Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR-1

Four distinct pathways predicted to facilitate electron flow for respiration of externally located substrates are encoded in the genome of Shewanella oneidensis strain MR-1. Although the pathways share a suite of similar proteins, the activity of only two of these pathways has been described. Respir...

Full description

Saved in:
Bibliographic Details
Published inMolecular microbiology Vol. 77; no. 4; pp. 995 - 1008
Main Authors Coursolle, Dan, Gralnick, Jeffrey A
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.08.2010
Blackwell Publishing Ltd
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Four distinct pathways predicted to facilitate electron flow for respiration of externally located substrates are encoded in the genome of Shewanella oneidensis strain MR-1. Although the pathways share a suite of similar proteins, the activity of only two of these pathways has been described. Respiration of extracellular substrates requires a mechanism to facilitate electron transfer from the quinone pool in the cytoplasmic membrane to terminal reductase enzymes located on the outer leaflet of the outer membrane. The four pathways share MtrA paralogues, a periplasmic electron carrier cytochrome, and terminal reductases similar to MtrC for reduction of metals, flavins and electrodes or to DmsAB for reduction of dimethyl sulphoxide (DMSO). The promiscuity of respiratory electron transfer reactions catalysed by these pathways has made studying strains lacking single proteins difficult. Here, we present a comprehensive analysis of MtrA and MtrC paralogues in S. oneidensis to define the roles of these proteins in respiration of insoluble iron oxide, soluble iron citrate, flavins and DMSO. We present evidence that some periplasmic electron carrier components and terminal reductases in these pathways can provide partial compensation in the absence of the primary component, a phenomenon described as modularity, and discuss biochemical and evolutionary implications.
AbstractList Four distinct pathways predicted to facilitate electron flow for respiration of externally located substrates are encoded in the genome of Shewanella oneidensis strain MR-1. Although the pathways share a suite of similar proteins, the activity of only two of these pathways has been described. Respiration of extracellular substrates requires a mechanism to facilitate electron transfer from the quinone pool in the cytoplasmic membrane to terminal reductase enzymes located on the outer leaflet of the outer membrane. The four pathways share MtrA paralogues, a periplasmic electron carrier cytochrome, and terminal reductases similar to MtrC for reduction of metals, flavins and electrodes or to DmsAB for reduction of dimethyl sulphoxide (DMSO). The promiscuity of respiratory electron transfer reactions catalysed by these pathways has made studying strains lacking single proteins difficult. Here, we present a comprehensive analysis of MtrA and MtrC paralogues in S. oneidensis to define the roles of these proteins in respiration of insoluble iron oxide, soluble iron citrate, flavins and DMSO. We present evidence that some periplasmic electron carrier components and terminal reductases in these pathways can provide partial compensation in the absence of the primary component, a phenomenon described as modularity, and discuss biochemical and evolutionary implications. [PUBLICATION ABSTRACT]
SummaryFour distinct pathways predicted to facilitate electron flow for respiration of externally located substrates are encoded in the genome of Shewanella oneidensis strain MR-1. Although the pathways share a suite of similar proteins, the activity of only two of these pathways has been described. Respiration of extracellular substrates requires a mechanism to facilitate electron transfer from the quinone pool in the cytoplasmic membrane to terminal reductase enzymes located on the outer leaflet of the outer membrane. The four pathways share MtrA paralogues, a periplasmic electron carrier cytochrome, and terminal reductases similar to MtrC for reduction of metals, flavins and electrodes or to DmsAB for reduction of dimethyl sulphoxide (DMSO). The promiscuity of respiratory electron transfer reactions catalysed by these pathways has made studying strains lacking single proteins difficult. Here, we present a comprehensive analysis of MtrA and MtrC paralogues in S. oneidensis to define the roles of these proteins in respiration of insoluble iron oxide, soluble iron citrate, flavins and DMSO. We present evidence that some periplasmic electron carrier components and terminal reductases in these pathways can provide partial compensation in the absence of the primary component, a phenomenon described as modularity, and discuss biochemical and evolutionary implications.
Four distinct pathways predicted to facilitate electron flow for respiration of externally located substrates are encoded in the genome of Shewanella oneidensis strain MR-1. Although the pathways share a suite of similar proteins, the activity of only two of these pathways has been described. Respiration of extracellular substrates requires a mechanism to facilitate electron transfer from the quinone pool in the cytoplasmic membrane to terminal reductase enzymes located on the outer leaflet of the outer membrane. The four pathways share MtrA paralogues, a periplasmic electron carrier cytochrome, and terminal reductases similar to MtrC for reduction of metals, flavins and electrodes or to DmsAB for reduction of dimethyl sulphoxide (DMSO). The promiscuity of respiratory electron transfer reactions catalysed by these pathways has made studying strains lacking single proteins difficult. Here, we present a comprehensive analysis of MtrA and MtrC paralogues in S. oneidensis to define the roles of these proteins in respiration of insoluble iron oxide, soluble iron citrate, flavins and DMSO. We present evidence that some periplasmic electron carrier components and terminal reductases in these pathways can provide partial compensation in the absence of the primary component, a phenomenon described as modularity, and discuss biochemical and evolutionary implications.
Summary Four distinct pathways predicted to facilitate electron flow for respiration of externally located substrates are encoded in the genome of Shewanella oneidensis strain MR‐1. Although the pathways share a suite of similar proteins, the activity of only two of these pathways has been described. Respiration of extracellular substrates requires a mechanism to facilitate electron transfer from the quinone pool in the cytoplasmic membrane to terminal reductase enzymes located on the outer leaflet of the outer membrane. The four pathways share MtrA paralogues, a periplasmic electron carrier cytochrome, and terminal reductases similar to MtrC for reduction of metals, flavins and electrodes or to DmsAB for reduction of dimethyl sulphoxide (DMSO). The promiscuity of respiratory electron transfer reactions catalysed by these pathways has made studying strains lacking single proteins difficult. Here, we present a comprehensive analysis of MtrA and MtrC paralogues in S. oneidensis to define the roles of these proteins in respiration of insoluble iron oxide, soluble iron citrate, flavins and DMSO. We present evidence that some periplasmic electron carrier components and terminal reductases in these pathways can provide partial compensation in the absence of the primary component, a phenomenon described as modularity, and discuss biochemical and evolutionary implications.
Four distinct pathways predicted to facilitate electron flow for respiration of externally located substrates are encoded in the genome of Shewanella oneidensis strain MR-1. Although the pathways share a suite of similar proteins, the activity of only two of these pathways has been described. Respiration of extracellular substrates requires a mechanism to facilitate electron transfer from the quinone pool in the cytoplasmic membrane to terminal reductase enzymes located on the outer leaflet of the outer membrane. The four pathways share MtrA paralogues, a periplasmic electron carrier cytochrome, and terminal reductases similar to MtrC for reduction of metals, flavins and electrodes or to DmsAB for reduction of dimethyl sulphoxide (DMSO). The promiscuity of respiratory electron transfer reactions catalysed by these pathways has made studying strains lacking single proteins difficult. Here, we present a comprehensive analysis of MtrA and MtrC paralogues in S. oneidensis to define the roles of these proteins in respiration of insoluble iron oxide, soluble iron citrate, flavins and DMSO. We present evidence that some periplasmic electron carrier components and terminal reductases in these pathways can provide partial compensation in the absence of the primary component, a phenomenon described as modularity, and discuss biochemical and evolutionary implications.Four distinct pathways predicted to facilitate electron flow for respiration of externally located substrates are encoded in the genome of Shewanella oneidensis strain MR-1. Although the pathways share a suite of similar proteins, the activity of only two of these pathways has been described. Respiration of extracellular substrates requires a mechanism to facilitate electron transfer from the quinone pool in the cytoplasmic membrane to terminal reductase enzymes located on the outer leaflet of the outer membrane. The four pathways share MtrA paralogues, a periplasmic electron carrier cytochrome, and terminal reductases similar to MtrC for reduction of metals, flavins and electrodes or to DmsAB for reduction of dimethyl sulphoxide (DMSO). The promiscuity of respiratory electron transfer reactions catalysed by these pathways has made studying strains lacking single proteins difficult. Here, we present a comprehensive analysis of MtrA and MtrC paralogues in S. oneidensis to define the roles of these proteins in respiration of insoluble iron oxide, soluble iron citrate, flavins and DMSO. We present evidence that some periplasmic electron carrier components and terminal reductases in these pathways can provide partial compensation in the absence of the primary component, a phenomenon described as modularity, and discuss biochemical and evolutionary implications.
Four distinct pathways predicted to facilitate electron flow for respiration of externally located substrates are encoded in the genome of Shewanella oneidensis strain MR‐1. Although the pathways share a suite of similar proteins, the activity of only two of these pathways has been described. Respiration of extracellular substrates requires a mechanism to facilitate electron transfer from the quinone pool in the cytoplasmic membrane to terminal reductase enzymes located on the outer leaflet of the outer membrane. The four pathways share MtrA paralogues, a periplasmic electron carrier cytochrome, and terminal reductases similar to MtrC for reduction of metals, flavins and electrodes or to DmsAB for reduction of dimethyl sulphoxide (DMSO). The promiscuity of respiratory electron transfer reactions catalysed by these pathways has made studying strains lacking single proteins difficult. Here, we present a comprehensive analysis of MtrA and MtrC paralogues in S. oneidensis to define the roles of these proteins in respiration of insoluble iron oxide, soluble iron citrate, flavins and DMSO. We present evidence that some periplasmic electron carrier components and terminal reductases in these pathways can provide partial compensation in the absence of the primary component, a phenomenon described as modularity, and discuss biochemical and evolutionary implications.
Author Gralnick, Jeffrey A
Coursolle, Dan
Author_xml – sequence: 1
  fullname: Coursolle, Dan
– sequence: 2
  fullname: Gralnick, Jeffrey A
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23088182$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20598084$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1rFDEUhoNU7Lb6F3QQit7MepJMMpkLC1KqFjoK1oJ3IZNJ3CyzkzWZYbv_vpnu1kIvSnOTkPO85yNvjtBB73uDUIZhjtP6tJxjyllOKibmBNItlITz-c0LNPsfOEAzqBjkVJA_h-goxiUApsDpK3RIgFUCRDFDP2rfjp0Kbthm3mbDwmT1ELJg4toFNfiwzdZqWGzUXfhqYTaqN12nstSQa00fXcziEJTrs_pXjl-jl1Z10bzZ78fo-uv577Pv-eXPbxdnXy5znQrzvMVCGaCmZW1rcFOwtqzAgiCC2xIqQ9uywUozDYJjzBveWEs1KBDW4sI09Bh92OVdB_9vNHGQKxf11Fhv_BhlyQpRiYqUifz4JIm5oKwsGIaEvn-ELv0Y-jSHLAsOBcfVBL3dQ2OzMq1cB7dSYSvvnzQBJ3tARa06G1SvXXzgKAiBBUnc6Y7TwccYjJXaDWpwvp-es5MY5OS1XMrJUjlZKiev5Z3X8iYlEI8S3Nd4hvTzTrpxndk-Wyfr-mI6Jf27nd4qL9XfkOa7viLT98KiLCpS0FuuEMgN
CitedBy_id crossref_primary_10_3389_fmicb_2020_00262
crossref_primary_10_1016_j_cej_2019_122404
crossref_primary_10_1021_bi2005015
crossref_primary_10_3390_microorganisms12122454
crossref_primary_10_1039_D3NR00742A
crossref_primary_10_1128_JB_00890_12
crossref_primary_10_3389_fmicb_2016_00530
crossref_primary_10_1016_j_coelec_2017_08_013
crossref_primary_10_1016_j_jhazmat_2024_135514
crossref_primary_10_1007_s00203_020_01981_1
crossref_primary_10_1016_j_biortech_2012_01_099
crossref_primary_10_1128_AEM_06803_11
crossref_primary_10_1021_acs_biochem_2c00148
crossref_primary_10_1109_TCBB_2020_2996295
crossref_primary_10_1038_s41467_019_13219_w
crossref_primary_10_1002_smll_201703145
crossref_primary_10_1088_1361_6528_ab6ab5
crossref_primary_10_3389_fmicb_2019_00938
crossref_primary_10_1080_01490451_2011_635755
crossref_primary_10_1111_j_1472_4669_2012_00321_x
crossref_primary_10_1111_1751_7915_14175
crossref_primary_10_1039_D2CY01981G
crossref_primary_10_3389_fmicb_2022_852942
crossref_primary_10_1002_celc_201402128
crossref_primary_10_1016_j_biotechadv_2020_107682
crossref_primary_10_1073_pnas_1017200108
crossref_primary_10_3389_fmicb_2021_627595
crossref_primary_10_1016_j_colsurfa_2017_02_023
crossref_primary_10_1039_C4CP03197K
crossref_primary_10_1016_j_electacta_2016_07_122
crossref_primary_10_1021_acsearthspacechem_7b00132
crossref_primary_10_1016_j_scitotenv_2022_156501
crossref_primary_10_1016_j_celrep_2022_110376
crossref_primary_10_1099_mic_0_058404_0
crossref_primary_10_1002_adma_201500344
crossref_primary_10_1016_j_gca_2024_04_021
crossref_primary_10_1042_BJ20121467
crossref_primary_10_1016_j_apgeochem_2021_104895
crossref_primary_10_1016_j_bios_2018_01_032
crossref_primary_10_1107_S1744309111046082
crossref_primary_10_1128_mBio_00553_12
crossref_primary_10_1093_molbev_msad161
crossref_primary_10_1039_D3EM00224A
crossref_primary_10_1016_j_chemosphere_2023_139920
crossref_primary_10_1142_S0218339019500037
crossref_primary_10_3390_microorganisms11010079
crossref_primary_10_1002_anie_202416577
crossref_primary_10_1021_acssynbio_2c00417
crossref_primary_10_1073_pnas_1800869115
crossref_primary_10_1111_1462_2920_16130
crossref_primary_10_1039_c3ee00071k
crossref_primary_10_3389_fmicb_2015_00575
crossref_primary_10_1016_j_electacta_2023_142860
crossref_primary_10_1007_s00253_011_3508_8
crossref_primary_10_1007_s12033_023_00920_x
crossref_primary_10_1002_celc_202200965
crossref_primary_10_1128_spectrum_04081_23
crossref_primary_10_3390_en11071822
crossref_primary_10_1016_j_ymben_2023_08_004
crossref_primary_10_1128_AEM_01253_20
crossref_primary_10_1128_AEM_01941_20
crossref_primary_10_3389_fmicb_2018_00376
crossref_primary_10_1128_AEM_03556_12
crossref_primary_10_1128_mbio_02904_21
crossref_primary_10_1016_j_aca_2024_342665
crossref_primary_10_1007_s12274_019_2438_0
crossref_primary_10_1021_sb300042w
crossref_primary_10_1186_s13213_022_01694_4
crossref_primary_10_1016_j_biortech_2021_126218
crossref_primary_10_1111_mmi_14067
crossref_primary_10_1134_S0026261722020114
crossref_primary_10_1002_bit_26212
crossref_primary_10_1186_s13068_017_0881_2
crossref_primary_10_1128_JB_00671_17
crossref_primary_10_1016_j_str_2012_04_016
crossref_primary_10_3389_fmicb_2014_00318
crossref_primary_10_1038_srep05628
crossref_primary_10_1007_s00253_011_3653_0
crossref_primary_10_1016_j_meegid_2024_105636
crossref_primary_10_1146_annurev_micro_032221_023725
crossref_primary_10_1073_pnas_1316156111
crossref_primary_10_1016_j_jbiosc_2021_07_008
crossref_primary_10_1128_JB_00927_15
crossref_primary_10_1002_ange_202416577
crossref_primary_10_1016_j_jhazmat_2021_126023
crossref_primary_10_1021_acs_est_3c06490
crossref_primary_10_1039_C8RA10483B
crossref_primary_10_1128_AEM_02115_18
crossref_primary_10_1021_acs_estlett_7b00471
crossref_primary_10_1128_spectrum_00512_24
crossref_primary_10_3389_fmicb_2015_01075
crossref_primary_10_1021_jacs_7b06560
crossref_primary_10_3390_biology11030472
crossref_primary_10_1016_j_jhazmat_2020_122018
crossref_primary_10_1016_j_eehl_2023_01_002
crossref_primary_10_1093_femsre_fuz031
crossref_primary_10_1128_aem_01387_23
crossref_primary_10_1128_JB_00201_11
crossref_primary_10_1007_s11306_012_0488_3
crossref_primary_10_1042_BST20120098
crossref_primary_10_3389_fmicb_2014_00657
crossref_primary_10_3389_fmicb_2016_00746
crossref_primary_10_1016_j_procbio_2012_07_032
crossref_primary_10_1016_j_scitotenv_2020_143076
crossref_primary_10_1002_jctb_5788
crossref_primary_10_1016_j_electacta_2022_140917
crossref_primary_10_1016_j_cej_2022_138717
crossref_primary_10_1016_j_febslet_2011_08_019
crossref_primary_10_1016_j_watres_2014_01_052
crossref_primary_10_1016_j_bej_2015_09_022
crossref_primary_10_1074_jbc_RA118_001850
crossref_primary_10_1021_acssynbio_9b00517
crossref_primary_10_1038_srep03307
crossref_primary_10_1371_journal_pone_0016649
crossref_primary_10_1021_acssynbio_3c00684
crossref_primary_10_1007_s00253_014_6005_z
crossref_primary_10_1016_j_biotechadv_2018_07_001
crossref_primary_10_1021_acssynbio_9b00188
crossref_primary_10_1016_j_ymben_2025_02_002
crossref_primary_10_1016_j_actbio_2018_01_007
crossref_primary_10_1038_ncomms13270
crossref_primary_10_1021_acssynbio_6b00349
crossref_primary_10_1016_j_biortech_2011_04_073
crossref_primary_10_1016_j_envres_2020_110196
crossref_primary_10_1073_pnas_2119964119
crossref_primary_10_1128_mBio_02203_17
crossref_primary_10_1016_j_bioelechem_2023_108581
crossref_primary_10_1016_j_watres_2023_120846
crossref_primary_10_1371_journal_pone_0030827
crossref_primary_10_1016_j_scitotenv_2022_158630
crossref_primary_10_1016_j_cbpa_2020_06_006
crossref_primary_10_1128_AEM_01262_17
crossref_primary_10_1016_j_cell_2020_03_032
crossref_primary_10_1016_j_jbiosc_2017_03_016
crossref_primary_10_1002_mbo3_224
crossref_primary_10_1016_j_envpol_2020_115943
crossref_primary_10_3389_fmicb_2018_01759
crossref_primary_10_1007_s12010_020_03469_6
crossref_primary_10_1039_C7CP06492F
crossref_primary_10_1016_j_jhazmat_2024_135348
crossref_primary_10_1021_acsbiomaterials_9b01773
crossref_primary_10_1016_j_biortech_2012_08_129
crossref_primary_10_1016_j_biteb_2023_101593
crossref_primary_10_1021_acs_est_8b04718
crossref_primary_10_1042_BST20120106
crossref_primary_10_1371_journal_pone_0078466
crossref_primary_10_1016_j_cej_2020_124464
crossref_primary_10_1016_j_cej_2021_128548
crossref_primary_10_1002_prot_25789
crossref_primary_10_3389_fmicb_2020_597818
crossref_primary_10_1039_C4MB00386A
crossref_primary_10_1128_AEM_01245_17
crossref_primary_10_1002_pro_3787
crossref_primary_10_1021_acs_est_3c10897
crossref_primary_10_1099_mic_0_001240
crossref_primary_10_1128_aem_00044_24
crossref_primary_10_2116_analsci_18P394
crossref_primary_10_1016_j_bioelechem_2017_10_001
crossref_primary_10_1021_bi200602f
crossref_primary_10_1021_acscentsci_1c01208
crossref_primary_10_1016_j_jhazmat_2023_132470
crossref_primary_10_1007_s10123_023_00382_w
crossref_primary_10_1007_s10295_014_1480_x
crossref_primary_10_1007_s12566_012_0033_x
crossref_primary_10_1128_mBio_02668_19
crossref_primary_10_1021_acs_langmuir_8b02977
crossref_primary_10_1128_AEM_02134_18
crossref_primary_10_3389_fmicb_2017_02568
crossref_primary_10_1021_ar4000696
crossref_primary_10_1128_mBio_02402_21
crossref_primary_10_1038_s41598_018_37025_4
crossref_primary_10_1038_srep03735
crossref_primary_10_3389_fmicb_2022_1070601
crossref_primary_10_1016_j_mib_2021_12_003
crossref_primary_10_1007_s00775_024_02076_8
crossref_primary_10_1111_1462_2920_15939
crossref_primary_10_1007_s11814_014_0286_x
crossref_primary_10_1021_acssynbio_8b00218
crossref_primary_10_1128_AEM_02835_15
crossref_primary_10_3390_nano12234149
crossref_primary_10_1021_cr400479b
crossref_primary_10_1002_celc_202101423
crossref_primary_10_1021_acssynbio_4c00248
crossref_primary_10_1021_acsestwater_0c00124
crossref_primary_10_1016_j_electacta_2024_144800
crossref_primary_10_1093_lambio_ovae105
crossref_primary_10_1021_acsabm_4c01276
crossref_primary_10_3390_genes9010041
crossref_primary_10_1007_s00253_014_6143_3
crossref_primary_10_1021_acssynbio_6b00374
crossref_primary_10_1128_AEM_03003_10
crossref_primary_10_1134_S2635167623601420
crossref_primary_10_3389_fmicb_2019_00464
crossref_primary_10_1128_AEM_02852_20
crossref_primary_10_31083_j_fbl2706174
crossref_primary_10_1515_ract_2022_0059
crossref_primary_10_1111_1758_2229_12173
crossref_primary_10_1128_JB_00347_18
crossref_primary_10_7554_eLife_60049
crossref_primary_10_1016_j_syapm_2014_11_007
crossref_primary_10_3389_fbioe_2022_913077
crossref_primary_10_1042_BST20120132
crossref_primary_10_1016_j_jmst_2023_01_041
crossref_primary_10_1042_BST20120018
crossref_primary_10_1134_S0003683817090034
crossref_primary_10_1128_AEM_00550_19
crossref_primary_10_1021_acs_est_2c07862
crossref_primary_10_1186_s13068_018_1201_1
crossref_primary_10_1016_j_xcrp_2023_101433
crossref_primary_10_1080_21622515_2018_1486889
crossref_primary_10_4491_eer_2022_666
crossref_primary_10_1039_c1ee01753e
crossref_primary_10_1128_jb_00469_22
crossref_primary_10_1186_s40643_017_0181_5
crossref_primary_10_1128_AEM_01390_21
crossref_primary_10_1016_j_bioelechem_2022_108054
crossref_primary_10_1021_acscentsci_1c01126
crossref_primary_10_1038_s41598_019_44088_4
crossref_primary_10_1111_1751_7915_13309
crossref_primary_10_1038_nrmicro_2016_93
crossref_primary_10_1128_JB_00319_19
crossref_primary_10_1098_rsif_2014_1117
crossref_primary_10_1038_s41467_020_17897_9
crossref_primary_10_1042_BST20120129
Cites_doi 10.1371/journal.pcbi.1000719
10.1016/0003-2697(76)90067-1
10.1111/j.1365-2958.2007.05783.x
10.1046/j.1365-2958.1996.389922.x
10.1111/j.1574-6976.1998.tb00383.x
10.1128/AEM.67.1.260-269.2001
10.1093/nar/gkn180
10.1128/JB.00776-06
10.1021/bi034456f
10.1128/AEM.68.11.5585-5594.2002
10.1371/journal.pbio.0040268
10.1021/ac60289a016
10.1128/AEM.01834-09
10.1074/jbc.M302582200
10.1073/pnas.0604517103
10.1046/j.1365-2958.2001.02257.x
10.1099/00207713-49-2-705
10.1016/0378-1119(95)00584-1
10.1111/j.1365-2958.2007.05778.x
10.1111/j.1472-4669.2009.00226.x
10.1007/s00775-008-0398-z
10.1021/jp0718698
10.1042/bj3490153
10.1111/j.1365-2958.2008.06183.x
10.1021/ja063526d
10.1128/AEM.00840-08
10.1126/science.240.4857.1319
10.1128/AEM.00544-09
10.1007/s00775-007-0278-y
10.1146/annurev.micro.61.080706.093257
10.1128/AEM.01087-07
10.1074/jbc.M109.043455
10.1074/jbc.M203866200
10.1111/j.1742-4658.2007.05907.x
10.1080/10635150600755453
10.1128/JB.187.20.7138-7145.2005
10.1073/pnas.0900086106
10.1128/AEM.01454-08
10.1080/10635150390235520
10.1128/JB.00925-09
10.1073/pnas.1834303100
ContentType Journal Article
Copyright 2010 Blackwell Publishing Ltd
2015 INIST-CNRS
2010 Blackwell Publishing Ltd.
Copyright Blackwell Publishing Ltd. Aug 2010
Copyright_xml – notice: 2010 Blackwell Publishing Ltd
– notice: 2015 INIST-CNRS
– notice: 2010 Blackwell Publishing Ltd.
– notice: Copyright Blackwell Publishing Ltd. Aug 2010
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
DOI 10.1111/j.1365-2958.2010.07266.x
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
Bacteriology Abstracts (Microbiology B)
MEDLINE

MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1365-2958
EndPage 1008
ExternalDocumentID 2115414121
20598084
23088182
10_1111_j_1365_2958_2010_07266_x
MMI7266
US201301874924
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: 2T32-GM008347-16
GroupedDBID ---
-DZ
.3N
.55
.GA
.GJ
.HR
.Y3
05W
0R~
10A
123
1OB
1OC
29M
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAKAS
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZCM
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AHBTC
AHEFC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
EJD
EMOBN
EX3
F00
F01
F04
F5P
FBQ
FEDTE
FIJ
FSRTE
FZ0
G-S
G.N
GODZA
GX1
H.T
H.X
HF~
HGLYW
HH5
HVGLF
HZI
HZ~
IH2
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBC
OBS
OEB
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TR2
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WOW
WQJ
WXSBR
WYISQ
X7M
XG1
Y6R
YFH
YUY
ZGI
ZXP
ZY4
ZZTAW
~IA
~KM
~WT
24P
AEUQT
AFPWT
ESX
IPNFZ
WRC
WUP
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c5986-d18ae03ed5dde1b45d790f08286f709e3d7b1ac5c086116b6bff3c0a08ff14eb3
IEDL.DBID DR2
ISSN 0950-382X
1365-2958
IngestDate Fri Jul 11 02:08:57 EDT 2025
Fri Jul 11 08:37:39 EDT 2025
Fri Jul 25 11:05:30 EDT 2025
Thu Apr 03 07:09:36 EDT 2025
Mon Jul 21 09:13:20 EDT 2025
Tue Jul 01 03:38:10 EDT 2025
Thu Apr 24 23:01:48 EDT 2025
Wed Jan 22 16:21:01 EST 2025
Thu Apr 03 09:45:39 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Bacteria
Vibrionaceae
Shewanella
Strain
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
2010 Blackwell Publishing Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5986-d18ae03ed5dde1b45d790f08286f709e3d7b1ac5c086116b6bff3c0a08ff14eb3
Notes http://dx.doi.org/10.1111/j.1365-2958.2010.07266.x
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-2958.2010.07266.x
PMID 20598084
PQID 746046190
PQPubID 35968
PageCount 14
ParticipantIDs proquest_miscellaneous_754898927
proquest_miscellaneous_1683574510
proquest_journals_746046190
pubmed_primary_20598084
pascalfrancis_primary_23088182
crossref_citationtrail_10_1111_j_1365_2958_2010_07266_x
crossref_primary_10_1111_j_1365_2958_2010_07266_x
wiley_primary_10_1111_j_1365_2958_2010_07266_x_MMI7266
fao_agris_US201301874924
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2010
PublicationDateYYYYMMDD 2010-08-01
PublicationDate_xml – month: 08
  year: 2010
  text: August 2010
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
PublicationTitle Molecular microbiology
PublicationTitleAlternate Mol Microbiol
PublicationYear 2010
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
– name: Blackwell
References 2007; 189
2006; 55
1999; 49
2002; 277
2008; 36
2008; 13
2006; 4
2007; 73
2008; 74
1988; 240
2001; 67
2003; 278
2003; 52
2007; 12
1998; 22
1976; 75
2009; 75
2005; 187
2000; 349
2002; 68
2007; 111
2007; 274
2008; 68
1970; 42
2007; 61
2009; 284
2001; 39
2010; 192
1995; 166
2007; 65
2006; 128
2003; 100
2003; 42
2010; 6
2006; 103
2009; 106
2010; 8
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – volume: 12
  start-page: 1083
  year: 2007
  end-page: 1094
  article-title: Characterization of MtrC: a cell‐surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors
  publication-title: J Biol Inorg Chem
– volume: 187
  start-page: 7138
  year: 2005
  end-page: 7145
  article-title: Global transcriptome analysis of MR‐1 exposed to different terminal electron acceptors
  publication-title: J Bacteriol
– volume: 36
  start-page: W465
  year: 2008
  end-page: W469
  article-title: Phylogeny.fr: robust phylogenetic analysis for the non‐specialist
  publication-title: Nucleic Acids Res
– volume: 49
  start-page: 705
  year: 1999
  end-page: 724
  article-title: Polyphasic taxonomy of the genus and description of sp. nov
  publication-title: Int J Syst Bacteriol
– volume: 189
  start-page: 1765
  year: 2007
  end-page: 1773
  article-title: The pio operon is essential for phototrophic Fe(II) oxidation in TIE‐1
  publication-title: J Bacteriol
– volume: 68
  start-page: 5585
  year: 2002
  end-page: 5594
  article-title: MtrB is required for proper incorporation of the cytochromes OmcA and OmcB into the outer membrane of MR‐1
  publication-title: Appl Environ Microbiol
– volume: 75
  start-page: 5218
  year: 2009
  end-page: 5226
  article-title: Kinetic characterization of OmcA and MtrC, terminal reductases involved in respiratory electron transfer for dissimilatory iron reduction in Shewanella oneidensis MR‐1
  publication-title: Appl Environ Microbiol
– volume: 6
  start-page: e1000719
  year: 2010
  article-title: Specialization can drive the evolution of modularity
  publication-title: PLoS Comput Biol
– volume: 4
  start-page: e268
  year: 2006
  article-title: ‐Type cytochrome‐dependent formation of U(IV) nanoparticles by
  publication-title: PLoS Biol
– volume: 55
  start-page: 539
  year: 2006
  end-page: 552
  article-title: Approximate likelihood‐ratio test for branches: a fast, accurate, and powerful alternative
  publication-title: Syst Biol
– volume: 67
  start-page: 260
  year: 2001
  end-page: 269
  article-title: Role for outer membrane cytochromes OmcA and OmcB of MR‐1 in reduction of manganese dioxide
  publication-title: Appl Environ Microbiol
– volume: 75
  start-page: 168
  year: 1976
  end-page: 176
  article-title: An improved staining procedure for the detection of the peroxidase activity of cytochrome P‐450 on sodium dodecyl sulfate polyacrylamide gels
  publication-title: Anal Biochem
– volume: 22
  start-page: 489
  year: 1998
  end-page: 501
  article-title: Mechanistic aspects of molybdenum‐containing enzymes
  publication-title: FEMS Microb Rev
– volume: 100
  start-page: 10983
  year: 2003
  end-page: 10988
  article-title: Genetic identification of a respiratory arsenate reductase
  publication-title: Proc Natl Acad Sci USA
– volume: 39
  start-page: 722
  year: 2001
  end-page: 730
  article-title: MtrC, an outer membrane decahaem cytochrome required for metal reduction in MR‐1
  publication-title: Mol Microbiol
– volume: 74
  start-page: 6880
  year: 2008
  end-page: 6886
  article-title: Mechanism and consequences of anaerobic respiration of cobalt by strain MR‐1
  publication-title: Appl Environ Microbiol
– volume: 128
  start-page: 13978
  year: 2006
  end-page: 13979
  article-title: High‐affinity binding and direct electron transfer to solid metals by the MR‐1 outer membrane ‐type cytochrome OmcA
  publication-title: J Am Chem Soc
– volume: 65
  start-page: 12
  year: 2007
  end-page: 20
  article-title: Respiration of metal (hydr)oxides by and : a key role for multihaem ‐type cytochromes
  publication-title: Mol Microbiol
– volume: 240
  start-page: 1319
  year: 1988
  end-page: 1321
  article-title: Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor
  publication-title: Science
– volume: 349
  start-page: 153
  year: 2000
  end-page: 158
  article-title: Identification and characterization of a novel cytochrome (3) from that is involved in Fe(III) respiration
  publication-title: Biochem J
– volume: 277
  start-page: 35703
  year: 2002
  end-page: 35711
  article-title: Crystal structures at atomic resolution reveal the novel concept of ‘electron‐harvesting’ as a role for the small tetraheme cytochrome
  publication-title: J Biol Chem
– volume: 166
  start-page: 175
  year: 1995
  end-page: 176
  article-title: Four new derivatives of the broad‐host‐range cloning vector pBBR1MCS, carrying different antibiotic‐resistance cassettes
  publication-title: Gene
– volume: 74
  start-page: 6746
  year: 2008
  end-page: 6755
  article-title: Kinetics of reduction of Fe(III) complexes by outer membrane cytochromes MtrC and OmcA of MR‐1
  publication-title: Appl Environ Microbiol
– volume: 42
  start-page: 779
  year: 1970
  end-page: 781
  article-title: Ferrozine – a new spectrophotometric reagent for iron
  publication-title: Anal Chem
– volume: 13
  start-page: 849
  year: 2008
  end-page: 854
  article-title: Electrochemical interrogations of the Mtr cytochromes from Shewanella: opening a potential window
  publication-title: J Biol Inorg Chem
– volume: 52
  start-page: 696
  year: 2003
  end-page: 704
  article-title: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood
  publication-title: Syst Biol
– volume: 106
  start-page: 22169
  year: 2009
  end-page: 22174
  article-title: Characterization of an electron conduit between bacteria and the extracellular environment
  publication-title: Proc Natl Acad Sci USA
– volume: 274
  start-page: 3728
  year: 2007
  end-page: 3738
  article-title: A kinetic approach to the dependence of dissimilatory metal reduction by MR‐1 on the outer membrane cytochromes OmcA and OmcB
  publication-title: FEBS J
– volume: 103
  start-page: 4669
  year: 2006
  end-page: 4674
  article-title: Extracellular respiration of dimethyl sulfoxide by strain MR‐1
  publication-title: Proc Natl Acad Sci USA
– volume: 8
  start-page: 56
  year: 2010
  end-page: 68
  article-title: Role of outer‐membrane cytochromes MtrC and OmcA in the biomineralization of ferrihydrite by MR‐1
  publication-title: Geobiology
– volume: 111
  start-page: 12857
  year: 2007
  end-page: 12864
  article-title: Mechanisms of electron transfer in two decaheme cytochromes from a metal‐reducing bacterium
  publication-title: J Phys Chem B
– volume: 278
  start-page: 27758
  year: 2003
  end-page: 27765
  article-title: Characterization of the MR‐1 decaheme cytochrome MtrA: expression in confers the ability to reduce soluble Fe(III) chelates
  publication-title: J Biol Chem
– volume: 61
  start-page: 237
  year: 2007
  end-page: 258
  article-title: Ecology and biotechnology of the genus
  publication-title: Annu Rev Microbiol
– volume: 42
  start-page: 9491
  year: 2003
  end-page: 9497
  article-title: The tetraheme cytochrome CymA is required for anaerobic respiration with dimethyl sulfoxide and nitrite in
  publication-title: Biochemistry
– volume: 75
  start-page: 7789
  year: 2009
  end-page: 7796
  article-title: Periplasmic electron transfer via the ‐type cytochromes MtrA and FccA of MR‐1
  publication-title: Appl Environ Microbiol
– volume: 68
  start-page: 706
  year: 2008
  end-page: 719
  article-title: Dissimilatory iron reduction in : identification of CymA of and NapC of as ferric reductases
  publication-title: Mol Microbiol
– volume: 103
  start-page: 11358
  year: 2006
  end-page: 11363
  article-title: Electrically conductive bacterial nanowires produced by strain MR‐1 and other microorganisms
  publication-title: Proc Natl Acad Sci USA
– volume: 73
  start-page: 7003
  year: 2007
  end-page: 7012
  article-title: Current production and metal oxide reduction by MR‐1 wild type and mutants
  publication-title: Appl Environ Microbiol
– volume: 65
  start-page: 1
  year: 2007
  end-page: 11
  article-title: Extracellular respiration
  publication-title: Mol Microbiol
– volume: 284
  start-page: 28865
  year: 2009
  end-page: 28873
  article-title: Electrochemical measurement of electron transfer kinetics by MR‐1
  publication-title: J Biol Chem
– volume: 192
  start-page: 467
  year: 2010
  end-page: 474
  article-title: The Mtr respiratory pathway is essential for reducing flavins and electrodes in
  publication-title: J Bacteriol
– ident: e_1_2_5_10_1
  doi: 10.1371/journal.pcbi.1000719
– ident: e_1_2_5_38_1
  doi: 10.1016/0003-2697(76)90067-1
– ident: e_1_2_5_36_1
  doi: 10.1111/j.1365-2958.2007.05783.x
– ident: e_1_2_5_16_1
  doi: 10.1046/j.1365-2958.1996.389922.x
– ident: e_1_2_5_22_1
  doi: 10.1111/j.1574-6976.1998.tb00383.x
– ident: e_1_2_5_29_1
  doi: 10.1128/AEM.67.1.260-269.2001
– ident: e_1_2_5_9_1
  doi: 10.1093/nar/gkn180
– ident: e_1_2_5_23_1
  doi: 10.1128/JB.00776-06
– ident: e_1_2_5_35_1
  doi: 10.1021/bi034456f
– ident: e_1_2_5_27_1
  doi: 10.1128/AEM.68.11.5585-5594.2002
– ident: e_1_2_5_26_1
  doi: 10.1371/journal.pbio.0040268
– ident: e_1_2_5_37_1
  doi: 10.1021/ac60289a016
– ident: e_1_2_5_34_1
  doi: 10.1128/AEM.01834-09
– ident: e_1_2_5_30_1
  doi: 10.1074/jbc.M302582200
– ident: e_1_2_5_13_1
  doi: 10.1073/pnas.0604517103
– ident: e_1_2_5_4_1
  doi: 10.1046/j.1365-2958.2001.02257.x
– ident: e_1_2_5_39_1
  doi: 10.1099/00207713-49-2-705
– ident: e_1_2_5_24_1
  doi: 10.1016/0378-1119(95)00584-1
– ident: e_1_2_5_15_1
  doi: 10.1111/j.1365-2958.2007.05778.x
– ident: e_1_2_5_31_1
  doi: 10.1111/j.1472-4669.2009.00226.x
– ident: e_1_2_5_11_1
  doi: 10.1007/s00775-008-0398-z
– ident: e_1_2_5_41_1
  doi: 10.1021/jp0718698
– ident: e_1_2_5_14_1
  doi: 10.1042/bj3490153
– ident: e_1_2_5_12_1
  doi: 10.1111/j.1365-2958.2008.06183.x
– ident: e_1_2_5_42_1
  doi: 10.1021/ja063526d
– ident: e_1_2_5_21_1
  doi: 10.1128/AEM.00840-08
– ident: e_1_2_5_28_1
  doi: 10.1126/science.240.4857.1319
– ident: e_1_2_5_32_1
  doi: 10.1128/AEM.00544-09
– ident: e_1_2_5_18_1
  doi: 10.1007/s00775-007-0278-y
– ident: e_1_2_5_20_1
  doi: 10.1146/annurev.micro.61.080706.093257
– ident: e_1_2_5_7_1
  doi: 10.1128/AEM.01087-07
– ident: e_1_2_5_3_1
  doi: 10.1074/jbc.M109.043455
– ident: e_1_2_5_25_1
  doi: 10.1074/jbc.M203866200
– ident: e_1_2_5_6_1
  doi: 10.1111/j.1742-4658.2007.05907.x
– ident: e_1_2_5_2_1
  doi: 10.1080/10635150600755453
– ident: e_1_2_5_5_1
  doi: 10.1128/JB.187.20.7138-7145.2005
– ident: e_1_2_5_19_1
  doi: 10.1073/pnas.0900086106
– ident: e_1_2_5_40_1
  doi: 10.1128/AEM.01454-08
– ident: e_1_2_5_17_1
  doi: 10.1080/10635150390235520
– ident: e_1_2_5_8_1
  doi: 10.1128/JB.00925-09
– ident: e_1_2_5_33_1
  doi: 10.1073/pnas.1834303100
SSID ssj0013063
Score 2.464674
Snippet Four distinct pathways predicted to facilitate electron flow for respiration of externally located substrates are encoded in the genome of Shewanella...
Summary Four distinct pathways predicted to facilitate electron flow for respiration of externally located substrates are encoded in the genome of Shewanella...
Four distinct pathways predicted to facilitate electron flow for respiration of externally located substrates are encoded in the genome of Shewanella...
SummaryFour distinct pathways predicted to facilitate electron flow for respiration of externally located substrates are encoded in the genome of Shewanella...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 995
SubjectTerms Bacteriology
Biological and medical sciences
Cell Membrane - enzymology
Cell Membrane - metabolism
Cytoplasm
Dimethyl Sulfoxide - metabolism
Electron Transport
Electron Transport Chain Complex Proteins - genetics
Electron Transport Chain Complex Proteins - metabolism
Electrons
Flavins - metabolism
Fundamental and applied biological sciences. Psychology
Gram-negative bacteria
Iron Compounds - metabolism
Iron oxides
Membranes
Microbiology
Miscellaneous
Oxidation-Reduction
Proteins
Quinones - metabolism
Respiration
Shewanella - enzymology
Shewanella - genetics
Shewanella - metabolism
Shewanella oneidensis
Title Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR-1
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2958.2010.07266.x
https://www.ncbi.nlm.nih.gov/pubmed/20598084
https://www.proquest.com/docview/746046190
https://www.proquest.com/docview/1683574510
https://www.proquest.com/docview/754898927
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NitRAEC50QfDiv25cXVrwmiHd00knRxHXVYjIrgNza_pXZWUikxlWPfkIPqNPYlWSmTGywiJeQqDTSXelqvqr9JcqgKc-Si5NUKl1zmGAEmJaGRfSPLdCogYhQqZPA_Wb4ngmX8_z-cB_on9h-vwQ2w9uZBmdvyYDN7YdG3nH0KryDUNL4WIzITxJDYSPTsRuQ2EoqlbllE5WzMekngtvNFqprkbTEG_StCi62Ne8uAiUjjFut0gd3YSzzfR6bsrZZL2yE_ftj8yP_2f-t-DGgGXZs175bsOVsLgD1_rqll_vwtu68URyRZzPmsgQabJ6tWTL3eY-o3rI56ZrPv0Qzg1xbgxrFpR8a9F-bFnblbBg9cnP7z_4PZgdvXj3_DgdCjikjtK-p56XJmTT4HN0otzK3Ksqi5Q0r4gqq8LUK8uNyx3GVZwXtrAxTl1msjJGLjHMvw97C3zmPjChDMY-UQSfWUR4viKcZZW0kYvoY0hAbV6WdkN2cxrhJ_1blIPy0iQvTfLSnbz0lwT4tufnPsPHJfrsoz5o8x4dsZ6dCtIvKm6IwWwChyMl2d4TY70S0ZFI4GCjNXrwF61WsqDM91WWwJNtKxo67d6g7Jt1q3mBYFlJ9KEJsL9cozD-RMkIlcCDXh93j0ccXWYljq_otOrSc9V1_YrOHv5rxwO43lMuiDX5CPZWy3V4jEhuZQ87G8Xjyzn_BTFHOCI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB61RQgu_JeGQjESHLOKvUmcHDggSrVLmwq1XWlvxk5sQKBdtNnVtpx4BN6HV-HEkzCTn10WFalC6oFbpMSJ45mx53O-fAPwtHAhD7WVvsnzHAGKdX6qc-tHkREhehBmyLQ1kB3GvUH4ehgN1-B7-y9MrQ-x2HCjyKjmawpw2pBejfKKopVGLUVL4mrTOW0Ylvv2bI74rXze30VjPxNi79XJy57flBjwcxIm9wueaBt0bRFhmHMTRoVMA0eybrGTQWq7hTRc51GOmT_nsYmNc9080EHiHA8RiOJ91-EKFRQn4f7dI7H8hNGUcUsjErAVw1Ua0bk9X1kb150eE1NTl2gsV1fZOC8NXs2qq2Vx7yb8aAe0ZsN87MymppN_-UNr8j8d8Vtwo0nX2Ys6vm7Dmh3dgat1Ac-zu_AmGxfE40Uow8aOYTLNsumETZb8BUYln-e6On383s410Yo0G49IX2xUfihZWVXpYNnRz6_f-D0YXMrrbMLGCJ-5BUxIjfDOCVsEBpPYIqVU0sjQOC5c4awHsvUOlTcC7tTDT-o3IIf2UWQfRfZRlX3UqQd80fJzLWJygTZb6IBKv8O1Rg2OBTk01W9EvO7BzopXLu6JcDbBBFB4sN26qWqmxFLJMCZx_zTw4MniLM5l9IEKx348KxWPEQ_IEJcJD9hfrpEIsXFkhPTgfh0Ay8cjVEiCBPsXV2584XdVWdanowf_2vAxXOudZAfqoH-4vw3Xa4YJkUQfwsZ0MrOPMHGdmp1qgmDw9rLj4xdfLZax
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB61RSAu5bfUFMoiwdGRd2N74wMHRIgaiquqJVJuy669C4gqqeJEaTnxCDwPr8KNJ2HGPwlBRaqQeuAWyVl7vTOz83325xmAZ7kLeait9E2WZUhQrPMTnVk_iowI0YMQIdOjgfQg3huEb4bRcA2-N9_CVPUhFg_cKDLK_ZoC_DR3q0FeKrSSqFFoSUw2rbNaYLlvz-dI34oX_S7a-rkQvdfvXu35dYcBP6O65H7OO9oGbZtHGOXchFEuk8BRVbfYySCx7VwarrMoQ-DPeWxi41w7C3TQcY6HyEPxvOtwLYyDhNpGdI_E8g1G3cUtiah-rRiuqogunPlKalx3ekxCTV2grVzVZOMiFLwKqsus2LsFP5r1rMQwn1uzqWllX_4oNfl_Lvht2KzBOntZRdcdWLOju3C9at95fg8O03FOKl4kMmzsGEJplk4nbLJULzBq-DzX5eHjj3auSVSk2XhE1cVGxaeCFWWPDpYe_fz6jd-HwZXczhZsjPCa28CE1EjunLB5YBDC5gkBSSND47hwubMeyMY5VFaXb6cZnqjfaBzaR5F9FNlHlfZRZx7wxcjTqoTJJcZso_8p_QEzjRocC_Jn6t6IbN2D3RWnXJwTyWwH4Z_wYKfxUlVviIWSGCMhkvXAg6eLo7iT0espXPvxrFA8RjYgQ0wSHrC__EciwcaVEdKDB5X_Ly-PRKETdHB-cenFl75XlaZ9-vXwXwc-gRuH3Z562z_Y34GblbyEFKKPYGM6mdnHiFqnZrfcHhi8v-rw-AXgI5Vg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modularity+of+the+Mtr+respiratory+pathway+of+Shewanella+oneidensis+strain+MR-1&rft.jtitle=Molecular+microbiology&rft.au=Coursolle%2C+Dan&rft.au=Gralnick%2C+Jeffrey+A&rft.date=2010-08-01&rft.eissn=1365-2958&rft.volume=77&rft.issue=4&rft.spage=995&rft_id=info:doi/10.1111%2Fj.1365-2958.2010.07266.x&rft_id=info%3Apmid%2F20598084&rft.externalDocID=20598084
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-382X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-382X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-382X&client=summon