Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition
In electroencephalography (EEG)-based emotion recognition systems, the distribution between the training samples and the testing samples may be mismatched if they are sampled from different experimental sessions or subjects because of user fatigue, different electrode placements, varying impedances,...
Saved in:
Published in | Computers in biology and medicine Vol. 79; pp. 205 - 214 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.12.2016
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0010-4825 1879-0534 |
DOI | 10.1016/j.compbiomed.2016.10.019 |
Cover
Loading…
Abstract | In electroencephalography (EEG)-based emotion recognition systems, the distribution between the training samples and the testing samples may be mismatched if they are sampled from different experimental sessions or subjects because of user fatigue, different electrode placements, varying impedances, etc. Therefore, it is difficult to directly classify the EEG patterns with a conventional classifier. The domain adaptation method, which is aimed at obtaining a common representation across training and test domains, is an effective method for reducing the distribution discrepancy. However, the existing domain adaptation strategies either employ a linear transformation or learn the nonlinearity mapping without a consistency constraint; they are not sufficiently powerful to obtain a similar distribution from highly non-stationary EEG signals. To address this problem, in this paper, a novel component, called the subspace alignment auto-encoder (SAAE), is proposed. Taking advantage of both nonlinear transformation and a consistency constraint, we combine an auto-encoder network and a subspace alignment solution in a unified framework. As a result, the source domain can be aligned with the target domain together with its class label, and any supervised method can be applied to the new source domain to train a classifier for classification in the target domain, as the aligned source domain follows a distribution similar to that of the target domain. We compared our SAAE method with six typical approaches using a public EEG dataset containing three affective states: positive, neutral, and negative. Subject-to-subject and session-to-session evaluations were performed. The subject-to-subject experimental results demonstrate that our component achieves a mean accuracy of 77.88% in comparison with a state-of-the-art method, TCA, which achieves 73.82% on average. In addition, the average classification accuracy of SAAE in the session-to-session evaluation for all the 15 subjects in a dataset is 81.81%, an improvement of up to 1.62% on average as compared to the best baseline TCA. The experimental results show the effectiveness of the proposed method relative to state-of-the-art methods. It can be concluded that SAAE is a useful and effective tool for decreasing domain discrepancy and reducing performance degradation across subjects and sessions in the EEG-based emotion recognition field.
•Deep auto-encoder network and subspace alignment solution are combined to constrain the distribution discrepancy.•Demonstration of the improved classification accuracy compared with several state-of-the-art domain adaptation techniques.•Illustration of the suitability of the SAAE for non-stationary EEG signal classification. |
---|---|
AbstractList | In electroencephalography (EEG)-based emotion recognition systems, the distribution between the training samples and the testing samples may be mismatched if they are sampled from different experimental sessions or subjects because of user fatigue, different electrode placements, varying impedances, etc. Therefore, it is difficult to directly classify the EEG patterns with a conventional classifier. The domain adaptation method, which is aimed at obtaining a common representation across training and test domains, is an effective method for reducing the distribution discrepancy. However, the existing domain adaptation strategies either employ a linear transformation or learn the nonlinearity mapping without a consistency constraint; they are not sufficiently powerful to obtain a similar distribution from highly non-stationary EEG signals. To address this problem, in this paper, a novel component, called the subspace alignment auto-encoder (SAAE), is proposed. Taking advantage of both nonlinear transformation and a consistency constraint, we combine an auto-encoder network and a subspace alignment solution in a unified framework. As a result, the source domain can be aligned with the target domain together with its class label, and any supervised method can be applied to the new source domain to train a classifier for classification in the target domain, as the aligned source domain follows a distribution similar to that of the target domain. We compared our SAAE method with six typical approaches using a public EEG dataset containing three affective states: positive, neutral, and negative. Subject-to-subject and session-to-session evaluations were performed. The subject-to-subject experimental results demonstrate that our component achieves a mean accuracy of 77.88% in comparison with a state-of-the-art method, TCA, which achieves 73.82% on average. In addition, the average classification accuracy of SAAE in the session-to-session evaluation for all the 15 subjects in a dataset is 81.81%, an improvement of up to 1.62% on average as compared to the best baseline TCA. The experimental results show the effectiveness of the proposed method relative to state-of-the-art methods. It can be concluded that SAAE is a useful and effective tool for decreasing domain discrepancy and reducing performance degradation across subjects and sessions in the EEG-based emotion recognition field.
•Deep auto-encoder network and subspace alignment solution are combined to constrain the distribution discrepancy.•Demonstration of the improved classification accuracy compared with several state-of-the-art domain adaptation techniques.•Illustration of the suitability of the SAAE for non-stationary EEG signal classification. In electroencephalography (EEG)-based emotion recognition systems, the distribution between the training samples and the testing samples may be mismatched if they are sampled from different experimental sessions or subjects because of user fatigue, different electrode placements, varying impedances, etc. Therefore, it is difficult to directly classify the EEG patterns with a conventional classifier. The domain adaptation method, which is aimed at obtaining a common representation across training and test domains, is an effective method for reducing the distribution discrepancy. However, the existing domain adaptation strategies either employ a linear transformation or learn the nonlinearity mapping without a consistency constraint; they are not sufficiently powerful to obtain a similar distribution from highly non-stationary EEG signals. To address this problem, in this paper, a novel component, called the subspace alignment auto-encoder (SAAE), is proposed. Taking advantage of both nonlinear transformation and a consistency constraint, we combine an auto-encoder network and a subspace alignment solution in a unified framework. As a result, the source domain can be aligned with the target domain together with its class label, and any supervised method can be applied to the new source domain to train a classifier for classification in the target domain, as the aligned source domain follows a distribution similar to that of the target domain. We compared our SAAE method with six typical approaches using a public EEG dataset containing three affective states: positive, neutral, and negative. Subject-to-subject and session-to-session evaluations were performed. The subject-to-subject experimental results demonstrate that our component achieves a mean accuracy of 77.88% in comparison with a state-of-the-art method, TCA, which achieves 73.82% on average. In addition, the average classification accuracy of SAAE in the session-to-session evaluation for all the 15 subjects in a dataset is 81.81%, an improvement of up to 1.62% on average as compared to the best baseline TCA. The experimental results show the effectiveness of the proposed method relative to state-of-the-art methods. It can be concluded that SAAE is a useful and effective tool for decreasing domain discrepancy and reducing performance degradation across subjects and sessions in the EEG-based emotion recognition field. Abstract In electroencephalography (EEG)-based emotion recognition systems, the distribution between the training samples and the testing samples may be mismatched if they are sampled from different experimental sessions or subjects because of user fatigue, different electrode placements, varying impedances, etc. Therefore, it is difficult to directly classify the EEG patterns with a conventional classifier. The domain adaptation method, which is aimed at obtaining a common representation across training and test domains, is an effective method for reducing the distribution discrepancy. However, the existing domain adaptation strategies either employ a linear transformation or learn the nonlinearity mapping without a consistency constraint; they are not sufficiently powerful to obtain a similar distribution from highly non-stationary EEG signals. To address this problem, in this paper, a novel component, called the subspace alignment auto-encoder (SAAE), is proposed. Taking advantage of both nonlinear transformation and a consistency constraint, we combine an auto-encoder network and a subspace alignment solution in a unified framework. As a result, the source domain can be aligned with the target domain together with its class label, and any supervised method can be applied to the new source domain to train a classifier for classification in the target domain, as the aligned source domain follows a distribution similar to that of the target domain. We compared our SAAE method with six typical approaches using a public EEG dataset containing three affective states: positive, neutral, and negative. Subject-to-subject and session-to-session evaluations were performed. The subject-to-subject experimental results demonstrate that our component achieves a mean accuracy of 77.88% in comparison with a state-of-the-art method, TCA, which achieves 73.82% on average. In addition, the average classification accuracy of SAAE in the session-to-session evaluation for all the 15 subjects in a dataset is 81.81%, an improvement of up to 1.62% on average as compared to the best baseline TCA. The experimental results show the effectiveness of the proposed method relative to state-of-the-art methods. It can be concluded that SAAE is a useful and effective tool for decreasing domain discrepancy and reducing performance degradation across subjects and sessions in the EEG-based emotion recognition field. |
Author | Bai, Ou Zhao, Yongping Wang, Qisong Liu, Xin Chai, Xin Li, Yongqiang |
Author_xml | – sequence: 1 givenname: Xin surname: Chai fullname: Chai, Xin organization: School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, China – sequence: 2 givenname: Qisong surname: Wang fullname: Wang, Qisong email: wangqisong@hit.edu.cn, 11b901011@hit.edu.cn organization: School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, China – sequence: 3 givenname: Yongping surname: Zhao fullname: Zhao, Yongping organization: School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, China – sequence: 4 givenname: Xin surname: Liu fullname: Liu, Xin organization: Department of Traffic Information and Control Engineering, School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin, China – sequence: 5 givenname: Ou surname: Bai fullname: Bai, Ou organization: Department of Electrical and Computer Engineering, Florida International University, USA – sequence: 6 givenname: Yongqiang surname: Li fullname: Li, Yongqiang organization: School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27810626$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkkFv1DAQhS1URLeFv4AiceGS7TjJ2s4FQaulRarEAXq2vPYEvCR2sJNK_ffYTWmlSkjLKdH4zafn93xCjpx3SEhBYU2BsrP9Wvth3Fk_oFlXaZLGa6DtC7KigrclbOrmiKwAKJSNqDbH5CTGPQA0UMMrclxxQYFVbEXGGxfnEcOtjWgK4wdlXaGMGic1We-KCfVPZ3_PGIudypI0U_PkS3TaGwxF50OR3JVxWVDhrthuL8tFjIO_pwTU_oez-f81edmpPuKbh-8pufm8_X5xVV5_vfxy8em61JuWTyUymuwK3YBpgVYoVC1YzbmqTLur207X0GBntDactpwJwztsdulSreiAI6tPyfuFOwaf7U9ysFFj3yuHfo6SioY1VQqKHyCtGa9ZJTL13TPp3s_BpYvcA0UjOGTg2wfVvEsNyTHYIQUj_8aeBGIR6OBjDNg9SijI3LDcy6eGZW44n6SG0-qHZ6vaLtFPQdn-EMD5AsCU_q3FIKO2qU00NtU0SePtf7h4hOjeOqtV_wvvMD6FImMlQX7LLzE_RMpqqHibI_r4b8BhHv4AvGzzvg |
CODEN | CBMDAW |
CitedBy_id | crossref_primary_10_1007_s00521_020_05670_4 crossref_primary_10_3389_fnhum_2024_1464431 crossref_primary_10_1016_j_jnca_2019_102423 crossref_primary_10_1016_j_inffus_2024_102753 crossref_primary_10_1016_j_bbe_2018_04_008 crossref_primary_10_1177_2096595819896200 crossref_primary_10_3390_s21051792 crossref_primary_10_1038_s41597_024_03887_9 crossref_primary_10_1109_ACCESS_2021_3105917 crossref_primary_10_1109_JIOT_2022_3180215 crossref_primary_10_1007_s11227_022_05026_w crossref_primary_10_3389_fnhum_2022_936393 crossref_primary_10_1038_s41591_024_02885_z crossref_primary_10_3389_fncom_2024_1358780 crossref_primary_10_3389_fnhum_2022_921346 crossref_primary_10_4015_S1016237218500266 crossref_primary_10_1038_s41598_022_23067_2 crossref_primary_10_3390_s20072034 crossref_primary_10_1109_TCDS_2020_3007453 crossref_primary_10_1109_ACCESS_2020_3040286 crossref_primary_10_1016_j_compbiomed_2019_103469 crossref_primary_10_3389_fnins_2022_850906 crossref_primary_10_1109_TCDS_2021_3098842 crossref_primary_10_3390_s22145111 crossref_primary_10_1016_j_neunet_2025_107337 crossref_primary_10_3389_fnsys_2021_729707 crossref_primary_10_3390_s17051014 crossref_primary_10_26599_BSA_2020_9050026 crossref_primary_10_26599_BSA_2019_9050005 crossref_primary_10_1007_s10489_022_04077_z crossref_primary_10_1016_j_brainresbull_2024_110901 crossref_primary_10_1016_j_bspc_2020_102076 crossref_primary_10_1109_TNNLS_2021_3100583 crossref_primary_10_3389_fnins_2021_626277 crossref_primary_10_1109_ACCESS_2022_3193768 crossref_primary_10_3389_fncom_2019_00080 crossref_primary_10_1109_JBHI_2019_2934172 crossref_primary_10_1109_TAFFC_2024_3433613 crossref_primary_10_1016_j_bspc_2019_101756 crossref_primary_10_1016_j_compbiomed_2017_06_013 crossref_primary_10_1016_j_bspc_2024_106957 crossref_primary_10_1109_TCBB_2020_2973978 crossref_primary_10_3390_math10091588 crossref_primary_10_1007_s10489_024_05662_0 crossref_primary_10_1016_j_inffus_2024_102338 crossref_primary_10_1038_s41551_023_01056_8 crossref_primary_10_3390_sym12010021 crossref_primary_10_3389_fnhum_2021_643386 crossref_primary_10_1007_s11042_024_18259_z crossref_primary_10_1016_j_engappai_2023_106205 crossref_primary_10_3390_e24020195 crossref_primary_10_1109_TCDS_2022_3174209 crossref_primary_10_1111_pcn_12799 crossref_primary_10_1109_LSP_2020_2989663 crossref_primary_10_1109_TCDS_2018_2826840 crossref_primary_10_1016_j_bbe_2019_01_004 crossref_primary_10_1080_24699322_2019_1649078 crossref_primary_10_1007_s11062_019_09775_y crossref_primary_10_1109_TAFFC_2022_3179717 crossref_primary_10_1016_j_neucom_2021_05_064 crossref_primary_10_1088_1741_2552_ac6ca8 crossref_primary_10_1145_3448302 crossref_primary_10_1016_j_neucom_2020_09_017 crossref_primary_10_1007_s13534_025_00469_5 crossref_primary_10_1007_s11571_024_10092_2 crossref_primary_10_1109_TAFFC_2018_2801811 crossref_primary_10_1109_TAFFC_2022_3164516 crossref_primary_10_3390_app7121239 crossref_primary_10_3389_fnins_2023_1213099 crossref_primary_10_37394_232014_2021_17_4 crossref_primary_10_1016_j_neucom_2024_128354 crossref_primary_10_1155_2023_6349167 crossref_primary_10_1016_j_neunet_2024_106742 crossref_primary_10_1016_j_knosys_2021_107982 crossref_primary_10_1142_S0129065722500216 crossref_primary_10_3389_fnhum_2021_706270 crossref_primary_10_1016_j_bspc_2021_103289 crossref_primary_10_1142_S0129065722500575 crossref_primary_10_3389_fcomp_2020_00009 crossref_primary_10_1016_j_bspc_2022_104009 crossref_primary_10_1109_TIM_2018_2885608 crossref_primary_10_1080_10255842_2021_2024169 crossref_primary_10_1109_ACCESS_2021_3134628 crossref_primary_10_3389_fnins_2021_778488 crossref_primary_10_1016_j_patrec_2020_11_013 crossref_primary_10_1109_TIM_2023_3338676 crossref_primary_10_1007_s10111_017_0450_2 crossref_primary_10_1088_1741_2552_abc902 crossref_primary_10_1109_JBHI_2023_3307606 crossref_primary_10_1109_TCDS_2022_3233858 crossref_primary_10_1109_JBHI_2022_3225089 crossref_primary_10_1016_j_eswa_2024_125452 crossref_primary_10_1109_ACCESS_2024_3458833 crossref_primary_10_1371_journal_pone_0236392 crossref_primary_10_1007_s13369_022_07313_3 crossref_primary_10_1002_aisy_202100209 crossref_primary_10_1155_2023_9223599 crossref_primary_10_1007_s11042_018_5985_6 crossref_primary_10_1016_j_bspc_2023_105138 crossref_primary_10_1109_TCBB_2021_3052811 crossref_primary_10_1016_j_jneumeth_2024_110223 crossref_primary_10_3390_s19030522 crossref_primary_10_1155_2022_3749413 crossref_primary_10_3389_fnins_2021_677106 crossref_primary_10_1109_TNSRE_2023_3268751 crossref_primary_10_46300_9106_2021_15_46 crossref_primary_10_3389_fnhum_2020_605246 crossref_primary_10_1109_ACCESS_2022_3190967 crossref_primary_10_1007_s11063_021_10636_1 crossref_primary_10_3389_fnins_2022_855421 |
Cites_doi | 10.1016/j.bspc.2015.05.007 10.1016/j.compbiomed.2015.08.017 10.1016/j.compbiomed.2016.03.004 10.1109/MCI.2015.2501545 10.1016/j.neuroimage.2015.02.015 10.1109/ICCV.2015.438 10.1109/ACII.2015.7344684 10.1109/NER.2013.6695876 10.3390/s130708199 10.1109/TBME.2009.2039997 10.1088/1741-2560/9/1/016003 10.1109/CVPR.2014.183 10.1007/s11263-014-0696-6 10.1109/CVPR.2012.6247911 10.1007/BF01589116 10.1109/CVPR.2013.59 10.1109/TAFFC.2014.2339834 10.1109/LSP.2014.2324759 10.7551/mitpress/7503.003.0069 10.1109/TKDE.2009.191 10.1109/TAMD.2015.2431497 10.1109/TNN.2010.2091281 10.1145/1961189.1961199 10.1109/TKDE.2014.2373376 10.1109/TBME.2014.2331189 10.1109/TNSRE.2006.875555 10.1109/EMBC.2013.6611075 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd Elsevier Ltd Copyright © 2016 Elsevier Ltd. All rights reserved. Copyright Elsevier Limited Dec 01, 2016 |
Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2016 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier Limited Dec 01, 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 7QO |
DOI | 10.1016/j.compbiomed.2016.10.019 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database ProQuest Health & Medical Collection PML(ProQuest Medical Library) Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | MEDLINE Engineering Research Database Research Library Prep MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-0534 |
EndPage | 214 |
ExternalDocumentID | 4272565231 27810626 10_1016_j_compbiomed_2016_10_019 S0010482516302797 1_s2_0_S0010482516302797 |
Genre | Journal Article |
GroupedDBID | --- --K --M --Z -~X .1- .DC .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABJNI ABMAC ABMZM ABOCM ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACPRK ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD ARAPS AXJTR AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 EX3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HMCUK IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 ROL RPZ RXW SCC SDF SDG SDP SEL SES SPC SPCBC SSH SSV SSZ T5K UKHRP WOW Z5R ~G- .55 .GJ 29F 3V. 53G AACTN AAQXK ABFNM ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AFCTW AFJKZ AFKWA AJOXV ALIPV AMFUW ASPBG AVWKF AZFZN EMOBN FEDTE FGOYB G-2 HLZ HMK HMO HVGLF HZ~ M0N R2- RIG SAE SBC SEW SV3 TAE UAP WUQ X7M XPP ZGI AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR AAYXX AGQPQ AGRNS AIGII APXCP CITATION CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 7QO |
ID | FETCH-LOGICAL-c597t-e610008c40d9012e8a386377a2d9b39fc304efdccd719768d7fe4b10698f07e63 |
IEDL.DBID | .~1 |
ISSN | 0010-4825 |
IngestDate | Fri Jul 11 03:14:11 EDT 2025 Fri Jul 11 08:55:35 EDT 2025 Wed Aug 13 04:47:38 EDT 2025 Wed Feb 19 02:42:52 EST 2025 Tue Aug 05 11:57:34 EDT 2025 Thu Apr 24 22:56:59 EDT 2025 Fri Feb 23 02:24:57 EST 2024 Tue Feb 25 20:12:00 EST 2025 Tue Aug 26 16:34:08 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Domain adaptation Emotion recognition Auto-encoder MMD EEG |
Language | English |
License | Copyright © 2016 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c597t-e610008c40d9012e8a386377a2d9b39fc304efdccd719768d7fe4b10698f07e63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/am/pii/S0010482516302797?via%3Dihub |
PMID | 27810626 |
PQID | 1846848707 |
PQPubID | 1226355 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1846420537 proquest_miscellaneous_1836736286 proquest_journals_1846848707 pubmed_primary_27810626 crossref_primary_10_1016_j_compbiomed_2016_10_019 crossref_citationtrail_10_1016_j_compbiomed_2016_10_019 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2016_10_019 elsevier_clinicalkeyesjournals_1_s2_0_S0010482516302797 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2016_10_019 |
PublicationCentury | 2000 |
PublicationDate | 2016-12-01 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Computers in biology and medicine |
PublicationTitleAlternate | Comput Biol Med |
PublicationYear | 2016 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Liu, Nocedal (bib29) 1989; 45 Shao, Kit, Fu (bib19) 2014; 109 Jenke, Peer, Buss (bib11) 2014; 5 Pan, Yang (bib14) 2010; 22 Chiang, Hsu (bib1) 2013; 13 Abraham, Pedregosa (bib12) 2014; 8 R. Duan, J. Zhu, B.Lu, Differential entropy feature for eeg-based emotion classification, in: Proceedings of the 6th International IEEE/EMBS Conference on Neural Engineering (NER), 2013, pp. 81–84. Deng, Zhang, Eyben (bib24) 2014; 21 Luo, Feng, Zhang (bib13) 2016; 75 M. Kan, S. Shan, X. Chen, Bi-shifting auto-encoder for unsupervised domain adaptation, in: IEEE International Conference on Computer Vision, 2015, pp. 3846–3854. Li, Kambara, Koike (bib8) 2010; 57 V. Singh, K.P. Miyapuram, R.S. Bapi, Detection of cognitive states from fmri data using machine learning techniques, Proceedings of the, International Joint Conference on Artificial Intelligence, Hyderabad, India, January 2007, pp. 587–592. Muhl, Jeunet, Lotte (bib3) 2014; 8 L. Shi, Y. Jiao, B.Lu, Differential entropy feature for eeg-based vigilance estimation, in: Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2013, pp. 6627–6630. B. Gong, Y. Shi, F. Sha, K. Grauman, Geodesic flow kernel for unsupervised domain adaptation, IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 2066–2073. Shin, Lee, Ahn (bib20) 2015; 21 M. Long, G. Ding, J. Wang, Transfer sparse coding for robust image representation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 9(4), 2013, pp. 407–414. X. Glorot, A. Bordes, Y. Bengio, Domain adaptation for large-scale sentiment classification: a deep learning approach, in: International Conference on Machine Learning, 2011, pp. 513–520. Fan, Chang, Hsieh, Wang, Lin (bib33) 2008; 9 M. Chung, W. Cheung, R. Scherer, R.P. Rao, A hierarchical architecture or adaptive brain-computer interfacing, Proceedings of the, International Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 2011, pp. 1647–1652. Sauvet, Bougard, Coroenne (bib2) 2014; 61 Pan, Tsang, Kwok (bib30) 2011; 22 Jayaram, Alamgir, Altun (bib18) 2016; 11 A. Gretton, K.M. Borgwardt, M. Rasch, A kernel method for the two-sample-problem, in: Advances in Neural Information Processing Systems, 2006, pp. 513–520. W.L. Zheng, J.Y. Zhu, B. Lu, Identifying stable patterns over time for emotion recognition from eeg, arXiv preprint . W.L. Zheng, B.L.Lu, Personalizing eeg-based affective models with transfer learning, in: Proceedings of the 25th International Joint Conference on Artificial Intelligence, 2016, pp. 2732–3738. Zander, Jatzev (bib5) 2012; 9 Chang, Lin (bib32) 2011; 2 Morioka, Kanemura (bib7) 2015; 111 W.L. Zheng, Y.Q. Zhang, J. Zhu, B. L. Lu, Transfer components between subjects for eeg-based emotion recognition, In International Conference on Affective Computing and Intelligent Interaction, 2015, pp. 917–922. Zheng, Lu (bib6) 2015; 7 Buttfield, Ferrez, Millan (bib9) 2006; 14 Long, Wang, Sun (bib15) 2015; 27 Shin, Lee, Ahn (bib21) 2015; 66 M. Long, J. Wang, G. Ding, Transfer joint matching for unsupervised domain adaptation, IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 1410–1417. Pan (10.1016/j.compbiomed.2016.10.019_bib30) 2011; 22 Abraham (10.1016/j.compbiomed.2016.10.019_bib12) 2014; 8 Chang (10.1016/j.compbiomed.2016.10.019_bib32) 2011; 2 Luo (10.1016/j.compbiomed.2016.10.019_bib13) 2016; 75 Li (10.1016/j.compbiomed.2016.10.019_bib8) 2010; 57 Sauvet (10.1016/j.compbiomed.2016.10.019_bib2) 2014; 61 Morioka (10.1016/j.compbiomed.2016.10.019_bib7) 2015; 111 10.1016/j.compbiomed.2016.10.019_bib16 10.1016/j.compbiomed.2016.10.019_bib17 Long (10.1016/j.compbiomed.2016.10.019_bib15) 2015; 27 Shin (10.1016/j.compbiomed.2016.10.019_bib20) 2015; 21 10.1016/j.compbiomed.2016.10.019_bib31 10.1016/j.compbiomed.2016.10.019_bib10 10.1016/j.compbiomed.2016.10.019_bib34 10.1016/j.compbiomed.2016.10.019_bib35 Jayaram (10.1016/j.compbiomed.2016.10.019_bib18) 2016; 11 Muhl (10.1016/j.compbiomed.2016.10.019_bib3) 2014; 8 Pan (10.1016/j.compbiomed.2016.10.019_bib14) 2010; 22 Zander (10.1016/j.compbiomed.2016.10.019_bib5) 2012; 9 Shao (10.1016/j.compbiomed.2016.10.019_bib19) 2014; 109 Liu (10.1016/j.compbiomed.2016.10.019_bib29) 1989; 45 10.1016/j.compbiomed.2016.10.019_bib4 10.1016/j.compbiomed.2016.10.019_bib25 Zheng (10.1016/j.compbiomed.2016.10.019_bib6) 2015; 7 10.1016/j.compbiomed.2016.10.019_bib26 10.1016/j.compbiomed.2016.10.019_bib27 10.1016/j.compbiomed.2016.10.019_bib28 Chiang (10.1016/j.compbiomed.2016.10.019_bib1) 2013; 13 Shin (10.1016/j.compbiomed.2016.10.019_bib21) 2015; 66 Deng (10.1016/j.compbiomed.2016.10.019_bib24) 2014; 21 Jenke (10.1016/j.compbiomed.2016.10.019_bib11) 2014; 5 10.1016/j.compbiomed.2016.10.019_bib22 Fan (10.1016/j.compbiomed.2016.10.019_bib33) 2008; 9 10.1016/j.compbiomed.2016.10.019_bib23 Buttfield (10.1016/j.compbiomed.2016.10.019_bib9) 2006; 14 |
References_xml | – reference: X. Glorot, A. Bordes, Y. Bengio, Domain adaptation for large-scale sentiment classification: a deep learning approach, in: International Conference on Machine Learning, 2011, pp. 513–520. – volume: 45 start-page: 503 year: 1989 end-page: 528 ident: bib29 article-title: On the limited memory bfgs method for large scale optimization publication-title: Math. Prog. – reference: M. Chung, W. Cheung, R. Scherer, R.P. Rao, A hierarchical architecture or adaptive brain-computer interfacing, Proceedings of the, International Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 2011, pp. 1647–1652. – volume: 9 start-page: 16003 year: 2012 end-page: 16012 ident: bib5 article-title: Context-aware brain-computer interfaces: exploring the information space of user, technical system and environment publication-title: J. Neural Eng. – volume: 2 start-page: 27 year: 2011 ident: bib32 article-title: Libsvm: a library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. – volume: 75 start-page: 45 year: 2016 end-page: 53 ident: bib13 article-title: Dynamic frequency feature selection based approach for classification of motor imageries publication-title: Comput. Biol. Med. – reference: M. Kan, S. Shan, X. Chen, Bi-shifting auto-encoder for unsupervised domain adaptation, in: IEEE International Conference on Computer Vision, 2015, pp. 3846–3854. – volume: 5 start-page: 327 year: 2014 end-page: 339 ident: bib11 article-title: Feature extraction and selection for emotion recognition from eeg publication-title: IEEE Trans. Affect. Comput. – volume: 111 start-page: 167 year: 2015 end-page: 178 ident: bib7 article-title: Learning a common dictionary for subject-transfer decoding with resting calibration publication-title: NeuroImage – volume: 8 start-page: 14 year: 2014 ident: bib12 article-title: Machine learning for neuroimaging with scikit-learn publication-title: Front. Neuroinform. – volume: 27 start-page: 1519 year: 2015 end-page: 1532 ident: bib15 article-title: Domain invariant transfer kernel learning publication-title: IEEE Trans. Knowl. Data Eng. – volume: 14 start-page: 164 year: 2006 end-page: 168 ident: bib9 article-title: Towards a robust bci: error potentials and online learning publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – reference: A. Gretton, K.M. Borgwardt, M. Rasch, A kernel method for the two-sample-problem, in: Advances in Neural Information Processing Systems, 2006, pp. 513–520. – reference: W.L. Zheng, Y.Q. Zhang, J. Zhu, B. L. Lu, Transfer components between subjects for eeg-based emotion recognition, In International Conference on Affective Computing and Intelligent Interaction, 2015, pp. 917–922. – reference: M. Long, G. Ding, J. Wang, Transfer sparse coding for robust image representation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 9(4), 2013, pp. 407–414. – volume: 7 start-page: 162 year: 2015 end-page: 175 ident: bib6 article-title: Investigating critical frequency bands and channels for eeg-based emotion recognition with deep neural networks publication-title: IEEE Trans. Auton. Ment. Dev. – volume: 11 start-page: 20 year: 2016 end-page: 31 ident: bib18 article-title: Transfer learning in brain-computer interfaces publication-title: IEEE Comput. Intell. Mag. – reference: R. Duan, J. Zhu, B.Lu, Differential entropy feature for eeg-based emotion classification, in: Proceedings of the 6th International IEEE/EMBS Conference on Neural Engineering (NER), 2013, pp. 81–84. – volume: 61 start-page: 2840 year: 2014 end-page: 2847 ident: bib2 article-title: In flight automatic detection of vigilance states using a single eeg channel publication-title: IEEE Trans. Biomed. Eng. – volume: 9 start-page: 1871 year: 2008 end-page: 1874 ident: bib33 article-title: Liblinear: a library for large linear classification publication-title: J. Mach. Learn. Res. – reference: B. Gong, Y. Shi, F. Sha, K. Grauman, Geodesic flow kernel for unsupervised domain adaptation, IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 2066–2073. – reference: W.L. Zheng, J.Y. Zhu, B. Lu, Identifying stable patterns over time for emotion recognition from eeg, arXiv preprint – volume: 13 start-page: 8199 year: 2013 end-page: 8221 ident: bib1 article-title: Improving driver alertness through music selection using a mobile eeg to detect brainwaves publication-title: Sensors – volume: 22 start-page: 1345 year: 2010 end-page: 1359 ident: bib14 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowl. Data Eng. – volume: 109 start-page: 74 year: 2014 end-page: 93 ident: bib19 article-title: Generalized transfer subspace learning through low-rank constraint publication-title: Int. J. Comput. Vis. – reference: W.L. Zheng, B.L.Lu, Personalizing eeg-based affective models with transfer learning, in: Proceedings of the 25th International Joint Conference on Artificial Intelligence, 2016, pp. 2732–3738. – reference: M. Long, J. Wang, G. Ding, Transfer joint matching for unsupervised domain adaptation, IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 1410–1417. – reference: . – volume: 21 start-page: 1068 year: 2014 end-page: 1072 ident: bib24 article-title: Autoencoder-based unsupervised domain adaptation for speech emotion recognition publication-title: IEEE Signal Process. Lett. – volume: 66 start-page: 29 year: 2015 end-page: 38 ident: bib21 article-title: Simple adaptive sparse representation based classification schemes for eeg based brain-computer interface applications publication-title: Comput. Biol. Med. – volume: 8 year: 2014 ident: bib3 article-title: Eeg-based workload estimation across affective contexts publication-title: Front. Neurosci. – volume: 22 start-page: 199 year: 2011 end-page: 210 ident: bib30 article-title: Domain adaptation via transfer component analysis publication-title: IEEE Trans. Neural Netw. – reference: V. Singh, K.P. Miyapuram, R.S. Bapi, Detection of cognitive states from fmri data using machine learning techniques, Proceedings of the, International Joint Conference on Artificial Intelligence, Hyderabad, India, January 2007, pp. 587–592. – volume: 57 start-page: 1318 year: 2010 end-page: 1324 ident: bib8 article-title: Application of covariate shift adaptation techniques in brain-computer interfaces publication-title: IEEE Trans. Bio-Med. Eng. – volume: 21 start-page: 8 year: 2015 end-page: 18 ident: bib20 article-title: Noise robustness analysis of sparse representation based classification method for non-stationary eeg signal classification publication-title: Biomed. Signal Process. Control – reference: L. Shi, Y. Jiao, B.Lu, Differential entropy feature for eeg-based vigilance estimation, in: Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2013, pp. 6627–6630. – volume: 21 start-page: 8 year: 2015 ident: 10.1016/j.compbiomed.2016.10.019_bib20 article-title: Noise robustness analysis of sparse representation based classification method for non-stationary eeg signal classification publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2015.05.007 – volume: 66 start-page: 29 issue: C year: 2015 ident: 10.1016/j.compbiomed.2016.10.019_bib21 article-title: Simple adaptive sparse representation based classification schemes for eeg based brain-computer interface applications publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2015.08.017 – volume: 75 start-page: 45 year: 2016 ident: 10.1016/j.compbiomed.2016.10.019_bib13 article-title: Dynamic frequency feature selection based approach for classification of motor imageries publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.03.004 – volume: 11 start-page: 20 issue: 1 year: 2016 ident: 10.1016/j.compbiomed.2016.10.019_bib18 article-title: Transfer learning in brain-computer interfaces publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2015.2501545 – volume: 111 start-page: 167 year: 2015 ident: 10.1016/j.compbiomed.2016.10.019_bib7 article-title: Learning a common dictionary for subject-transfer decoding with resting calibration publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.02.015 – ident: 10.1016/j.compbiomed.2016.10.019_bib25 doi: 10.1109/ICCV.2015.438 – ident: 10.1016/j.compbiomed.2016.10.019_bib4 – ident: 10.1016/j.compbiomed.2016.10.019_bib16 doi: 10.1109/ACII.2015.7344684 – ident: 10.1016/j.compbiomed.2016.10.019_bib28 doi: 10.1109/NER.2013.6695876 – volume: 13 start-page: 8199 issue: 7 year: 2013 ident: 10.1016/j.compbiomed.2016.10.019_bib1 article-title: Improving driver alertness through music selection using a mobile eeg to detect brainwaves publication-title: Sensors doi: 10.3390/s130708199 – volume: 57 start-page: 1318 issue: 6 year: 2010 ident: 10.1016/j.compbiomed.2016.10.019_bib8 article-title: Application of covariate shift adaptation techniques in brain-computer interfaces publication-title: IEEE Trans. Bio-Med. Eng. doi: 10.1109/TBME.2009.2039997 – volume: 9 start-page: 16003 issue: 9 year: 2012 ident: 10.1016/j.compbiomed.2016.10.019_bib5 article-title: Context-aware brain-computer interfaces: exploring the information space of user, technical system and environment publication-title: J. Neural Eng. doi: 10.1088/1741-2560/9/1/016003 – ident: 10.1016/j.compbiomed.2016.10.019_bib10 – volume: 8 issue: 8 year: 2014 ident: 10.1016/j.compbiomed.2016.10.019_bib3 article-title: Eeg-based workload estimation across affective contexts publication-title: Front. Neurosci. – ident: 10.1016/j.compbiomed.2016.10.019_bib35 doi: 10.1109/CVPR.2014.183 – volume: 109 start-page: 74 issue: 1–2 year: 2014 ident: 10.1016/j.compbiomed.2016.10.019_bib19 article-title: Generalized transfer subspace learning through low-rank constraint publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-014-0696-6 – ident: 10.1016/j.compbiomed.2016.10.019_bib17 – ident: 10.1016/j.compbiomed.2016.10.019_bib31 doi: 10.1109/CVPR.2012.6247911 – ident: 10.1016/j.compbiomed.2016.10.019_bib23 – volume: 9 start-page: 1871 issue: 9 year: 2008 ident: 10.1016/j.compbiomed.2016.10.019_bib33 article-title: Liblinear: a library for large linear classification publication-title: J. Mach. Learn. Res. – volume: 8 start-page: 14 issue: 8 year: 2014 ident: 10.1016/j.compbiomed.2016.10.019_bib12 article-title: Machine learning for neuroimaging with scikit-learn publication-title: Front. Neuroinform. – volume: 45 start-page: 503 issue: 1–3 year: 1989 ident: 10.1016/j.compbiomed.2016.10.019_bib29 article-title: On the limited memory bfgs method for large scale optimization publication-title: Math. Prog. doi: 10.1007/BF01589116 – ident: 10.1016/j.compbiomed.2016.10.019_bib22 doi: 10.1109/CVPR.2013.59 – volume: 5 start-page: 327 issue: 3 year: 2014 ident: 10.1016/j.compbiomed.2016.10.019_bib11 article-title: Feature extraction and selection for emotion recognition from eeg publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2014.2339834 – volume: 21 start-page: 1068 issue: 9 year: 2014 ident: 10.1016/j.compbiomed.2016.10.019_bib24 article-title: Autoencoder-based unsupervised domain adaptation for speech emotion recognition publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2014.2324759 – ident: 10.1016/j.compbiomed.2016.10.019_bib26 doi: 10.7551/mitpress/7503.003.0069 – volume: 22 start-page: 1345 issue: 10 year: 2010 ident: 10.1016/j.compbiomed.2016.10.019_bib14 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2009.191 – volume: 7 start-page: 162 issue: 3 year: 2015 ident: 10.1016/j.compbiomed.2016.10.019_bib6 article-title: Investigating critical frequency bands and channels for eeg-based emotion recognition with deep neural networks publication-title: IEEE Trans. Auton. Ment. Dev. doi: 10.1109/TAMD.2015.2431497 – volume: 22 start-page: 199 issue: 2 year: 2011 ident: 10.1016/j.compbiomed.2016.10.019_bib30 article-title: Domain adaptation via transfer component analysis publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2010.2091281 – volume: 2 start-page: 27 issue: 3 year: 2011 ident: 10.1016/j.compbiomed.2016.10.019_bib32 article-title: Libsvm: a library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/1961189.1961199 – volume: 27 start-page: 1519 issue: 6 year: 2015 ident: 10.1016/j.compbiomed.2016.10.019_bib15 article-title: Domain invariant transfer kernel learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2014.2373376 – ident: 10.1016/j.compbiomed.2016.10.019_bib34 – volume: 61 start-page: 2840 issue: 12 year: 2014 ident: 10.1016/j.compbiomed.2016.10.019_bib2 article-title: In flight automatic detection of vigilance states using a single eeg channel publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2331189 – volume: 14 start-page: 164 issue: 2 year: 2006 ident: 10.1016/j.compbiomed.2016.10.019_bib9 article-title: Towards a robust bci: error potentials and online learning publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2006.875555 – ident: 10.1016/j.compbiomed.2016.10.019_bib27 doi: 10.1109/EMBC.2013.6611075 |
SSID | ssj0004030 |
Score | 2.5217447 |
Snippet | In electroencephalography (EEG)-based emotion recognition systems, the distribution between the training samples and the testing samples may be mismatched if... Abstract In electroencephalography (EEG)-based emotion recognition systems, the distribution between the training samples and the testing samples may be... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 205 |
SubjectTerms | Adult Algorithms Auto-encoder Classification Databases, Factual Domain adaptation EEG Electroencephalography Electroencephalography - methods Emotion recognition Emotions - drug effects Emotions - physiology Female Humans Internal Medicine Male Methods MMD Other Signal Processing, Computer-Assisted Studies Support Vector Machine Young Adult |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELVakKpeUIF-hAJypV5Nk9jYjjhUFVpASPTSrrQ3y7GdQ9Um6Wb30H_PzNrJXijaa-JRrIw9nud5M0PI5-aylhVvGqZ0bplonIc95ySrhcWwm9AFx0Thh-_ybi7uF5eLdOE2JFrlaBM3htp3Du_IvwASkRq861x97f8y7BqF0dXUQuMl2cfSZQi-1EJt8yJzHlNQwNYIgEKJyRP5XUjZjinuSPCSF8jxwno7Tx9P_3M_N8fQzRtykPxH-i0q_JC8CO0RefWQIuTHpJ-3w7pHAzAET333B5A_td72MeROp5qtA8UDzFN4ZterjmFBSx-WFJxY2nYtG6KAXf6js9kti4NDbPpDJ9pR174l85vZz-s7lroqMAfgYcWCxCt97UTuwRcog7ZcS66ULX1V86pxPBeh8c55VYCvor1qgqgBOVa6yVWQ_B3Zg2mED4TKsla2RohUAswOrnJChELmHjBLLa3LiBp_pnGp5Dh2vvhtRm7ZL7NVg0E14BtQQ0aKSbKPZTd2kKlGfZkxrRQMoYGzYQdZ9ZRsGNKOHkxhhtLk5semoBHm-0qM-FYqI1eTZHJaojOy43dPx4Vltp-alnpGPk2vYdtjLMe2oVvjGI6MvFLL58YIQJdYsCcj7-OinX5mqTSotJQnz0_gI3mNs438nVOyt1quwxl4Yav6fLPVHgGe1TIN priority: 102 providerName: ProQuest |
Title | Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482516302797 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482516302797 https://dx.doi.org/10.1016/j.compbiomed.2016.10.019 https://www.ncbi.nlm.nih.gov/pubmed/27810626 https://www.proquest.com/docview/1846848707 https://www.proquest.com/docview/1836736286 https://www.proquest.com/docview/1846420537 |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBelg7GXse9l_UCDvbq1LVWS6VNbkmYbDWMskDchSzJ0bLaJk4e99G_vXSQ7jHUjsBcb2zpb6E6nO9_vToR8qM5KUbCqSqRKTcIr62DOWZGU3GDYjauMYaLwzUxM5_zT4myxR676XBiEVUbdH3T6RlvHO6dxNE_b21vM8QVXAjMvBcbeCswox-p1INMnd1uYB09ZSEMBfYOtI5onYLwQth3S3BHkJU4Q54U1dx5eov5mgm6Woskz8jTakPQidPM52fP1C_L4JkbJX5J2XnfrFpVA5x11zU_w_qlxpg1hdzrUbe0oLmKOwj2zXjUJFrV0fknBkKV1UyddIDDLX3Q8vk5CYx82_qED9KipX5H5ZPztaprEnRUSCw7EKvECf-sry1MH9kDulWFKMClN7oqSFZVlKfeVs9bJDOwV5WTleQneY6GqVHrBXpN96IZ_S6jIS2lKdJNycLW9LSznPhOpA7-lFMaOiOwHU9tYdhx3v_ihe3zZd71lg0Y24BNgw4hkA2UbSm_sQFP0_NJ9aikoQw3rww608iFa38VZ3elMd7lO9R-SNyLnA-Vvwrvjdw97wdLbT4FdqMCZTOHl74fHMPUxnmNq36yxDUNUXq7Ev9pw8DCxaM-IvAlCOwxmLhWwNBfv_qv7B-QJXgWIzyHZXy3X_ggMtVV5vJmJcJQLCUc1uT4mjy4-fp7O4Hw5nn35eg_rvUI- |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYAL4s1CASPBMZDYru0IIYRgt1va7YWu1JtxbEcCQRI2u0L9U_xGZtZJ9lKqvfSaeBLLY8_D880MIa_K_ULmvCwTpVObiNJ5OHNOJoWwGHYTOuOYKDw7kdO5-HK2f7ZD_va5MAir7GXiWlD72uEd-VvwRKQG6zpVH5rfCXaNwuhq30IjboujcP4HXLb2_eFn4O9rxibj00_TpOsqkDgwnpdJkHilrZ1IPehCFrTlWnKlLPN5wfPSgYMfSu-cVxnoau1VGUQBnlOuy1QFyeG718h1wXmOEEI9OdjkYaY8pryAbBPgenXIoYgnQ4h4TKlHQJl8g5gyrO9zsTr8n7m7VnuTO-R2Z6_Sj3GD3SU7obpHbsy6iPx90syrdtWgwGmDp77-Zb9X1HrbxBA_HWrEthQVpqfwzK6WdYIFNH1YUDCaaVVXSRsJ7OKcjscHSRwcYpMhOsCc6uoBmV_Jej8kuzCN8JhQyQplC3TJGLj1weVOiJDJ1IOPVEjrRkT1i2lcV-IcO238ND2W7YfZsMEgG_ANsGFEsoGyiWU-tqDJe36ZPo0VBK8BXbQFrbqINrSdBGlNZlpmUvN1XUAJ84slRphzNSLvBsrOSIrGz5b_3es3ltn8ajhaI_JyeA1iBmNHtgr1CsdwRAAyLS8bI8CbxQJBI_IobtphMZnSwFImn1w-gRfk5vR0dmyOD0-OnpJbOPOIHdoju8vFKjwDC3BZPF8fO0q-XfU5_wf5bW4l |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkCZeEN_LGGAkeDRLHM92hBBCrN3G2IQElfZmHNuRQCwpTSu0f42_jrs6SV_G1Je9Nr7G8vm-cr-7I-RVtV_KIq8qpnRqmaicB5lzkpXCYtpN6CzHQuHTM3k0EZ_O9883yN--FgZhlb1OXCpq3zj8Rr4HkYjU4F2naq_qYBFfDsbvp78ZTpDCTGs_TiNekZNw-QfCt_bd8QHw-jXn49G3j0esmzDAHDjScxYkft7WTqQe7CIP2uZa5kpZ7osyLyoHwX6ovHNeZWC3tVdVECVEUYWuUhVkDv97i9xWuU5xeoIeH65qMtM8lr-AnhMQhnUooogtQ7h4LK9HcJl8g_gy7PVztWn8n-u7NIHje-Ru57vSD_Gy3ScboX5Atk677PxDMp3U7WKKyqcNnvrmwv6oqfV2GtP9dOgX21I0np7Cb3Yxbxg20_RhRsGBpnVTszYS2NklHY0OWVwc4sAhOkCemvoRmdzIeT8mm7CNsE2o5KWyJYZnHEL84AonRMhk6iFeKqV1CVH9YRrXtTvHqRu_TI9r-2lWbDDIBnwCbEhINlBOY8uPNWiKnl-mL2kFJWzALq1Bq66iDW2nTVqTmZab1HxdNlPCWmOJ2eZCJeTtQNk5TNERWvO9u_3FMqtXDWKWkJfDY1A5mEeydWgWuCZHNCDX8ro1AiJbbBaUkCfx0g6HyZUGlnK5c_0GXpAtkHDz-fjs5Cm5gxuPMKJdsjmfLcIzcAbn5fOl1FHy_abF_B_zFHJS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+domain+adaptation+techniques+based+on+auto-encoder+for+non-stationary+EEG-based+emotion+recognition&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Chai%2C+Xin&rft.au=Wang%2C+Qisong&rft.au=Zhao%2C+Yongping&rft.au=Liu%2C+Xin&rft.date=2016-12-01&rft.issn=0010-4825&rft.volume=79&rft.spage=205&rft.epage=214&rft_id=info:doi/10.1016%2Fj.compbiomed.2016.10.019&rft.externalDBID=ECK1-s2.0-S0010482516302797&rft.externalDocID=1_s2_0_S0010482516302797 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482516X0011X%2Fcov150h.gif |