Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition

In electroencephalography (EEG)-based emotion recognition systems, the distribution between the training samples and the testing samples may be mismatched if they are sampled from different experimental sessions or subjects because of user fatigue, different electrode placements, varying impedances,...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 79; pp. 205 - 214
Main Authors Chai, Xin, Wang, Qisong, Zhao, Yongping, Liu, Xin, Bai, Ou, Li, Yongqiang
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.12.2016
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
DOI10.1016/j.compbiomed.2016.10.019

Cover

Loading…
Abstract In electroencephalography (EEG)-based emotion recognition systems, the distribution between the training samples and the testing samples may be mismatched if they are sampled from different experimental sessions or subjects because of user fatigue, different electrode placements, varying impedances, etc. Therefore, it is difficult to directly classify the EEG patterns with a conventional classifier. The domain adaptation method, which is aimed at obtaining a common representation across training and test domains, is an effective method for reducing the distribution discrepancy. However, the existing domain adaptation strategies either employ a linear transformation or learn the nonlinearity mapping without a consistency constraint; they are not sufficiently powerful to obtain a similar distribution from highly non-stationary EEG signals. To address this problem, in this paper, a novel component, called the subspace alignment auto-encoder (SAAE), is proposed. Taking advantage of both nonlinear transformation and a consistency constraint, we combine an auto-encoder network and a subspace alignment solution in a unified framework. As a result, the source domain can be aligned with the target domain together with its class label, and any supervised method can be applied to the new source domain to train a classifier for classification in the target domain, as the aligned source domain follows a distribution similar to that of the target domain. We compared our SAAE method with six typical approaches using a public EEG dataset containing three affective states: positive, neutral, and negative. Subject-to-subject and session-to-session evaluations were performed. The subject-to-subject experimental results demonstrate that our component achieves a mean accuracy of 77.88% in comparison with a state-of-the-art method, TCA, which achieves 73.82% on average. In addition, the average classification accuracy of SAAE in the session-to-session evaluation for all the 15 subjects in a dataset is 81.81%, an improvement of up to 1.62% on average as compared to the best baseline TCA. The experimental results show the effectiveness of the proposed method relative to state-of-the-art methods. It can be concluded that SAAE is a useful and effective tool for decreasing domain discrepancy and reducing performance degradation across subjects and sessions in the EEG-based emotion recognition field. •Deep auto-encoder network and subspace alignment solution are combined to constrain the distribution discrepancy.•Demonstration of the improved classification accuracy compared with several state-of-the-art domain adaptation techniques.•Illustration of the suitability of the SAAE for non-stationary EEG signal classification.
AbstractList In electroencephalography (EEG)-based emotion recognition systems, the distribution between the training samples and the testing samples may be mismatched if they are sampled from different experimental sessions or subjects because of user fatigue, different electrode placements, varying impedances, etc. Therefore, it is difficult to directly classify the EEG patterns with a conventional classifier. The domain adaptation method, which is aimed at obtaining a common representation across training and test domains, is an effective method for reducing the distribution discrepancy. However, the existing domain adaptation strategies either employ a linear transformation or learn the nonlinearity mapping without a consistency constraint; they are not sufficiently powerful to obtain a similar distribution from highly non-stationary EEG signals. To address this problem, in this paper, a novel component, called the subspace alignment auto-encoder (SAAE), is proposed. Taking advantage of both nonlinear transformation and a consistency constraint, we combine an auto-encoder network and a subspace alignment solution in a unified framework. As a result, the source domain can be aligned with the target domain together with its class label, and any supervised method can be applied to the new source domain to train a classifier for classification in the target domain, as the aligned source domain follows a distribution similar to that of the target domain. We compared our SAAE method with six typical approaches using a public EEG dataset containing three affective states: positive, neutral, and negative. Subject-to-subject and session-to-session evaluations were performed. The subject-to-subject experimental results demonstrate that our component achieves a mean accuracy of 77.88% in comparison with a state-of-the-art method, TCA, which achieves 73.82% on average. In addition, the average classification accuracy of SAAE in the session-to-session evaluation for all the 15 subjects in a dataset is 81.81%, an improvement of up to 1.62% on average as compared to the best baseline TCA. The experimental results show the effectiveness of the proposed method relative to state-of-the-art methods. It can be concluded that SAAE is a useful and effective tool for decreasing domain discrepancy and reducing performance degradation across subjects and sessions in the EEG-based emotion recognition field. •Deep auto-encoder network and subspace alignment solution are combined to constrain the distribution discrepancy.•Demonstration of the improved classification accuracy compared with several state-of-the-art domain adaptation techniques.•Illustration of the suitability of the SAAE for non-stationary EEG signal classification.
In electroencephalography (EEG)-based emotion recognition systems, the distribution between the training samples and the testing samples may be mismatched if they are sampled from different experimental sessions or subjects because of user fatigue, different electrode placements, varying impedances, etc. Therefore, it is difficult to directly classify the EEG patterns with a conventional classifier. The domain adaptation method, which is aimed at obtaining a common representation across training and test domains, is an effective method for reducing the distribution discrepancy. However, the existing domain adaptation strategies either employ a linear transformation or learn the nonlinearity mapping without a consistency constraint; they are not sufficiently powerful to obtain a similar distribution from highly non-stationary EEG signals. To address this problem, in this paper, a novel component, called the subspace alignment auto-encoder (SAAE), is proposed. Taking advantage of both nonlinear transformation and a consistency constraint, we combine an auto-encoder network and a subspace alignment solution in a unified framework. As a result, the source domain can be aligned with the target domain together with its class label, and any supervised method can be applied to the new source domain to train a classifier for classification in the target domain, as the aligned source domain follows a distribution similar to that of the target domain. We compared our SAAE method with six typical approaches using a public EEG dataset containing three affective states: positive, neutral, and negative. Subject-to-subject and session-to-session evaluations were performed. The subject-to-subject experimental results demonstrate that our component achieves a mean accuracy of 77.88% in comparison with a state-of-the-art method, TCA, which achieves 73.82% on average. In addition, the average classification accuracy of SAAE in the session-to-session evaluation for all the 15 subjects in a dataset is 81.81%, an improvement of up to 1.62% on average as compared to the best baseline TCA. The experimental results show the effectiveness of the proposed method relative to state-of-the-art methods. It can be concluded that SAAE is a useful and effective tool for decreasing domain discrepancy and reducing performance degradation across subjects and sessions in the EEG-based emotion recognition field.
Abstract In electroencephalography (EEG)-based emotion recognition systems, the distribution between the training samples and the testing samples may be mismatched if they are sampled from different experimental sessions or subjects because of user fatigue, different electrode placements, varying impedances, etc. Therefore, it is difficult to directly classify the EEG patterns with a conventional classifier. The domain adaptation method, which is aimed at obtaining a common representation across training and test domains, is an effective method for reducing the distribution discrepancy. However, the existing domain adaptation strategies either employ a linear transformation or learn the nonlinearity mapping without a consistency constraint; they are not sufficiently powerful to obtain a similar distribution from highly non-stationary EEG signals. To address this problem, in this paper, a novel component, called the subspace alignment auto-encoder (SAAE), is proposed. Taking advantage of both nonlinear transformation and a consistency constraint, we combine an auto-encoder network and a subspace alignment solution in a unified framework. As a result, the source domain can be aligned with the target domain together with its class label, and any supervised method can be applied to the new source domain to train a classifier for classification in the target domain, as the aligned source domain follows a distribution similar to that of the target domain. We compared our SAAE method with six typical approaches using a public EEG dataset containing three affective states: positive, neutral, and negative. Subject-to-subject and session-to-session evaluations were performed. The subject-to-subject experimental results demonstrate that our component achieves a mean accuracy of 77.88% in comparison with a state-of-the-art method, TCA, which achieves 73.82% on average. In addition, the average classification accuracy of SAAE in the session-to-session evaluation for all the 15 subjects in a dataset is 81.81%, an improvement of up to 1.62% on average as compared to the best baseline TCA. The experimental results show the effectiveness of the proposed method relative to state-of-the-art methods. It can be concluded that SAAE is a useful and effective tool for decreasing domain discrepancy and reducing performance degradation across subjects and sessions in the EEG-based emotion recognition field.
Author Bai, Ou
Zhao, Yongping
Wang, Qisong
Liu, Xin
Chai, Xin
Li, Yongqiang
Author_xml – sequence: 1
  givenname: Xin
  surname: Chai
  fullname: Chai, Xin
  organization: School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, China
– sequence: 2
  givenname: Qisong
  surname: Wang
  fullname: Wang, Qisong
  email: wangqisong@hit.edu.cn, 11b901011@hit.edu.cn
  organization: School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, China
– sequence: 3
  givenname: Yongping
  surname: Zhao
  fullname: Zhao, Yongping
  organization: School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, China
– sequence: 4
  givenname: Xin
  surname: Liu
  fullname: Liu, Xin
  organization: Department of Traffic Information and Control Engineering, School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin, China
– sequence: 5
  givenname: Ou
  surname: Bai
  fullname: Bai, Ou
  organization: Department of Electrical and Computer Engineering, Florida International University, USA
– sequence: 6
  givenname: Yongqiang
  surname: Li
  fullname: Li, Yongqiang
  organization: School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27810626$$D View this record in MEDLINE/PubMed
BookMark eNqVkkFv1DAQhS1URLeFv4AiceGS7TjJ2s4FQaulRarEAXq2vPYEvCR2sJNK_ffYTWmlSkjLKdH4zafn93xCjpx3SEhBYU2BsrP9Wvth3Fk_oFlXaZLGa6DtC7KigrclbOrmiKwAKJSNqDbH5CTGPQA0UMMrclxxQYFVbEXGGxfnEcOtjWgK4wdlXaGMGic1We-KCfVPZ3_PGIudypI0U_PkS3TaGwxF50OR3JVxWVDhrthuL8tFjIO_pwTU_oez-f81edmpPuKbh-8pufm8_X5xVV5_vfxy8em61JuWTyUymuwK3YBpgVYoVC1YzbmqTLur207X0GBntDactpwJwztsdulSreiAI6tPyfuFOwaf7U9ysFFj3yuHfo6SioY1VQqKHyCtGa9ZJTL13TPp3s_BpYvcA0UjOGTg2wfVvEsNyTHYIQUj_8aeBGIR6OBjDNg9SijI3LDcy6eGZW44n6SG0-qHZ6vaLtFPQdn-EMD5AsCU_q3FIKO2qU00NtU0SePtf7h4hOjeOqtV_wvvMD6FImMlQX7LLzE_RMpqqHibI_r4b8BhHv4AvGzzvg
CODEN CBMDAW
CitedBy_id crossref_primary_10_1007_s00521_020_05670_4
crossref_primary_10_3389_fnhum_2024_1464431
crossref_primary_10_1016_j_jnca_2019_102423
crossref_primary_10_1016_j_inffus_2024_102753
crossref_primary_10_1016_j_bbe_2018_04_008
crossref_primary_10_1177_2096595819896200
crossref_primary_10_3390_s21051792
crossref_primary_10_1038_s41597_024_03887_9
crossref_primary_10_1109_ACCESS_2021_3105917
crossref_primary_10_1109_JIOT_2022_3180215
crossref_primary_10_1007_s11227_022_05026_w
crossref_primary_10_3389_fnhum_2022_936393
crossref_primary_10_1038_s41591_024_02885_z
crossref_primary_10_3389_fncom_2024_1358780
crossref_primary_10_3389_fnhum_2022_921346
crossref_primary_10_4015_S1016237218500266
crossref_primary_10_1038_s41598_022_23067_2
crossref_primary_10_3390_s20072034
crossref_primary_10_1109_TCDS_2020_3007453
crossref_primary_10_1109_ACCESS_2020_3040286
crossref_primary_10_1016_j_compbiomed_2019_103469
crossref_primary_10_3389_fnins_2022_850906
crossref_primary_10_1109_TCDS_2021_3098842
crossref_primary_10_3390_s22145111
crossref_primary_10_1016_j_neunet_2025_107337
crossref_primary_10_3389_fnsys_2021_729707
crossref_primary_10_3390_s17051014
crossref_primary_10_26599_BSA_2020_9050026
crossref_primary_10_26599_BSA_2019_9050005
crossref_primary_10_1007_s10489_022_04077_z
crossref_primary_10_1016_j_brainresbull_2024_110901
crossref_primary_10_1016_j_bspc_2020_102076
crossref_primary_10_1109_TNNLS_2021_3100583
crossref_primary_10_3389_fnins_2021_626277
crossref_primary_10_1109_ACCESS_2022_3193768
crossref_primary_10_3389_fncom_2019_00080
crossref_primary_10_1109_JBHI_2019_2934172
crossref_primary_10_1109_TAFFC_2024_3433613
crossref_primary_10_1016_j_bspc_2019_101756
crossref_primary_10_1016_j_compbiomed_2017_06_013
crossref_primary_10_1016_j_bspc_2024_106957
crossref_primary_10_1109_TCBB_2020_2973978
crossref_primary_10_3390_math10091588
crossref_primary_10_1007_s10489_024_05662_0
crossref_primary_10_1016_j_inffus_2024_102338
crossref_primary_10_1038_s41551_023_01056_8
crossref_primary_10_3390_sym12010021
crossref_primary_10_3389_fnhum_2021_643386
crossref_primary_10_1007_s11042_024_18259_z
crossref_primary_10_1016_j_engappai_2023_106205
crossref_primary_10_3390_e24020195
crossref_primary_10_1109_TCDS_2022_3174209
crossref_primary_10_1111_pcn_12799
crossref_primary_10_1109_LSP_2020_2989663
crossref_primary_10_1109_TCDS_2018_2826840
crossref_primary_10_1016_j_bbe_2019_01_004
crossref_primary_10_1080_24699322_2019_1649078
crossref_primary_10_1007_s11062_019_09775_y
crossref_primary_10_1109_TAFFC_2022_3179717
crossref_primary_10_1016_j_neucom_2021_05_064
crossref_primary_10_1088_1741_2552_ac6ca8
crossref_primary_10_1145_3448302
crossref_primary_10_1016_j_neucom_2020_09_017
crossref_primary_10_1007_s13534_025_00469_5
crossref_primary_10_1007_s11571_024_10092_2
crossref_primary_10_1109_TAFFC_2018_2801811
crossref_primary_10_1109_TAFFC_2022_3164516
crossref_primary_10_3390_app7121239
crossref_primary_10_3389_fnins_2023_1213099
crossref_primary_10_37394_232014_2021_17_4
crossref_primary_10_1016_j_neucom_2024_128354
crossref_primary_10_1155_2023_6349167
crossref_primary_10_1016_j_neunet_2024_106742
crossref_primary_10_1016_j_knosys_2021_107982
crossref_primary_10_1142_S0129065722500216
crossref_primary_10_3389_fnhum_2021_706270
crossref_primary_10_1016_j_bspc_2021_103289
crossref_primary_10_1142_S0129065722500575
crossref_primary_10_3389_fcomp_2020_00009
crossref_primary_10_1016_j_bspc_2022_104009
crossref_primary_10_1109_TIM_2018_2885608
crossref_primary_10_1080_10255842_2021_2024169
crossref_primary_10_1109_ACCESS_2021_3134628
crossref_primary_10_3389_fnins_2021_778488
crossref_primary_10_1016_j_patrec_2020_11_013
crossref_primary_10_1109_TIM_2023_3338676
crossref_primary_10_1007_s10111_017_0450_2
crossref_primary_10_1088_1741_2552_abc902
crossref_primary_10_1109_JBHI_2023_3307606
crossref_primary_10_1109_TCDS_2022_3233858
crossref_primary_10_1109_JBHI_2022_3225089
crossref_primary_10_1016_j_eswa_2024_125452
crossref_primary_10_1109_ACCESS_2024_3458833
crossref_primary_10_1371_journal_pone_0236392
crossref_primary_10_1007_s13369_022_07313_3
crossref_primary_10_1002_aisy_202100209
crossref_primary_10_1155_2023_9223599
crossref_primary_10_1007_s11042_018_5985_6
crossref_primary_10_1016_j_bspc_2023_105138
crossref_primary_10_1109_TCBB_2021_3052811
crossref_primary_10_1016_j_jneumeth_2024_110223
crossref_primary_10_3390_s19030522
crossref_primary_10_1155_2022_3749413
crossref_primary_10_3389_fnins_2021_677106
crossref_primary_10_1109_TNSRE_2023_3268751
crossref_primary_10_46300_9106_2021_15_46
crossref_primary_10_3389_fnhum_2020_605246
crossref_primary_10_1109_ACCESS_2022_3190967
crossref_primary_10_1007_s11063_021_10636_1
crossref_primary_10_3389_fnins_2022_855421
Cites_doi 10.1016/j.bspc.2015.05.007
10.1016/j.compbiomed.2015.08.017
10.1016/j.compbiomed.2016.03.004
10.1109/MCI.2015.2501545
10.1016/j.neuroimage.2015.02.015
10.1109/ICCV.2015.438
10.1109/ACII.2015.7344684
10.1109/NER.2013.6695876
10.3390/s130708199
10.1109/TBME.2009.2039997
10.1088/1741-2560/9/1/016003
10.1109/CVPR.2014.183
10.1007/s11263-014-0696-6
10.1109/CVPR.2012.6247911
10.1007/BF01589116
10.1109/CVPR.2013.59
10.1109/TAFFC.2014.2339834
10.1109/LSP.2014.2324759
10.7551/mitpress/7503.003.0069
10.1109/TKDE.2009.191
10.1109/TAMD.2015.2431497
10.1109/TNN.2010.2091281
10.1145/1961189.1961199
10.1109/TKDE.2014.2373376
10.1109/TBME.2014.2331189
10.1109/TNSRE.2006.875555
10.1109/EMBC.2013.6611075
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Elsevier Ltd
Copyright © 2016 Elsevier Ltd. All rights reserved.
Copyright Elsevier Limited Dec 01, 2016
Copyright_xml – notice: 2016 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2016 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier Limited Dec 01, 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
7QO
DOI 10.1016/j.compbiomed.2016.10.019
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList

MEDLINE

Engineering Research Database
Research Library Prep
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 214
ExternalDocumentID 4272565231
27810626
10_1016_j_compbiomed_2016_10_019
S0010482516302797
1_s2_0_S0010482516302797
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.DC
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACPRK
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
ARAPS
AXJTR
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SEL
SES
SPC
SPCBC
SSH
SSV
SSZ
T5K
UKHRP
WOW
Z5R
~G-
.55
.GJ
29F
3V.
53G
AACTN
AAQXK
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AFCTW
AFJKZ
AFKWA
AJOXV
ALIPV
AMFUW
ASPBG
AVWKF
AZFZN
EMOBN
FEDTE
FGOYB
G-2
HLZ
HMK
HMO
HVGLF
HZ~
M0N
R2-
RIG
SAE
SBC
SEW
SV3
TAE
UAP
WUQ
X7M
XPP
ZGI
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
AAYXX
AGQPQ
AGRNS
AIGII
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
7QO
ID FETCH-LOGICAL-c597t-e610008c40d9012e8a386377a2d9b39fc304efdccd719768d7fe4b10698f07e63
IEDL.DBID .~1
ISSN 0010-4825
IngestDate Fri Jul 11 03:14:11 EDT 2025
Fri Jul 11 08:55:35 EDT 2025
Wed Aug 13 04:47:38 EDT 2025
Wed Feb 19 02:42:52 EST 2025
Tue Aug 05 11:57:34 EDT 2025
Thu Apr 24 22:56:59 EDT 2025
Fri Feb 23 02:24:57 EST 2024
Tue Feb 25 20:12:00 EST 2025
Tue Aug 26 16:34:08 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Domain adaptation
Emotion recognition
Auto-encoder
MMD
EEG
Language English
License Copyright © 2016 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c597t-e610008c40d9012e8a386377a2d9b39fc304efdccd719768d7fe4b10698f07e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/am/pii/S0010482516302797?via%3Dihub
PMID 27810626
PQID 1846848707
PQPubID 1226355
PageCount 10
ParticipantIDs proquest_miscellaneous_1846420537
proquest_miscellaneous_1836736286
proquest_journals_1846848707
pubmed_primary_27810626
crossref_primary_10_1016_j_compbiomed_2016_10_019
crossref_citationtrail_10_1016_j_compbiomed_2016_10_019
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2016_10_019
elsevier_clinicalkeyesjournals_1_s2_0_S0010482516302797
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2016_10_019
PublicationCentury 2000
PublicationDate 2016-12-01
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2016
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Liu, Nocedal (bib29) 1989; 45
Shao, Kit, Fu (bib19) 2014; 109
Jenke, Peer, Buss (bib11) 2014; 5
Pan, Yang (bib14) 2010; 22
Chiang, Hsu (bib1) 2013; 13
Abraham, Pedregosa (bib12) 2014; 8
R. Duan, J. Zhu, B.Lu, Differential entropy feature for eeg-based emotion classification, in: Proceedings of the 6th International IEEE/EMBS Conference on Neural Engineering (NER), 2013, pp. 81–84.
Deng, Zhang, Eyben (bib24) 2014; 21
Luo, Feng, Zhang (bib13) 2016; 75
M. Kan, S. Shan, X. Chen, Bi-shifting auto-encoder for unsupervised domain adaptation, in: IEEE International Conference on Computer Vision, 2015, pp. 3846–3854.
Li, Kambara, Koike (bib8) 2010; 57
V. Singh, K.P. Miyapuram, R.S. Bapi, Detection of cognitive states from fmri data using machine learning techniques, Proceedings of the, International Joint Conference on Artificial Intelligence, Hyderabad, India, January 2007, pp. 587–592.
Muhl, Jeunet, Lotte (bib3) 2014; 8
L. Shi, Y. Jiao, B.Lu, Differential entropy feature for eeg-based vigilance estimation, in: Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2013, pp. 6627–6630.
B. Gong, Y. Shi, F. Sha, K. Grauman, Geodesic flow kernel for unsupervised domain adaptation, IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 2066–2073.
Shin, Lee, Ahn (bib20) 2015; 21
M. Long, G. Ding, J. Wang, Transfer sparse coding for robust image representation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 9(4), 2013, pp. 407–414.
X. Glorot, A. Bordes, Y. Bengio, Domain adaptation for large-scale sentiment classification: a deep learning approach, in: International Conference on Machine Learning, 2011, pp. 513–520.
Fan, Chang, Hsieh, Wang, Lin (bib33) 2008; 9
M. Chung, W. Cheung, R. Scherer, R.P. Rao, A hierarchical architecture or adaptive brain-computer interfacing, Proceedings of the, International Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 2011, pp. 1647–1652.
Sauvet, Bougard, Coroenne (bib2) 2014; 61
Pan, Tsang, Kwok (bib30) 2011; 22
Jayaram, Alamgir, Altun (bib18) 2016; 11
A. Gretton, K.M. Borgwardt, M. Rasch, A kernel method for the two-sample-problem, in: Advances in Neural Information Processing Systems, 2006, pp. 513–520.
W.L. Zheng, J.Y. Zhu, B. Lu, Identifying stable patterns over time for emotion recognition from eeg, arXiv preprint
.
W.L. Zheng, B.L.Lu, Personalizing eeg-based affective models with transfer learning, in: Proceedings of the 25th International Joint Conference on Artificial Intelligence, 2016, pp. 2732–3738.
Zander, Jatzev (bib5) 2012; 9
Chang, Lin (bib32) 2011; 2
Morioka, Kanemura (bib7) 2015; 111
W.L. Zheng, Y.Q. Zhang, J. Zhu, B. L. Lu, Transfer components between subjects for eeg-based emotion recognition, In International Conference on Affective Computing and Intelligent Interaction, 2015, pp. 917–922.
Zheng, Lu (bib6) 2015; 7
Buttfield, Ferrez, Millan (bib9) 2006; 14
Long, Wang, Sun (bib15) 2015; 27
Shin, Lee, Ahn (bib21) 2015; 66
M. Long, J. Wang, G. Ding, Transfer joint matching for unsupervised domain adaptation, IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 1410–1417.
Pan (10.1016/j.compbiomed.2016.10.019_bib30) 2011; 22
Abraham (10.1016/j.compbiomed.2016.10.019_bib12) 2014; 8
Chang (10.1016/j.compbiomed.2016.10.019_bib32) 2011; 2
Luo (10.1016/j.compbiomed.2016.10.019_bib13) 2016; 75
Li (10.1016/j.compbiomed.2016.10.019_bib8) 2010; 57
Sauvet (10.1016/j.compbiomed.2016.10.019_bib2) 2014; 61
Morioka (10.1016/j.compbiomed.2016.10.019_bib7) 2015; 111
10.1016/j.compbiomed.2016.10.019_bib16
10.1016/j.compbiomed.2016.10.019_bib17
Long (10.1016/j.compbiomed.2016.10.019_bib15) 2015; 27
Shin (10.1016/j.compbiomed.2016.10.019_bib20) 2015; 21
10.1016/j.compbiomed.2016.10.019_bib31
10.1016/j.compbiomed.2016.10.019_bib10
10.1016/j.compbiomed.2016.10.019_bib34
10.1016/j.compbiomed.2016.10.019_bib35
Jayaram (10.1016/j.compbiomed.2016.10.019_bib18) 2016; 11
Muhl (10.1016/j.compbiomed.2016.10.019_bib3) 2014; 8
Pan (10.1016/j.compbiomed.2016.10.019_bib14) 2010; 22
Zander (10.1016/j.compbiomed.2016.10.019_bib5) 2012; 9
Shao (10.1016/j.compbiomed.2016.10.019_bib19) 2014; 109
Liu (10.1016/j.compbiomed.2016.10.019_bib29) 1989; 45
10.1016/j.compbiomed.2016.10.019_bib4
10.1016/j.compbiomed.2016.10.019_bib25
Zheng (10.1016/j.compbiomed.2016.10.019_bib6) 2015; 7
10.1016/j.compbiomed.2016.10.019_bib26
10.1016/j.compbiomed.2016.10.019_bib27
10.1016/j.compbiomed.2016.10.019_bib28
Chiang (10.1016/j.compbiomed.2016.10.019_bib1) 2013; 13
Shin (10.1016/j.compbiomed.2016.10.019_bib21) 2015; 66
Deng (10.1016/j.compbiomed.2016.10.019_bib24) 2014; 21
Jenke (10.1016/j.compbiomed.2016.10.019_bib11) 2014; 5
10.1016/j.compbiomed.2016.10.019_bib22
Fan (10.1016/j.compbiomed.2016.10.019_bib33) 2008; 9
10.1016/j.compbiomed.2016.10.019_bib23
Buttfield (10.1016/j.compbiomed.2016.10.019_bib9) 2006; 14
References_xml – reference: X. Glorot, A. Bordes, Y. Bengio, Domain adaptation for large-scale sentiment classification: a deep learning approach, in: International Conference on Machine Learning, 2011, pp. 513–520.
– volume: 45
  start-page: 503
  year: 1989
  end-page: 528
  ident: bib29
  article-title: On the limited memory bfgs method for large scale optimization
  publication-title: Math. Prog.
– reference: M. Chung, W. Cheung, R. Scherer, R.P. Rao, A hierarchical architecture or adaptive brain-computer interfacing, Proceedings of the, International Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 2011, pp. 1647–1652.
– volume: 9
  start-page: 16003
  year: 2012
  end-page: 16012
  ident: bib5
  article-title: Context-aware brain-computer interfaces: exploring the information space of user, technical system and environment
  publication-title: J. Neural Eng.
– volume: 2
  start-page: 27
  year: 2011
  ident: bib32
  article-title: Libsvm: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
– volume: 75
  start-page: 45
  year: 2016
  end-page: 53
  ident: bib13
  article-title: Dynamic frequency feature selection based approach for classification of motor imageries
  publication-title: Comput. Biol. Med.
– reference: M. Kan, S. Shan, X. Chen, Bi-shifting auto-encoder for unsupervised domain adaptation, in: IEEE International Conference on Computer Vision, 2015, pp. 3846–3854.
– volume: 5
  start-page: 327
  year: 2014
  end-page: 339
  ident: bib11
  article-title: Feature extraction and selection for emotion recognition from eeg
  publication-title: IEEE Trans. Affect. Comput.
– volume: 111
  start-page: 167
  year: 2015
  end-page: 178
  ident: bib7
  article-title: Learning a common dictionary for subject-transfer decoding with resting calibration
  publication-title: NeuroImage
– volume: 8
  start-page: 14
  year: 2014
  ident: bib12
  article-title: Machine learning for neuroimaging with scikit-learn
  publication-title: Front. Neuroinform.
– volume: 27
  start-page: 1519
  year: 2015
  end-page: 1532
  ident: bib15
  article-title: Domain invariant transfer kernel learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 14
  start-page: 164
  year: 2006
  end-page: 168
  ident: bib9
  article-title: Towards a robust bci: error potentials and online learning
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– reference: A. Gretton, K.M. Borgwardt, M. Rasch, A kernel method for the two-sample-problem, in: Advances in Neural Information Processing Systems, 2006, pp. 513–520.
– reference: W.L. Zheng, Y.Q. Zhang, J. Zhu, B. L. Lu, Transfer components between subjects for eeg-based emotion recognition, In International Conference on Affective Computing and Intelligent Interaction, 2015, pp. 917–922.
– reference: M. Long, G. Ding, J. Wang, Transfer sparse coding for robust image representation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 9(4), 2013, pp. 407–414.
– volume: 7
  start-page: 162
  year: 2015
  end-page: 175
  ident: bib6
  article-title: Investigating critical frequency bands and channels for eeg-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Auton. Ment. Dev.
– volume: 11
  start-page: 20
  year: 2016
  end-page: 31
  ident: bib18
  article-title: Transfer learning in brain-computer interfaces
  publication-title: IEEE Comput. Intell. Mag.
– reference: R. Duan, J. Zhu, B.Lu, Differential entropy feature for eeg-based emotion classification, in: Proceedings of the 6th International IEEE/EMBS Conference on Neural Engineering (NER), 2013, pp. 81–84.
– volume: 61
  start-page: 2840
  year: 2014
  end-page: 2847
  ident: bib2
  article-title: In flight automatic detection of vigilance states using a single eeg channel
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 9
  start-page: 1871
  year: 2008
  end-page: 1874
  ident: bib33
  article-title: Liblinear: a library for large linear classification
  publication-title: J. Mach. Learn. Res.
– reference: B. Gong, Y. Shi, F. Sha, K. Grauman, Geodesic flow kernel for unsupervised domain adaptation, IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 2066–2073.
– reference: W.L. Zheng, J.Y. Zhu, B. Lu, Identifying stable patterns over time for emotion recognition from eeg, arXiv preprint
– volume: 13
  start-page: 8199
  year: 2013
  end-page: 8221
  ident: bib1
  article-title: Improving driver alertness through music selection using a mobile eeg to detect brainwaves
  publication-title: Sensors
– volume: 22
  start-page: 1345
  year: 2010
  end-page: 1359
  ident: bib14
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 109
  start-page: 74
  year: 2014
  end-page: 93
  ident: bib19
  article-title: Generalized transfer subspace learning through low-rank constraint
  publication-title: Int. J. Comput. Vis.
– reference: W.L. Zheng, B.L.Lu, Personalizing eeg-based affective models with transfer learning, in: Proceedings of the 25th International Joint Conference on Artificial Intelligence, 2016, pp. 2732–3738.
– reference: M. Long, J. Wang, G. Ding, Transfer joint matching for unsupervised domain adaptation, IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 1410–1417.
– reference: .
– volume: 21
  start-page: 1068
  year: 2014
  end-page: 1072
  ident: bib24
  article-title: Autoencoder-based unsupervised domain adaptation for speech emotion recognition
  publication-title: IEEE Signal Process. Lett.
– volume: 66
  start-page: 29
  year: 2015
  end-page: 38
  ident: bib21
  article-title: Simple adaptive sparse representation based classification schemes for eeg based brain-computer interface applications
  publication-title: Comput. Biol. Med.
– volume: 8
  year: 2014
  ident: bib3
  article-title: Eeg-based workload estimation across affective contexts
  publication-title: Front. Neurosci.
– volume: 22
  start-page: 199
  year: 2011
  end-page: 210
  ident: bib30
  article-title: Domain adaptation via transfer component analysis
  publication-title: IEEE Trans. Neural Netw.
– reference: V. Singh, K.P. Miyapuram, R.S. Bapi, Detection of cognitive states from fmri data using machine learning techniques, Proceedings of the, International Joint Conference on Artificial Intelligence, Hyderabad, India, January 2007, pp. 587–592.
– volume: 57
  start-page: 1318
  year: 2010
  end-page: 1324
  ident: bib8
  article-title: Application of covariate shift adaptation techniques in brain-computer interfaces
  publication-title: IEEE Trans. Bio-Med. Eng.
– volume: 21
  start-page: 8
  year: 2015
  end-page: 18
  ident: bib20
  article-title: Noise robustness analysis of sparse representation based classification method for non-stationary eeg signal classification
  publication-title: Biomed. Signal Process. Control
– reference: L. Shi, Y. Jiao, B.Lu, Differential entropy feature for eeg-based vigilance estimation, in: Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2013, pp. 6627–6630.
– volume: 21
  start-page: 8
  year: 2015
  ident: 10.1016/j.compbiomed.2016.10.019_bib20
  article-title: Noise robustness analysis of sparse representation based classification method for non-stationary eeg signal classification
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2015.05.007
– volume: 66
  start-page: 29
  issue: C
  year: 2015
  ident: 10.1016/j.compbiomed.2016.10.019_bib21
  article-title: Simple adaptive sparse representation based classification schemes for eeg based brain-computer interface applications
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2015.08.017
– volume: 75
  start-page: 45
  year: 2016
  ident: 10.1016/j.compbiomed.2016.10.019_bib13
  article-title: Dynamic frequency feature selection based approach for classification of motor imageries
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2016.03.004
– volume: 11
  start-page: 20
  issue: 1
  year: 2016
  ident: 10.1016/j.compbiomed.2016.10.019_bib18
  article-title: Transfer learning in brain-computer interfaces
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2015.2501545
– volume: 111
  start-page: 167
  year: 2015
  ident: 10.1016/j.compbiomed.2016.10.019_bib7
  article-title: Learning a common dictionary for subject-transfer decoding with resting calibration
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.02.015
– ident: 10.1016/j.compbiomed.2016.10.019_bib25
  doi: 10.1109/ICCV.2015.438
– ident: 10.1016/j.compbiomed.2016.10.019_bib4
– ident: 10.1016/j.compbiomed.2016.10.019_bib16
  doi: 10.1109/ACII.2015.7344684
– ident: 10.1016/j.compbiomed.2016.10.019_bib28
  doi: 10.1109/NER.2013.6695876
– volume: 13
  start-page: 8199
  issue: 7
  year: 2013
  ident: 10.1016/j.compbiomed.2016.10.019_bib1
  article-title: Improving driver alertness through music selection using a mobile eeg to detect brainwaves
  publication-title: Sensors
  doi: 10.3390/s130708199
– volume: 57
  start-page: 1318
  issue: 6
  year: 2010
  ident: 10.1016/j.compbiomed.2016.10.019_bib8
  article-title: Application of covariate shift adaptation techniques in brain-computer interfaces
  publication-title: IEEE Trans. Bio-Med. Eng.
  doi: 10.1109/TBME.2009.2039997
– volume: 9
  start-page: 16003
  issue: 9
  year: 2012
  ident: 10.1016/j.compbiomed.2016.10.019_bib5
  article-title: Context-aware brain-computer interfaces: exploring the information space of user, technical system and environment
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/9/1/016003
– ident: 10.1016/j.compbiomed.2016.10.019_bib10
– volume: 8
  issue: 8
  year: 2014
  ident: 10.1016/j.compbiomed.2016.10.019_bib3
  article-title: Eeg-based workload estimation across affective contexts
  publication-title: Front. Neurosci.
– ident: 10.1016/j.compbiomed.2016.10.019_bib35
  doi: 10.1109/CVPR.2014.183
– volume: 109
  start-page: 74
  issue: 1–2
  year: 2014
  ident: 10.1016/j.compbiomed.2016.10.019_bib19
  article-title: Generalized transfer subspace learning through low-rank constraint
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-014-0696-6
– ident: 10.1016/j.compbiomed.2016.10.019_bib17
– ident: 10.1016/j.compbiomed.2016.10.019_bib31
  doi: 10.1109/CVPR.2012.6247911
– ident: 10.1016/j.compbiomed.2016.10.019_bib23
– volume: 9
  start-page: 1871
  issue: 9
  year: 2008
  ident: 10.1016/j.compbiomed.2016.10.019_bib33
  article-title: Liblinear: a library for large linear classification
  publication-title: J. Mach. Learn. Res.
– volume: 8
  start-page: 14
  issue: 8
  year: 2014
  ident: 10.1016/j.compbiomed.2016.10.019_bib12
  article-title: Machine learning for neuroimaging with scikit-learn
  publication-title: Front. Neuroinform.
– volume: 45
  start-page: 503
  issue: 1–3
  year: 1989
  ident: 10.1016/j.compbiomed.2016.10.019_bib29
  article-title: On the limited memory bfgs method for large scale optimization
  publication-title: Math. Prog.
  doi: 10.1007/BF01589116
– ident: 10.1016/j.compbiomed.2016.10.019_bib22
  doi: 10.1109/CVPR.2013.59
– volume: 5
  start-page: 327
  issue: 3
  year: 2014
  ident: 10.1016/j.compbiomed.2016.10.019_bib11
  article-title: Feature extraction and selection for emotion recognition from eeg
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2014.2339834
– volume: 21
  start-page: 1068
  issue: 9
  year: 2014
  ident: 10.1016/j.compbiomed.2016.10.019_bib24
  article-title: Autoencoder-based unsupervised domain adaptation for speech emotion recognition
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2014.2324759
– ident: 10.1016/j.compbiomed.2016.10.019_bib26
  doi: 10.7551/mitpress/7503.003.0069
– volume: 22
  start-page: 1345
  issue: 10
  year: 2010
  ident: 10.1016/j.compbiomed.2016.10.019_bib14
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– volume: 7
  start-page: 162
  issue: 3
  year: 2015
  ident: 10.1016/j.compbiomed.2016.10.019_bib6
  article-title: Investigating critical frequency bands and channels for eeg-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Auton. Ment. Dev.
  doi: 10.1109/TAMD.2015.2431497
– volume: 22
  start-page: 199
  issue: 2
  year: 2011
  ident: 10.1016/j.compbiomed.2016.10.019_bib30
  article-title: Domain adaptation via transfer component analysis
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2010.2091281
– volume: 2
  start-page: 27
  issue: 3
  year: 2011
  ident: 10.1016/j.compbiomed.2016.10.019_bib32
  article-title: Libsvm: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
– volume: 27
  start-page: 1519
  issue: 6
  year: 2015
  ident: 10.1016/j.compbiomed.2016.10.019_bib15
  article-title: Domain invariant transfer kernel learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2014.2373376
– ident: 10.1016/j.compbiomed.2016.10.019_bib34
– volume: 61
  start-page: 2840
  issue: 12
  year: 2014
  ident: 10.1016/j.compbiomed.2016.10.019_bib2
  article-title: In flight automatic detection of vigilance states using a single eeg channel
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2331189
– volume: 14
  start-page: 164
  issue: 2
  year: 2006
  ident: 10.1016/j.compbiomed.2016.10.019_bib9
  article-title: Towards a robust bci: error potentials and online learning
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2006.875555
– ident: 10.1016/j.compbiomed.2016.10.019_bib27
  doi: 10.1109/EMBC.2013.6611075
SSID ssj0004030
Score 2.5217447
Snippet In electroencephalography (EEG)-based emotion recognition systems, the distribution between the training samples and the testing samples may be mismatched if...
Abstract In electroencephalography (EEG)-based emotion recognition systems, the distribution between the training samples and the testing samples may be...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 205
SubjectTerms Adult
Algorithms
Auto-encoder
Classification
Databases, Factual
Domain adaptation
EEG
Electroencephalography
Electroencephalography - methods
Emotion recognition
Emotions - drug effects
Emotions - physiology
Female
Humans
Internal Medicine
Male
Methods
MMD
Other
Signal Processing, Computer-Assisted
Studies
Support Vector Machine
Young Adult
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELVakKpeUIF-hAJypV5Nk9jYjjhUFVpASPTSrrQ3y7GdQ9Um6Wb30H_PzNrJXijaa-JRrIw9nud5M0PI5-aylhVvGqZ0bplonIc95ySrhcWwm9AFx0Thh-_ybi7uF5eLdOE2JFrlaBM3htp3Du_IvwASkRq861x97f8y7BqF0dXUQuMl2cfSZQi-1EJt8yJzHlNQwNYIgEKJyRP5XUjZjinuSPCSF8jxwno7Tx9P_3M_N8fQzRtykPxH-i0q_JC8CO0RefWQIuTHpJ-3w7pHAzAET333B5A_td72MeROp5qtA8UDzFN4ZterjmFBSx-WFJxY2nYtG6KAXf6js9kti4NDbPpDJ9pR174l85vZz-s7lroqMAfgYcWCxCt97UTuwRcog7ZcS66ULX1V86pxPBeh8c55VYCvor1qgqgBOVa6yVWQ_B3Zg2mED4TKsla2RohUAswOrnJChELmHjBLLa3LiBp_pnGp5Dh2vvhtRm7ZL7NVg0E14BtQQ0aKSbKPZTd2kKlGfZkxrRQMoYGzYQdZ9ZRsGNKOHkxhhtLk5semoBHm-0qM-FYqI1eTZHJaojOy43dPx4Vltp-alnpGPk2vYdtjLMe2oVvjGI6MvFLL58YIQJdYsCcj7-OinX5mqTSotJQnz0_gI3mNs438nVOyt1quwxl4Yav6fLPVHgGe1TIN
  priority: 102
  providerName: ProQuest
Title Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482516302797
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482516302797
https://dx.doi.org/10.1016/j.compbiomed.2016.10.019
https://www.ncbi.nlm.nih.gov/pubmed/27810626
https://www.proquest.com/docview/1846848707
https://www.proquest.com/docview/1836736286
https://www.proquest.com/docview/1846420537
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBelg7GXse9l_UCDvbq1LVWS6VNbkmYbDWMskDchSzJ0bLaJk4e99G_vXSQ7jHUjsBcb2zpb6E6nO9_vToR8qM5KUbCqSqRKTcIr62DOWZGU3GDYjauMYaLwzUxM5_zT4myxR676XBiEVUbdH3T6RlvHO6dxNE_b21vM8QVXAjMvBcbeCswox-p1INMnd1uYB09ZSEMBfYOtI5onYLwQth3S3BHkJU4Q54U1dx5eov5mgm6Woskz8jTakPQidPM52fP1C_L4JkbJX5J2XnfrFpVA5x11zU_w_qlxpg1hdzrUbe0oLmKOwj2zXjUJFrV0fknBkKV1UyddIDDLX3Q8vk5CYx82_qED9KipX5H5ZPztaprEnRUSCw7EKvECf-sry1MH9kDulWFKMClN7oqSFZVlKfeVs9bJDOwV5WTleQneY6GqVHrBXpN96IZ_S6jIS2lKdJNycLW9LSznPhOpA7-lFMaOiOwHU9tYdhx3v_ihe3zZd71lg0Y24BNgw4hkA2UbSm_sQFP0_NJ9aikoQw3rww608iFa38VZ3elMd7lO9R-SNyLnA-Vvwrvjdw97wdLbT4FdqMCZTOHl74fHMPUxnmNq36yxDUNUXq7Ev9pw8DCxaM-IvAlCOwxmLhWwNBfv_qv7B-QJXgWIzyHZXy3X_ggMtVV5vJmJcJQLCUc1uT4mjy4-fp7O4Hw5nn35eg_rvUI-
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYAL4s1CASPBMZDYru0IIYRgt1va7YWu1JtxbEcCQRI2u0L9U_xGZtZJ9lKqvfSaeBLLY8_D880MIa_K_ULmvCwTpVObiNJ5OHNOJoWwGHYTOuOYKDw7kdO5-HK2f7ZD_va5MAir7GXiWlD72uEd-VvwRKQG6zpVH5rfCXaNwuhq30IjboujcP4HXLb2_eFn4O9rxibj00_TpOsqkDgwnpdJkHilrZ1IPehCFrTlWnKlLPN5wfPSgYMfSu-cVxnoau1VGUQBnlOuy1QFyeG718h1wXmOEEI9OdjkYaY8pryAbBPgenXIoYgnQ4h4TKlHQJl8g5gyrO9zsTr8n7m7VnuTO-R2Z6_Sj3GD3SU7obpHbsy6iPx90syrdtWgwGmDp77-Zb9X1HrbxBA_HWrEthQVpqfwzK6WdYIFNH1YUDCaaVVXSRsJ7OKcjscHSRwcYpMhOsCc6uoBmV_Jej8kuzCN8JhQyQplC3TJGLj1weVOiJDJ1IOPVEjrRkT1i2lcV-IcO238ND2W7YfZsMEgG_ANsGFEsoGyiWU-tqDJe36ZPo0VBK8BXbQFrbqINrSdBGlNZlpmUvN1XUAJ84slRphzNSLvBsrOSIrGz5b_3es3ltn8ajhaI_JyeA1iBmNHtgr1CsdwRAAyLS8bI8CbxQJBI_IobtphMZnSwFImn1w-gRfk5vR0dmyOD0-OnpJbOPOIHdoju8vFKjwDC3BZPF8fO0q-XfU5_wf5bW4l
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkCZeEN_LGGAkeDRLHM92hBBCrN3G2IQElfZmHNuRQCwpTSu0f42_jrs6SV_G1Je9Nr7G8vm-cr-7I-RVtV_KIq8qpnRqmaicB5lzkpXCYtpN6CzHQuHTM3k0EZ_O9883yN--FgZhlb1OXCpq3zj8Rr4HkYjU4F2naq_qYBFfDsbvp78ZTpDCTGs_TiNekZNw-QfCt_bd8QHw-jXn49G3j0esmzDAHDjScxYkft7WTqQe7CIP2uZa5kpZ7osyLyoHwX6ovHNeZWC3tVdVECVEUYWuUhVkDv97i9xWuU5xeoIeH65qMtM8lr-AnhMQhnUooogtQ7h4LK9HcJl8g_gy7PVztWn8n-u7NIHje-Ru57vSD_Gy3ScboX5Atk677PxDMp3U7WKKyqcNnvrmwv6oqfV2GtP9dOgX21I0np7Cb3Yxbxg20_RhRsGBpnVTszYS2NklHY0OWVwc4sAhOkCemvoRmdzIeT8mm7CNsE2o5KWyJYZnHEL84AonRMhk6iFeKqV1CVH9YRrXtTvHqRu_TI9r-2lWbDDIBnwCbEhINlBOY8uPNWiKnl-mL2kFJWzALq1Bq66iDW2nTVqTmZab1HxdNlPCWmOJ2eZCJeTtQNk5TNERWvO9u_3FMqtXDWKWkJfDY1A5mEeydWgWuCZHNCDX8ro1AiJbbBaUkCfx0g6HyZUGlnK5c_0GXpAtkHDz-fjs5Cm5gxuPMKJdsjmfLcIzcAbn5fOl1FHy_abF_B_zFHJS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+domain+adaptation+techniques+based+on+auto-encoder+for+non-stationary+EEG-based+emotion+recognition&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Chai%2C+Xin&rft.au=Wang%2C+Qisong&rft.au=Zhao%2C+Yongping&rft.au=Liu%2C+Xin&rft.date=2016-12-01&rft.issn=0010-4825&rft.volume=79&rft.spage=205&rft.epage=214&rft_id=info:doi/10.1016%2Fj.compbiomed.2016.10.019&rft.externalDBID=ECK1-s2.0-S0010482516302797&rft.externalDocID=1_s2_0_S0010482516302797
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482516X0011X%2Fcov150h.gif