Mutation in the putative ketoacyl-ACP reductase CaKR1 induces loss of pungency in Capsicum
Key message A putative ketoacyl-ACP reductase ( CaKR1 ) that was not previously known to be associated with pungency of Capsicum was identified from map-based cloning and functional characterization. The pungency of chili pepper fruits is due to the presence of capsaicinoids, which are synthesized t...
Saved in:
Published in | Theoretical and applied genetics Vol. 132; no. 1; pp. 65 - 80 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2019
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Key message
A putative ketoacyl-ACP reductase (
CaKR1
) that was not previously known to be associated with pungency of
Capsicum
was identified from map-based cloning and functional characterization.
The pungency of chili pepper fruits is due to the presence of capsaicinoids, which are synthesized through the convergence of the phenylpropanoid and branched-chain fatty acid pathways. The extensive, global use of pungent and non-pungent peppers underlines the importance of understanding the genetic mechanism underlying capsaicinoid biosynthesis for breeding pepper cultivars. Although
Capsicum
is one of the earliest domesticated plant genera, the only reported genetic causes of its loss of pungency are mutations in
acyltransferase
(
Pun1
) and
putative aminotransferase
(
pAMT
). In this study, a single recessive gene responsible for the non-pungency of pepper No.3341 (
C. chinense
) was identified on chromosome 10 using an F
2
population derived from a cross between Habanero and No.3341. Five candidate genes were identified in the target region, within a distance of 220 kb. A candidate gene, a putative ketoacyl-ACP reductase (
CaKR1
), of No.3341 had an insertion of a 4.5-kb transposable element (TE) sequence in the first intron, resulting in the production of a truncated transcript missing the region coding the catalytic domain. Virus-induced gene silencing of
CaKR1
in pungent peppers resulted in the decreased accumulation of capsaicinoids, a phenotype consistent with No.3341. Moreover, GC–MS analysis of 8-methyl-6-nonenoic acid, which is predicted to be synthesized during the elongation cycle of branched-chain fatty acid biosynthesis, revealed that its deficiency in No.3341. Genetic, genomic, transcriptional, silencing, and biochemical precursor analyses performed in combination provide a solid ground for the conclusion that
CaKR1
is involved in capsaicinoid biosynthesis and that its disruption results in a loss of pungency. |
---|---|
AbstractList | Key message KEY MESSAGE: A putative ketoacyl-ACP reductase (CaKR1) that was not previously known to be associated with pungency of Capsicum was identified from map-based cloning and functional characterization. The pungency of chili pepper fruits is due to the presence of capsaicinoids, which are synthesized through the convergence of the phenylpropanoid and branched-chain fatty acid pathways. The extensive, global use of pungent and non-pungent peppers underlines the importance of understanding the genetic mechanism underlying capsaicinoid biosynthesis for breeding pepper cultivars. Although Capsicum is one of the earliest domesticated plant genera, the only reported genetic causes of its loss of pungency are mutations in acyltransferase (Pun1) and putative aminotransferase (pAMT). In this study, a single recessive gene responsible for the non-pungency of pepper No.3341 (C. chinense) was identified on chromosome 10 using an F₂ population derived from a cross between Habanero and No.3341. Five candidate genes were identified in the target region, within a distance of 220 kb. A candidate gene, a putative ketoacyl-ACP reductase (CaKR1), of No.3341 had an insertion of a 4.5-kb transposable element (TE) sequence in the first intron, resulting in the production of a truncated transcript missing the region coding the catalytic domain. Virus-induced gene silencing of CaKR1 in pungent peppers resulted in the decreased accumulation of capsaicinoids, a phenotype consistent with No.3341. Moreover, GC–MS analysis of 8-methyl-6-nonenoic acid, which is predicted to be synthesized during the elongation cycle of branched-chain fatty acid biosynthesis, revealed that its deficiency in No.3341. Genetic, genomic, transcriptional, silencing, and biochemical precursor analyses performed in combination provide a solid ground for the conclusion that CaKR1 is involved in capsaicinoid biosynthesis and that its disruption results in a loss of pungency. Key message A putative ketoacyl-ACP reductase (CaKR1) that was not previously known to be associated with pungency of Capsicum was identified from map-based cloning and functional characterization. The pungency of chili pepper fruits is due to the presence of capsaicinoids, which are synthesized through the convergence of the phenylpropanoid and branched-chain fatty acid pathways. The extensive, global use of pungent and non-pungent peppers underlines the importance of understanding the genetic mechanism underlying capsaicinoid biosynthesis for breeding pepper cultivars. Although Capsicum is one of the earliest domesticated plant genera, the only reported genetic causes of its loss of pungency are mutations in acyltransferase (Pun1) and putative aminotransferase (pAMT). In this study, a single recessive gene responsible for the non-pungency of pepper No.3341 (C. chinense) was identified on chromosome 10 using an F.sub.2 population derived from a cross between Habanero and No.3341. Five candidate genes were identified in the target region, within a distance of 220 kb. A candidate gene, a putative ketoacyl-ACP reductase (CaKR1), of No.3341 had an insertion of a 4.5-kb transposable element (TE) sequence in the first intron, resulting in the production of a truncated transcript missing the region coding the catalytic domain. Virus-induced gene silencing of CaKR1 in pungent peppers resulted in the decreased accumulation of capsaicinoids, a phenotype consistent with No.3341. Moreover, GC-MS analysis of 8-methyl-6-nonenoic acid, which is predicted to be synthesized during the elongation cycle of branched-chain fatty acid biosynthesis, revealed that its deficiency in No.3341. Genetic, genomic, transcriptional, silencing, and biochemical precursor analyses performed in combination provide a solid ground for the conclusion that CaKR1 is involved in capsaicinoid biosynthesis and that its disruption results in a loss of pungency. Key message A putative ketoacyl-ACP reductase ( CaKR1 ) that was not previously known to be associated with pungency of Capsicum was identified from map-based cloning and functional characterization. The pungency of chili pepper fruits is due to the presence of capsaicinoids, which are synthesized through the convergence of the phenylpropanoid and branched-chain fatty acid pathways. The extensive, global use of pungent and non-pungent peppers underlines the importance of understanding the genetic mechanism underlying capsaicinoid biosynthesis for breeding pepper cultivars. Although Capsicum is one of the earliest domesticated plant genera, the only reported genetic causes of its loss of pungency are mutations in acyltransferase ( Pun1 ) and putative aminotransferase ( pAMT ). In this study, a single recessive gene responsible for the non-pungency of pepper No.3341 ( C. chinense ) was identified on chromosome 10 using an F 2 population derived from a cross between Habanero and No.3341. Five candidate genes were identified in the target region, within a distance of 220 kb. A candidate gene, a putative ketoacyl-ACP reductase ( CaKR1 ), of No.3341 had an insertion of a 4.5-kb transposable element (TE) sequence in the first intron, resulting in the production of a truncated transcript missing the region coding the catalytic domain. Virus-induced gene silencing of CaKR1 in pungent peppers resulted in the decreased accumulation of capsaicinoids, a phenotype consistent with No.3341. Moreover, GC–MS analysis of 8-methyl-6-nonenoic acid, which is predicted to be synthesized during the elongation cycle of branched-chain fatty acid biosynthesis, revealed that its deficiency in No.3341. Genetic, genomic, transcriptional, silencing, and biochemical precursor analyses performed in combination provide a solid ground for the conclusion that CaKR1 is involved in capsaicinoid biosynthesis and that its disruption results in a loss of pungency. Key messageA putative ketoacyl-ACP reductase (CaKR1) that was not previously known to be associated with pungency of Capsicum was identified from map-based cloning and functional characterization.The pungency of chili pepper fruits is due to the presence of capsaicinoids, which are synthesized through the convergence of the phenylpropanoid and branched-chain fatty acid pathways. The extensive, global use of pungent and non-pungent peppers underlines the importance of understanding the genetic mechanism underlying capsaicinoid biosynthesis for breeding pepper cultivars. Although Capsicum is one of the earliest domesticated plant genera, the only reported genetic causes of its loss of pungency are mutations in acyltransferase (Pun1) and putative aminotransferase (pAMT). In this study, a single recessive gene responsible for the non-pungency of pepper No.3341 (C. chinense) was identified on chromosome 10 using an F2 population derived from a cross between Habanero and No.3341. Five candidate genes were identified in the target region, within a distance of 220 kb. A candidate gene, a putative ketoacyl-ACP reductase (CaKR1), of No.3341 had an insertion of a 4.5-kb transposable element (TE) sequence in the first intron, resulting in the production of a truncated transcript missing the region coding the catalytic domain. Virus-induced gene silencing of CaKR1 in pungent peppers resulted in the decreased accumulation of capsaicinoids, a phenotype consistent with No.3341. Moreover, GC–MS analysis of 8-methyl-6-nonenoic acid, which is predicted to be synthesized during the elongation cycle of branched-chain fatty acid biosynthesis, revealed that its deficiency in No.3341. Genetic, genomic, transcriptional, silencing, and biochemical precursor analyses performed in combination provide a solid ground for the conclusion that CaKR1 is involved in capsaicinoid biosynthesis and that its disruption results in a loss of pungency. A putative ketoacyl-ACP reductase (CaKR1) that was not previously known to be associated with pungency of Capsicum was identified from map-based cloning and functional characterization. The pungency of chili pepper fruits is due to the presence of capsaicinoids, which are synthesized through the convergence of the phenylpropanoid and branched-chain fatty acid pathways. The extensive, global use of pungent and non-pungent peppers underlines the importance of understanding the genetic mechanism underlying capsaicinoid biosynthesis for breeding pepper cultivars. Although Capsicum is one of the earliest domesticated plant genera, the only reported genetic causes of its loss of pungency are mutations in acyltransferase (Pun1) and putative aminotransferase (pAMT). In this study, a single recessive gene responsible for the non-pungency of pepper No.3341 (C. chinense) was identified on chromosome 10 using an F2 population derived from a cross between Habanero and No.3341. Five candidate genes were identified in the target region, within a distance of 220 kb. A candidate gene, a putative ketoacyl-ACP reductase (CaKR1), of No.3341 had an insertion of a 4.5-kb transposable element (TE) sequence in the first intron, resulting in the production of a truncated transcript missing the region coding the catalytic domain. Virus-induced gene silencing of CaKR1 in pungent peppers resulted in the decreased accumulation of capsaicinoids, a phenotype consistent with No.3341. Moreover, GC-MS analysis of 8-methyl-6-nonenoic acid, which is predicted to be synthesized during the elongation cycle of branched-chain fatty acid biosynthesis, revealed that its deficiency in No.3341. Genetic, genomic, transcriptional, silencing, and biochemical precursor analyses performed in combination provide a solid ground for the conclusion that CaKR1 is involved in capsaicinoid biosynthesis and that its disruption results in a loss of pungency.KEY MESSAGEA putative ketoacyl-ACP reductase (CaKR1) that was not previously known to be associated with pungency of Capsicum was identified from map-based cloning and functional characterization. The pungency of chili pepper fruits is due to the presence of capsaicinoids, which are synthesized through the convergence of the phenylpropanoid and branched-chain fatty acid pathways. The extensive, global use of pungent and non-pungent peppers underlines the importance of understanding the genetic mechanism underlying capsaicinoid biosynthesis for breeding pepper cultivars. Although Capsicum is one of the earliest domesticated plant genera, the only reported genetic causes of its loss of pungency are mutations in acyltransferase (Pun1) and putative aminotransferase (pAMT). In this study, a single recessive gene responsible for the non-pungency of pepper No.3341 (C. chinense) was identified on chromosome 10 using an F2 population derived from a cross between Habanero and No.3341. Five candidate genes were identified in the target region, within a distance of 220 kb. A candidate gene, a putative ketoacyl-ACP reductase (CaKR1), of No.3341 had an insertion of a 4.5-kb transposable element (TE) sequence in the first intron, resulting in the production of a truncated transcript missing the region coding the catalytic domain. Virus-induced gene silencing of CaKR1 in pungent peppers resulted in the decreased accumulation of capsaicinoids, a phenotype consistent with No.3341. Moreover, GC-MS analysis of 8-methyl-6-nonenoic acid, which is predicted to be synthesized during the elongation cycle of branched-chain fatty acid biosynthesis, revealed that its deficiency in No.3341. Genetic, genomic, transcriptional, silencing, and biochemical precursor analyses performed in combination provide a solid ground for the conclusion that CaKR1 is involved in capsaicinoid biosynthesis and that its disruption results in a loss of pungency. A putative ketoacyl-ACP reductase (CaKR1) that was not previously known to be associated with pungency of Capsicum was identified from map-based cloning and functional characterization. The pungency of chili pepper fruits is due to the presence of capsaicinoids, which are synthesized through the convergence of the phenylpropanoid and branched-chain fatty acid pathways. The extensive, global use of pungent and non-pungent peppers underlines the importance of understanding the genetic mechanism underlying capsaicinoid biosynthesis for breeding pepper cultivars. Although Capsicum is one of the earliest domesticated plant genera, the only reported genetic causes of its loss of pungency are mutations in acyltransferase (Pun1) and putative aminotransferase (pAMT). In this study, a single recessive gene responsible for the non-pungency of pepper No.3341 (C. chinense) was identified on chromosome 10 using an F population derived from a cross between Habanero and No.3341. Five candidate genes were identified in the target region, within a distance of 220 kb. A candidate gene, a putative ketoacyl-ACP reductase (CaKR1), of No.3341 had an insertion of a 4.5-kb transposable element (TE) sequence in the first intron, resulting in the production of a truncated transcript missing the region coding the catalytic domain. Virus-induced gene silencing of CaKR1 in pungent peppers resulted in the decreased accumulation of capsaicinoids, a phenotype consistent with No.3341. Moreover, GC-MS analysis of 8-methyl-6-nonenoic acid, which is predicted to be synthesized during the elongation cycle of branched-chain fatty acid biosynthesis, revealed that its deficiency in No.3341. Genetic, genomic, transcriptional, silencing, and biochemical precursor analyses performed in combination provide a solid ground for the conclusion that CaKR1 is involved in capsaicinoid biosynthesis and that its disruption results in a loss of pungency. |
Audience | Academic |
Author | Sato, Kosuke Koeda, Sota Saito, Hiroki Nagano, Atsushi J. Tanaka, Yoshiyuki Yasugi, Masaki Kudoh, Hiroshi |
Author_xml | – sequence: 1 givenname: Sota orcidid: 0000-0001-5921-8432 surname: Koeda fullname: Koeda, Sota email: 818sota@nara.kindai.ac.jp organization: Faculty of Agriculture, Kindai University, Experimental Farm, Graduate School of Agriculture, Kyoto University – sequence: 2 givenname: Kosuke surname: Sato fullname: Sato, Kosuke organization: Experimental Farm, Graduate School of Agriculture, Kyoto University – sequence: 3 givenname: Hiroki surname: Saito fullname: Saito, Hiroki organization: Experimental Farm, Graduate School of Agriculture, Kyoto University, Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences – sequence: 4 givenname: Atsushi J. orcidid: 0000-0001-7891-5049 surname: Nagano fullname: Nagano, Atsushi J. organization: Faculty of Agriculture, Ryukoku University – sequence: 5 givenname: Masaki surname: Yasugi fullname: Yasugi, Masaki organization: Faculty of Engineering, Utsunomiya University – sequence: 6 givenname: Hiroshi orcidid: 0000-0001-9777-4886 surname: Kudoh fullname: Kudoh, Hiroshi organization: Center for Ecological Research, Kyoto University – sequence: 7 givenname: Yoshiyuki surname: Tanaka fullname: Tanaka, Yoshiyuki organization: Graduate School of Environmental and Life Science, Okayama University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30267113$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v1DAQhi1URLeFH8AFReICh5QZ24mT4yrio6IIVODCxfI6k8UlH0vsIPbf45AWtBUf8sEa63lfjWfeE3bUDz0x9hDhDAHUMw-AnKeARSqwzFJ-h61QCp5yLvkRWwFISDOV8WN24v0VAPAMxD12LIDnClGs2Kc3UzDBDX3i-iR8pmT3s_5GyRcKg7H7Nl1X75KR6skG4ympzOtLjHCsySft4H0yNFHVb6m3-9mlMjvv7NTdZ3cb03p6cH2fso8vnn-oXqUXb1-eV-uL1GZlEVIEyetNrZSpqTDEN0I0BhVKBblt6tg0FspmDZIUQgmoJRgspCgzXstN04hT9mTx3Y3D14l80J3zltrW9DRMXnPOETKlkP8fRZR5WXKBEX18C70aprGPH5kpkReFjE38oramJe36ZgijsbOpXmd5IUpU5Uyd_YGKp6bO2bjTxsX3A8HTA0FkAn0PWzN5r8_fXx6yj64bnTYd1Xo3us6Me32z4wioBbBj3NZIjbZu2XnswrUaQc9p0kuadBy3ntOk53HhLeWN-b80fNH4yMZQjL_n9nfRD7LU1iQ |
CitedBy_id | crossref_primary_10_1080_13102818_2022_2071633 crossref_primary_10_1186_s12870_024_05591_7 crossref_primary_10_1016_j_scienta_2022_111456 crossref_primary_10_1016_j_cpb_2023_100303 crossref_primary_10_1038_s41598_020_75271_7 crossref_primary_10_1021_acs_jafc_3c01901 crossref_primary_10_3389_fpls_2021_783496 crossref_primary_10_1080_07391102_2024_2317991 crossref_primary_10_1007_s00438_021_01763_4 crossref_primary_10_1007_s00438_022_01975_2 crossref_primary_10_2503_hortj_QH_100 crossref_primary_10_1007_s40415_019_00575_6 crossref_primary_10_2503_hortj_UTD_282 crossref_primary_10_2503_hortj_UTD_184 crossref_primary_10_3389_fgene_2020_598183 crossref_primary_10_1007_s10681_022_02970_9 crossref_primary_10_1007_s00122_024_04602_3 crossref_primary_10_1111_tpj_14462 crossref_primary_10_3390_molecules28062644 crossref_primary_10_1038_s41438_020_00381_2 crossref_primary_10_15547_tjs_2022_01_005 crossref_primary_10_1007_s00122_018_3238_8 crossref_primary_10_1021_acs_jafc_9b04179 crossref_primary_10_1111_tpj_16573 crossref_primary_10_1007_s00122_022_04125_9 crossref_primary_10_1007_s00122_018_03275_z crossref_primary_10_1007_s11103_021_01159_3 crossref_primary_10_1007_s00299_023_03064_z crossref_primary_10_32604_phyton_2023_046943 crossref_primary_10_1080_07352689_2021_1941605 crossref_primary_10_2139_ssrn_4135296 crossref_primary_10_1007_s00299_021_02750_0 crossref_primary_10_1016_j_ijbiomac_2024_135592 crossref_primary_10_1007_s00122_021_03870_7 crossref_primary_10_1039_D2NP00003B crossref_primary_10_3389_fpls_2022_1039393 crossref_primary_10_2503_hortj_UTD_216 crossref_primary_10_1080_10408398_2022_2097195 crossref_primary_10_3390_agriculture11090819 |
Cites_doi | 10.1007/s11295-015-0944-0 10.1007/s00299-010-0968-8 10.1002/pmic.200600326 10.1104/pp.17.00506 10.1111/j.1365-313X.2005.02410.x 10.1007/BF00021431 10.1093/jxb/erl243 10.1093/molbev/msw054 10.1007/s00018-008-8588-y 10.1093/bioinformatics/btu170 10.1023/A:1002913228101 10.1007/s00425-007-0651-7 10.1104/pp.109.136549 10.1007/s11032-015-0339-9 10.1021/jf052085z 10.1080/0735-260291044269 10.1007/s00438-015-1071-1 10.1111/j.1742-4658.2007.05642.x 10.1016/j.molp.2014.11.024 10.1534/g3.111.000240 10.2503/hortj.OKD-115 10.1093/bfgp/elu002 10.1016/S0969-2126(00)00115-5 10.1186/s12870-015-0476-7 10.1046/j.1365-313x.2001.00993.x 10.1073/pnas.1400975111 10.1038/srep38081 10.1104/pp.121.2.479 10.4236/ajps.2015.68127 10.1146/annurev.biochem.74.082803.133524 10.1039/j39680000442 10.1016/j.biotechadv.2009.08.005 10.2503/jjshs.58.353 10.1126/science.1136914 10.1093/aob/mcw079 10.1016/0092-8674(93)90522-R 10.1016/0092-8674(90)90721-P 10.1080/10408398509527412 10.1016/S0009-2797(02)00223-5 10.1038/hdy.2009.131 10.2503/hortj.MI-148 10.1007/s00122-004-1625-9 10.1007/s00438-005-0083-7 10.1021/jf1019642 10.1186/s13007-016-0151-5 10.1021/ja01026a049 10.1007/BF00197589 10.1093/bioinformatics/btm404 10.1007/s00122-016-2723-1 10.1093/jxb/erg176 10.1371/journal.pone.0048156 10.1002/j.1460-2075.1986.tb04517.x 10.2503/jjshs1.CH-105 10.1038/ng.2877 10.1111/pbi.12894 10.1111/j.1365-313X.2009.03921.x 10.2503/hortj.MI-049 10.1021/jf903282r 10.1016/S0168-9452(99)00118-1 10.1242/dev.126.3.435 10.1016/S1016-8478(23)17027-0 10.1016/S1016-8478(23)13054-8 10.1155/2014/194812 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2018 COPYRIGHT 2019 Springer Theoretical and Applied Genetics is a copyright of Springer, (2018). All Rights Reserved. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018 – notice: COPYRIGHT 2019 Springer – notice: Theoretical and Applied Genetics is a copyright of Springer, (2018). All Rights Reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7SS 7TK 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 7S9 L.6 |
DOI | 10.1007/s00122-018-3195-2 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Entomology Abstracts (Full archive) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA ProQuest Central Student MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology |
EISSN | 1432-2242 |
EndPage | 80 |
ExternalDocumentID | A568391794 30267113 10_1007_s00122_018_3195_2 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Japan Society for the Promotion of Science grantid: 25850018; 16K07605 – fundername: Japan Society for the Promotion of Science grantid: 16K07605 – fundername: Japan Society for the Promotion of Science grantid: 25850018 |
GroupedDBID | --- -4W -56 -5G -BR -DZ -EM -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29Q 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67N 67Z 6NX 78A 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IFM IHE IHR IJ- IKXTQ INH INR ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M0L M1P M4Y M7P MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P0- P19 PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 Y6R YLTOR Z45 Z7S Z7U Z7V Z7W Z7Y Z83 Z85 Z87 Z8N Z8O Z8P Z8Q Z8S Z8W Z8Z Z91 ZMTXR ZOVNA ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM AEIIB PMFND 7SS 7TK 7XB 8FD 8FK ABRTQ AZQEC DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c598t-1042dbd77ade8ae2b33fa1714706cfd000187c5f1e433730d40a1843952d4bff3 |
IEDL.DBID | 7X7 |
ISSN | 0040-5752 1432-2242 |
IngestDate | Thu Jul 10 22:38:45 EDT 2025 Thu Jul 10 18:31:18 EDT 2025 Fri Jul 25 09:34:58 EDT 2025 Tue Jun 17 21:39:15 EDT 2025 Tue Jun 10 20:38:15 EDT 2025 Fri Jun 27 04:16:33 EDT 2025 Thu Apr 03 07:07:18 EDT 2025 Tue Jul 01 04:18:26 EDT 2025 Thu Apr 24 23:00:16 EDT 2025 Fri Feb 21 02:35:15 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c598t-1042dbd77ade8ae2b33fa1714706cfd000187c5f1e433730d40a1843952d4bff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5921-8432 0000-0001-7891-5049 0000-0001-9777-4886 |
PMID | 30267113 |
PQID | 2113688484 |
PQPubID | 54040 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2221057712 proquest_miscellaneous_2114699231 proquest_journals_2113688484 gale_infotracmisc_A568391794 gale_infotracacademiconefile_A568391794 gale_incontextgauss_ISR_A568391794 pubmed_primary_30267113 crossref_citationtrail_10_1007_s00122_018_3195_2 crossref_primary_10_1007_s00122_018_3195_2 springer_journals_10_1007_s00122_018_3195_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationSubtitle | International Journal of Plant Breeding Research |
PublicationTitle | Theoretical and applied genetics |
PublicationTitleAbbrev | Theor Appl Genet |
PublicationTitleAlternate | Theor Appl Genet |
PublicationYear | 2019 |
Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V |
References | Borovsky, Oren-Shamir, Ovadia, De Jong, Paran (CR10) 2004; 109 Liu, Parrott, Hildebrand, Collins, Williams (CR39) 1990; 9 Maligeppagol, Manjula, Navale, Babu, Kumbar, Laxman (CR42) 2016; 15 Bolger, Lohse, Usadel (CR9) 2014; 30 Kothari, Joshi, Kachhwaha, Ochoa-Alejo (CR33) 2010; 28 Brosché, Strid (CR12) 1999; 121 Lang, Kisaka, Sugiyama, Nomura, Morita, Watanabe, Tanaka, Yazawa, Miwa (CR35) 2009; 59 Curry, Aluru, Mendoza, Nevarez, Melendrez, O’Connell (CR17) 1999; 148 Tanaka, Fukuta, Koeda, Goto, Yoshida, Yasuba (CR62) 2018; 87 Picton, Gray, Barton, AbuBakar, Lowe, Grierson (CR51) 1993; 23 Arce-Rodríguez, Ochoa-Alejo (CR4) 2017; 174 Abraham-Juarez, Rocha-Granados, López, Rivera-Bustamante, Ochoa-Alejo (CR1) 2008; 227 DeLong, Calderon-Urrea, Dellaporta (CR18) 1993; 74 Larkin, Blackshields, Brown (CR36) 2007; 23 Calderon-Urrea, Dellaporta (CR13) 1999; 126 Pickersgill (CR50) 1997; 96 Andrews (CR3) 1984 Kirii, Goto, Yoshida, Yasuba, Tanaka (CR29) 2017; 86 Tanaka, Hosokawa, Miwa, Watanabe, Yazawa (CR60) 2010; 58 Wessler, Baran, Varagona, Dellaporta (CR64) 1986; 5 Narasimha Prasad, Gururaj, Kumar, Giridhar, Parimalan, Sharma, Ravishankar (CR45) 2006; 54 Qin, Yu, Shen (CR52) 2014; 111 Aza-Gonzalez, Nunez-Palenius, Ochoa-Alejo (CR5) 2011; 30 Carrizo García, Barfuss, Sehr, Barboza, Samuel, Moscone, Ehrendorfer (CR14) 2016; 118 Kim, Park, Jeong, Lee, Choi (CR28) 2017; 13 Bhattacharyya, Smith, Ellis (CR8) 1990; 60 Sakaguchi, Sugino, Tsumura (CR53) 2015; 11 Stewart, Mazourek, Stellari, O’Connell, Jahn (CR58) 2007; 58 Wu, Knapp, Stamp, Stammers, Jörnvall, Dellaporta, Oppermann (CR66) 2007; 274 Hadacek (CR22) 2002; 21 Liu, Li, Wu, Chen, Lei (CR40) 2013; 8 Liu, Venkatesh, Jo, Koeda, Hosokawa, Kang, Goritschnig, Kang (CR41) 2016; 129 White, Zheng, Zhang, Rock (CR65) 2005; 74 Zhang, Zhao, Liu, Huang, Cao, Cheng, Lin (CR68) 2016; 6 CR54 Bosland, Votava (CR11) 2000 Kavanagh, Jörnvall, Persson, Oppermann (CR25) 2008; 65 Ogawa, Murota, Shimura, Furuya, Togawa, Matsumura, Masuta (CR46) 2015; 15 Jacobsen, Olszewski (CR24) 1996; 198 Vitte, Fustier, Alix, Tenaillon (CR63) 2014; 13 Fisher, Kroon, Martindale, Stuitje, Slabas, Rafferty (CR20) 2000; 15 Mazourek, Pujar, Borovsky, Paran, Mueller, Jahn (CR43) 2009; 150 Stellari, Mazourek, Jahn (CR56) 2010; 104 Tanaka, Sonoyama, Muraga, Koeda, Goto, Yoshida, Yasuba (CR61) 2015; 35 Catchen, Amores, Hohenlohe, Cresko, Postlethwait (CR15) 2011; 1 Fernandez-Pozo, Rosli, Martin, Mueller (CR19) 2015; 8 Koeda, Sato, Tanaka, Takisawa, Kitajima (CR32) 2015; 6 Koeda, Sato, Tomi, Tanaka, Takisawa, Hosokawa, Doi, Nakazaki, Kitajima (CR30) 2014; 83 Bennett, Kirby (CR7) 1968; 4 Stewart, Kang, Liu, Mazourek, Moore, Eun, Kim, Paran, Jahn (CR57) 2005; 42 Steinitz, Wolf, Matzevitch-Josef, Zelcer (CR55) 1999; 18 Chung, Seong, Kim, Chung, Oh, Lee, Park, Joung, Choi (CR16) 2004; 17 Tanaka, Hosokawa, Miwa, Watanabe, Yazawa (CR59) 2010; 58 Park, Nishikawa, Minami, Nemoto, Iwasaki, Matsushima (CR47) 2015; 290 Han, Lee, Ro, Hur, Lee, Kwon, Kang (CR23) 2018 Lee, Kim, Lee, Yoo, Cho, Cho, Kim, Bahk (CR37) 2006; 6 Aluru, Mazourek, Landry, Curry, Jahn, O’Connell (CR2) 2003; 54 Nakatsuka, Nishihara, Mishiba, Hirano, Yamamura (CR44) 2006; 275 Persson, Kallberg, Oppermann, Jörnvall (CR49) 2003; 143–144 Yazawa, Ueda, Suetome, Namiki (CR67) 1989; 58 Kim, Kim, Kim, Kim (CR26) 2001; 11 Kim, Park, Yeom (CR27) 2014; 46 Perry, Dickau, Zarrillo (CR48) 2007; 315 Govindarajan (CR21) 1985; 22 Leete, Louden (CR38) 1968; 9 Koeda, Sato, Takisawa, Kitajima (CR31) 2015; 84 Kumar, Stecher, Tamura (CR34) 2016; 33 Bachem, Horvath, Trindade, Claassens, Davelaar, Jordi, Visser (CR6) 2001; 25 KL Kavanagh (3195_CR25) 2008; 65 A DeLong (3195_CR18) 1993; 74 C Aza-Gonzalez (3195_CR5) 2011; 30 B Steinitz (3195_CR55) 1999; 18 B Persson (3195_CR49) 2003; 143–144 M Maligeppagol (3195_CR42) 2016; 15 K Ogawa (3195_CR46) 2015; 15 VS Govindarajan (3195_CR21) 1985; 22 J Curry (3195_CR17) 1999; 148 DJ Bennett (3195_CR7) 1968; 4 GM Stellari (3195_CR56) 2010; 104 C Stewart Jr (3195_CR57) 2005; 42 J Andrews (3195_CR3) 1984 A Calderon-Urrea (3195_CR13) 1999; 126 Y Tanaka (3195_CR62) 2018; 87 S Yazawa (3195_CR67) 1989; 58 C Vitte (3195_CR63) 2014; 13 Y Lang (3195_CR35) 2009; 59 M Brosché (3195_CR12) 1999; 121 S Koeda (3195_CR31) 2015; 84 MR Aluru (3195_CR2) 2003; 54 Y Borovsky (3195_CR10) 2004; 109 SE Jacobsen (3195_CR24) 1996; 198 F Hadacek (3195_CR22) 2002; 21 T Nakatsuka (3195_CR44) 2006; 275 PW Bosland (3195_CR11) 2000 MA Larkin (3195_CR36) 2007; 23 ZX Zhang (3195_CR68) 2016; 6 CW Bachem (3195_CR6) 2001; 25 ML Arce-Rodríguez (3195_CR4) 2017; 174 S Koeda (3195_CR32) 2015; 6 MD Abraham-Juarez (3195_CR1) 2008; 227 S Liu (3195_CR40) 2013; 8 C Stewart Jr (3195_CR58) 2007; 58 3195_CR54 SW White (3195_CR65) 2005; 74 W Liu (3195_CR39) 1990; 9 J Kim (3195_CR28) 2017; 13 S Kumar (3195_CR34) 2016; 33 Y Tanaka (3195_CR60) 2010; 58 B Pickersgill (3195_CR50) 1997; 96 S Koeda (3195_CR30) 2014; 83 N Fernandez-Pozo (3195_CR19) 2015; 8 SL Kothari (3195_CR33) 2010; 28 L Perry (3195_CR48) 2007; 315 S Picton (3195_CR51) 1993; 23 E Leete (3195_CR38) 1968; 9 M Kim (3195_CR26) 2001; 11 BC Narasimha Prasad (3195_CR45) 2006; 54 C Carrizo García (3195_CR14) 2016; 118 E Chung (3195_CR16) 2004; 17 AM Bolger (3195_CR9) 2014; 30 S Sakaguchi (3195_CR53) 2015; 11 E Kirii (3195_CR29) 2017; 86 M Mazourek (3195_CR43) 2009; 150 Y Tanaka (3195_CR61) 2015; 35 M Fisher (3195_CR20) 2000; 15 C Qin (3195_CR52) 2014; 111 JM Lee (3195_CR37) 2006; 6 L Liu (3195_CR41) 2016; 129 Y Tanaka (3195_CR59) 2010; 58 X Wu (3195_CR66) 2007; 274 K Han (3195_CR23) 2018 S Kim (3195_CR27) 2014; 46 JM Catchen (3195_CR15) 2011; 1 YJ Park (3195_CR47) 2015; 290 MK Bhattacharyya (3195_CR8) 1990; 60 SR Wessler (3195_CR64) 1986; 5 |
References_xml | – volume: 11 start-page: 121 year: 2015 ident: CR53 article-title: High-throughput linkage mapping of Australian white cypress pine ( ) and map transferability to related species publication-title: Tree Genet Genom doi: 10.1007/s11295-015-0944-0 – volume: 30 start-page: 695 year: 2011 end-page: 706 ident: CR5 article-title: Molecular biology of capsaicinoid biosynthesis in chili pepper ( spp.) publication-title: Plant Cell Rep doi: 10.1007/s00299-010-0968-8 – volume: 17 start-page: 377 year: 2004 end-page: 380 ident: CR16 article-title: A method of high frequency virus-induced gene silencing in chili pepper ( L. cv. Bukang) publication-title: Mol Cells – volume: 6 start-page: 5248 year: 2006 end-page: 5259 ident: CR37 article-title: A differentially expressed proteomic analysis in placental tissues in relation to pungency during the pepper fruit development publication-title: Proteomics doi: 10.1002/pmic.200600326 – volume: 174 start-page: 1359 year: 2017 end-page: 1370 ident: CR4 article-title: An R2R3-MYB transcription factor regulates capsaicinoid biosynthesis publication-title: Plant Physiol doi: 10.1104/pp.17.00506 – volume: 42 start-page: 675 year: 2005 end-page: 688 ident: CR57 article-title: The gene for pungency in pepper encodes a putative acyltransferase publication-title: Plant J doi: 10.1111/j.1365-313X.2005.02410.x – volume: 23 start-page: 193 year: 1993 end-page: 207 ident: CR51 article-title: cDNA cloning and characterisation of novel ripening-related mRNAs with altered patterns of accumulation in the ( ) tomato ripening mutant publication-title: Plant Mol Biol doi: 10.1007/BF00021431 – volume: 58 start-page: 979 year: 2007 end-page: 991 ident: CR58 article-title: Genetic control of pungency in via the locus publication-title: J Exp Bot doi: 10.1093/jxb/erl243 – year: 2000 ident: CR11 publication-title: Peppers: vegetable and spice capsicums – volume: 33 start-page: 1870 year: 2016 end-page: 1874 ident: CR34 article-title: MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets publication-title: Mol Biol Evol doi: 10.1093/molbev/msw054 – volume: 126 start-page: 435 year: 1999 end-page: 441 ident: CR13 article-title: Cell death and cell protection genes determine the fate of pistils in maize publication-title: Development – volume: 65 start-page: 3895 year: 2008 end-page: 3906 ident: CR25 article-title: Medium- and short-chain dehydrogenase/reductase gene and protein families: the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes publication-title: Cell Mol Life Sci doi: 10.1007/s00018-008-8588-y – volume: 18 start-page: 9 year: 1999 end-page: 15 ident: CR55 article-title: Regeneration in vitro and genetic transformation of pepper ( spp.): the current state of the art publication-title: Capsicum Eggplant Plant Newsl – ident: CR54 – volume: 30 start-page: 2114 year: 2014 end-page: 2120 ident: CR9 article-title: Trimmomatic: a flexible trimmer for illumina sequence data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu170 – volume: 96 start-page: 129 year: 1997 end-page: 133 ident: CR50 article-title: Genetic resources and breeding of Capsicum spp publication-title: Euphytica doi: 10.1023/A:1002913228101 – volume: 227 start-page: 681 year: 2008 end-page: 695 ident: CR1 article-title: Virus-induced silencing of , and genes results in a reduction of capsaicinoid accumulation in chili pepper fruits publication-title: Planta doi: 10.1007/s00425-007-0651-7 – volume: 150 start-page: 1806 year: 2009 end-page: 1821 ident: CR43 article-title: A dynamic interface for capsaicinoid systems biology publication-title: Plant Physiol doi: 10.1104/pp.109.136549 – volume: 35 start-page: 142 year: 2015 ident: CR61 article-title: Multiple loss-of-function putative aminotransferase alleles contribute to low pungency and capsinoid biosynthesis in publication-title: Mol Breed doi: 10.1007/s11032-015-0339-9 – volume: 54 start-page: 1854 year: 2006 end-page: 1859 ident: CR45 article-title: Influence of 8-methyl-nonenoic acid on capsaicin biosynthesis in in vivo and in vitro cell cultures of spp publication-title: J Agric Food Chem doi: 10.1021/jf052085z – volume: 21 start-page: 273 year: 2002 end-page: 322 ident: CR22 article-title: Secondary metabolites as plant traits: current assessment and future perspective publication-title: Crit Rev Plant Sci doi: 10.1080/0735-260291044269 – volume: 290 start-page: 2217 year: 2015 end-page: 2224 ident: CR47 article-title: A low-pungency S3212 genotype of caused by a mutation in the ( - ) gene publication-title: Mol Genet Genom doi: 10.1007/s00438-015-1071-1 – volume: 274 start-page: 1172 year: 2007 end-page: 1182 ident: CR66 article-title: Biochemical characterization of TASSELSEED 2, an essential plant short-chain dehydrogenase/reductase with broad spectrum activities publication-title: FEBS J doi: 10.1111/j.1742-4658.2007.05642.x – volume: 8 start-page: 486 year: 2015 end-page: 488 ident: CR19 article-title: The SGN VIGS tool: user-friendly software to design virus-induced gene silencing (VIGS) constructs for functional genomics publication-title: Mol Plant doi: 10.1016/j.molp.2014.11.024 – volume: 1 start-page: 171 year: 2011 end-page: 182 ident: CR15 article-title: Stacks: building and genotyping loci De Novo from short-read sequences publication-title: G3 doi: 10.1534/g3.111.000240 – volume: 87 start-page: 222 year: 2018 end-page: 228 ident: CR62 article-title: Identification of a novel mutant allele responsible for low-pungency and capsinoid production in chili pepper accession ‘No.4034’ ( ) publication-title: Hort J doi: 10.2503/hortj.OKD-115 – volume: 13 start-page: 276 year: 2014 end-page: 295 ident: CR63 article-title: The bright side of transposons in crop evolution publication-title: Brief Funct Genom doi: 10.1093/bfgp/elu002 – volume: 15 start-page: 339 year: 2000 end-page: 347 ident: CR20 article-title: The X-ray structure of beta-keto acyl carrier protein reductase and its implications for substrate binding and catalysis publication-title: Structure doi: 10.1016/S0969-2126(00)00115-5 – volume: 9 start-page: 360 year: 1990 end-page: 364 ident: CR39 article-title: Agrobacterium induced gall formation in bell pepper ( L.) and formation of shoot-like structures expressing introduced genes publication-title: Plant Cell Rep – volume: 15 start-page: 93 year: 2015 ident: CR46 article-title: Evidence of capsaicin synthase activity of the -encoded protein and its role as a determinant of capsaicinoid accumulation in pepper publication-title: BMC Plant Biol doi: 10.1186/s12870-015-0476-7 – volume: 25 start-page: 595 year: 2001 end-page: 604 ident: CR6 article-title: A potato tuber-expressed mRNA with homology to steroid dehydrogenases affects gibberellin levels and plant development publication-title: Plant J doi: 10.1046/j.1365-313x.2001.00993.x – volume: 111 start-page: 5135 year: 2014 end-page: 5140 ident: CR52 article-title: Whole-genome sequencing of cultivated and wild peppers provides insights into domestication and specialization publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1400975111 – volume: 6 start-page: 38081 year: 2016 ident: CR68 article-title: Discovery of putative capsaicin biosynthetic genes by RNA-Seq and digital gene expression analysis of pepper publication-title: Sci Rep doi: 10.1038/srep38081 – volume: 121 start-page: 479 year: 1999 end-page: 487 ident: CR12 article-title: Cloning, expression, and molecular characterization of a small pea gene family regulated by low levels of ultraviolet B radiation and other stresses publication-title: Plant Physiol doi: 10.1104/pp.121.2.479 – volume: 11 start-page: 213 year: 2001 end-page: 219 ident: CR26 article-title: Isolation of cDNA clones differentially accumulated in the placenta of pungent pepper by suppression subtractive hybridization publication-title: Mol Cells – volume: 6 start-page: 1243 year: 2015 end-page: 1255 ident: CR32 article-title: A loss of function mutation is insufficient for loss of pungency in publication-title: Am J Plant Sci doi: 10.4236/ajps.2015.68127 – volume: 74 start-page: 791 year: 2005 end-page: 831 ident: CR65 article-title: The structural biology of type II fatty acid biosynthesis publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.74.082803.133524 – volume: 4 start-page: 442 year: 1968 end-page: 446 ident: CR7 article-title: Constitution and biosynthesis of capsaicin publication-title: J Chem Soc C doi: 10.1039/j39680000442 – volume: 28 start-page: 35 year: 2010 end-page: 48 ident: CR33 article-title: Chilli peppers—a review on tissue culture and transgenesis publication-title: Biotechnol Adv doi: 10.1016/j.biotechadv.2009.08.005 – volume: 58 start-page: 353 year: 1989 end-page: 360 ident: CR67 article-title: Capsaicinoids content in the fruit of interspecific hybrids in publication-title: J Jpn Soc Hort Sci doi: 10.2503/jjshs.58.353 – volume: 315 start-page: 986 year: 2007 end-page: 988 ident: CR48 article-title: Starch fossils and the domestication and dispersal of chili peppers ( spp. L.) in the Americas publication-title: Science doi: 10.1126/science.1136914 – volume: 118 start-page: 35 year: 2016 end-page: 51 ident: CR14 article-title: Phylogenetic relationships, diversification and expansion of chili peppers ( , Solanaceae) publication-title: Ann Bot doi: 10.1093/aob/mcw079 – volume: 74 start-page: 757 year: 1993 end-page: 768 ident: CR18 article-title: Sex determination gene of maize encodes a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion publication-title: Cell doi: 10.1016/0092-8674(93)90522-R – volume: 60 start-page: 115 year: 1990 end-page: 122 ident: CR8 article-title: The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme publication-title: Cell doi: 10.1016/0092-8674(90)90721-P – volume: 22 start-page: 109 year: 1985 end-page: 176 ident: CR21 article-title: : production, technology, chemistry and quality. 1. History, botany, cultivation and primary processing publication-title: Crit Rev Food Sci Nutr doi: 10.1080/10408398509527412 – volume: 143–144 start-page: 271 year: 2003 end-page: 278 ident: CR49 article-title: Coenzyme-based functional assignments of short-chain dehydrogenases/reductases (SDRs) publication-title: Chem Biol Interact doi: 10.1016/S0009-2797(02)00223-5 – volume: 104 start-page: 460 year: 2010 end-page: 471 ident: CR56 article-title: Contrasting modes for loss of pungency between cultivated and wild species of publication-title: Heredity doi: 10.1038/hdy.2009.131 – volume: 86 start-page: 61 year: 2017 end-page: 69 ident: CR29 article-title: Non-pungency in a Japanese chili pepper landrace ( ) is caused by a novel loss-of-function allele publication-title: Hort J doi: 10.2503/hortj.MI-148 – volume: 109 start-page: 23 year: 2004 end-page: 29 ident: CR10 article-title: The locus that controls anthocyanin accumulation in pepper encodes a transcription factor homologous to of publication-title: Theor Appl Genet doi: 10.1007/s00122-004-1625-9 – volume: 275 start-page: 231 year: 2006 end-page: 241 ident: CR44 article-title: Two different transposable elements inserted in flavonoid 3′,5′-hydroxylase gene contribute to pink flower coloration in publication-title: Mol Genet Genom doi: 10.1007/s00438-005-0083-7 – volume: 58 start-page: 11762 year: 2010 end-page: 11767 ident: CR60 article-title: Novel loss-of-function putative aminotransferase alleles cause biosynthesis of capsinoids, non-pungent capsaicinoid analogues, in mildly pungent chili peppers ( ) publication-title: J Agric Food Chem doi: 10.1021/jf1019642 – volume: 13 start-page: 3 year: 2017 ident: CR28 article-title: Harnessing anthocyanin-rich fruit: a visible reporter for tracing virus-induced gene silencing in pepper fruit publication-title: Plant Methods doi: 10.1186/s13007-016-0151-5 – volume: 9 start-page: 6837 year: 1968 end-page: 6841 ident: CR38 article-title: Biosynthesis of capsaicin and dihydrocapsaicin in publication-title: J Am Chem Soc doi: 10.1021/ja01026a049 – volume: 198 start-page: 78 year: 1996 end-page: 86 ident: CR24 article-title: Gibberellins regulate the abundance of RNAs with sequence similarity to proteinase inhibitors, dioxygenases and dehydrogenases publication-title: Planta doi: 10.1007/BF00197589 – volume: 23 start-page: 2947 year: 2007 end-page: 2948 ident: CR36 article-title: Clustal W and Clustal X version 2.0 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm404 – volume: 129 start-page: 1541 year: 2016 end-page: 1556 ident: CR41 article-title: Fine mapping and identification of candidate genes for the - locus in a temperature-sensitive chili pepper ( ) publication-title: Theor Appl Genet doi: 10.1007/s00122-016-2723-1 – volume: 54 start-page: 1655 year: 2003 end-page: 1664 ident: CR2 article-title: Differential expression of fatty acid synthase genes, , and , in fruit publication-title: J Exp Bot doi: 10.1093/jxb/erg176 – volume: 8 start-page: e48156 year: 2013 ident: CR40 article-title: transcriptome assembly in chili pepper ( ) to identify genes involved in the biosynthesis of capsaicinoids publication-title: PLoS ONE doi: 10.1371/journal.pone.0048156 – year: 1984 ident: CR3 publication-title: Peppers: the domesticated Capsicums – volume: 15 start-page: 17 year: 2016 end-page: 24 ident: CR42 article-title: Genetic transformation of chilli ( L.) with Dreb1A transcription factor known to impart drought tolerance publication-title: Indian J Biotechnol – volume: 5 start-page: 2427 year: 1986 end-page: 2432 ident: CR64 article-title: Excision of Ds produces waxy proteins with a range of enzymatic activities publication-title: EMBO J doi: 10.1002/j.1460-2075.1986.tb04517.x – volume: 83 start-page: 244 year: 2014 end-page: 251 ident: CR30 article-title: Analysis of non-pungency, aroma, and origin of a cultivar from a Caribbean island publication-title: J Jpn Soc Hort Sci doi: 10.2503/jjshs1.CH-105 – volume: 46 start-page: 270 year: 2014 end-page: 278 ident: CR27 article-title: Genome sequence of the hot pepper provides insights into the evolution of pungency in species publication-title: Nat Genet doi: 10.1038/ng.2877 – year: 2018 ident: CR23 article-title: QTL mapping and GWAS reveal candidate genes controlling capsaicinoid content in publication-title: Plant Biotechnol J doi: 10.1111/pbi.12894 – volume: 59 start-page: 953 year: 2009 end-page: 961 ident: CR35 article-title: Functional loss of pAMT results in biosynthesis of capsinoids, capsaicinoid analogs, in cv. CH-19 sweet publication-title: Plant J doi: 10.1111/j.1365-313X.2009.03921.x – volume: 84 start-page: 323 year: 2015 end-page: 326 ident: CR31 article-title: Inheritance of non-pungency in ‘No.3341’ ( ) publication-title: Hort J doi: 10.2503/hortj.MI-049 – volume: 58 start-page: 1761 year: 2010 end-page: 1767 ident: CR59 article-title: Newly mutated putative-aminotransferase in non-pungent pepper ( ) results in biosynthesis of capsinoids, capsaicinoid analogues publication-title: J Agric Food Chem doi: 10.1021/jf903282r – volume: 148 start-page: 47 year: 1999 end-page: 57 ident: CR17 article-title: Transcripts for possible capsaicinoid biosynthetic genes are differentially accumulated in pungent and non-pungent spp publication-title: Plant Sci doi: 10.1016/S0168-9452(99)00118-1 – volume: 58 start-page: 353 year: 1989 ident: 3195_CR67 publication-title: J Jpn Soc Hort Sci doi: 10.2503/jjshs.58.353 – volume: 8 start-page: e48156 year: 2013 ident: 3195_CR40 publication-title: PLoS ONE doi: 10.1371/journal.pone.0048156 – volume: 35 start-page: 142 year: 2015 ident: 3195_CR61 publication-title: Mol Breed doi: 10.1007/s11032-015-0339-9 – volume: 6 start-page: 38081 year: 2016 ident: 3195_CR68 publication-title: Sci Rep doi: 10.1038/srep38081 – volume-title: Peppers: the domesticated Capsicums year: 1984 ident: 3195_CR3 – volume: 6 start-page: 1243 year: 2015 ident: 3195_CR32 publication-title: Am J Plant Sci doi: 10.4236/ajps.2015.68127 – volume: 126 start-page: 435 year: 1999 ident: 3195_CR13 publication-title: Development doi: 10.1242/dev.126.3.435 – volume: 21 start-page: 273 year: 2002 ident: 3195_CR22 publication-title: Crit Rev Plant Sci doi: 10.1080/0735-260291044269 – volume: 74 start-page: 757 year: 1993 ident: 3195_CR18 publication-title: Cell doi: 10.1016/0092-8674(93)90522-R – volume: 8 start-page: 486 year: 2015 ident: 3195_CR19 publication-title: Mol Plant doi: 10.1016/j.molp.2014.11.024 – volume: 104 start-page: 460 year: 2010 ident: 3195_CR56 publication-title: Heredity doi: 10.1038/hdy.2009.131 – volume: 274 start-page: 1172 year: 2007 ident: 3195_CR66 publication-title: FEBS J doi: 10.1111/j.1742-4658.2007.05642.x – volume: 11 start-page: 213 year: 2001 ident: 3195_CR26 publication-title: Mol Cells doi: 10.1016/S1016-8478(23)17027-0 – volume: 74 start-page: 791 year: 2005 ident: 3195_CR65 publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.74.082803.133524 – volume: 17 start-page: 377 year: 2004 ident: 3195_CR16 publication-title: Mol Cells doi: 10.1016/S1016-8478(23)13054-8 – volume: 42 start-page: 675 year: 2005 ident: 3195_CR57 publication-title: Plant J doi: 10.1111/j.1365-313X.2005.02410.x – year: 2018 ident: 3195_CR23 publication-title: Plant Biotechnol J doi: 10.1111/pbi.12894 – volume: 4 start-page: 442 year: 1968 ident: 3195_CR7 publication-title: J Chem Soc C doi: 10.1039/j39680000442 – volume: 86 start-page: 61 year: 2017 ident: 3195_CR29 publication-title: Hort J doi: 10.2503/hortj.MI-148 – volume: 15 start-page: 17 year: 2016 ident: 3195_CR42 publication-title: Indian J Biotechnol – volume: 275 start-page: 231 year: 2006 ident: 3195_CR44 publication-title: Mol Genet Genom doi: 10.1007/s00438-005-0083-7 – volume: 23 start-page: 193 year: 1993 ident: 3195_CR51 publication-title: Plant Mol Biol doi: 10.1007/BF00021431 – volume: 109 start-page: 23 year: 2004 ident: 3195_CR10 publication-title: Theor Appl Genet doi: 10.1007/s00122-004-1625-9 – volume: 54 start-page: 1655 year: 2003 ident: 3195_CR2 publication-title: J Exp Bot doi: 10.1093/jxb/erg176 – volume: 5 start-page: 2427 year: 1986 ident: 3195_CR64 publication-title: EMBO J doi: 10.1002/j.1460-2075.1986.tb04517.x – volume: 60 start-page: 115 year: 1990 ident: 3195_CR8 publication-title: Cell doi: 10.1016/0092-8674(90)90721-P – ident: 3195_CR54 doi: 10.1155/2014/194812 – volume: 58 start-page: 979 year: 2007 ident: 3195_CR58 publication-title: J Exp Bot doi: 10.1093/jxb/erl243 – volume: 28 start-page: 35 year: 2010 ident: 3195_CR33 publication-title: Biotechnol Adv doi: 10.1016/j.biotechadv.2009.08.005 – volume: 143–144 start-page: 271 year: 2003 ident: 3195_CR49 publication-title: Chem Biol Interact doi: 10.1016/S0009-2797(02)00223-5 – volume: 6 start-page: 5248 year: 2006 ident: 3195_CR37 publication-title: Proteomics doi: 10.1002/pmic.200600326 – volume: 58 start-page: 1761 year: 2010 ident: 3195_CR59 publication-title: J Agric Food Chem doi: 10.1021/jf903282r – volume: 30 start-page: 2114 year: 2014 ident: 3195_CR9 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu170 – volume: 25 start-page: 595 year: 2001 ident: 3195_CR6 publication-title: Plant J doi: 10.1046/j.1365-313x.2001.00993.x – volume: 22 start-page: 109 year: 1985 ident: 3195_CR21 publication-title: Crit Rev Food Sci Nutr doi: 10.1080/10408398509527412 – volume: 15 start-page: 93 year: 2015 ident: 3195_CR46 publication-title: BMC Plant Biol doi: 10.1186/s12870-015-0476-7 – volume: 129 start-page: 1541 year: 2016 ident: 3195_CR41 publication-title: Theor Appl Genet doi: 10.1007/s00122-016-2723-1 – volume-title: Peppers: vegetable and spice capsicums year: 2000 ident: 3195_CR11 – volume: 9 start-page: 6837 year: 1968 ident: 3195_CR38 publication-title: J Am Chem Soc doi: 10.1021/ja01026a049 – volume: 9 start-page: 360 year: 1990 ident: 3195_CR39 publication-title: Plant Cell Rep – volume: 111 start-page: 5135 year: 2014 ident: 3195_CR52 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1400975111 – volume: 65 start-page: 3895 year: 2008 ident: 3195_CR25 publication-title: Cell Mol Life Sci doi: 10.1007/s00018-008-8588-y – volume: 13 start-page: 276 year: 2014 ident: 3195_CR63 publication-title: Brief Funct Genom doi: 10.1093/bfgp/elu002 – volume: 15 start-page: 339 year: 2000 ident: 3195_CR20 publication-title: Structure doi: 10.1016/S0969-2126(00)00115-5 – volume: 87 start-page: 222 year: 2018 ident: 3195_CR62 publication-title: Hort J doi: 10.2503/hortj.OKD-115 – volume: 83 start-page: 244 year: 2014 ident: 3195_CR30 publication-title: J Jpn Soc Hort Sci doi: 10.2503/jjshs1.CH-105 – volume: 59 start-page: 953 year: 2009 ident: 3195_CR35 publication-title: Plant J doi: 10.1111/j.1365-313X.2009.03921.x – volume: 58 start-page: 11762 year: 2010 ident: 3195_CR60 publication-title: J Agric Food Chem doi: 10.1021/jf1019642 – volume: 150 start-page: 1806 year: 2009 ident: 3195_CR43 publication-title: Plant Physiol doi: 10.1104/pp.109.136549 – volume: 30 start-page: 695 year: 2011 ident: 3195_CR5 publication-title: Plant Cell Rep doi: 10.1007/s00299-010-0968-8 – volume: 227 start-page: 681 year: 2008 ident: 3195_CR1 publication-title: Planta doi: 10.1007/s00425-007-0651-7 – volume: 121 start-page: 479 year: 1999 ident: 3195_CR12 publication-title: Plant Physiol doi: 10.1104/pp.121.2.479 – volume: 1 start-page: 171 year: 2011 ident: 3195_CR15 publication-title: G3 doi: 10.1534/g3.111.000240 – volume: 290 start-page: 2217 year: 2015 ident: 3195_CR47 publication-title: Mol Genet Genom doi: 10.1007/s00438-015-1071-1 – volume: 198 start-page: 78 year: 1996 ident: 3195_CR24 publication-title: Planta doi: 10.1007/BF00197589 – volume: 148 start-page: 47 year: 1999 ident: 3195_CR17 publication-title: Plant Sci doi: 10.1016/S0168-9452(99)00118-1 – volume: 33 start-page: 1870 year: 2016 ident: 3195_CR34 publication-title: Mol Biol Evol doi: 10.1093/molbev/msw054 – volume: 13 start-page: 3 year: 2017 ident: 3195_CR28 publication-title: Plant Methods doi: 10.1186/s13007-016-0151-5 – volume: 11 start-page: 121 year: 2015 ident: 3195_CR53 publication-title: Tree Genet Genom doi: 10.1007/s11295-015-0944-0 – volume: 96 start-page: 129 year: 1997 ident: 3195_CR50 publication-title: Euphytica doi: 10.1023/A:1002913228101 – volume: 174 start-page: 1359 year: 2017 ident: 3195_CR4 publication-title: Plant Physiol doi: 10.1104/pp.17.00506 – volume: 46 start-page: 270 year: 2014 ident: 3195_CR27 publication-title: Nat Genet doi: 10.1038/ng.2877 – volume: 54 start-page: 1854 year: 2006 ident: 3195_CR45 publication-title: J Agric Food Chem doi: 10.1021/jf052085z – volume: 315 start-page: 986 year: 2007 ident: 3195_CR48 publication-title: Science doi: 10.1126/science.1136914 – volume: 118 start-page: 35 year: 2016 ident: 3195_CR14 publication-title: Ann Bot doi: 10.1093/aob/mcw079 – volume: 23 start-page: 2947 year: 2007 ident: 3195_CR36 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm404 – volume: 84 start-page: 323 year: 2015 ident: 3195_CR31 publication-title: Hort J doi: 10.2503/hortj.MI-049 – volume: 18 start-page: 9 year: 1999 ident: 3195_CR55 publication-title: Capsicum Eggplant Plant Newsl |
SSID | ssj0002503 |
Score | 2.4603813 |
Snippet | Key message
A putative ketoacyl-ACP reductase (
CaKR1
) that was not previously known to be associated with pungency of
Capsicum
was identified from map-based... A putative ketoacyl-ACP reductase (CaKR1) that was not previously known to be associated with pungency of Capsicum was identified from map-based cloning and... Key message Key message A putative ketoacyl-ACP reductase (CaKR1) that was not previously known to be associated with pungency of Capsicum was identified from map-based... Key messageA putative ketoacyl-ACP reductase (CaKR1) that was not previously known to be associated with pungency of Capsicum was identified from map-based... KEY MESSAGE: A putative ketoacyl-ACP reductase (CaKR1) that was not previously known to be associated with pungency of Capsicum was identified from map-based... |
SourceID | proquest gale pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 65 |
SubjectTerms | 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase - genetics active sites Acyltransferase acyltransferases Agriculture Amino Acid Sequence Biochemistry Biomedical and Life Sciences Biosynthesis Biotechnology branched chain fatty acids breeding Capsaicin Capsaicin - analysis capsaicinoids Capsicum Capsicum - enzymology Capsicum - genetics Capsicum chinense Chromosome 10 Chromosome Mapping Cloning, Molecular cultivars DNA Transposable Elements Fatty acids Fatty Acids - analysis Fatty Acids - chemistry Fruit - chemistry Fruit - genetics fruits gas chromatography-mass spectrometry Gene expression Gene mutation Gene Silencing Genes, Plant Genetic aspects Genetic Linkage genomics hot peppers Insertion Introns Life Sciences messenger RNA molecular cloning Mutation Original Article Peppers Phenotype Phenotypes Phylogeny Physiological aspects Plant Biochemistry Plant Breeding Plant Breeding/Biotechnology Plant Genetics and Genomics Pungent principles recessive genes Reductase transaminases transcription (genetics) Transposons |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ra9UwFA8yEfTDcPN15yZRBEEp9KZJm34sF8dUJjK9MPwS0jyGeG0vt-1g__3OSR96hw78WHLSNDk5j_ScnB8hr0H2Su9yGWmpfcQzH0eS2zySpTYWNoGRgdOnn9OTJf94Ls6He9zNmO0-hiSDpp4uu4UoEBx98X9eLiLQu3cFHN0xj2vJikn9gk2fUuXAF2FjKPNvr9gyRjdV8h826UaQNNie44dkd3AaadFzeY_ccdU-eVBcbIbCGW6f3OtBJa8eke-nXR9epz8qCu4dXYfnS0d_urbW5moVFYsvdIM1W1uwYXShP53NgRieXUNX8KG09tCrCtcy8S0LvQZmdr8ek-Xx-2-Lk2hAUIiMyGULOpYzW9os09ZJ7ViZJF4j5HkWp8bbOEDyGeHnjicJyLrlsUYAmFwwy0vvkydkp6or94xQx7MEdGEsc51zK3TJdCYccLL0SZrEfEbicSmVGcqLI8rFSk2FkcPqKxhS4eorNiNvpy7rvrbGbcSvkD8Ka1ZUmBRzobumUR--nqlCpODmoWaZkTcDka9hcKOHOwYwBSxztUV5uEUJQmW2m8dtoAahbhRD_BspuYTml1Mz9sREtcrVXaDhaY5e8y00jCG6cjaHST3tt9g0_wQRwWCcGXk37rnfH_DPxTn4L-rn5D64fXn_I-mQ7LSbzh2Ba9WWL4IoXQP35BWi priority: 102 providerName: Springer Nature |
Title | Mutation in the putative ketoacyl-ACP reductase CaKR1 induces loss of pungency in Capsicum |
URI | https://link.springer.com/article/10.1007/s00122-018-3195-2 https://www.ncbi.nlm.nih.gov/pubmed/30267113 https://www.proquest.com/docview/2113688484 https://www.proquest.com/docview/2114699231 https://www.proquest.com/docview/2221057712 |
Volume | 132 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgExI8IBhfgTEZhIQEipY6TuM8obRqGUyrpkKlwkvkxPaE1iWlSZD233OXOBmdRJ-iyOf64z5rX-5HyDvQvdToSLhSSOPy0Hiu4CpyRSozBUKQiYbTZ7PhyYJ_XQZLe-BW2rTKziY2hloVGZ6RHzMEHxGCC_5p_dtF1Ci8XbUQGnfJPpYuQ6kOl_0fLnTvfdYchCWsu9X0miKiA4ZJCXg6GAUu2_JLt63zP-7p1n1p44amj8hDGz_SuGX4Y3JH5wfkQXyxsTU09AG51-JLXj8hP8_q9qad_sopRHp03bz_0fRSV4XMrlduPD6nGyzfWoE7o2N5Oh8AMbzrkq5gorQw0CtvvtDEXxnLNfC1vnpKFtPJ9_GJa8EU3CyIRAXmljOVqjCUSgupWer7RiL6eegNM6O8Bp0vC8xAc98HtVfck4gFEwVM8dQY_xnZy4tcvyBU89AHs-iJSEZcBTJlMgw0MDU1_tD3uEO8biuTzFYaR8CLVdLXSG52P4EhE9z9hDnkQ99l3ZbZ2EX8FvmTYPmKHPNjLmRdlsmXb_MkDoYQ8aGRcch7S2QKGDyT9nMDWAJWvNqiPNyiBP3Ktps7MUisfpfJjTQ65E3fjD0xZy3XRd3Q8GGEAfQOGsYQaDkcwKKetyLWr99HcDAYxyEfO5m7mcB_N-fl7um-Ivch5IvaQ6RDsldtav0awqoqPWp054jsx9PRaIbPzz9OJ_AcTWbnc2hdsPgvWxgezA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIQQ8IBhfhQEGgZBA0VLHaZwHhKrC1NJ1QmOTKl48J7EnRElKm4D6T_E3cpev0Un0bY9Rzl_n893ZPt8P4CWuvciaUDpaauuIwLqOFEnoyEjHCQpBLMuZnhz2hifi09SfbsGf5i0MhVU2OrFU1EkW0xn5HifwESmFFO_nPx1CjaLb1QZCoxKLsVn9xi3b8t3oA87vK873Px4Phk6NKuDEfihz1DuCJ1ESBDoxUhseeZ7VBAMeuL3YJm4JUxf7tmuE56H8J8LVBIoS-jwRkbUe1nsFrqLhdWmzF0zbDR65E22UHrpBvLlFdcukpV1OQRB0Ghn6Dl-zgxetwT_m8ML9bGn29m_DrdpfZf1KwO7Alkl34Gb_bFHn7DA7cK3Cs1zdha-TorrZZ99Shp4lm5ffvwz7bvJMx6uZ0x98ZgtKF5uj-WQDPT7qIjF-myWbYUdZZrFUWr4IpVoGeo5yVPy4ByeXwub7sJ1mqXkIzIjAQzXsylCHIvF1xHXgGxSiyHo9zxUdcBtWqrjObE4AGzPV5mQuua-wSUXcV7wDb9oi8yqtxybiFzQ_itJlpBSPc6aL5VKNvhypvt9DD5OUWgde10Q2w8ZjXT9vwCFQhq01yt01SlzP8frvRgxUrU-W6lz6O_C8_U0lKUYuNVlR0oheSA77BhrOCdg56OKgHlQi1o7fIzAybKcDbxuZO-_Af5nzaHN3n8H14fHkQB2MDseP4Qa6m2F1gLUL2_miME_Qpcujp-U6YnB62Qv3L_zEVU4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTqDxgGDAKAwwCIQEipY6TuM8IFS6VStlVVWYNPFinMSeECUp_QD1X-Ov4y5fo5Po2x6jnGP7fF-xz_cDeIG6F1kTSkdLbR0RWNeRIgkdGek4QSGIZb7SJ8P28an4cOafbcGf6i4MpVVWNjE31EkW0x75ASfwESmFFAe2TIsYHfbeTX86hCBFJ60VnEYhIgOz-o2_b_O3_UNc65ec944-d4-dEmHAif1QLtAGCZ5ESRDoxEhteOR5VhMkeOC2Y5u4OWRd7NuWEZ6HupAIVxNASujzRETWevjda7Ad0F9RA7bfHw1H49oPYHBR5-xhUMSrM1U3L2Ha4pQSQXuToe_wNa942Tf84xwvndbmTrB3G26V0SvrFOJ2B7ZMugs3O-ezsoKH2YXrBbrl6i58OVkW5_zsW8owzmTT_PmXYd_NItPxauJ0uiM2o-KxC3SmrKsH4xYS47OZswkOlGUWW6X5_VD6SldPUaqWP-7B6ZUw-j400iw1D4AZEXholF0Z6lAkvo64DnyDIhVZr-25ogluxUoVl3XOCW5jouoKzTn3FXapiPuKN-F13WRaFPnYRPyc1kdR8YyUxPBcL-dz1f80Vh2_jfEmmbgmvCqJbIadx7q87IBToHpba5T7a5So3fH660oMVGld5upCF5rwrH5NLSljLjXZMqcR7ZDC9w00nBPMc9DCSe0VIlbP3yNoMuynCW8qmbsYwH-Z83DzcJ_CDVRa9bE_HDyCHYw9w2I3ax8ai9nSPMb4bhE9KRWJwder1t2_RSJa6Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mutation+in+the+putative+ketoacyl-ACP+reductase+CaKR1+induces+loss+of+pungency+in+Capsicum&rft.jtitle=Theoretical+and+applied+genetics&rft.au=Koeda%2C+Sota&rft.au=Sato%2C+Kosuke&rft.au=Saito%2C+Hiroki&rft.au=Nagano%2C+Atsushi+J&rft.date=2019-01-01&rft.pub=Springer&rft.issn=0040-5752&rft.volume=132&rft.issue=1&rft.spage=65&rft_id=info:doi/10.1007%2Fs00122-018-3195-2&rft.externalDocID=A568391794 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-5752&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-5752&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-5752&client=summon |