Three-dimensional culture and clinical drug responses of a highly metastatic human ovarian cancer HO-8910PM cells in nanofibrous microenvironments of three hydrogel biomaterials

Ovarian cancer is a highly aggressive malignant disease in gynecologic cancer. It is an urgent task to develop three-dimensional (3D) cell models in vitro and dissect the cell progression-related drug resistance mechanisms in vivo. In the present study, RADA16-I peptide has the reticulated nanofiber...

Full description

Saved in:
Bibliographic Details
Published inJournal of nanobiotechnology Vol. 18; no. 1; pp. 90 - 19
Main Authors Song, Hong, Cai, Guo-hui, Liang, Jian, Ao, Di-shu, Wang, Huan, Yang, Ze-hong
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 11.06.2020
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ovarian cancer is a highly aggressive malignant disease in gynecologic cancer. It is an urgent task to develop three-dimensional (3D) cell models in vitro and dissect the cell progression-related drug resistance mechanisms in vivo. In the present study, RADA16-I peptide has the reticulated nanofiber scaffold networks in hydrogel, which is utilized to develop robust 3D cell culture of a high metastatic human ovarian cancer HO-8910PM cell line accompanied with the counterparts of Matrigel and collagen I. Consequently, HO-8910PM cells were successfully cultivated in three types of hydrogel biomaterials, such as RADA16-I hydrogel, Matrigel, and collagen I, according to 3D cell culture protocols. Designer RADA16-I peptide had well-defined nanofiber networks architecture in hydrogel, which provided nanofiber cell microenvironments analogous to Matrigel and collagen I. 3D-cultured HO-8910PM cells in RADA16-I hydrogel, Matrigel, and collagen I showed viable cell proliferation, proper cell growth, and diverse cell shapes in morphology at the desired time points. For a long 3D cell culture period, HO-8910PM cells showed distinct cell aggregate growth patterns in RADA16-I hydrogel, Matrigel, and collagen I, such as cell aggregates, cell colonies, cell clusters, cell strips, and multicellular tumor spheroids (MCTS). The cell distribution and alignment were described vigorously. Moreover, the molecular expression of integrin β1, E-cadherin and N-cadherin were quantitatively analyzed in 3D-cultured MCTS of HO-8910PM cells by immunohistochemistry and western blotting assays. The chemosensitivity assay for clinical drug responses in 3D context indicated that HO-8910PM cells in three types of hydrogels showed significantly higher chemoresistance to cisplatin and paclitaxel compared to 2D flat cell culture, including IC values and inhibition rates. Based on these results, RADA16-I hydrogel is a highly competent, high-profile, and proactive nanofiber scaffold to maintain viable cell proliferation and high cell vitality in 3D cell models, which may be particularly utilized to develop useful clinical drug screening platform in vitro.
AbstractList Abstract Background Ovarian cancer is a highly aggressive malignant disease in gynecologic cancer. It is an urgent task to develop three-dimensional (3D) cell models in vitro and dissect the cell progression-related drug resistance mechanisms in vivo. In the present study, RADA16-I peptide has the reticulated nanofiber scaffold networks in hydrogel, which is utilized to develop robust 3D cell culture of a high metastatic human ovarian cancer HO-8910PM cell line accompanied with the counterparts of Matrigel and collagen I. Results Consequently, HO-8910PM cells were successfully cultivated in three types of hydrogel biomaterials, such as RADA16-I hydrogel, Matrigel, and collagen I, according to 3D cell culture protocols. Designer RADA16-I peptide had well-defined nanofiber networks architecture in hydrogel, which provided nanofiber cell microenvironments analogous to Matrigel and collagen I. 3D-cultured HO-8910PM cells in RADA16-I hydrogel, Matrigel, and collagen I showed viable cell proliferation, proper cell growth, and diverse cell shapes in morphology at the desired time points. For a long 3D cell culture period, HO-8910PM cells showed distinct cell aggregate growth patterns in RADA16-I hydrogel, Matrigel, and collagen I, such as cell aggregates, cell colonies, cell clusters, cell strips, and multicellular tumor spheroids (MCTS). The cell distribution and alignment were described vigorously. Moreover, the molecular expression of integrin β1, E-cadherin and N-cadherin were quantitatively analyzed in 3D-cultured MCTS of HO-8910PM cells by immunohistochemistry and western blotting assays. The chemosensitivity assay for clinical drug responses in 3D context indicated that HO-8910PM cells in three types of hydrogels showed significantly higher chemoresistance to cisplatin and paclitaxel compared to 2D flat cell culture, including IC50 values and inhibition rates. Conclusion Based on these results, RADA16-I hydrogel is a highly competent, high-profile, and proactive nanofiber scaffold to maintain viable cell proliferation and high cell vitality in 3D cell models, which may be particularly utilized to develop useful clinical drug screening platform in vitro.
Background Ovarian cancer is a highly aggressive malignant disease in gynecologic cancer. It is an urgent task to develop three-dimensional (3D) cell models in vitro and dissect the cell progression-related drug resistance mechanisms in vivo. In the present study, RADA16-I peptide has the reticulated nanofiber scaffold networks in hydrogel, which is utilized to develop robust 3D cell culture of a high metastatic human ovarian cancer HO-8910PM cell line accompanied with the counterparts of Matrigel and collagen I. Results Consequently, HO-8910PM cells were successfully cultivated in three types of hydrogel biomaterials, such as RADA16-I hydrogel, Matrigel, and collagen I, according to 3D cell culture protocols. Designer RADA16-I peptide had well-defined nanofiber networks architecture in hydrogel, which provided nanofiber cell microenvironments analogous to Matrigel and collagen I. 3D-cultured HO-8910PM cells in RADA16-I hydrogel, Matrigel, and collagen I showed viable cell proliferation, proper cell growth, and diverse cell shapes in morphology at the desired time points. For a long 3D cell culture period, HO-8910PM cells showed distinct cell aggregate growth patterns in RADA16-I hydrogel, Matrigel, and collagen I, such as cell aggregates, cell colonies, cell clusters, cell strips, and multicellular tumor spheroids (MCTS). The cell distribution and alignment were described vigorously. Moreover, the molecular expression of integrin [beta]1, E-cadherin and N-cadherin were quantitatively analyzed in 3D-cultured MCTS of HO-8910PM cells by immunohistochemistry and western blotting assays. The chemosensitivity assay for clinical drug responses in 3D context indicated that HO-8910PM cells in three types of hydrogels showed significantly higher chemoresistance to cisplatin and paclitaxel compared to 2D flat cell culture, including IC.sub.50 values and inhibition rates. Conclusion Based on these results, RADA16-I hydrogel is a highly competent, high-profile, and proactive nanofiber scaffold to maintain viable cell proliferation and high cell vitality in 3D cell models, which may be particularly utilized to develop useful clinical drug screening platform in vitro. Keywords: Nanofiber, Hydrogel, 3D cell culture, HO-8910PM cells, Chemosensitivity, Cell growth pattern
Ovarian cancer is a highly aggressive malignant disease in gynecologic cancer. It is an urgent task to develop three-dimensional (3D) cell models in vitro and dissect the cell progression-related drug resistance mechanisms in vivo. In the present study, RADA16-I peptide has the reticulated nanofiber scaffold networks in hydrogel, which is utilized to develop robust 3D cell culture of a high metastatic human ovarian cancer HO-8910PM cell line accompanied with the counterparts of Matrigel and collagen I.BACKGROUNDOvarian cancer is a highly aggressive malignant disease in gynecologic cancer. It is an urgent task to develop three-dimensional (3D) cell models in vitro and dissect the cell progression-related drug resistance mechanisms in vivo. In the present study, RADA16-I peptide has the reticulated nanofiber scaffold networks in hydrogel, which is utilized to develop robust 3D cell culture of a high metastatic human ovarian cancer HO-8910PM cell line accompanied with the counterparts of Matrigel and collagen I.Consequently, HO-8910PM cells were successfully cultivated in three types of hydrogel biomaterials, such as RADA16-I hydrogel, Matrigel, and collagen I, according to 3D cell culture protocols. Designer RADA16-I peptide had well-defined nanofiber networks architecture in hydrogel, which provided nanofiber cell microenvironments analogous to Matrigel and collagen I. 3D-cultured HO-8910PM cells in RADA16-I hydrogel, Matrigel, and collagen I showed viable cell proliferation, proper cell growth, and diverse cell shapes in morphology at the desired time points. For a long 3D cell culture period, HO-8910PM cells showed distinct cell aggregate growth patterns in RADA16-I hydrogel, Matrigel, and collagen I, such as cell aggregates, cell colonies, cell clusters, cell strips, and multicellular tumor spheroids (MCTS). The cell distribution and alignment were described vigorously. Moreover, the molecular expression of integrin β1, E-cadherin and N-cadherin were quantitatively analyzed in 3D-cultured MCTS of HO-8910PM cells by immunohistochemistry and western blotting assays. The chemosensitivity assay for clinical drug responses in 3D context indicated that HO-8910PM cells in three types of hydrogels showed significantly higher chemoresistance to cisplatin and paclitaxel compared to 2D flat cell culture, including IC50 values and inhibition rates.RESULTSConsequently, HO-8910PM cells were successfully cultivated in three types of hydrogel biomaterials, such as RADA16-I hydrogel, Matrigel, and collagen I, according to 3D cell culture protocols. Designer RADA16-I peptide had well-defined nanofiber networks architecture in hydrogel, which provided nanofiber cell microenvironments analogous to Matrigel and collagen I. 3D-cultured HO-8910PM cells in RADA16-I hydrogel, Matrigel, and collagen I showed viable cell proliferation, proper cell growth, and diverse cell shapes in morphology at the desired time points. For a long 3D cell culture period, HO-8910PM cells showed distinct cell aggregate growth patterns in RADA16-I hydrogel, Matrigel, and collagen I, such as cell aggregates, cell colonies, cell clusters, cell strips, and multicellular tumor spheroids (MCTS). The cell distribution and alignment were described vigorously. Moreover, the molecular expression of integrin β1, E-cadherin and N-cadherin were quantitatively analyzed in 3D-cultured MCTS of HO-8910PM cells by immunohistochemistry and western blotting assays. The chemosensitivity assay for clinical drug responses in 3D context indicated that HO-8910PM cells in three types of hydrogels showed significantly higher chemoresistance to cisplatin and paclitaxel compared to 2D flat cell culture, including IC50 values and inhibition rates.Based on these results, RADA16-I hydrogel is a highly competent, high-profile, and proactive nanofiber scaffold to maintain viable cell proliferation and high cell vitality in 3D cell models, which may be particularly utilized to develop useful clinical drug screening platform in vitro.CONCLUSIONBased on these results, RADA16-I hydrogel is a highly competent, high-profile, and proactive nanofiber scaffold to maintain viable cell proliferation and high cell vitality in 3D cell models, which may be particularly utilized to develop useful clinical drug screening platform in vitro.
Ovarian cancer is a highly aggressive malignant disease in gynecologic cancer. It is an urgent task to develop three-dimensional (3D) cell models in vitro and dissect the cell progression-related drug resistance mechanisms in vivo. In the present study, RADA16-I peptide has the reticulated nanofiber scaffold networks in hydrogel, which is utilized to develop robust 3D cell culture of a high metastatic human ovarian cancer HO-8910PM cell line accompanied with the counterparts of Matrigel and collagen I. Consequently, HO-8910PM cells were successfully cultivated in three types of hydrogel biomaterials, such as RADA16-I hydrogel, Matrigel, and collagen I, according to 3D cell culture protocols. Designer RADA16-I peptide had well-defined nanofiber networks architecture in hydrogel, which provided nanofiber cell microenvironments analogous to Matrigel and collagen I. 3D-cultured HO-8910PM cells in RADA16-I hydrogel, Matrigel, and collagen I showed viable cell proliferation, proper cell growth, and diverse cell shapes in morphology at the desired time points. For a long 3D cell culture period, HO-8910PM cells showed distinct cell aggregate growth patterns in RADA16-I hydrogel, Matrigel, and collagen I, such as cell aggregates, cell colonies, cell clusters, cell strips, and multicellular tumor spheroids (MCTS). The cell distribution and alignment were described vigorously. Moreover, the molecular expression of integrin [beta]1, E-cadherin and N-cadherin were quantitatively analyzed in 3D-cultured MCTS of HO-8910PM cells by immunohistochemistry and western blotting assays. The chemosensitivity assay for clinical drug responses in 3D context indicated that HO-8910PM cells in three types of hydrogels showed significantly higher chemoresistance to cisplatin and paclitaxel compared to 2D flat cell culture, including IC.sub.50 values and inhibition rates. Based on these results, RADA16-I hydrogel is a highly competent, high-profile, and proactive nanofiber scaffold to maintain viable cell proliferation and high cell vitality in 3D cell models, which may be particularly utilized to develop useful clinical drug screening platform in vitro.
Background Ovarian cancer is a highly aggressive malignant disease in gynecologic cancer. It is an urgent task to develop three-dimensional (3D) cell models in vitro and dissect the cell progression-related drug resistance mechanisms in vivo. In the present study, RADA16-I peptide has the reticulated nanofiber scaffold networks in hydrogel, which is utilized to develop robust 3D cell culture of a high metastatic human ovarian cancer HO-8910PM cell line accompanied with the counterparts of Matrigel and collagen I. Results Consequently, HO-8910PM cells were successfully cultivated in three types of hydrogel biomaterials, such as RADA16-I hydrogel, Matrigel, and collagen I, according to 3D cell culture protocols. Designer RADA16-I peptide had well-defined nanofiber networks architecture in hydrogel, which provided nanofiber cell microenvironments analogous to Matrigel and collagen I. 3D-cultured HO-8910PM cells in RADA16-I hydrogel, Matrigel, and collagen I showed viable cell proliferation, proper cell growth, and diverse cell shapes in morphology at the desired time points. For a long 3D cell culture period, HO-8910PM cells showed distinct cell aggregate growth patterns in RADA16-I hydrogel, Matrigel, and collagen I, such as cell aggregates, cell colonies, cell clusters, cell strips, and multicellular tumor spheroids (MCTS). The cell distribution and alignment were described vigorously. Moreover, the molecular expression of integrin β1, E-cadherin and N-cadherin were quantitatively analyzed in 3D-cultured MCTS of HO-8910PM cells by immunohistochemistry and western blotting assays. The chemosensitivity assay for clinical drug responses in 3D context indicated that HO-8910PM cells in three types of hydrogels showed significantly higher chemoresistance to cisplatin and paclitaxel compared to 2D flat cell culture, including IC50 values and inhibition rates. Conclusion Based on these results, RADA16-I hydrogel is a highly competent, high-profile, and proactive nanofiber scaffold to maintain viable cell proliferation and high cell vitality in 3D cell models, which may be particularly utilized to develop useful clinical drug screening platform in vitro.
Ovarian cancer is a highly aggressive malignant disease in gynecologic cancer. It is an urgent task to develop three-dimensional (3D) cell models in vitro and dissect the cell progression-related drug resistance mechanisms in vivo. In the present study, RADA16-I peptide has the reticulated nanofiber scaffold networks in hydrogel, which is utilized to develop robust 3D cell culture of a high metastatic human ovarian cancer HO-8910PM cell line accompanied with the counterparts of Matrigel and collagen I. Consequently, HO-8910PM cells were successfully cultivated in three types of hydrogel biomaterials, such as RADA16-I hydrogel, Matrigel, and collagen I, according to 3D cell culture protocols. Designer RADA16-I peptide had well-defined nanofiber networks architecture in hydrogel, which provided nanofiber cell microenvironments analogous to Matrigel and collagen I. 3D-cultured HO-8910PM cells in RADA16-I hydrogel, Matrigel, and collagen I showed viable cell proliferation, proper cell growth, and diverse cell shapes in morphology at the desired time points. For a long 3D cell culture period, HO-8910PM cells showed distinct cell aggregate growth patterns in RADA16-I hydrogel, Matrigel, and collagen I, such as cell aggregates, cell colonies, cell clusters, cell strips, and multicellular tumor spheroids (MCTS). The cell distribution and alignment were described vigorously. Moreover, the molecular expression of integrin β1, E-cadherin and N-cadherin were quantitatively analyzed in 3D-cultured MCTS of HO-8910PM cells by immunohistochemistry and western blotting assays. The chemosensitivity assay for clinical drug responses in 3D context indicated that HO-8910PM cells in three types of hydrogels showed significantly higher chemoresistance to cisplatin and paclitaxel compared to 2D flat cell culture, including IC values and inhibition rates. Based on these results, RADA16-I hydrogel is a highly competent, high-profile, and proactive nanofiber scaffold to maintain viable cell proliferation and high cell vitality in 3D cell models, which may be particularly utilized to develop useful clinical drug screening platform in vitro.
ArticleNumber 90
Audience Academic
Author Song, Hong
Cai, Guo-hui
Wang, Huan
Yang, Ze-hong
Liang, Jian
Ao, Di-shu
Author_xml – sequence: 1
  givenname: Hong
  surname: Song
  fullname: Song, Hong
– sequence: 2
  givenname: Guo-hui
  surname: Cai
  fullname: Cai, Guo-hui
– sequence: 3
  givenname: Jian
  surname: Liang
  fullname: Liang, Jian
– sequence: 4
  givenname: Di-shu
  surname: Ao
  fullname: Ao, Di-shu
– sequence: 5
  givenname: Huan
  surname: Wang
  fullname: Wang, Huan
– sequence: 6
  givenname: Ze-hong
  surname: Yang
  fullname: Yang, Ze-hong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32527266$$D View this record in MEDLINE/PubMed
BookMark eNp9k89u1DAQxiNURP_AC3BAlriUQ4rjOHZ8QaoqoJWKiqCcLceZZL1K7GInVfexeENmd0vpVgjlMNHkN188n2cOsz0fPGTZ64KeFEUt3qeCqarIKaM5pYKL_O5ZdlBwKfOyqKq9R-_72WFKS0oZ44y_yPZLVjHJhDjIfl0vIkDeuhF8csGbgdh5mOYIxPiW2MF5ZzHZxrknEdJN8AkSCR0xZOH6xbAiI0wmTWZylizm0XgSbk10GK3xFiI5v8prVdCvX4iFYUjEeeKND51rYpgTGZ2NAfyti8HjIaaN-LQ-FVms2hh6GEjjwmgmQNUhvcyedxjg1X08yn58-nh9dp5fXn2-ODu9zG2l5JRDVQtpmWqMZSCUMEbUJTSmlk3RCkubmrWylJzLsuuKkouOUVkqoVSHfFuWR9nFVrcNZqlvohtNXOlgnN4kQuy1idj0AFoxygWrKIClvBHcNAWDusbLkUy2ClDrw1brZm5GaC22Gc2wI7r7xbuF7sOtlkwVvBIocHwvEMPPGdKkR5fWdhoPaKJmHGehZrVQiL59gi7DHPFiNxSXVS1l_ZfqDTbgfBfwv3Ytqk8Fk5wqhXYcZSf_oPBpAa8Np7FzmN8peLdTgMwEd1Nv5pT0xfdvu-ybx6Y8uPFnOBFgWwAHJKUI3QNSUL3eAL3dAI0boDcboO-wqH5SZN16OMPaWDf8r_Q30OcLqA
CitedBy_id crossref_primary_10_1016_j_xpro_2024_103274
crossref_primary_10_1038_s41538_021_00096_1
crossref_primary_10_3390_ijms23168837
crossref_primary_10_3390_pharmaceutics16111468
crossref_primary_10_3389_fbioe_2021_679525
crossref_primary_10_3390_biom12030411
crossref_primary_10_3390_cancers13184504
crossref_primary_10_1093_humupd_dmac025
crossref_primary_10_3390_cancers16193254
crossref_primary_10_3390_ijms23063265
crossref_primary_10_3390_pharmaceutics13070963
crossref_primary_10_1186_s12929_024_00994_y
crossref_primary_10_1016_j_mne_2022_100138
crossref_primary_10_1016_j_bioadv_2023_213428
crossref_primary_10_1016_j_matdes_2023_112564
crossref_primary_10_2217_nnm_2023_0161
crossref_primary_10_1016_j_matdes_2021_110079
crossref_primary_10_1166_mex_2022_2164
crossref_primary_10_7717_peerj_17603
crossref_primary_10_3390_biom13010103
crossref_primary_10_1063_5_0188268
crossref_primary_10_2147_IJN_S413743
crossref_primary_10_3390_polym14235221
crossref_primary_10_1021_acsomega_1c05646
crossref_primary_10_2139_ssrn_3961507
crossref_primary_10_1063_5_0048837
crossref_primary_10_1016_j_biomaterials_2022_121642
crossref_primary_10_3390_biology9120446
crossref_primary_10_1039_D4NA00172A
crossref_primary_10_3390_cancers13225745
crossref_primary_10_3390_gels8120829
crossref_primary_10_1002_mabi_202100186
crossref_primary_10_3389_fbioe_2022_836984
crossref_primary_10_3389_fonc_2021_733652
Cites_doi 10.3389/fchem.2019.00172
10.3389/fphar.2018.00077
10.1371/journal.pone.0122500
10.1186/s12951-019-0492-0
10.1371/journal.pone.0019782
10.1177/1535370215570205
10.1016/j.canlet.2018.08.008
10.1038/labinvest.2013.41
10.2147/IJN.S66723
10.1016/j.actbio.2012.09.010
10.1007/s00018-014-1738-5
10.3389/fonc.2015.00092
10.1093/carcin/bgu108
10.1039/b921448h
10.1002/advs.201903718
10.3390/cells8020143
10.1021/nn401562f
10.1016/j.addr.2014.07.003
10.18632/oncotarget.6588
10.1002/mabi.201800249
10.1371/journal.pone.0184439
10.1002/anie.201907880
10.1038/onc.2017.171
10.1242/jcs.064618
10.1016/j.yexcr.2013.06.018
10.1016/j.actbio.2019.05.010
10.1016/j.biomaterials.2018.10.014
10.1371/journal.pone.0158116
10.1088/1748-605X/12/1/015007
10.1186/1477-3155-8-29
10.1038/ncb3478
10.1016/j.matbio.2019.06.009
10.1016/j.neo.2017.04.002
10.1007/s10585-016-9821-y
10.1166/jnn.2018.14384
10.1016/j.bbagen.2010.10.002
10.1039/C8BM00303C
10.1371/journal.pone.0064566
10.3727/096368910X508906
10.1016/j.actbio.2017.11.037
10.1158/0008-5472.CAN-18-1416
10.1002/jbm.a.31439
10.1371/journal.pone.0162853
10.1089/ten.2006.12.2215
10.1038/nrc4019
10.1016/j.biomaterials.2011.07.001
10.1016/j.tibtech.2016.09.004
10.1016/j.celrep.2018.04.012
10.1016/j.carbpol.2014.10.024
10.1038/srep05646
10.1073/pnas.1818392116
10.1073/pnas.0407843102
10.1371/journal.pone.0059482
10.1242/jcs.103861
10.1016/j.pharmthera.2016.03.013
10.3390/ijms10052136
10.1016/j.ygyno.2015.04.014
10.1089/ten.teb.2014.0086
10.1038/bjc.2013.132
10.1089/tea.2007.0143
10.2147/IJN.S15279
10.3390/ijms131115279
10.1371/journal.pone.0000119
10.1097/PAT.0b013e328348a6e7
10.1016/j.addr.2014.06.005
10.1126/sciadv.1700764
10.1016/0142-9612(95)96874-Y
10.1002/adhm.201800122
10.1021/acs.bioconjchem.9b00514
10.1002/mabi.200800262
10.1089/ten.tec.2019.0189
10.2147/IJN.S24038
10.1166/jnn.2007.154
ContentType Journal Article
Copyright COPYRIGHT 2020 BioMed Central Ltd.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2020
Copyright_xml – notice: COPYRIGHT 2020 BioMed Central Ltd.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7TB
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
LK8
M0S
M1P
M7P
P64
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s12951-020-00646-x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Mechanical & Transportation Engineering Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic


Publicly Available Content Database
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1477-3155
EndPage 19
ExternalDocumentID oai_doaj_org_article_92046250eec04b64ab12e88951727d9e
PMC7291456
A627409907
32527266
10_1186_s12951_020_00646_x
Genre Journal Article
GeographicLocations United States--US
China
GeographicLocations_xml – name: China
– name: United States--US
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 81660340
– fundername: National Natural Science Foundation of China
  grantid: 81160290
– fundername: ;
  grantid: 81160290; 81660340
GroupedDBID ---
0R~
29L
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADDVE
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EBLON
EBS
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
I-F
IAO
IHR
INH
INR
ISR
ITC
ITG
ITH
KB.
KQ8
LK8
M1P
M48
M7P
MM.
M~E
O5R
O5S
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
RVI
SCM
SOJ
SV3
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
-A0
3V.
ACRMQ
ADINQ
C24
CGR
CUY
CVF
ECM
EIF
FRP
NPM
PMFND
7QO
7TB
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c597t-e5867c29bac2e696aa683eba87b1d6c0b82d7374473ff1346f20739699f2e6d33
IEDL.DBID M48
ISSN 1477-3155
IngestDate Wed Aug 27 01:31:08 EDT 2025
Thu Aug 21 13:46:44 EDT 2025
Fri Jul 11 07:03:51 EDT 2025
Fri Jul 25 19:31:21 EDT 2025
Tue Jun 17 21:35:14 EDT 2025
Tue Jun 10 20:33:28 EDT 2025
Fri Jun 27 04:23:32 EDT 2025
Wed Feb 19 02:30:34 EST 2025
Tue Jul 01 01:26:43 EDT 2025
Thu Apr 24 23:02:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Chemosensitivity
Cell growth pattern
3D cell culture
Nanofiber
HO-8910PM cells
Hydrogel
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c597t-e5867c29bac2e696aa683eba87b1d6c0b82d7374473ff1346f20739699f2e6d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12951-020-00646-x
PMID 32527266
PQID 2414758778
PQPubID 44676
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_92046250eec04b64ab12e88951727d9e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7291456
proquest_miscellaneous_2412982869
proquest_journals_2414758778
gale_infotracmisc_A627409907
gale_infotracacademiconefile_A627409907
gale_incontextgauss_ISR_A627409907
pubmed_primary_32527266
crossref_primary_10_1186_s12951_020_00646_x
crossref_citationtrail_10_1186_s12951_020_00646_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-11
PublicationDateYYYYMMDD 2020-06-11
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-11
  day: 11
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Journal of nanobiotechnology
PublicationTitleAlternate J Nanobiotechnology
PublicationYear 2020
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References F Gelain (646_CR31) 2006; 1
G Benton (646_CR59) 2014; 79–80
Z Yang (646_CR15) 2020; 7
K Hamada (646_CR21) 2008; 84
S Sahab Negah (646_CR19) 2019; 92
D Loessner (646_CR36) 2019; 190–191
H Nakahara (646_CR25) 2010; 19
S Nath (646_CR1) 2016; 163
Y Sun (646_CR62) 2016; 12
KS Hellmund (646_CR17) 2019; 7
J Liu (646_CR28) 2011; 6
AR Cormier (646_CR30) 2013; 7
CS Szot (646_CR5) 2011; 32
Z Yang (646_CR33) 2018; 18
S Zhang (646_CR14) 1995; 16
S Raghavan (646_CR43) 2015; 138
EE Antoine (646_CR56) 2014; 20
KM Hainline (646_CR69) 2019; 19
S Jekhmane (646_CR11) 2019; 58
F Gelain (646_CR46) 2007; 7
K Mi (646_CR41) 2009; 9
EA White (646_CR35) 2014; 79–80
J Brasch (646_CR51) 2018; 23
S Koutsopoulos (646_CR38) 2013; 9
X Shenhua (646_CR77) 1999; 18
T Wang (646_CR27) 2012; 13
L Sun (646_CR78) 2015; 240
J Wu (646_CR23) 2010; 8
SW Lee (646_CR42) 2012; 66
E Garreta (646_CR22) 2006; 12
G Gambara (646_CR74) 2018; 9
M Ruzycka (646_CR55) 2019; 17
R Pugliese (646_CR12) 2017; 35
C Tang (646_CR24) 2009; 10
H Song (646_CR40) 2015; 8
I Matte (646_CR48) 2016; 33
S Han (646_CR66) 2018; 7
M Miron-Mendoza (646_CR8) 2013; 319
S Wang (646_CR20) 2008; 14
D Herrmann (646_CR9) 2014; 35
GF Weber (646_CR76) 2011; 124
PS Jung (646_CR52) 2013; 33
G Rijal (646_CR3) 2017; 3
K Mi (646_CR39) 2015; 10
EE Antoine (646_CR57) 2015; 10
F Fontana (646_CR50) 2019; 8
YW Chai (646_CR2) 2016; 11
Y Klymenko (646_CR45) 2017; 36
CC Lin (646_CR67) 2018; 436
JM Lee (646_CR75) 2013; 93
S Dangi-Garimella (646_CR58) 2013; 8
H Yokoi (646_CR68) 2005; 102
S Xu (646_CR72) 2014; 4
J Sapudom (646_CR53) 2018; 6
W Chen (646_CR64) 2015; 117
PW Choi (646_CR71) 2016; 7
N Tasdemir (646_CR7) 2018; 78
P Worthington (646_CR29) 2015; 5
DD Bowtell (646_CR37) 2015; 15
M Tanaka (646_CR4) 2011; 1810
CA Hauser (646_CR13) 2010; 39
A Rubiano (646_CR54) 2018; 67
JC Ashworth (646_CR60) 2020; 85–86
A Marchini (646_CR16) 2019; 116
LB Weiswald (646_CR70) 2013; 108
T Nii (646_CR10) 2019; 25
H Huang (646_CR63) 2013; 8
C Eren Cimenci (646_CR18) 2019; 30
Y Klymenko (646_CR47) 2017; 19
Z Yang (646_CR32) 2011; 6
R Edmondson (646_CR65) 2016; 11
R Weber (646_CR61) 2020; 124
WG McCluggage (646_CR34) 2011; 43
A Labernadie (646_CR49) 2017; 19
SI Montanez-Sauri (646_CR6) 2015; 72
W Shih (646_CR44) 2012; 125
D Cigognini (646_CR26) 2011; 6
M Rosso (646_CR73) 2017; 12
References_xml – volume: 8
  start-page: 14906
  year: 2015
  ident: 646_CR40
  publication-title: Int J Clin Exp Med
– volume: 7
  start-page: 172
  year: 2019
  ident: 646_CR17
  publication-title: Front Chem
  doi: 10.3389/fchem.2019.00172
– volume: 9
  start-page: 77
  year: 2018
  ident: 646_CR74
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2018.00077
– volume: 10
  start-page: e0122500
  year: 2015
  ident: 646_CR57
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0122500
– volume: 17
  start-page: 71
  year: 2019
  ident: 646_CR55
  publication-title: J Nanobiotechnol
  doi: 10.1186/s12951-019-0492-0
– volume: 6
  start-page: e19782
  year: 2011
  ident: 646_CR26
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0019782
– volume: 240
  start-page: 1434
  year: 2015
  ident: 646_CR78
  publication-title: Exp Biol Med (Maywood)
  doi: 10.1177/1535370215570205
– volume: 436
  start-page: 22
  year: 2018
  ident: 646_CR67
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2018.08.008
– volume: 93
  start-page: 528
  year: 2013
  ident: 646_CR75
  publication-title: Lab Invest
  doi: 10.1038/labinvest.2013.41
– volume: 10
  start-page: 3043
  year: 2015
  ident: 646_CR39
  publication-title: Int J Nanomedicine
  doi: 10.2147/IJN.S66723
– volume: 9
  start-page: 5162
  year: 2013
  ident: 646_CR38
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2012.09.010
– volume: 72
  start-page: 237
  year: 2015
  ident: 646_CR6
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-014-1738-5
– volume: 5
  start-page: 92
  year: 2015
  ident: 646_CR29
  publication-title: Front Oncol
  doi: 10.3389/fonc.2015.00092
– volume: 35
  start-page: 1671
  year: 2014
  ident: 646_CR9
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgu108
– volume: 39
  start-page: 2780
  year: 2010
  ident: 646_CR13
  publication-title: Chem Soc Rev
  doi: 10.1039/b921448h
– volume: 7
  start-page: 1903718
  year: 2020
  ident: 646_CR15
  publication-title: Adv Sci
  doi: 10.1002/advs.201903718
– volume: 8
  start-page: 143
  year: 2019
  ident: 646_CR50
  publication-title: Cells
  doi: 10.3390/cells8020143
– volume: 7
  start-page: 7562
  year: 2013
  ident: 646_CR30
  publication-title: ACS Nano
  doi: 10.1021/nn401562f
– volume: 33
  start-page: 1029
  year: 2013
  ident: 646_CR52
  publication-title: Anticancer Res
– volume: 79–80
  start-page: 184
  year: 2014
  ident: 646_CR35
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2014.07.003
– volume: 7
  start-page: 4110
  year: 2016
  ident: 646_CR71
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.6588
– volume: 19
  start-page: e1800249
  year: 2019
  ident: 646_CR69
  publication-title: Macromol Biosci
  doi: 10.1002/mabi.201800249
– volume: 12
  start-page: e0184439
  year: 2017
  ident: 646_CR73
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0184439
– volume: 58
  start-page: 16943
  year: 2019
  ident: 646_CR11
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.201907880
– volume: 124
  start-page: 1723
  year: 2020
  ident: 646_CR61
  publication-title: J Phys Chem B
– volume: 36
  start-page: 5840
  year: 2017
  ident: 646_CR45
  publication-title: Oncogene
  doi: 10.1038/onc.2017.171
– volume: 124
  start-page: 1183
  year: 2011
  ident: 646_CR76
  publication-title: J Cell Sci
  doi: 10.1242/jcs.064618
– volume: 319
  start-page: 2470
  year: 2013
  ident: 646_CR8
  publication-title: Exp Cell Res
  doi: 10.1016/j.yexcr.2013.06.018
– volume: 92
  start-page: 132
  year: 2019
  ident: 646_CR19
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2019.05.010
– volume: 190–191
  start-page: 63
  year: 2019
  ident: 646_CR36
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.10.014
– volume: 11
  start-page: e0158116
  year: 2016
  ident: 646_CR65
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0158116
– volume: 12
  start-page: 015007
  year: 2016
  ident: 646_CR62
  publication-title: Biomed Mater
  doi: 10.1088/1748-605X/12/1/015007
– volume: 8
  start-page: 29
  year: 2010
  ident: 646_CR23
  publication-title: J Nanobiotechnol
  doi: 10.1186/1477-3155-8-29
– volume: 66
  start-page: 271
  year: 2012
  ident: 646_CR42
  publication-title: Acta Med Okayama
– volume: 19
  start-page: 224
  year: 2017
  ident: 646_CR49
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb3478
– volume: 85–86
  start-page: 15
  year: 2020
  ident: 646_CR60
  publication-title: Matrix Biol
  doi: 10.1016/j.matbio.2019.06.009
– volume: 19
  start-page: 549
  year: 2017
  ident: 646_CR47
  publication-title: Neoplasia
  doi: 10.1016/j.neo.2017.04.002
– volume: 33
  start-page: 839
  year: 2016
  ident: 646_CR48
  publication-title: Clin Exp Metastasis
  doi: 10.1007/s10585-016-9821-y
– volume: 18
  start-page: 2370
  year: 2018
  ident: 646_CR33
  publication-title: J Nanosci Nanotechnol
  doi: 10.1166/jnn.2018.14384
– volume: 1810
  start-page: 251
  year: 2011
  ident: 646_CR4
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbagen.2010.10.002
– volume: 6
  start-page: 2009
  year: 2018
  ident: 646_CR53
  publication-title: Biomater Sci
  doi: 10.1039/C8BM00303C
– volume: 8
  start-page: e64566
  year: 2013
  ident: 646_CR58
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0064566
– volume: 19
  start-page: 791
  year: 2010
  ident: 646_CR25
  publication-title: Cell Transplant
  doi: 10.3727/096368910X508906
– volume: 67
  start-page: 331
  year: 2018
  ident: 646_CR54
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2017.11.037
– volume: 78
  start-page: 6209
  year: 2018
  ident: 646_CR7
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-18-1416
– volume: 84
  start-page: 128
  year: 2008
  ident: 646_CR21
  publication-title: J Biomed Mater Res A
  doi: 10.1002/jbm.a.31439
– volume: 11
  start-page: e0162853
  year: 2016
  ident: 646_CR2
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0162853
– volume: 12
  start-page: 2215
  year: 2006
  ident: 646_CR22
  publication-title: Tissue Eng
  doi: 10.1089/ten.2006.12.2215
– volume: 15
  start-page: 668
  year: 2015
  ident: 646_CR37
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc4019
– volume: 32
  start-page: 7905
  year: 2011
  ident: 646_CR5
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.07.001
– volume: 35
  start-page: 145
  year: 2017
  ident: 646_CR12
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2016.09.004
– volume: 23
  start-page: 1840
  year: 2018
  ident: 646_CR51
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2018.04.012
– volume: 117
  start-page: 950
  year: 2015
  ident: 646_CR64
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2014.10.024
– volume: 4
  start-page: 5646
  year: 2014
  ident: 646_CR72
  publication-title: Sci Rep
  doi: 10.1038/srep05646
– volume: 116
  start-page: 7483
  year: 2019
  ident: 646_CR16
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1818392116
– volume: 102
  start-page: 8414
  year: 2005
  ident: 646_CR68
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0407843102
– volume: 8
  start-page: e59482
  year: 2013
  ident: 646_CR63
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0059482
– volume: 125
  start-page: 3661
  year: 2012
  ident: 646_CR44
  publication-title: J Cell Sci
  doi: 10.1242/jcs.103861
– volume: 163
  start-page: 94
  year: 2016
  ident: 646_CR1
  publication-title: Pharmacol Ther
  doi: 10.1016/j.pharmthera.2016.03.013
– volume: 10
  start-page: 2136
  year: 2009
  ident: 646_CR24
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms10052136
– volume: 138
  start-page: 181
  year: 2015
  ident: 646_CR43
  publication-title: Gynecol Oncol
  doi: 10.1016/j.ygyno.2015.04.014
– volume: 20
  start-page: 683
  year: 2014
  ident: 646_CR56
  publication-title: Tissue Eng Part B Rev
  doi: 10.1089/ten.teb.2014.0086
– volume: 108
  start-page: 1720
  year: 2013
  ident: 646_CR70
  publication-title: Br J Cancer
  doi: 10.1038/bjc.2013.132
– volume: 14
  start-page: 227
  year: 2008
  ident: 646_CR20
  publication-title: Tissue Eng Part A
  doi: 10.1089/tea.2007.0143
– volume: 18
  start-page: 233
  year: 1999
  ident: 646_CR77
  publication-title: J Exp Clin Cancer Res
– volume: 6
  start-page: 303
  year: 2011
  ident: 646_CR32
  publication-title: Int J Nanomedicine
  doi: 10.2147/IJN.S15279
– volume: 13
  start-page: 15279
  year: 2012
  ident: 646_CR27
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms131115279
– volume: 1
  start-page: e119
  year: 2006
  ident: 646_CR31
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0000119
– volume: 43
  start-page: 420
  year: 2011
  ident: 646_CR34
  publication-title: Pathology
  doi: 10.1097/PAT.0b013e328348a6e7
– volume: 79–80
  start-page: 3
  year: 2014
  ident: 646_CR59
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2014.06.005
– volume: 3
  start-page: e1700764
  year: 2017
  ident: 646_CR3
  publication-title: Sci Adv
  doi: 10.1126/sciadv.1700764
– volume: 16
  start-page: 1385
  year: 1995
  ident: 646_CR14
  publication-title: Biomaterials
  doi: 10.1016/0142-9612(95)96874-Y
– volume: 7
  start-page: e1800122
  year: 2018
  ident: 646_CR66
  publication-title: Adv Healthc Mater
  doi: 10.1002/adhm.201800122
– volume: 30
  start-page: 2417
  year: 2019
  ident: 646_CR18
  publication-title: Bioconjug Chem
  doi: 10.1021/acs.bioconjchem.9b00514
– volume: 9
  start-page: 437
  year: 2009
  ident: 646_CR41
  publication-title: Macromol Biosci
  doi: 10.1002/mabi.200800262
– volume: 25
  start-page: 711
  year: 2019
  ident: 646_CR10
  publication-title: Tissue Eng Part C Methods
  doi: 10.1089/ten.tec.2019.0189
– volume: 6
  start-page: 2143
  year: 2011
  ident: 646_CR28
  publication-title: Int J Nanomed
  doi: 10.2147/IJN.S24038
– volume: 7
  start-page: 424
  year: 2007
  ident: 646_CR46
  publication-title: J Nanosci Nanotechnol
  doi: 10.1166/jnn.2007.154
SSID ssj0022424
Score 2.3943136
Snippet Ovarian cancer is a highly aggressive malignant disease in gynecologic cancer. It is an urgent task to develop three-dimensional (3D) cell models in vitro and...
Background Ovarian cancer is a highly aggressive malignant disease in gynecologic cancer. It is an urgent task to develop three-dimensional (3D) cell models in...
Abstract Background Ovarian cancer is a highly aggressive malignant disease in gynecologic cancer. It is an urgent task to develop three-dimensional (3D) cell...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 90
SubjectTerms 3D cell culture
Amino acids
Antineoplastic Agents - chemistry
Antineoplastic Agents - pharmacology
Biocompatible Materials - chemistry
Biological products
Biomaterials
Biomedical materials
Cancer
Cancer metastasis
Cancer therapies
Cell adhesion & migration
Cell culture
Cell Culture Techniques - methods
Cell growth
Cell growth pattern
Cell Line, Tumor
Cell proliferation
Cell Proliferation - drug effects
Chemoresistance
Chemosensitivity
Cisplatin
Collagen
Collagen (type I)
Cytology
Drug resistance
Drug screening
E-cadherin
Female
Growth patterns
HO-8910PM cells
Humans
Hydrogel
Hydrogels
Hydrogels - chemistry
Immunohistochemistry
In vivo methods and tests
Integrins
Metastases
Metastasis
Microenvironments
Morphology
Multicellular tumor spheroids
N-Cadherin
Nanofiber
Nanofibers
Nanofibers - chemistry
Ovarian cancer
Ovarian Neoplasms - metabolism
Paclitaxel
Peptides
Protein expression
Scaffolds
Spheroids
Stem cells
Three dimensional models
Tumor Microenvironment - drug effects
Western blotting
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAlGdKQQYhcUBRN7ZjO8eCqBakAoJW6s2yHWe70jZBSbZqfxb_kJk8VomQ4MIp0noSJZ6xZ2Y93zeEvFGOW9jksGyQ-1hwpWInsYkAxLIOImTrGAKcT7_I5bn4fJFeTFp9YU1YTw_cT9xRxhA-mS5C8AvhpLAuYUFrCAzA8-ZZwN0XfN6YTA2pFoIeRoiMlkcNeLUU0maGKGopZHwzc0MdW_-fe_LEKc0LJice6OQBuT-EjvS4f-V9cieUD8m9CaHgI_LrDFQT4hwp-3u6DdpTawRqy5yOMEia19sVrfvy2NDQqqCWInHx5pZehdYiymjtade_j1bXkE7D1aN91HT5Ndbg_L-dUvzPv6Hrkpa2BBN1dbVt6BUW-E3Rc_jwFt-KXt7mdbUKG4qQf9v2pv-YnJ98PPuwjIemDLGH3KONQ6ql8ixz1rMgM2mt1Dw4q5VLcukXTrNccSWE4kWRcCELhoeBMssKkM85f0L2yqoMzwjFEz8bkNJPBRGKhcuT3Eq74ALyGC-KiCSjjowfGMuxccbGdJmLlqbXqwG9mk6v5iYi73b3_Oz5Ov4q_R5Vv5NEru3uB7BAM1ig-ZcFRuQ1Go5BNo0Sy3VWdts05tOP7-YYOxvh0aOKyNtBqKjgG7wd0A8wE0jANZM8nEnCcvfz4dE-zbDdNAbCMAGJn1I6Iq92w3gnltCVAfSPMixD0oAsIk97c959N2cpUxCqRUTNDH02MfORcn3ZkZFDcpZAEH7wP2byObnLujUq4yQ5JHttvQ0vIOZr3ctuef8GjmlTpw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeDdQkEFIHFDUje21nRMqiKUgFRC0Um-WX9mutE1KkkXtz-IfMpNkl42QelppPYmSzNue-YaQ18pxC0YOywa5TwVXKnUShwhALOsgQraOYYPz0Vd5eCK-nE5Phw23ZiirXNvEzlCHyuMe-T54GgGxrVL63cWvFKdG4enqMELjJrmVgafBki49-7RJuLD1Yd0oo-V-A75tCskzw15qKWR6OXJGHWb__5Z5yzWNyya3_NDsHrk7BJD0oOf4fXIjlg_InS1YwYfkzzEwKKYBgft70A3aA2xEastA182QNNSrOa37ItnY0KqgliJ88fKKnsfWYq_RwtNuih-tfkNSDb8epaSmh99SDSHA9yOKO_8NXZS0tCUIqqurVUPPscxvu4cOb97iU9Gzq1BX87ik2Phv214BHpGT2cfjD4fpMJoh9ZCBtGmcaqk8y531LMpcWis1j85q5bIg_cRpFhRXQiheFBkXsmB4JCjzvAD6wPljslNWZdwlFM_9bERgPxVFLCYuZMFKO-ECshkvioRkax4ZP-CW4_iMpenyFy1Nz1cDfDUdX81lQt5urrnoUTuupX6PrN9QIuJ290dVz82gwCZn2MY7ncToJ8JJYV3GotZwK4gAQx4T8goFxyCmRolFO3O7ahrz-ecPc4DzjfAAUiXkzUBUVPAO3g49EPAlEIZrRLk3ogSl9-PltXyaweg05p-KJOTlZhmvxEK6MgL_kYblCB2QJ-RJL86b9-ZsyhSoUULUSNBHH2a8Ui7OOkhySNEyCMWfXv9Yz8ht1mmfTLNsj-y09So-h5iudS86xf0LgNNMPw
  priority: 102
  providerName: ProQuest
Title Three-dimensional culture and clinical drug responses of a highly metastatic human ovarian cancer HO-8910PM cells in nanofibrous microenvironments of three hydrogel biomaterials
URI https://www.ncbi.nlm.nih.gov/pubmed/32527266
https://www.proquest.com/docview/2414758778
https://www.proquest.com/docview/2412982869
https://pubmed.ncbi.nlm.nih.gov/PMC7291456
https://doaj.org/article/92046250eec04b64ab12e88951727d9e
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfG9gIPiG8CozIIiQcUaBzXTh4Q2tBKQeqYxir1zbIdp6vUJZCkaP2z-A-5y0fViGkvqRSfo8R3Z9_17n5HyFtpQg2bHKYNhtbnoZS-EdhEAGxZAxayNgwLnKenYjLj3-ej-R7p2h21C1je6NphP6lZsfpw_XvzGRT-U63wkfhYwpk1AqeYYY204MIHm_IATiaJHQ2mfBtVYFgK0RXO3DivdzjVGP7_79Q7R1U_jXLnXBo_IPdbg5IeNRLwkOy57BG5twMz-Jj8vQCGOT9BIP8GhIM2gBuO6iyhXXEkTYr1ghZN0qwraZ5STRHOeLWhV67SWHu0tLTu6kfzP-Bkw69FqSno5IcfgUlwNqUYCSjpMqOZzkBwTZGvS3qFaX-7NXX48Arfil5ukiJfuBVFIABdNQrxhMzGJxdfJn7bqsG34JFUvhtFQloWG22ZE7HQWkShMzqSJkiEHZqIJTKUnMswTYOQi5RhiFDEcQr0SRg-JftZnrnnhGIcUDsE-pOOu3RokiDRQg9DDt6N5alHgo5HyrY45thOY6VqfyYSquGrAr6qmq_q2iPvt3N-NSget1IfI-u3lIjAXd_Ii4VqFVrFDMt6R0Pn7JAbwbUJmIsieBRYhEnsPPIGBUchxkaGSTwLvS5L9e3nuTrCfkcYkJQeedcSpTl8g9VtTQSsBMJy9SgPe5SwCdj-cCefqtMhBSrAwR2UMvLI6-0wzsTEuswB_5GGxQglEHvkWSPO2-8O2YhJMOA8InuC3luY_ki2vKwhysFlC8A0f3H7a70kd1mtfcIPgkOyXxVr9wpsvMoMyB05l3CNxl8H5OD45PTsfFD_XzKoVfofJ2BT-g
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V5QAcEG8MBRYE4oCsxuvNrn1AqDxCQpuCoJV62-6u12mk1C52As2fQuIfMuNHiIXUW0-R4rFle2bn4Z3vG0JeSBNqcHLYNhhan4dS-kbgEAHIZQ1kyNowBDiP98XwkH8-6h9tkN8tFgbbKlufWDnqJLf4jXwbIg2H3FbK6O3ZDx-nRuHuajtCozaLXbf8BSVb-Wb0AfT7krHBx4P3Q7-ZKuBbSJ7nvutHQloWG22ZE7HQWkShMzqSJkiE7ZmIJTKUnMswTYOQi5ThbpaI4xTkE_wACi7_Cg8hkiMyffBpVeAh1KIF5kRiu4RY2odinSF2W3Dhn3eCXzUj4P9IsBYKu22aa3FvcJPcaBJWulNb2C2y4bLb5PoajeEd8ucADML5CQ4KqEk-aE3o4ajOEtqCL2lSLCa0qJtyXUnzlGqKdMmzJT11c43Ypqml1dRAmv-EIh5-LVplQYdf_AhSjq9jijsNJZ1mNNMZLAxT5IuSnmJb4TpmDy8-x7uiJ8ukyCduRpFoQM_rBXeXHF6K0u6RzSzP3ANCcZ9ROyQSlI67tGeSINFC90IO1ZPlqUeCVkfKNjzpOK5jpqp6KRKq1qsCvapKr-rcI69X55zVLCEXSr9D1a8kkeG7-iMvJqpxGCpmCBvu95yzPW4E1yZgLorgUpBxJrHzyHM0HIUcHhk2CU30oizV6Ps3tYPzlHDDU3rkVSOU5vAMVjeYC3gTSPvVkdzqSIKTsd3DrX2qxsmV6t-S9Miz1WE8Exv3Mgf6RxkWI1VB7JH7tTmvnjtkfSYhQfSI7Bh658V0j2TTk4oCHUrCAFL_hxff1lNydXgw3lN7o_3dR-Qaq1ai8INgi2zOi4V7DPnk3DypFjElx5ftNf4CBAaIeQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-dimensional+culture+and+clinical+drug+responses+of+a+highly+metastatic+human+ovarian+cancer+HO-8910PM+cells+in+nanofibrous+microenvironments+of+three+hydrogel+biomaterials&rft.jtitle=Journal+of+nanobiotechnology&rft.au=Song%2C+Hong&rft.au=Guo-hui%2C+Cai&rft.au=Liang%2C+Jian&rft.au=Di-shu%2C+Ao&rft.date=2020-06-11&rft.pub=BioMed+Central&rft.eissn=1477-3155&rft.volume=18&rft.spage=1&rft_id=info:doi/10.1186%2Fs12951-020-00646-x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-3155&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-3155&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-3155&client=summon