永磁同步电机双率残差增广最小二乘参数辨识

针对永磁同步电机系统输入输出的本质多采样率特性,结合多项式变化技术,构建模型转换矩阵,推导出基于电流和电压的永磁同步电机双率采样数学模型,获得其扩展参数向量,并构建其回归模型,针对输入输出量中不可测干扰量采用残差估计,进而建立永磁同步电机双率残差增广最小二乘算法( DR-RELS),对其算法收敛性进行分析。仿真实验结果表明,DR-RELS算法对变换后的永磁同步电机双率采样数据模型参数估计一致收敛,同时噪声方差的大小影响该算法收敛效果。...

Full description

Saved in:
Bibliographic Details
Published in电机与控制学报 Vol. 18; no. 4; pp. 45 - 51
Main Author 徐鹏 肖建 杨奕 李山
Format Journal Article
LanguageChinese
Published 西南交通大学 电气工程学院,四川 成都610031 2014
重庆理工大学 电子信息与自动化学院,重庆400054%西南交通大学 电气工程学院,四川 成都,610031%重庆理工大学 电子信息与自动化学院,重庆,400054
Subjects
Online AccessGet full text
ISSN1007-449X

Cover

Loading…
Abstract 针对永磁同步电机系统输入输出的本质多采样率特性,结合多项式变化技术,构建模型转换矩阵,推导出基于电流和电压的永磁同步电机双率采样数学模型,获得其扩展参数向量,并构建其回归模型,针对输入输出量中不可测干扰量采用残差估计,进而建立永磁同步电机双率残差增广最小二乘算法( DR-RELS),对其算法收敛性进行分析。仿真实验结果表明,DR-RELS算法对变换后的永磁同步电机双率采样数据模型参数估计一致收敛,同时噪声方差的大小影响该算法收敛效果。
AbstractList TM351; 针对永磁同步电机系统输入输出的本质多采样率特性,结合多项式变化技术,构建模型转换矩阵,推导出基于电流和电压的永磁同步电机双率采样数学模型,获得其扩展参数向量,并构建其回归模型,针对输入输出量中不可测干扰量采用残差估计,进而建立永磁同步电机双率残差增广最小二乘算法( DR-RELS),对其算法收敛性进行分析。仿真实验结果表明,DR-RELS算法对变换后的永磁同步电机双率采样数据模型参数估计一致收敛,同时噪声方差的大小影响该算法收敛效果。
针对永磁同步电机系统输入输出的本质多采样率特性,结合多项式变化技术,构建模型转换矩阵,推导出基于电流和电压的永磁同步电机双率采样数学模型,获得其扩展参数向量,并构建其回归模型,针对输入输出量中不可测干扰量采用残差估计,进而建立永磁同步电机双率残差增广最小二乘算法( DR-RELS),对其算法收敛性进行分析。仿真实验结果表明,DR-RELS算法对变换后的永磁同步电机双率采样数据模型参数估计一致收敛,同时噪声方差的大小影响该算法收敛效果。
Abstract_FL Permanent magnet synchronous motors( PMSM) control system has multi-rate sampling charac-teristic in itself on the system input and output. The model transformation matrix was proposed based on polynomial transformation technique and the dual-rate mathematical model of PMSM was induced under the current and voltage, and the extended parameters vector and regressive model of dual-rate sampled system was acquired. The residual was used to estimate the unmeasurable noise, and then the residual based extended least squares ( DR-RELS) was proposed and used to the parameters identification, and the convergence properties of the algorithm was analyzed. Simulation results show that DR-RELS is uni-formly convergence for the parameters of PMSM dual-rate sampling system, and meanwhile noise variance affects the convergence performance of this proposed algorithm.
Author 徐鹏 肖建 杨奕 李山
AuthorAffiliation 西南交通大学电气工程学院,四川成都610031 重庆理工大学电子信息与自动化学院,重庆400054
AuthorAffiliation_xml – name: 西南交通大学 电气工程学院,四川 成都610031; 重庆理工大学 电子信息与自动化学院,重庆400054%西南交通大学 电气工程学院,四川 成都,610031%重庆理工大学 电子信息与自动化学院,重庆,400054
Author_FL LI Shan
XU Peng
XIAO Jian
YANG Yi
Author_FL_xml – sequence: 1
  fullname: XU Peng
– sequence: 2
  fullname: XIAO Jian
– sequence: 3
  fullname: YANG Yi
– sequence: 4
  fullname: LI Shan
Author_xml – sequence: 1
  fullname: 徐鹏 肖建 杨奕 李山
BookMark eNrjYmDJy89LZWHgNDQwMNc1MbGM4GDgLS7OTDIwMDM1Mza2NOJksHm2YcfzxY1PJ_Q8W7v0-ZStz-bsetrf87yv_dm67qfb1z1dNO_pzv3P5jQ83dD_ZFfPk50znvY3PZu64cW-FS_Wt_EwsKYl5hSn8kJpboYQN9cQZw9dH393T2dHH91kU0sL3RSDJCNDMwvDxDRD0zSj1DRjw1QLUyNTU0OgCwyMzJJSjAxSTI0sjU0tTA3MTZNTU5NNzVMNE02NEy0t08yNjI25GTQgxpYn5qUl5qXHZ-WXFuUBLYxPyarMrqpIMjIwNDEwMTCwACpVhChNzsjPSy_MBCouKMrMTSyqjDcB2WBkbGYMAMjHZc4
ClassificationCodes TM351
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DatabaseName 中文科技期刊数据库
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Residual based extended least squares identification method of permanent magnet synchronous motor dual-rate sampling data system
DocumentTitle_FL Residual based extended least squares identification method of permanent magnet synchronous motor dual-rate sampling data system
EndPage 51
ExternalDocumentID djykzxb201404008
49358236
GrantInformation_xml – fundername: 国家自然科学基金; 重庆市科委自然科学基金; 重庆市教委科学技术项目
  funderid: (51177137); (cstc2012jjA40066); (KJ130807)
GroupedDBID 2RA
92L
ALMA_UNASSIGNED_HOLDINGS
CDYEO
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-c598-d0b21681af15f2ef31e852551339026bd20d5293585075ceec57e1a53a99f7233
ISSN 1007-449X
IngestDate Thu May 29 04:05:40 EDT 2025
Wed Feb 14 10:37:32 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 一致收敛
polynomial transformation tech-nique
multi-rate sampling
多项式变换技术
uniformly convergence
permanent magnet synchronous motors
extended least squares
永磁同步电机
residual
多采样率
增广最小二乘算法
残差
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c598-d0b21681af15f2ef31e852551339026bd20d5293585075ceec57e1a53a99f7233
Notes permanent magnet synchronous motors;multi-rate sampling;polynomial transformation tech-nique;residual;extended least squares;uniformly convergence
XU Peng, XIAO Jian, YANG Yi, LI Shan ( 1. School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China; 2. School of Electronic and Automation, Chongqing University of Technology, Chongqing 400054, China)
23-1408/TM
Permanent magnet synchronous motors( PMSM) control system has multi-rate sampling charac-teristic in itself on the system input and output. The model transformation matrix was proposed based on polynomial transformation technique and the dual-rate mathematical model of PMSM was induced under the current and voltage, and the extended parameters vector and regressive model of dual-rate sampled system was acquired. The residual was used to estimate the unmeasurable noise, and then the residual based extended least squares ( DR-RELS) was proposed and used to the parameters identification, and the convergence properties of the algorith
PageCount 7
ParticipantIDs wanfang_journals_djykzxb201404008
chongqing_primary_49358236
PublicationCentury 2000
PublicationDate 2014
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – year: 2014
  text: 2014
PublicationDecade 2010
PublicationTitle 电机与控制学报
PublicationTitleAlternate Electric Machines and Control
PublicationTitle_FL Electric Machines and Control
PublicationYear 2014
Publisher 西南交通大学 电气工程学院,四川 成都610031
重庆理工大学 电子信息与自动化学院,重庆400054%西南交通大学 电气工程学院,四川 成都,610031%重庆理工大学 电子信息与自动化学院,重庆,400054
Publisher_xml – name: 西南交通大学 电气工程学院,四川 成都610031
– name: 重庆理工大学 电子信息与自动化学院,重庆400054%西南交通大学 电气工程学院,四川 成都,610031%重庆理工大学 电子信息与自动化学院,重庆,400054
SSID ssib006563392
ssib025702231
ssib000271328
ssib051374584
ssib036435450
ssib017479520
ssib001129775
ssib023166998
Score 1.9827393
Snippet 针对永磁同步电机系统输入输出的本质多采样率特性,结合多项式变化技术,构建模型转换矩阵,推导出基于电流和电压的永磁同步电机双率采样数学模型,获得其扩展参数向量,并构建其回归模型,针对输入输出量中不可测干扰量采用残差估计,进而建立永磁同步电机双率残差增广最小二乘算法(...
TM351; 针对永磁同步电机系统输入输出的本质多采样率特性,结合多项式变化技术,构建模型转换矩阵,推导出基于电流和电压的永磁同步电机双率采样数学模型,获得其扩展参数向量,并构建其回归模型,针对输入输出量中不可测干扰量采用残差估计,进而建立永磁同步电机双率残差增广最小二乘算法(...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 45
SubjectTerms 一致收敛
增广最小二乘算法
多采样率
多项式变换技术
残差
永磁同步电机
Title 永磁同步电机双率残差增广最小二乘参数辨识
URI http://lib.cqvip.com/qk/90977A/201404/49358236.html
https://d.wanfangdata.com.cn/periodical/djykzxb201404008
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFB9KvXgRRcXWDyo4pxLJTDKZGfCS7GYpYr1Yobcls0laFLZ-bEF7Ug96sFgFBQ_FgyJ4sfYi2h70n2my_TN8b5JtIyyiwjIMb15e3puXTH4zb-cNIZfA5cqYJHNMJnPH527qJD2WOJJ7KcskD7TN3Tl_PZi76V9dFIsTE68a_1paHZjLvbWx-0r-x6tAA7_iLtl_8OyBUCBAHfwLJXgYyr_yMY0DGrk0UjSWNPQAFdJYUO1S1cKmsE1DgU3ap5FAim7RKEQe1bE8kqqYKmmZoRJhUySxDpWQU20rkaZRp75cuZbiooTYR2kox0cerUaSuWW2bLGiUUxDhZUQmoImGh6nm4_mgFZAgTKUViYICaxKYFFgm0IwbfSwWI1itDvWqIjqzOLtQA1tr4oikDxr79G2qgjsFy1GJFVZyeDXXASptp3WIzautfq-PY93zJB-uF5hx-cqdWX9pa8z3f6ebtvHwDD3MIk7YDc1SY6E7flrN5qRWtbMb4R4VTYgGOBjzzuMVMOET2pxCMkBTgdBY4qLhwjyRiTWA4QIoPaAXzBPYijbBu1rSzENyPJKf-kugBu716yfJ_2lBixaOE6O1fOZmbB6OE-QibXlk-RKuf19-OFx8XK9_Pxx-PprublbbKwPXzwrt54X37aK9--KnZ_l5qNie2Nvd31v522x8aR8s73_49P-l6enyEInXmjNOfUxHU5PaOWkruEsUCzJmch5lnssU4Lbc4M0TPBNCu-_4NirMPUQgMl6QmYsEV6idQ5DgneaTPZX-tkZMmM0Mzn3A5OnuS-lATBpMpUELHdZnmf-FJk-MLx7p8rG0h05bIpcrHuiW7-i97vprYe31x4YbpNIAdqd_pOAs-QoMlbra-fI5ODeanYeEOfAXKgfgl8edmRE
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%B0%B8%E7%A3%81%E5%90%8C%E6%AD%A5%E7%94%B5%E6%9C%BA%E5%8F%8C%E7%8E%87%E6%AE%8B%E5%B7%AE%E5%A2%9E%E5%B9%BF%E6%9C%80%E5%B0%8F%E4%BA%8C%E4%B9%98%E5%8F%82%E6%95%B0%E8%BE%A8%E8%AF%86&rft.jtitle=%E7%94%B5%E6%9C%BA%E4%B8%8E%E6%8E%A7%E5%88%B6%E5%AD%A6%E6%8A%A5&rft.au=%E5%BE%90%E9%B9%8F+%E8%82%96%E5%BB%BA+%E6%9D%A8%E5%A5%95+%E6%9D%8E%E5%B1%B1&rft.date=2014&rft.issn=1007-449X&rft.volume=18&rft.issue=4&rft.spage=45&rft.epage=51&rft.externalDocID=49358236
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90977A%2F90977A.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdjykzxb%2Fdjykzxb.jpg