.1016/S1016-8478(23)17027-0
– volume: 74
  start-page: 791
  year: 2005
  ident: 3195_CR65
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.74.082803.133524
– volume: 17
  start-page: 377
  year: 2004
  ident: 3195_CR16
  publication-title: Mol Cells
  doi: 10.1016/S1016-8478(23)13054-8
– volume: 42
  start-page: 675
  year: 2005
  ident: 3195_CR57
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2005.02410.x
– year: 2018
  ident: 3195_CR23
  publication-title: Plant Biotechnol J
  doi: 10.1111/pbi.12894
– volume: 4
  start-page: 442
  year: 1968
  ident: 3195_CR7
  publication-title: J Chem Soc C
  doi: 10.1039/j39680000442
– volume: 86
  start-page: 61
  year: 2017
  ident: 3195_CR29
  publication-title: Hort J
  doi: 10.2503/hortj.MI-148
– volume: 15
  start-page: 17
  year: 2016
  ident: 3195_CR42
  publication-title: Indian J Biotechnol
– volume: 275
  start-page: 231
  year: 2006
  ident: 3195_CR44
  publication-title: Mol Genet Genom
  doi: 10.1007/s00438-005-0083-7
– volume: 23
  start-page: 193
  year: 1993
  ident: 3195_CR51
  publication-title: Plant Mol Biol
  doi: 10.1007/BF00021431
– volume: 109
  start-page: 23
  year: 2004
  ident: 3195_CR10
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-004-1625-9
– volume: 54
  start-page: 1655
  year: 2003
  ident: 3195_CR2
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erg176
– volume: 5
  start-page: 2427
  year: 1986
  ident: 3195_CR64
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1986.tb04517.x
– volume: 60
  start-page: 115
  year: 1990
  ident: 3195_CR8
  publication-title: Cell
  doi: 10.1016/0092-8674(90)90721-P
– ident: 3195_CR54
  doi: 10.1155/2014/194812
– volume: 58
  start-page: 979
  year: 2007
  ident: 3195_CR58
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erl243
– volume: 28
  start-page: 35
  year: 2010
  ident: 3195_CR33
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2009.08.005
– volume: 143–144
  start-page: 271
  year: 2003
  ident: 3195_CR49
  publication-title: Chem Biol Interact
  doi: 10.1016/S0009-2797(02)00223-5
– volume: 6
  start-page: 5248
  year: 2006
  ident: 3195_CR37
  publication-title: Proteomics
  doi: 10.1002/pmic.200600326
– volume: 58
  start-page: 1761
  year: 2010
  ident: 3195_CR59
  publication-title: J Agric Food Chem
  doi: 10.1021/jf903282r
– volume: 30
  start-page: 2114
  year: 2014
  ident: 3195_CR9
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu170
– volume: 25
  start-page: 595
  year: 2001
  ident: 3195_CR6
  publication-title: Plant J
  doi: 10.1046/j.1365-313x.2001.00993.x
– volume: 22
  start-page: 109
  year: 1985
  ident: 3195_CR21
  publication-title: Crit Rev Food Sci Nutr
  doi: 10.1080/10408398509527412
– volume: 15
  start-page: 93
  year: 2015
  ident: 3195_CR46
  publication-title: BMC Plant Biol
  doi: 10.1186/s12870-015-0476-7
– volume: 129
  start-page: 1541
  year: 2016
  ident: 3195_CR41
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-016-2723-1
– volume-title: Peppers: vegetable and spice capsicums
  year: 2000
  ident: 3195_CR11
– volume: 9
  start-page: 6837
  year: 1968
  ident: 3195_CR38
  publication-title: J Am Chem Soc
  doi: 10.1021/ja01026a049
– volume: 9
  start-page: 360
  year: 1990
  ident: 3195_CR39
  publication-title: Plant Cell Rep
– volume: 111
  start-page: 5135
  year: 2014
  ident: 3195_CR52
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1400975111
– volume: 65
  start-page: 3895
  year: 2008
  ident: 3195_CR25
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-008-8588-y
– volume: 13
  start-page: 276
  year: 2014
  ident: 3195_CR63
  publication-title: Brief Funct Genom
  doi: 10.1093/bfgp/elu002
– volume: 15
  start-page: 339
  year: 2000
  ident: 3195_CR20
  publication-title: Structure
  doi: 10.1016/S0969-2126(00)00115-5
– volume: 87
  start-page: 222
  year: 2018
  ident: 3195_CR62
  publication-title: Hort J
  doi: 10.2503/hortj.OKD-115
– volume: 83
  start-page: 244
  year: 2014
  ident: 3195_CR30
  publication-title: J Jpn Soc Hort Sci
  doi: 10.2503/jjshs1.CH-105
– volume: 59
  start-page: 953
  year: 2009
  ident: 3195_CR35
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2009.03921.x
– volume: 58
  start-page: 11762
  year: 2010
  ident: 3195_CR60
  publication-title: J Agric Food Chem
  doi: 10.1021/jf1019642
– volume: 150
  start-page: 1806
  year: 2009
  ident: 3195_CR43
  publication-title: Plant Physiol
  doi: 10.1104/pp.109.136549
– volume: 30
  start-page: 695
  year: 2011
  ident: 3195_CR5
  publication-title: Plant Cell Rep
  doi: 10.1007/s00299-010-0968-8
– volume: 227
  start-page: 681
  year: 2008
  ident: 3195_CR1
  publication-title: Planta
  doi: 10.1007/s00425-007-0651-7
– volume: 121
  start-page: 479
  year: 1999
  ident: 3195_CR12
  publication-title: Plant Physiol
  doi: 10.1104/pp.121.2.479
– volume: 1
  start-page: 171
  year: 2011
  ident: 3195_CR15
  publication-title: G3
  doi: 10.1534/g3.111.000240
– volume: 290
  start-page: 2217
  year: 2015
  ident: 3195_CR47
  publication-title: Mol Genet Genom
  doi: 10.1007/s00438-015-1071-1
– volume: 198
  start-page: 78
  year: 1996
  ident: 3195_CR24
  publication-title: Planta
  doi: 10.1007/BF00197589
– volume: 148
  start-page: 47
  year: 1999
  ident: 3195_CR17
  publication-title: Plant Sci
  doi: 10.1016/S0168-9452(99)00118-1
– volume: 33
  start-page: 1870
  year: 2016
  ident: 3195_CR34
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msw054
– volume: 13
  start-page: 3
  year: 2017
  ident: 3195_CR28
  publication-title: Plant Methods
  doi: 10.1186/s13007-016-0151-5
– volume: 11
  start-page: 121
  year: 2015
  ident: 3195_CR53
  publication-title: Tree Genet Genom
  doi: 10.1007/s11295-015-0944-0
– volume: 96
  start-page: 129
  year: 1997
  ident: 3195_CR50
  publication-title: Euphytica
  doi: 10.1023/A:1002913228101
– volume: 174
  start-page: 1359
  year: 2017
  ident: 3195_CR4
  publication-title: Plant Physiol
  doi: 10.1104/pp.17.00506
– volume: 46
  start-page: 270
  year: 2014
  ident: 3195_CR27
  publication-title: Nat Genet
  doi: 10.1038/ng.2877
– volume: 54
  start-page: 1854
  year: 2006
  ident: 3195_CR45
  publication-title: J Agric Food Chem
  doi: 10.1021/jf052085z
– volume: 315
  start-page: 986
  year: 2007
  ident: 3195_CR48
  publication-title: Science
  doi: 10.1126/science.1136914
– volume: 118
  start-page: 35
  year: 2016
  ident: 3195_CR14
  publication-title: Ann Bot
  doi: 10.1093/aob/mcw079
– volume: 23
  start-page: 2947
  year: 2007
  ident: 3195_CR36
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm404
– volume: 84
  start-page: 323
  year: 2015
  ident: 3195_CR31
  publication-title: Hort J
  doi: 10.2503/hortj.MI-049
– volume: 18
  start-page: 9
  year: 1999
  ident: 3195_CR55
  publication-title: Capsicum Eggplant Plant Newsl
SSID ssj0002503
Score 2.4603813
Snippet Key message A putative ketoacyl-ACP reductase ( CaKR1 ) that was not previously known to be associated with pungency of Capsicum was identified from map-based...
A putative ketoacyl-ACP reductase (CaKR1) that was not previously known to be associated with pungency of Capsicum was identified from map-based cloning and...
Key message
Key message A putative ketoacyl-ACP reductase (CaKR1) that was not previously known to be associated with pungency of Capsicum was identified from map-based...
Key messageA putative ketoacyl-ACP reductase (CaKR1) that was not previously known to be associated with pungency of Capsicum was identified from map-based...
KEY MESSAGE: A putative ketoacyl-ACP reductase (CaKR1) that was not previously known to be associated with pungency of Capsicum was identified from map-based...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 65
SubjectTerms 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase - genetics
active sites
Acyltransferase
acyltransferases
Agriculture
Amino Acid Sequence
Biochemistry
Biomedical and Life Sciences
Biosynthesis
Biotechnology
branched chain fatty acids
breeding
Capsaicin
Capsaicin - analysis
capsaicinoids
Capsicum
Capsicum - enzymology
Capsicum - genetics
Capsicum chinense
Chromosome 10
Chromosome Mapping
Cloning, Molecular
cultivars
DNA Transposable Elements
Fatty acids
Fatty Acids - analysis
Fatty Acids - chemistry
Fruit - chemistry
Fruit - genetics
fruits
gas chromatography-mass spectrometry
Gene expression
Gene mutation
Gene Silencing
Genes, Plant
Genetic aspects
Genetic Linkage
genomics
hot peppers
Insertion
Introns
Life Sciences
messenger RNA
molecular cloning
Mutation
Original Article
Peppers
Phenotype
Phenotypes
Phylogeny
Physiological aspects
Plant Biochemistry
Plant Breeding
Plant Breeding/Biotechnology
Plant Genetics and Genomics
Pungent principles
recessive genes
Reductase
transaminases
transcription (genetics)
Transposons
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ra9UwFA8yEfTDcPN15yZRBEEp9KZJm34sF8dUJjK9MPwS0jyGeG0vt-1g__3OSR96hw78WHLSNDk5j_ScnB8hr0H2Su9yGWmpfcQzH0eS2zySpTYWNoGRgdOnn9OTJf94Ls6He9zNmO0-hiSDpp4uu4UoEBx98X9eLiLQu3cFHN0xj2vJikn9gk2fUuXAF2FjKPNvr9gyRjdV8h826UaQNNie44dkd3AaadFzeY_ccdU-eVBcbIbCGW6f3OtBJa8eke-nXR9epz8qCu4dXYfnS0d_urbW5moVFYsvdIM1W1uwYXShP53NgRieXUNX8KG09tCrCtcy8S0LvQZmdr8ek-Xx-2-Lk2hAUIiMyGULOpYzW9os09ZJ7ViZJF4j5HkWp8bbOEDyGeHnjicJyLrlsUYAmFwwy0vvkydkp6or94xQx7MEdGEsc51zK3TJdCYccLL0SZrEfEbicSmVGcqLI8rFSk2FkcPqKxhS4eorNiNvpy7rvrbGbcSvkD8Ka1ZUmBRzobumUR--nqlCpODmoWaZkTcDka9hcKOHOwYwBSxztUV5uEUJQmW2m8dtoAahbhRD_BspuYTml1Mz9sREtcrVXaDhaY5e8y00jCG6cjaHST3tt9g0_wQRwWCcGXk37rnfH_DPxTn4L-rn5D64fXn_I-mQ7LSbzh2Ba9WWL4IoXQP35BWi
  priority: 102
  providerName: Springer Nature
Title Mutation in the putative ketoacyl-ACP reductase CaKR1 induces loss of pungency in Capsicum
URI https://link.springer.com/article/10.1007/s00122-018-3195-2
https://www.ncbi.nlm.nih.gov/pubmed/30267113
https://www.proquest.com/docview/2113688484
https://www.proquest.com/docview/2114699231
https://www.proquest.com/docview/2221057712
Volume 132
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgExI8IBhfgTEZhIQEipY6TuM8obRqGUyrpkKlwkvkxPaE1iWlSZD233OXOBmdRJ-iyOf64z5rX-5HyDvQvdToSLhSSOPy0Hiu4CpyRSozBUKQiYbTZ7PhyYJ_XQZLe-BW2rTKziY2hloVGZ6RHzMEHxGCC_5p_dtF1Ci8XbUQGnfJPpYuQ6kOl_0fLnTvfdYchCWsu9X0miKiA4ZJCXg6GAUu2_JLt63zP-7p1n1p44amj8hDGz_SuGX4Y3JH5wfkQXyxsTU09AG51-JLXj8hP8_q9qad_sopRHp03bz_0fRSV4XMrlduPD6nGyzfWoE7o2N5Oh8AMbzrkq5gorQw0CtvvtDEXxnLNfC1vnpKFtPJ9_GJa8EU3CyIRAXmljOVqjCUSgupWer7RiL6eegNM6O8Bp0vC8xAc98HtVfck4gFEwVM8dQY_xnZy4tcvyBU89AHs-iJSEZcBTJlMgw0MDU1_tD3uEO8biuTzFYaR8CLVdLXSG52P4EhE9z9hDnkQ99l3ZbZ2EX8FvmTYPmKHPNjLmRdlsmXb_MkDoYQ8aGRcch7S2QKGDyT9nMDWAJWvNqiPNyiBP3Ktps7MUisfpfJjTQ65E3fjD0xZy3XRd3Q8GGEAfQOGsYQaDkcwKKetyLWr99HcDAYxyEfO5m7mcB_N-fl7um-Ivch5IvaQ6RDsldtav0awqoqPWp054jsx9PRaIbPzz9OJ_AcTWbnc2hdsPgvWxgezA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIQQ8IBhfhQEGgZBA0VLHaZwHhKrC1NJ1QmOTKl48J7EnRElKm4D6T_E3cpev0Un0bY9Rzl_n893ZPt8P4CWuvciaUDpaauuIwLqOFEnoyEjHCQpBLMuZnhz2hifi09SfbsGf5i0MhVU2OrFU1EkW0xn5HifwESmFFO_nPx1CjaLb1QZCoxKLsVn9xi3b8t3oA87vK873Px4Phk6NKuDEfihz1DuCJ1ESBDoxUhseeZ7VBAMeuL3YJm4JUxf7tmuE56H8J8LVBIoS-jwRkbUe1nsFrqLhdWmzF0zbDR65E22UHrpBvLlFdcukpV1OQRB0Ghn6Dl-zgxetwT_m8ML9bGn29m_DrdpfZf1KwO7Alkl34Gb_bFHn7DA7cK3Cs1zdha-TorrZZ99Shp4lm5ffvwz7bvJMx6uZ0x98ZgtKF5uj-WQDPT7qIjF-myWbYUdZZrFUWr4IpVoGeo5yVPy4ByeXwub7sJ1mqXkIzIjAQzXsylCHIvF1xHXgGxSiyHo9zxUdcBtWqrjObE4AGzPV5mQuua-wSUXcV7wDb9oi8yqtxybiFzQ_itJlpBSPc6aL5VKNvhypvt9DD5OUWgde10Q2w8ZjXT9vwCFQhq01yt01SlzP8frvRgxUrU-W6lz6O_C8_U0lKUYuNVlR0oheSA77BhrOCdg56OKgHlQi1o7fIzAybKcDbxuZO-_Af5nzaHN3n8H14fHkQB2MDseP4Qa6m2F1gLUL2_miME_Qpcujp-U6YnB62Qv3L_zEVU4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTqDxgGDAKAwwCIQEipY6TuM8IFS6VStlVVWYNPFinMSeECUp_QD1X-Ov4y5fo5Po2x6jnGP7fF-xz_cDeIG6F1kTSkdLbR0RWNeRIgkdGek4QSGIZb7SJ8P28an4cOafbcGf6i4MpVVWNjE31EkW0x75ASfwESmFFAe2TIsYHfbeTX86hCBFJ60VnEYhIgOz-o2_b_O3_UNc65ec944-d4-dEmHAif1QLtAGCZ5ESRDoxEhteOR5VhMkeOC2Y5u4OWRd7NuWEZ6HupAIVxNASujzRETWevjda7Ad0F9RA7bfHw1H49oPYHBR5-xhUMSrM1U3L2Ha4pQSQXuToe_wNa942Tf84xwvndbmTrB3G26V0SvrFOJ2B7ZMugs3O-ezsoKH2YXrBbrl6i58OVkW5_zsW8owzmTT_PmXYd_NItPxauJ0uiM2o-KxC3SmrKsH4xYS47OZswkOlGUWW6X5_VD6SldPUaqWP-7B6ZUw-j400iw1D4AZEXholF0Z6lAkvo64DnyDIhVZr-25ogluxUoVl3XOCW5jouoKzTn3FXapiPuKN-F13WRaFPnYRPyc1kdR8YyUxPBcL-dz1f80Vh2_jfEmmbgmvCqJbIadx7q87IBToHpba5T7a5So3fH660oMVGld5upCF5rwrH5NLSljLjXZMqcR7ZDC9w00nBPMc9DCSe0VIlbP3yNoMuynCW8qmbsYwH-Z83DzcJ_CDVRa9bE_HDyCHYw9w2I3ax8ai9nSPMb4bhE9KRWJwder1t2_RSJa6Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mutation+in+the+putative+ketoacyl-ACP+reductase+CaKR1+induces+loss+of+pungency+in+Capsicum&rft.jtitle=Theoretical+and+applied+genetics&rft.au=Koeda%2C+Sota&rft.au=Sato%2C+Kosuke&rft.au=Saito%2C+Hiroki&rft.au=Nagano%2C+Atsushi+J&rft.date=2019-01-01&rft.pub=Springer&rft.issn=0040-5752&rft.volume=132&rft.issue=1&rft.spage=65&rft_id=info:doi/10.1007%2Fs00122-018-3195-2&rft.externalDocID=A568391794
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-5752&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-5752&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-5752&client=summon