Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR-1
Four distinct pathways predicted to facilitate electron flow for respiration of externally located substrates are encoded in the genome of Shewanella oneidensis strain MR-1. Although the pathways share a suite of similar proteins, the activity of only two of these pathways has been described. Respir...
Saved in:
Published in | Molecular microbiology Vol. 77; no. 4; pp. 995 - 1008 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.08.2010
Blackwell Publishing Ltd Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Four distinct pathways predicted to facilitate electron flow for respiration of externally located substrates are encoded in the genome of Shewanella oneidensis strain MR-1. Although the pathways share a suite of similar proteins, the activity of only two of these pathways has been described. Respiration of extracellular substrates requires a mechanism to facilitate electron transfer from the quinone pool in the cytoplasmic membrane to terminal reductase enzymes located on the outer leaflet of the outer membrane. The four pathways share MtrA paralogues, a periplasmic electron carrier cytochrome, and terminal reductases similar to MtrC for reduction of metals, flavins and electrodes or to DmsAB for reduction of dimethyl sulphoxide (DMSO). The promiscuity of respiratory electron transfer reactions catalysed by these pathways has made studying strains lacking single proteins difficult. Here, we present a comprehensive analysis of MtrA and MtrC paralogues in S. oneidensis to define the roles of these proteins in respiration of insoluble iron oxide, soluble iron citrate, flavins and DMSO. We present evidence that some periplasmic electron carrier components and terminal reductases in these pathways can provide partial compensation in the absence of the primary component, a phenomenon described as modularity, and discuss biochemical and evolutionary implications. |
---|---|
AbstractList | Four distinct pathways predicted to facilitate electron flow for respiration of externally located substrates are encoded in the genome of Shewanella oneidensis strain MR-1. Although the pathways share a suite of similar proteins, the activity of only two of these pathways has been described. Respiration of extracellular substrates requires a mechanism to facilitate electron transfer from the quinone pool in the cytoplasmic membrane to terminal reductase enzymes located on the outer leaflet of the outer membrane. The four pathways share MtrA paralogues, a periplasmic electron carrier cytochrome, and terminal reductases similar to MtrC for reduction of metals, flavins and electrodes or to DmsAB for reduction of dimethyl sulphoxide (DMSO). The promiscuity of respiratory electron transfer reactions catalysed by these pathways has made studying strains lacking single proteins difficult. Here, we present a comprehensive analysis of MtrA and MtrC paralogues in S. oneidensis to define the roles of these proteins in respiration of insoluble iron oxide, soluble iron citrate, flavins and DMSO. We present evidence that some periplasmic electron carrier components and terminal reductases in these pathways can provide partial compensation in the absence of the primary component, a phenomenon described as modularity, and discuss biochemical and evolutionary implications. [PUBLICATION ABSTRACT] SummaryFour distinct pathways predicted to facilitate electron flow for respiration of externally located substrates are encoded in the genome of Shewanella oneidensis strain MR-1. Although the pathways share a suite of similar proteins, the activity of only two of these pathways has been described. Respiration of extracellular substrates requires a mechanism to facilitate electron transfer from the quinone pool in the cytoplasmic membrane to terminal reductase enzymes located on the outer leaflet of the outer membrane. The four pathways share MtrA paralogues, a periplasmic electron carrier cytochrome, and terminal reductases similar to MtrC for reduction of metals, flavins and electrodes or to DmsAB for reduction of dimethyl sulphoxide (DMSO). The promiscuity of respiratory electron transfer reactions catalysed by these pathways has made studying strains lacking single proteins difficult. Here, we present a comprehensive analysis of MtrA and MtrC paralogues in S. oneidensis to define the roles of these proteins in respiration of insoluble iron oxide, soluble iron citrate, flavins and DMSO. We present evidence that some periplasmic electron carrier components and terminal reductases in these pathways can provide partial compensation in the absence of the primary component, a phenomenon described as modularity, and discuss biochemical and evolutionary implications. Four distinct pathways predicted to facilitate electron flow for respiration of externally located substrates are encoded in the genome of Shewanella oneidensis strain MR-1. Although the pathways share a suite of similar proteins, the activity of only two of these pathways has been described. Respiration of extracellular substrates requires a mechanism to facilitate electron transfer from the quinone pool in the cytoplasmic membrane to terminal reductase enzymes located on the outer leaflet of the outer membrane. The four pathways share MtrA paralogues, a periplasmic electron carrier cytochrome, and terminal reductases similar to MtrC for reduction of metals, flavins and electrodes or to DmsAB for reduction of dimethyl sulphoxide (DMSO). The promiscuity of respiratory electron transfer reactions catalysed by these pathways has made studying strains lacking single proteins difficult. Here, we present a comprehensive analysis of MtrA and MtrC paralogues in S. oneidensis to define the roles of these proteins in respiration of insoluble iron oxide, soluble iron citrate, flavins and DMSO. We present evidence that some periplasmic electron carrier components and terminal reductases in these pathways can provide partial compensation in the absence of the primary component, a phenomenon described as modularity, and discuss biochemical and evolutionary implications. Summary Four distinct pathways predicted to facilitate electron flow for respiration of externally located substrates are encoded in the genome of Shewanella oneidensis strain MR‐1. Although the pathways share a suite of similar proteins, the activity of only two of these pathways has been described. Respiration of extracellular substrates requires a mechanism to facilitate electron transfer from the quinone pool in the cytoplasmic membrane to terminal reductase enzymes located on the outer leaflet of the outer membrane. The four pathways share MtrA paralogues, a periplasmic electron carrier cytochrome, and terminal reductases similar to MtrC for reduction of metals, flavins and electrodes or to DmsAB for reduction of dimethyl sulphoxide (DMSO). The promiscuity of respiratory electron transfer reactions catalysed by these pathways has made studying strains lacking single proteins difficult. Here, we present a comprehensive analysis of MtrA and MtrC paralogues in S. oneidensis to define the roles of these proteins in respiration of insoluble iron oxide, soluble iron citrate, flavins and DMSO. We present evidence that some periplasmic electron carrier components and terminal reductases in these pathways can provide partial compensation in the absence of the primary component, a phenomenon described as modularity, and discuss biochemical and evolutionary implications. Four distinct pathways predicted to facilitate electron flow for respiration of externally located substrates are encoded in the genome of Shewanella oneidensis strain MR-1. Although the pathways share a suite of similar proteins, the activity of only two of these pathways has been described. Respiration of extracellular substrates requires a mechanism to facilitate electron transfer from the quinone pool in the cytoplasmic membrane to terminal reductase enzymes located on the outer leaflet of the outer membrane. The four pathways share MtrA paralogues, a periplasmic electron carrier cytochrome, and terminal reductases similar to MtrC for reduction of metals, flavins and electrodes or to DmsAB for reduction of dimethyl sulphoxide (DMSO). The promiscuity of respiratory electron transfer reactions catalysed by these pathways has made studying strains lacking single proteins difficult. Here, we present a comprehensive analysis of MtrA and MtrC paralogues in S. oneidensis to define the roles of these proteins in respiration of insoluble iron oxide, soluble iron citrate, flavins and DMSO. We present evidence that some periplasmic electron carrier components and terminal reductases in these pathways can provide partial compensation in the absence of the primary component, a phenomenon described as modularity, and discuss biochemical and evolutionary implications.Four distinct pathways predicted to facilitate electron flow for respiration of externally located substrates are encoded in the genome of Shewanella oneidensis strain MR-1. Although the pathways share a suite of similar proteins, the activity of only two of these pathways has been described. Respiration of extracellular substrates requires a mechanism to facilitate electron transfer from the quinone pool in the cytoplasmic membrane to terminal reductase enzymes located on the outer leaflet of the outer membrane. The four pathways share MtrA paralogues, a periplasmic electron carrier cytochrome, and terminal reductases similar to MtrC for reduction of metals, flavins and electrodes or to DmsAB for reduction of dimethyl sulphoxide (DMSO). The promiscuity of respiratory electron transfer reactions catalysed by these pathways has made studying strains lacking single proteins difficult. Here, we present a comprehensive analysis of MtrA and MtrC paralogues in S. oneidensis to define the roles of these proteins in respiration of insoluble iron oxide, soluble iron citrate, flavins and DMSO. We present evidence that some periplasmic electron carrier components and terminal reductases in these pathways can provide partial compensation in the absence of the primary component, a phenomenon described as modularity, and discuss biochemical and evolutionary implications. Four distinct pathways predicted to facilitate electron flow for respiration of externally located substrates are encoded in the genome of Shewanella oneidensis strain MR‐1. Although the pathways share a suite of similar proteins, the activity of only two of these pathways has been described. Respiration of extracellular substrates requires a mechanism to facilitate electron transfer from the quinone pool in the cytoplasmic membrane to terminal reductase enzymes located on the outer leaflet of the outer membrane. The four pathways share MtrA paralogues, a periplasmic electron carrier cytochrome, and terminal reductases similar to MtrC for reduction of metals, flavins and electrodes or to DmsAB for reduction of dimethyl sulphoxide (DMSO). The promiscuity of respiratory electron transfer reactions catalysed by these pathways has made studying strains lacking single proteins difficult. Here, we present a comprehensive analysis of MtrA and MtrC paralogues in S. oneidensis to define the roles of these proteins in respiration of insoluble iron oxide, soluble iron citrate, flavins and DMSO. We present evidence that some periplasmic electron carrier components and terminal reductases in these pathways can provide partial compensation in the absence of the primary component, a phenomenon described as modularity, and discuss biochemical and evolutionary implications. |
Author | Gralnick, Jeffrey A Coursolle, Dan |
Author_xml | – sequence: 1 fullname: Coursolle, Dan – sequence: 2 fullname: Gralnick, Jeffrey A |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23088182$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20598084$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl1rFDEUhoNU7Lb6F3QQit7MepJMMpkLC1KqFjoK1oJ3IZNJ3CyzkzWZYbv_vpnu1kIvSnOTkPO85yNvjtBB73uDUIZhjtP6tJxjyllOKibmBNItlITz-c0LNPsfOEAzqBjkVJA_h-goxiUApsDpK3RIgFUCRDFDP2rfjp0Kbthm3mbDwmT1ELJg4toFNfiwzdZqWGzUXfhqYTaqN12nstSQa00fXcziEJTrs_pXjl-jl1Z10bzZ78fo-uv577Pv-eXPbxdnXy5znQrzvMVCGaCmZW1rcFOwtqzAgiCC2xIqQ9uywUozDYJjzBveWEs1KBDW4sI09Bh92OVdB_9vNHGQKxf11Fhv_BhlyQpRiYqUifz4JIm5oKwsGIaEvn-ELv0Y-jSHLAsOBcfVBL3dQ2OzMq1cB7dSYSvvnzQBJ3tARa06G1SvXXzgKAiBBUnc6Y7TwccYjJXaDWpwvp-es5MY5OS1XMrJUjlZKiev5Z3X8iYlEI8S3Nd4hvTzTrpxndk-Wyfr-mI6Jf27nd4qL9XfkOa7viLT98KiLCpS0FuuEMgN |
CitedBy_id | crossref_primary_10_3389_fmicb_2020_00262 crossref_primary_10_1016_j_cej_2019_122404 crossref_primary_10_1021_bi2005015 crossref_primary_10_3390_microorganisms12122454 crossref_primary_10_1039_D3NR00742A crossref_primary_10_1128_JB_00890_12 crossref_primary_10_3389_fmicb_2016_00530 crossref_primary_10_1016_j_coelec_2017_08_013 crossref_primary_10_1016_j_jhazmat_2024_135514 crossref_primary_10_1007_s00203_020_01981_1 crossref_primary_10_1016_j_biortech_2012_01_099 crossref_primary_10_1128_AEM_06803_11 crossref_primary_10_1021_acs_biochem_2c00148 crossref_primary_10_1109_TCBB_2020_2996295 crossref_primary_10_1038_s41467_019_13219_w crossref_primary_10_1002_smll_201703145 crossref_primary_10_1088_1361_6528_ab6ab5 crossref_primary_10_3389_fmicb_2019_00938 crossref_primary_10_1080_01490451_2011_635755 crossref_primary_10_1111_j_1472_4669_2012_00321_x crossref_primary_10_1111_1751_7915_14175 crossref_primary_10_1039_D2CY01981G crossref_primary_10_3389_fmicb_2022_852942 crossref_primary_10_1002_celc_201402128 crossref_primary_10_1016_j_biotechadv_2020_107682 crossref_primary_10_1073_pnas_1017200108 crossref_primary_10_3389_fmicb_2021_627595 crossref_primary_10_1016_j_colsurfa_2017_02_023 crossref_primary_10_1039_C4CP03197K crossref_primary_10_1016_j_electacta_2016_07_122 crossref_primary_10_1021_acsearthspacechem_7b00132 crossref_primary_10_1016_j_scitotenv_2022_156501 crossref_primary_10_1016_j_celrep_2022_110376 crossref_primary_10_1099_mic_0_058404_0 crossref_primary_10_1002_adma_201500344 crossref_primary_10_1016_j_gca_2024_04_021 crossref_primary_10_1042_BJ20121467 crossref_primary_10_1016_j_apgeochem_2021_104895 crossref_primary_10_1016_j_bios_2018_01_032 crossref_primary_10_1107_S1744309111046082 crossref_primary_10_1128_mBio_00553_12 crossref_primary_10_1093_molbev_msad161 crossref_primary_10_1039_D3EM00224A crossref_primary_10_1016_j_chemosphere_2023_139920 crossref_primary_10_1142_S0218339019500037 crossref_primary_10_3390_microorganisms11010079 crossref_primary_10_1002_anie_202416577 crossref_primary_10_1021_acssynbio_2c00417 crossref_primary_10_1073_pnas_1800869115 crossref_primary_10_1111_1462_2920_16130 crossref_primary_10_1039_c3ee00071k crossref_primary_10_3389_fmicb_2015_00575 crossref_primary_10_1016_j_electacta_2023_142860 crossref_primary_10_1007_s00253_011_3508_8 crossref_primary_10_1007_s12033_023_00920_x crossref_primary_10_1002_celc_202200965 crossref_primary_10_1128_spectrum_04081_23 crossref_primary_10_3390_en11071822 crossref_primary_10_1016_j_ymben_2023_08_004 crossref_primary_10_1128_AEM_01253_20 crossref_primary_10_1128_AEM_01941_20 crossref_primary_10_3389_fmicb_2018_00376 crossref_primary_10_1128_AEM_03556_12 crossref_primary_10_1128_mbio_02904_21 crossref_primary_10_1016_j_aca_2024_342665 crossref_primary_10_1007_s12274_019_2438_0 crossref_primary_10_1021_sb300042w crossref_primary_10_1186_s13213_022_01694_4 crossref_primary_10_1016_j_biortech_2021_126218 crossref_primary_10_1111_mmi_14067 crossref_primary_10_1134_S0026261722020114 crossref_primary_10_1002_bit_26212 crossref_primary_10_1186_s13068_017_0881_2 crossref_primary_10_1128_JB_00671_17 crossref_primary_10_1016_j_str_2012_04_016 crossref_primary_10_3389_fmicb_2014_00318 crossref_primary_10_1038_srep05628 crossref_primary_10_1007_s00253_011_3653_0 crossref_primary_10_1016_j_meegid_2024_105636 crossref_primary_10_1146_annurev_micro_032221_023725 crossref_primary_10_1073_pnas_1316156111 crossref_primary_10_1016_j_jbiosc_2021_07_008 crossref_primary_10_1128_JB_00927_15 crossref_primary_10_1002_ange_202416577 crossref_primary_10_1016_j_jhazmat_2021_126023 crossref_primary_10_1021_acs_est_3c06490 crossref_primary_10_1039_C8RA10483B crossref_primary_10_1128_AEM_02115_18 crossref_primary_10_1021_acs_estlett_7b00471 crossref_primary_10_1128_spectrum_00512_24 crossref_primary_10_3389_fmicb_2015_01075 crossref_primary_10_1021_jacs_7b06560 crossref_primary_10_3390_biology11030472 crossref_primary_10_1016_j_jhazmat_2020_122018 crossref_primary_10_1016_j_eehl_2023_01_002 crossref_primary_10_1093_femsre_fuz031 crossref_primary_10_1128_aem_01387_23 crossref_primary_10_1128_JB_00201_11 crossref_primary_10_1007_s11306_012_0488_3 crossref_primary_10_1042_BST20120098 crossref_primary_10_3389_fmicb_2014_00657 crossref_primary_10_3389_fmicb_2016_00746 crossref_primary_10_1016_j_procbio_2012_07_032 crossref_primary_10_1016_j_scitotenv_2020_143076 crossref_primary_10_1002_jctb_5788 crossref_primary_10_1016_j_electacta_2022_140917 crossref_primary_10_1016_j_cej_2022_138717 crossref_primary_10_1016_j_febslet_2011_08_019 crossref_primary_10_1016_j_watres_2014_01_052 crossref_primary_10_1016_j_bej_2015_09_022 crossref_primary_10_1074_jbc_RA118_001850 crossref_primary_10_1021_acssynbio_9b00517 crossref_primary_10_1038_srep03307 crossref_primary_10_1371_journal_pone_0016649 crossref_primary_10_1021_acssynbio_3c00684 crossref_primary_10_1007_s00253_014_6005_z crossref_primary_10_1016_j_biotechadv_2018_07_001 crossref_primary_10_1021_acssynbio_9b00188 crossref_primary_10_1016_j_ymben_2025_02_002 crossref_primary_10_1016_j_actbio_2018_01_007 crossref_primary_10_1038_ncomms13270 crossref_primary_10_1021_acssynbio_6b00349 crossref_primary_10_1016_j_biortech_2011_04_073 crossref_primary_10_1016_j_envres_2020_110196 crossref_primary_10_1073_pnas_2119964119 crossref_primary_10_1128_mBio_02203_17 crossref_primary_10_1016_j_bioelechem_2023_108581 crossref_primary_10_1016_j_watres_2023_120846 crossref_primary_10_1371_journal_pone_0030827 crossref_primary_10_1016_j_scitotenv_2022_158630 crossref_primary_10_1016_j_cbpa_2020_06_006 crossref_primary_10_1128_AEM_01262_17 crossref_primary_10_1016_j_cell_2020_03_032 crossref_primary_10_1016_j_jbiosc_2017_03_016 crossref_primary_10_1002_mbo3_224 crossref_primary_10_1016_j_envpol_2020_115943 crossref_primary_10_3389_fmicb_2018_01759 crossref_primary_10_1007_s12010_020_03469_6 crossref_primary_10_1039_C7CP06492F crossref_primary_10_1016_j_jhazmat_2024_135348 crossref_primary_10_1021_acsbiomaterials_9b01773 crossref_primary_10_1016_j_biortech_2012_08_129 crossref_primary_10_1016_j_biteb_2023_101593 crossref_primary_10_1021_acs_est_8b04718 crossref_primary_10_1042_BST20120106 crossref_primary_10_1371_journal_pone_0078466 crossref_primary_10_1016_j_cej_2020_124464 crossref_primary_10_1016_j_cej_2021_128548 crossref_primary_10_1002_prot_25789 crossref_primary_10_3389_fmicb_2020_597818 crossref_primary_10_1039_C4MB00386A crossref_primary_10_1128_AEM_01245_17 crossref_primary_10_1002_pro_3787 crossref_primary_10_1021_acs_est_3c10897 crossref_primary_10_1099_mic_0_001240 crossref_primary_10_1128_aem_00044_24 crossref_primary_10_2116_analsci_18P394 crossref_primary_10_1016_j_bioelechem_2017_10_001 crossref_primary_10_1021_bi200602f crossref_primary_10_1021_acscentsci_1c01208 crossref_primary_10_1016_j_jhazmat_2023_132470 crossref_primary_10_1007_s10123_023_00382_w crossref_primary_10_1007_s10295_014_1480_x crossref_primary_10_1007_s12566_012_0033_x crossref_primary_10_1128_mBio_02668_19 crossref_primary_10_1021_acs_langmuir_8b02977 crossref_primary_10_1128_AEM_02134_18 crossref_primary_10_3389_fmicb_2017_02568 crossref_primary_10_1021_ar4000696 crossref_primary_10_1128_mBio_02402_21 crossref_primary_10_1038_s41598_018_37025_4 crossref_primary_10_1038_srep03735 crossref_primary_10_3389_fmicb_2022_1070601 crossref_primary_10_1016_j_mib_2021_12_003 crossref_primary_10_1007_s00775_024_02076_8 crossref_primary_10_1111_1462_2920_15939 crossref_primary_10_1007_s11814_014_0286_x crossref_primary_10_1021_acssynbio_8b00218 crossref_primary_10_1128_AEM_02835_15 crossref_primary_10_3390_nano12234149 crossref_primary_10_1021_cr400479b crossref_primary_10_1002_celc_202101423 crossref_primary_10_1021_acssynbio_4c00248 crossref_primary_10_1021_acsestwater_0c00124 crossref_primary_10_1016_j_electacta_2024_144800 crossref_primary_10_1093_lambio_ovae105 crossref_primary_10_1021_acsabm_4c01276 crossref_primary_10_3390_genes9010041 crossref_primary_10_1007_s00253_014_6143_3 crossref_primary_10_1021_acssynbio_6b00374 crossref_primary_10_1128_AEM_03003_10 crossref_primary_10_1134_S2635167623601420 crossref_primary_10_3389_fmicb_2019_00464 crossref_primary_10_1128_AEM_02852_20 crossref_primary_10_31083_j_fbl2706174 crossref_primary_10_1515_ract_2022_0059 crossref_primary_10_1111_1758_2229_12173 crossref_primary_10_1128_JB_00347_18 crossref_primary_10_7554_eLife_60049 crossref_primary_10_1016_j_syapm_2014_11_007 crossref_primary_10_3389_fbioe_2022_913077 crossref_primary_10_1042_BST20120132 crossref_primary_10_1016_j_jmst_2023_01_041 crossref_primary_10_1042_BST20120018 crossref_primary_10_1134_S0003683817090034 crossref_primary_10_1128_AEM_00550_19 crossref_primary_10_1021_acs_est_2c07862 crossref_primary_10_1186_s13068_018_1201_1 crossref_primary_10_1016_j_xcrp_2023_101433 crossref_primary_10_1080_21622515_2018_1486889 crossref_primary_10_4491_eer_2022_666 crossref_primary_10_1039_c1ee01753e crossref_primary_10_1128_jb_00469_22 crossref_primary_10_1186_s40643_017_0181_5 crossref_primary_10_1128_AEM_01390_21 crossref_primary_10_1016_j_bioelechem_2022_108054 crossref_primary_10_1021_acscentsci_1c01126 crossref_primary_10_1038_s41598_019_44088_4 crossref_primary_10_1111_1751_7915_13309 crossref_primary_10_1038_nrmicro_2016_93 crossref_primary_10_1128_JB_00319_19 crossref_primary_10_1098_rsif_2014_1117 crossref_primary_10_1038_s41467_020_17897_9 crossref_primary_10_1042_BST20120129 |
Cites_doi | 10.1371/journal.pcbi.1000719 10.1016/0003-2697(76)90067-1 10.1111/j.1365-2958.2007.05783.x 10.1046/j.1365-2958.1996.389922.x 10.1111/j.1574-6976.1998.tb00383.x 10.1128/AEM.67.1.260-269.2001 10.1093/nar/gkn180 10.1128/JB.00776-06 10.1021/bi034456f 10.1128/AEM.68.11.5585-5594.2002 10.1371/journal.pbio.0040268 10.1021/ac60289a016 10.1128/AEM.01834-09 10.1074/jbc.M302582200 10.1073/pnas.0604517103 10.1046/j.1365-2958.2001.02257.x 10.1099/00207713-49-2-705 10.1016/0378-1119(95)00584-1 10.1111/j.1365-2958.2007.05778.x 10.1111/j.1472-4669.2009.00226.x 10.1007/s00775-008-0398-z 10.1021/jp0718698 10.1042/bj3490153 10.1111/j.1365-2958.2008.06183.x 10.1021/ja063526d 10.1128/AEM.00840-08 10.1126/science.240.4857.1319 10.1128/AEM.00544-09 10.1007/s00775-007-0278-y 10.1146/annurev.micro.61.080706.093257 10.1128/AEM.01087-07 10.1074/jbc.M109.043455 10.1074/jbc.M203866200 10.1111/j.1742-4658.2007.05907.x 10.1080/10635150600755453 10.1128/JB.187.20.7138-7145.2005 10.1073/pnas.0900086106 10.1128/AEM.01454-08 10.1080/10635150390235520 10.1128/JB.00925-09 10.1073/pnas.1834303100 |
ContentType | Journal Article |
Copyright | 2010 Blackwell Publishing Ltd 2015 INIST-CNRS 2010 Blackwell Publishing Ltd. Copyright Blackwell Publishing Ltd. Aug 2010 |
Copyright_xml | – notice: 2010 Blackwell Publishing Ltd – notice: 2015 INIST-CNRS – notice: 2010 Blackwell Publishing Ltd. – notice: Copyright Blackwell Publishing Ltd. Aug 2010 |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 |
DOI | 10.1111/j.1365-2958.2010.07266.x |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts Bacteriology Abstracts (Microbiology B) MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1365-2958 |
EndPage | 1008 |
ExternalDocumentID | 2115414121 20598084 23088182 10_1111_j_1365_2958_2010_07266_x MMI7266 US201301874924 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: 2T32-GM008347-16 |
GroupedDBID | --- -DZ .3N .55 .GA .GJ .HR .Y3 05W 0R~ 10A 123 1OB 1OC 29M 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAKAS AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZCM ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AHBTC AHEFC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRSTM E3Z EBS EJD EMOBN EX3 F00 F01 F04 F5P FBQ FEDTE FIJ FSRTE FZ0 G-S G.N GODZA GX1 H.T H.X HF~ HGLYW HH5 HVGLF HZI HZ~ IH2 IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBC OBS OEB OIG OK1 OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TR2 UB1 V8K W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WOW WQJ WXSBR WYISQ X7M XG1 Y6R YFH YUY ZGI ZXP ZY4 ZZTAW ~IA ~KM ~WT 24P AEUQT AFPWT ESX IPNFZ WRC WUP AAYXX AEYWJ AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c5986-d18ae03ed5dde1b45d790f08286f709e3d7b1ac5c086116b6bff3c0a08ff14eb3 |
IEDL.DBID | DR2 |
ISSN | 0950-382X 1365-2958 |
IngestDate | Fri Jul 11 02:08:57 EDT 2025 Fri Jul 11 08:37:39 EDT 2025 Fri Jul 25 11:05:30 EDT 2025 Thu Apr 03 07:09:36 EDT 2025 Mon Jul 21 09:13:20 EDT 2025 Tue Jul 01 03:38:10 EDT 2025 Thu Apr 24 23:01:48 EDT 2025 Wed Jan 22 16:21:01 EST 2025 Thu Apr 03 09:45:39 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Bacteria Vibrionaceae Shewanella Strain |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 2010 Blackwell Publishing Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5986-d18ae03ed5dde1b45d790f08286f709e3d7b1ac5c086116b6bff3c0a08ff14eb3 |
Notes | http://dx.doi.org/10.1111/j.1365-2958.2010.07266.x SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-2958.2010.07266.x |
PMID | 20598084 |
PQID | 746046190 |
PQPubID | 35968 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_754898927 proquest_miscellaneous_1683574510 proquest_journals_746046190 pubmed_primary_20598084 pascalfrancis_primary_23088182 crossref_citationtrail_10_1111_j_1365_2958_2010_07266_x crossref_primary_10_1111_j_1365_2958_2010_07266_x wiley_primary_10_1111_j_1365_2958_2010_07266_x_MMI7266 fao_agris_US201301874924 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2010 |
PublicationDateYYYYMMDD | 2010-08-01 |
PublicationDate_xml | – month: 08 year: 2010 text: August 2010 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England |
PublicationTitle | Molecular microbiology |
PublicationTitleAlternate | Mol Microbiol |
PublicationYear | 2010 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd Blackwell |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd – name: Blackwell |
References | 2007; 189 2006; 55 1999; 49 2002; 277 2008; 36 2008; 13 2006; 4 2007; 73 2008; 74 1988; 240 2001; 67 2003; 278 2003; 52 2007; 12 1998; 22 1976; 75 2009; 75 2005; 187 2000; 349 2002; 68 2007; 111 2007; 274 2008; 68 1970; 42 2007; 61 2009; 284 2001; 39 2010; 192 1995; 166 2007; 65 2006; 128 2003; 100 2003; 42 2010; 6 2006; 103 2009; 106 2010; 8 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_30_1 e_1_2_5_31_1 |
References_xml | – volume: 12 start-page: 1083 year: 2007 end-page: 1094 article-title: Characterization of MtrC: a cell‐surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors publication-title: J Biol Inorg Chem – volume: 187 start-page: 7138 year: 2005 end-page: 7145 article-title: Global transcriptome analysis of MR‐1 exposed to different terminal electron acceptors publication-title: J Bacteriol – volume: 36 start-page: W465 year: 2008 end-page: W469 article-title: Phylogeny.fr: robust phylogenetic analysis for the non‐specialist publication-title: Nucleic Acids Res – volume: 49 start-page: 705 year: 1999 end-page: 724 article-title: Polyphasic taxonomy of the genus and description of sp. nov publication-title: Int J Syst Bacteriol – volume: 189 start-page: 1765 year: 2007 end-page: 1773 article-title: The pio operon is essential for phototrophic Fe(II) oxidation in TIE‐1 publication-title: J Bacteriol – volume: 68 start-page: 5585 year: 2002 end-page: 5594 article-title: MtrB is required for proper incorporation of the cytochromes OmcA and OmcB into the outer membrane of MR‐1 publication-title: Appl Environ Microbiol – volume: 75 start-page: 5218 year: 2009 end-page: 5226 article-title: Kinetic characterization of OmcA and MtrC, terminal reductases involved in respiratory electron transfer for dissimilatory iron reduction in Shewanella oneidensis MR‐1 publication-title: Appl Environ Microbiol – volume: 6 start-page: e1000719 year: 2010 article-title: Specialization can drive the evolution of modularity publication-title: PLoS Comput Biol – volume: 4 start-page: e268 year: 2006 article-title: ‐Type cytochrome‐dependent formation of U(IV) nanoparticles by publication-title: PLoS Biol – volume: 55 start-page: 539 year: 2006 end-page: 552 article-title: Approximate likelihood‐ratio test for branches: a fast, accurate, and powerful alternative publication-title: Syst Biol – volume: 67 start-page: 260 year: 2001 end-page: 269 article-title: Role for outer membrane cytochromes OmcA and OmcB of MR‐1 in reduction of manganese dioxide publication-title: Appl Environ Microbiol – volume: 75 start-page: 168 year: 1976 end-page: 176 article-title: An improved staining procedure for the detection of the peroxidase activity of cytochrome P‐450 on sodium dodecyl sulfate polyacrylamide gels publication-title: Anal Biochem – volume: 22 start-page: 489 year: 1998 end-page: 501 article-title: Mechanistic aspects of molybdenum‐containing enzymes publication-title: FEMS Microb Rev – volume: 100 start-page: 10983 year: 2003 end-page: 10988 article-title: Genetic identification of a respiratory arsenate reductase publication-title: Proc Natl Acad Sci USA – volume: 39 start-page: 722 year: 2001 end-page: 730 article-title: MtrC, an outer membrane decahaem cytochrome required for metal reduction in MR‐1 publication-title: Mol Microbiol – volume: 74 start-page: 6880 year: 2008 end-page: 6886 article-title: Mechanism and consequences of anaerobic respiration of cobalt by strain MR‐1 publication-title: Appl Environ Microbiol – volume: 128 start-page: 13978 year: 2006 end-page: 13979 article-title: High‐affinity binding and direct electron transfer to solid metals by the MR‐1 outer membrane ‐type cytochrome OmcA publication-title: J Am Chem Soc – volume: 65 start-page: 12 year: 2007 end-page: 20 article-title: Respiration of metal (hydr)oxides by and : a key role for multihaem ‐type cytochromes publication-title: Mol Microbiol – volume: 240 start-page: 1319 year: 1988 end-page: 1321 article-title: Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor publication-title: Science – volume: 349 start-page: 153 year: 2000 end-page: 158 article-title: Identification and characterization of a novel cytochrome (3) from that is involved in Fe(III) respiration publication-title: Biochem J – volume: 277 start-page: 35703 year: 2002 end-page: 35711 article-title: Crystal structures at atomic resolution reveal the novel concept of ‘electron‐harvesting’ as a role for the small tetraheme cytochrome publication-title: J Biol Chem – volume: 166 start-page: 175 year: 1995 end-page: 176 article-title: Four new derivatives of the broad‐host‐range cloning vector pBBR1MCS, carrying different antibiotic‐resistance cassettes publication-title: Gene – volume: 74 start-page: 6746 year: 2008 end-page: 6755 article-title: Kinetics of reduction of Fe(III) complexes by outer membrane cytochromes MtrC and OmcA of MR‐1 publication-title: Appl Environ Microbiol – volume: 42 start-page: 779 year: 1970 end-page: 781 article-title: Ferrozine – a new spectrophotometric reagent for iron publication-title: Anal Chem – volume: 13 start-page: 849 year: 2008 end-page: 854 article-title: Electrochemical interrogations of the Mtr cytochromes from Shewanella: opening a potential window publication-title: J Biol Inorg Chem – volume: 52 start-page: 696 year: 2003 end-page: 704 article-title: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood publication-title: Syst Biol – volume: 106 start-page: 22169 year: 2009 end-page: 22174 article-title: Characterization of an electron conduit between bacteria and the extracellular environment publication-title: Proc Natl Acad Sci USA – volume: 274 start-page: 3728 year: 2007 end-page: 3738 article-title: A kinetic approach to the dependence of dissimilatory metal reduction by MR‐1 on the outer membrane cytochromes OmcA and OmcB publication-title: FEBS J – volume: 103 start-page: 4669 year: 2006 end-page: 4674 article-title: Extracellular respiration of dimethyl sulfoxide by strain MR‐1 publication-title: Proc Natl Acad Sci USA – volume: 8 start-page: 56 year: 2010 end-page: 68 article-title: Role of outer‐membrane cytochromes MtrC and OmcA in the biomineralization of ferrihydrite by MR‐1 publication-title: Geobiology – volume: 111 start-page: 12857 year: 2007 end-page: 12864 article-title: Mechanisms of electron transfer in two decaheme cytochromes from a metal‐reducing bacterium publication-title: J Phys Chem B – volume: 278 start-page: 27758 year: 2003 end-page: 27765 article-title: Characterization of the MR‐1 decaheme cytochrome MtrA: expression in confers the ability to reduce soluble Fe(III) chelates publication-title: J Biol Chem – volume: 61 start-page: 237 year: 2007 end-page: 258 article-title: Ecology and biotechnology of the genus publication-title: Annu Rev Microbiol – volume: 42 start-page: 9491 year: 2003 end-page: 9497 article-title: The tetraheme cytochrome CymA is required for anaerobic respiration with dimethyl sulfoxide and nitrite in publication-title: Biochemistry – volume: 75 start-page: 7789 year: 2009 end-page: 7796 article-title: Periplasmic electron transfer via the ‐type cytochromes MtrA and FccA of MR‐1 publication-title: Appl Environ Microbiol – volume: 68 start-page: 706 year: 2008 end-page: 719 article-title: Dissimilatory iron reduction in : identification of CymA of and NapC of as ferric reductases publication-title: Mol Microbiol – volume: 103 start-page: 11358 year: 2006 end-page: 11363 article-title: Electrically conductive bacterial nanowires produced by strain MR‐1 and other microorganisms publication-title: Proc Natl Acad Sci USA – volume: 73 start-page: 7003 year: 2007 end-page: 7012 article-title: Current production and metal oxide reduction by MR‐1 wild type and mutants publication-title: Appl Environ Microbiol – volume: 65 start-page: 1 year: 2007 end-page: 11 article-title: Extracellular respiration publication-title: Mol Microbiol – volume: 284 start-page: 28865 year: 2009 end-page: 28873 article-title: Electrochemical measurement of electron transfer kinetics by MR‐1 publication-title: J Biol Chem – volume: 192 start-page: 467 year: 2010 end-page: 474 article-title: The Mtr respiratory pathway is essential for reducing flavins and electrodes in publication-title: J Bacteriol – ident: e_1_2_5_10_1 doi: 10.1371/journal.pcbi.1000719 – ident: e_1_2_5_38_1 doi: 10.1016/0003-2697(76)90067-1 – ident: e_1_2_5_36_1 doi: 10.1111/j.1365-2958.2007.05783.x – ident: e_1_2_5_16_1 doi: 10.1046/j.1365-2958.1996.389922.x – ident: e_1_2_5_22_1 doi: 10.1111/j.1574-6976.1998.tb00383.x – ident: e_1_2_5_29_1 doi: 10.1128/AEM.67.1.260-269.2001 – ident: e_1_2_5_9_1 doi: 10.1093/nar/gkn180 – ident: e_1_2_5_23_1 doi: 10.1128/JB.00776-06 – ident: e_1_2_5_35_1 doi: 10.1021/bi034456f – ident: e_1_2_5_27_1 doi: 10.1128/AEM.68.11.5585-5594.2002 – ident: e_1_2_5_26_1 doi: 10.1371/journal.pbio.0040268 – ident: e_1_2_5_37_1 doi: 10.1021/ac60289a016 – ident: e_1_2_5_34_1 doi: 10.1128/AEM.01834-09 – ident: e_1_2_5_30_1 doi: 10.1074/jbc.M302582200 – ident: e_1_2_5_13_1 doi: 10.1073/pnas.0604517103 – ident: e_1_2_5_4_1 doi: 10.1046/j.1365-2958.2001.02257.x – ident: e_1_2_5_39_1 doi: 10.1099/00207713-49-2-705 – ident: e_1_2_5_24_1 doi: 10.1016/0378-1119(95)00584-1 – ident: e_1_2_5_15_1 doi: 10.1111/j.1365-2958.2007.05778.x – ident: e_1_2_5_31_1 doi: 10.1111/j.1472-4669.2009.00226.x – ident: e_1_2_5_11_1 doi: 10.1007/s00775-008-0398-z – ident: e_1_2_5_41_1 doi: 10.1021/jp0718698 – ident: e_1_2_5_14_1 doi: 10.1042/bj3490153 – ident: e_1_2_5_12_1 doi: 10.1111/j.1365-2958.2008.06183.x – ident: e_1_2_5_42_1 doi: 10.1021/ja063526d – ident: e_1_2_5_21_1 doi: 10.1128/AEM.00840-08 – ident: e_1_2_5_28_1 doi: 10.1126/science.240.4857.1319 – ident: e_1_2_5_32_1 doi: 10.1128/AEM.00544-09 – ident: e_1_2_5_18_1 doi: 10.1007/s00775-007-0278-y – ident: e_1_2_5_20_1 doi: 10.1146/annurev.micro.61.080706.093257 – ident: e_1_2_5_7_1 doi: 10.1128/AEM.01087-07 – ident: e_1_2_5_3_1 doi: 10.1074/jbc.M109.043455 – ident: e_1_2_5_25_1 doi: 10.1074/jbc.M203866200 – ident: e_1_2_5_6_1 doi: 10.1111/j.1742-4658.2007.05907.x – ident: e_1_2_5_2_1 doi: 10.1080/10635150600755453 – ident: e_1_2_5_5_1 doi: 10.1128/JB.187.20.7138-7145.2005 – ident: e_1_2_5_19_1 doi: 10.1073/pnas.0900086106 – ident: e_1_2_5_40_1 doi: 10.1128/AEM.01454-08 – ident: e_1_2_5_17_1 doi: 10.1080/10635150390235520 – ident: e_1_2_5_8_1 doi: 10.1128/JB.00925-09 – ident: e_1_2_5_33_1 doi: 10.1073/pnas.1834303100 |
SSID | ssj0013063 |
Score | 2.464674 |
Snippet | Four distinct pathways predicted to facilitate electron flow for respiration of externally located substrates are encoded in the genome of Shewanella... Summary Four distinct pathways predicted to facilitate electron flow for respiration of externally located substrates are encoded in the genome of Shewanella... Four distinct pathways predicted to facilitate electron flow for respiration of externally located substrates are encoded in the genome of Shewanella... SummaryFour distinct pathways predicted to facilitate electron flow for respiration of externally located substrates are encoded in the genome of Shewanella... |
SourceID | proquest pubmed pascalfrancis crossref wiley fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 995 |
SubjectTerms | Bacteriology Biological and medical sciences Cell Membrane - enzymology Cell Membrane - metabolism Cytoplasm Dimethyl Sulfoxide - metabolism Electron Transport Electron Transport Chain Complex Proteins - genetics Electron Transport Chain Complex Proteins - metabolism Electrons Flavins - metabolism Fundamental and applied biological sciences. Psychology Gram-negative bacteria Iron Compounds - metabolism Iron oxides Membranes Microbiology Miscellaneous Oxidation-Reduction Proteins Quinones - metabolism Respiration Shewanella - enzymology Shewanella - genetics Shewanella - metabolism Shewanella oneidensis |
Title | Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR-1 |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2958.2010.07266.x https://www.ncbi.nlm.nih.gov/pubmed/20598084 https://www.proquest.com/docview/746046190 https://www.proquest.com/docview/1683574510 https://www.proquest.com/docview/754898927 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NitRAEC50QfDiv25cXVrwmiHd00knRxHXVYjIrgNza_pXZWUikxlWPfkIPqNPYlWSmTGywiJeQqDTSXelqvqr9JcqgKc-Si5NUKl1zmGAEmJaGRfSPLdCogYhQqZPA_Wb4ngmX8_z-cB_on9h-vwQ2w9uZBmdvyYDN7YdG3nH0KryDUNL4WIzITxJDYSPTsRuQ2EoqlbllE5WzMekngtvNFqprkbTEG_StCi62Ne8uAiUjjFut0gd3YSzzfR6bsrZZL2yE_ftj8yP_2f-t-DGgGXZs175bsOVsLgD1_rqll_vwtu68URyRZzPmsgQabJ6tWTL3eY-o3rI56ZrPv0Qzg1xbgxrFpR8a9F-bFnblbBg9cnP7z_4PZgdvXj3_DgdCjikjtK-p56XJmTT4HN0otzK3Ksqi5Q0r4gqq8LUK8uNyx3GVZwXtrAxTl1msjJGLjHMvw97C3zmPjChDMY-UQSfWUR4viKcZZW0kYvoY0hAbV6WdkN2cxrhJ_1blIPy0iQvTfLSnbz0lwT4tufnPsPHJfrsoz5o8x4dsZ6dCtIvKm6IwWwChyMl2d4TY70S0ZFI4GCjNXrwF61WsqDM91WWwJNtKxo67d6g7Jt1q3mBYFlJ9KEJsL9cozD-RMkIlcCDXh93j0ccXWYljq_otOrSc9V1_YrOHv5rxwO43lMuiDX5CPZWy3V4jEhuZQ87G8Xjyzn_BTFHOCI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB61RQgu_JeGQjESHLOKvUmcHDggSrVLmwq1XWlvxk5sQKBdtNnVtpx4BN6HV-HEkzCTn10WFalC6oFbpMSJ45mx53O-fAPwtHAhD7WVvsnzHAGKdX6qc-tHkREhehBmyLQ1kB3GvUH4ehgN1-B7-y9MrQ-x2HCjyKjmawpw2pBejfKKopVGLUVL4mrTOW0Ylvv2bI74rXze30VjPxNi79XJy57flBjwcxIm9wueaBt0bRFhmHMTRoVMA0eybrGTQWq7hTRc51GOmT_nsYmNc9080EHiHA8RiOJ91-EKFRQn4f7dI7H8hNGUcUsjErAVw1Ua0bk9X1kb150eE1NTl2gsV1fZOC8NXs2qq2Vx7yb8aAe0ZsN87MymppN_-UNr8j8d8Vtwo0nX2Ys6vm7Dmh3dgat1Ac-zu_AmGxfE40Uow8aOYTLNsumETZb8BUYln-e6On383s410Yo0G49IX2xUfihZWVXpYNnRz6_f-D0YXMrrbMLGCJ-5BUxIjfDOCVsEBpPYIqVU0sjQOC5c4awHsvUOlTcC7tTDT-o3IIf2UWQfRfZRlX3UqQd80fJzLWJygTZb6IBKv8O1Rg2OBTk01W9EvO7BzopXLu6JcDbBBFB4sN26qWqmxFLJMCZx_zTw4MniLM5l9IEKx348KxWPEQ_IEJcJD9hfrpEIsXFkhPTgfh0Ay8cjVEiCBPsXV2584XdVWdanowf_2vAxXOudZAfqoH-4vw3Xa4YJkUQfwsZ0MrOPMHGdmp1qgmDw9rLj4xdfLZax |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB61RSAu5bfUFMoiwdGRd2N74wMHRIgaiquqJVJuy669C4gqqeJEaTnxCDwPr8KNJ2HGPwlBRaqQeuAWyVl7vTOz83325xmAZ7kLeait9E2WZUhQrPMTnVk_iowI0YMQIdOjgfQg3huEb4bRcA2-N9_CVPUhFg_cKDLK_ZoC_DR3q0FeKrSSqFFoSUw2rbNaYLlvz-dI34oX_S7a-rkQvdfvXu35dYcBP6O65H7OO9oGbZtHGOXchFEuk8BRVbfYySCx7VwarrMoQ-DPeWxi41w7C3TQcY6HyEPxvOtwLYyDhNpGdI_E8g1G3cUtiah-rRiuqogunPlKalx3ekxCTV2grVzVZOMiFLwKqsus2LsFP5r1rMQwn1uzqWllX_4oNfl_Lvht2KzBOntZRdcdWLOju3C9at95fg8O03FOKl4kMmzsGEJplk4nbLJULzBq-DzX5eHjj3auSVSk2XhE1cVGxaeCFWWPDpYe_fz6jd-HwZXczhZsjPCa28CE1EjunLB5YBDC5gkBSSND47hwubMeyMY5VFaXb6cZnqjfaBzaR5F9FNlHlfZRZx7wxcjTqoTJJcZso_8p_QEzjRocC_Jn6t6IbN2D3RWnXJwTyWwH4Z_wYKfxUlVviIWSGCMhkvXAg6eLo7iT0espXPvxrFA8RjYgQ0wSHrC__EciwcaVEdKDB5X_Ly-PRKETdHB-cenFl75XlaZ9-vXwXwc-gRuH3Z562z_Y34GblbyEFKKPYGM6mdnHiFqnZrfcHhi8v-rw-AXgI5Vg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modularity+of+the+Mtr+respiratory+pathway+of+Shewanella+oneidensis+strain+MR-1&rft.jtitle=Molecular+microbiology&rft.au=Coursolle%2C+Dan&rft.au=Gralnick%2C+Jeffrey+A&rft.date=2010-08-01&rft.eissn=1365-2958&rft.volume=77&rft.issue=4&rft.spage=995&rft_id=info:doi/10.1111%2Fj.1365-2958.2010.07266.x&rft_id=info%3Apmid%2F20598084&rft.externalDocID=20598084 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-382X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-382X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-382X&client=summon |