Absence of an embryonic stem cell DNA methylation signature in human cancer
Differentiated cells that arise from stem cells in early development contain DNA methylation features that provide a memory trace of their fetal cell origin (FCO). The FCO signature was developed to estimate the proportion of cells in a mixture of cell types that are of fetal origin and are reminisc...
Saved in:
Published in | BMC cancer Vol. 19; no. 1; pp. 711 - 12 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
19.07.2019
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Differentiated cells that arise from stem cells in early development contain DNA methylation features that provide a memory trace of their fetal cell origin (FCO). The FCO signature was developed to estimate the proportion of cells in a mixture of cell types that are of fetal origin and are reminiscent of embryonic stem cell lineage. Here we implemented the FCO signature estimation method to compare the fraction of cells with the FCO signature in tumor tissues and their corresponding nontumor normal tissues.
We applied our FCO algorithm to discovery data sets obtained from The Cancer Genome Atlas (TCGA) and replication data sets obtained from the Gene Expression Omnibus (GEO) data repository. Wilcoxon rank sum tests, linear regression models with adjustments for potential confounders and non-parametric randomization-based tests were used to test the association of FCO proportion between tumor tissues and nontumor normal tissues. P-values of < 0.05 were considered statistically significant.
Across 20 different tumor types we observed a consistently lower FCO signature in tumor tissues compared with nontumor normal tissues, with 18 observed to have significantly lower FCO fractions in tumor tissue (total n = 6,795 tumor, n = 922 nontumor, P < 0.05). We replicated our findings in 15 tumor types using data from independent subjects in 15 publicly available data sets (total n = 740 tumor, n = 424 nontumor, P < 0.05).
The results suggest that cancer development itself is substantially devoid of recapitulation of normal embryologic processes. Our results emphasize the distinction between DNA methylation in normal tightly regulated stem cell driven differentiation and cancer stem cell reprogramming that involves altered methylation in the service of great cell heterogeneity and plasticity. |
---|---|
AbstractList | Abstract Background Differentiated cells that arise from stem cells in early development contain DNA methylation features that provide a memory trace of their fetal cell origin (FCO). The FCO signature was developed to estimate the proportion of cells in a mixture of cell types that are of fetal origin and are reminiscent of embryonic stem cell lineage. Here we implemented the FCO signature estimation method to compare the fraction of cells with the FCO signature in tumor tissues and their corresponding nontumor normal tissues. Methods We applied our FCO algorithm to discovery data sets obtained from The Cancer Genome Atlas (TCGA) and replication data sets obtained from the Gene Expression Omnibus (GEO) data repository. Wilcoxon rank sum tests, linear regression models with adjustments for potential confounders and non-parametric randomization-based tests were used to test the association of FCO proportion between tumor tissues and nontumor normal tissues. P-values of < 0.05 were considered statistically significant. Results Across 20 different tumor types we observed a consistently lower FCO signature in tumor tissues compared with nontumor normal tissues, with 18 observed to have significantly lower FCO fractions in tumor tissue (total n = 6,795 tumor, n = 922 nontumor, P < 0.05). We replicated our findings in 15 tumor types using data from independent subjects in 15 publicly available data sets (total n = 740 tumor, n = 424 nontumor, P < 0.05). Conclusions The results suggest that cancer development itself is substantially devoid of recapitulation of normal embryologic processes. Our results emphasize the distinction between DNA methylation in normal tightly regulated stem cell driven differentiation and cancer stem cell reprogramming that involves altered methylation in the service of great cell heterogeneity and plasticity. Background Differentiated cells that arise from stem cells in early development contain DNA methylation features that provide a memory trace of their fetal cell origin (FCO). The FCO signature was developed to estimate the proportion of cells in a mixture of cell types that are of fetal origin and are reminiscent of embryonic stem cell lineage. Here we implemented the FCO signature estimation method to compare the fraction of cells with the FCO signature in tumor tissues and their corresponding nontumor normal tissues. Methods We applied our FCO algorithm to discovery data sets obtained from The Cancer Genome Atlas (TCGA) and replication data sets obtained from the Gene Expression Omnibus (GEO) data repository. Wilcoxon rank sum tests, linear regression models with adjustments for potential confounders and non-parametric randomization-based tests were used to test the association of FCO proportion between tumor tissues and nontumor normal tissues. P-values of < 0.05 were considered statistically significant. Results Across 20 different tumor types we observed a consistently lower FCO signature in tumor tissues compared with nontumor normal tissues, with 18 observed to have significantly lower FCO fractions in tumor tissue (total n = 6,795 tumor, n = 922 nontumor, P < 0.05). We replicated our findings in 15 tumor types using data from independent subjects in 15 publicly available data sets (total n = 740 tumor, n = 424 nontumor, P < 0.05). Conclusions The results suggest that cancer development itself is substantially devoid of recapitulation of normal embryologic processes. Our results emphasize the distinction between DNA methylation in normal tightly regulated stem cell driven differentiation and cancer stem cell reprogramming that involves altered methylation in the service of great cell heterogeneity and plasticity. Keywords: Human embryonic stem cells, Cell differentiation, DNA methylation, Cancer Epigenomics, Biomarkers Differentiated cells that arise from stem cells in early development contain DNA methylation features that provide a memory trace of their fetal cell origin (FCO). The FCO signature was developed to estimate the proportion of cells in a mixture of cell types that are of fetal origin and are reminiscent of embryonic stem cell lineage. Here we implemented the FCO signature estimation method to compare the fraction of cells with the FCO signature in tumor tissues and their corresponding nontumor normal tissues.BACKGROUNDDifferentiated cells that arise from stem cells in early development contain DNA methylation features that provide a memory trace of their fetal cell origin (FCO). The FCO signature was developed to estimate the proportion of cells in a mixture of cell types that are of fetal origin and are reminiscent of embryonic stem cell lineage. Here we implemented the FCO signature estimation method to compare the fraction of cells with the FCO signature in tumor tissues and their corresponding nontumor normal tissues.We applied our FCO algorithm to discovery data sets obtained from The Cancer Genome Atlas (TCGA) and replication data sets obtained from the Gene Expression Omnibus (GEO) data repository. Wilcoxon rank sum tests, linear regression models with adjustments for potential confounders and non-parametric randomization-based tests were used to test the association of FCO proportion between tumor tissues and nontumor normal tissues. P-values of < 0.05 were considered statistically significant.METHODSWe applied our FCO algorithm to discovery data sets obtained from The Cancer Genome Atlas (TCGA) and replication data sets obtained from the Gene Expression Omnibus (GEO) data repository. Wilcoxon rank sum tests, linear regression models with adjustments for potential confounders and non-parametric randomization-based tests were used to test the association of FCO proportion between tumor tissues and nontumor normal tissues. P-values of < 0.05 were considered statistically significant.Across 20 different tumor types we observed a consistently lower FCO signature in tumor tissues compared with nontumor normal tissues, with 18 observed to have significantly lower FCO fractions in tumor tissue (total n = 6,795 tumor, n = 922 nontumor, P < 0.05). We replicated our findings in 15 tumor types using data from independent subjects in 15 publicly available data sets (total n = 740 tumor, n = 424 nontumor, P < 0.05).RESULTSAcross 20 different tumor types we observed a consistently lower FCO signature in tumor tissues compared with nontumor normal tissues, with 18 observed to have significantly lower FCO fractions in tumor tissue (total n = 6,795 tumor, n = 922 nontumor, P < 0.05). We replicated our findings in 15 tumor types using data from independent subjects in 15 publicly available data sets (total n = 740 tumor, n = 424 nontumor, P < 0.05).The results suggest that cancer development itself is substantially devoid of recapitulation of normal embryologic processes. Our results emphasize the distinction between DNA methylation in normal tightly regulated stem cell driven differentiation and cancer stem cell reprogramming that involves altered methylation in the service of great cell heterogeneity and plasticity.CONCLUSIONSThe results suggest that cancer development itself is substantially devoid of recapitulation of normal embryologic processes. Our results emphasize the distinction between DNA methylation in normal tightly regulated stem cell driven differentiation and cancer stem cell reprogramming that involves altered methylation in the service of great cell heterogeneity and plasticity. Differentiated cells that arise from stem cells in early development contain DNA methylation features that provide a memory trace of their fetal cell origin (FCO). The FCO signature was developed to estimate the proportion of cells in a mixture of cell types that are of fetal origin and are reminiscent of embryonic stem cell lineage. Here we implemented the FCO signature estimation method to compare the fraction of cells with the FCO signature in tumor tissues and their corresponding nontumor normal tissues. We applied our FCO algorithm to discovery data sets obtained from The Cancer Genome Atlas (TCGA) and replication data sets obtained from the Gene Expression Omnibus (GEO) data repository. Wilcoxon rank sum tests, linear regression models with adjustments for potential confounders and non-parametric randomization-based tests were used to test the association of FCO proportion between tumor tissues and nontumor normal tissues. P-values of < 0.05 were considered statistically significant. Across 20 different tumor types we observed a consistently lower FCO signature in tumor tissues compared with nontumor normal tissues, with 18 observed to have significantly lower FCO fractions in tumor tissue (total n = 6,795 tumor, n = 922 nontumor, P < 0.05). We replicated our findings in 15 tumor types using data from independent subjects in 15 publicly available data sets (total n = 740 tumor, n = 424 nontumor, P < 0.05). The results suggest that cancer development itself is substantially devoid of recapitulation of normal embryologic processes. Our results emphasize the distinction between DNA methylation in normal tightly regulated stem cell driven differentiation and cancer stem cell reprogramming that involves altered methylation in the service of great cell heterogeneity and plasticity. Differentiated cells that arise from stem cells in early development contain DNA methylation features that provide a memory trace of their fetal cell origin (FCO). The FCO signature was developed to estimate the proportion of cells in a mixture of cell types that are of fetal origin and are reminiscent of embryonic stem cell lineage. Here we implemented the FCO signature estimation method to compare the fraction of cells with the FCO signature in tumor tissues and their corresponding nontumor normal tissues. We applied our FCO algorithm to discovery data sets obtained from The Cancer Genome Atlas (TCGA) and replication data sets obtained from the Gene Expression Omnibus (GEO) data repository. Wilcoxon rank sum tests, linear regression models with adjustments for potential confounders and non-parametric randomization-based tests were used to test the association of FCO proportion between tumor tissues and nontumor normal tissues. P-values of < 0.05 were considered statistically significant. Across 20 different tumor types we observed a consistently lower FCO signature in tumor tissues compared with nontumor normal tissues, with 18 observed to have significantly lower FCO fractions in tumor tissue (total n = 6,795 tumor, n = 922 nontumor, P < 0.05). We replicated our findings in 15 tumor types using data from independent subjects in 15 publicly available data sets (total n = 740 tumor, n = 424 nontumor, P < 0.05). The results suggest that cancer development itself is substantially devoid of recapitulation of normal embryologic processes. Our results emphasize the distinction between DNA methylation in normal tightly regulated stem cell driven differentiation and cancer stem cell reprogramming that involves altered methylation in the service of great cell heterogeneity and plasticity. |
ArticleNumber | 711 |
Audience | Academic |
Author | Zhang, Ze Christensen, Brock C. Koestler, Devin C. Kelsey, Karl T. Wiencke, John K. Salas, Lucas A. |
Author_xml | – sequence: 1 givenname: Ze surname: Zhang fullname: Zhang, Ze – sequence: 2 givenname: John K. surname: Wiencke fullname: Wiencke, John K. – sequence: 3 givenname: Devin C. surname: Koestler fullname: Koestler, Devin C. – sequence: 4 givenname: Lucas A. surname: Salas fullname: Salas, Lucas A. – sequence: 5 givenname: Brock C. surname: Christensen fullname: Christensen, Brock C. – sequence: 6 givenname: Karl T. orcidid: 0000-0002-2302-1600 surname: Kelsey fullname: Kelsey, Karl T. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31324166$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kluL1TAUhYuMOBf9Ab5IQRB96Jg0Tdq8CIfxdnBQ8PIc0nSnJ0ObzCSpeP696XRGTkXJQ8LOtxabvddpdmSdhSx7itE5xg17HXDZNLRAmBeUk7JgD7ITXNW4KCtUHx28j7PTEK4QwnWDmkfZMcGkrDBjJ9mnTRvAKsidzqXNYWz93lmj8hBhzBUMQ_728yYfIe72g4zG2TyY3so4eciNzXfTmGRKJgv_OHuo5RDgyd19lv14_-77xcfi8suH7cXmslCU17EASjHmnOpad5i1hBPGZfrpWqoR56zRmMpOc9ogLGuQHCsCCao45VTRmpxl28W3c_JKXHszSr8XThpxW3C-F9JHowYQvGxYJTUpCUVVp-u21oQB5rIDpNoWJa83i9f11I7QKbDRy2Fluv6xZid691MwVpWUlcng5Z2BdzcThChGE-a5SQtuCqIsWYU5avjc9_MF7WVqzVjtkqOacbGhPK2pqQhL1Pk_qHQ6GI1KAdAm1VeCVytBYiL8ir2cQhDbb1_X7IsDdgdyiLvghmlebFiDzw7n8mcg98lJQL0AyrsQPGihTLwNSGrXDAIjMWdULBkVKaNizqiYlfgv5b35_zW_AQOh5NM |
CitedBy_id | crossref_primary_10_3389_fonc_2021_643983 crossref_primary_10_1016_j_tig_2023_01_007 crossref_primary_10_1080_15592294_2021_1900027 crossref_primary_10_1016_j_yexmp_2022_104757 crossref_primary_10_3390_cells12081168 |
Cites_doi | 10.1002/1878-0261.12191 10.1016/j.cell.2009.08.017 10.1007/s11523-017-0508-3 10.1038/stemcells.2008.62 10.1101/gr.233213.117 10.5966/sctm.2015-0225 10.1089/ars.2016.6691 10.1158/1940-6207.CAPR-10-0234 10.1101/gr.131169.111 10.1016/j.biocel.2018.08.011 10.1158/1078-0432.CCR-14-1087 10.1136/jclinpath-2017-204739 10.1002/embr.201338254 10.1038/ng.127 10.1289/ehp.93101s515 10.1186/s12943-017-0596-9 10.18632/oncotarget.16467 10.1038/ng.2806 10.1182/blood-2011-03-340554 10.1016/j.cell.2010.09.010 10.1016/j.ccell.2017.11.018 10.18632/oncotarget.22754 10.1016/j.stem.2014.02.006 10.15283/ijsc.2009.2.1.18 10.1016/j.celrep.2018.08.062 10.1016/j.immuni.2014.06.013 10.1186/s12885-017-3252-2 10.1038/nature12625 10.4252/wjsc.v7.i9.1150 10.1158/0008-5472.CAN-15-3268 10.3389/fonc.2017.00080 10.1371/journal.pone.0103162 10.1186/2001-1326-2-3 10.1186/s12967-017-1122-y 10.3389/fphys.2017.00837 10.1615/CritRevOncog.2016016976 10.21037/sci.2017.11.03 10.4161/epi.23062 10.1016/j.gendis.2018.02.003 10.1016/j.jalz.2018.01.017 10.5483/BMBRep.2017.50.3.222 10.1089/scd.2012.0375 10.1158/1535-7163.MCT-15-0260 10.4161/onci.20068 10.3389/fonc.2014.00366 10.1016/j.bbrc.2009.02.156 10.1186/s13073-014-0061-y 10.1186/s13045-017-0415-1 10.3390/cancers8030034 10.3389/fonc.2018.00100 10.1172/JCI91095 10.1186/gm291 10.1016/j.pharmthera.2013.01.014 10.4161/epi.26346 10.1083/jcb.201202014 10.1016/j.trecan.2017.04.004 10.15283/ijsc.2012.5.1.12 10.1155/2016/2192853 10.1371/journal.pone.0150629 10.1186/s13059-018-1420-6 10.1186/s12943-017-0602-2 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2019 BioMed Central Ltd. The Author(s). 2019 |
Copyright_xml | – notice: COPYRIGHT 2019 BioMed Central Ltd. – notice: The Author(s). 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 5PM DOA |
DOI | 10.1186/s12885-019-5932-6 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1471-2407 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_92864af323504df7b7f36e19ade0cbb0 PMC6642562 A594078436 31324166 10_1186_s12885_019_5932_6 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: P20 GM103418 – fundername: National Institutes of Health grantid: R01CA207110 – fundername: National Institutes of Health grantid: P50CA097257 – fundername: National Institutes of Health grantid: P20GM103418 – fundername: National Institutes of Health grantid: R01CA52689 – fundername: National Institutes of Health grantid: P30CA168524 – fundername: NCI NIH HHS grantid: R01 CA216265 – fundername: NIDCR NIH HHS grantid: R01 DE022772 – fundername: National Institutes of Health grantid: R01CA216265 – fundername: National Institutes of Health grantid: R01DE022772 – fundername: ; grantid: R01CA52689; P50CA097257; R01CA207110; P20GM103418; P30CA168524; R01DE022772; R01CA216265 |
GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 6PF 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAWTL AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACMJI ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HMCUK HYE IAO IHR IHW INH INR ISR ITC KQ8 M1P M48 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB -A0 3V. ACRMQ ADINQ C24 CGR CUY CVF ECM EIF NPM PMFND 7X8 PPXIY 5PM PJZUB PUEGO |
ID | FETCH-LOGICAL-c597t-e5511995f7fd16b39369a597db5f09968f15adf95801a7ea91c3e93649595c573 |
IEDL.DBID | M48 |
ISSN | 1471-2407 |
IngestDate | Wed Aug 27 01:19:14 EDT 2025 Thu Aug 21 18:22:37 EDT 2025 Thu Jul 10 17:52:22 EDT 2025 Tue Jun 17 21:30:42 EDT 2025 Tue Jun 10 20:35:07 EDT 2025 Fri Jun 27 04:59:32 EDT 2025 Thu May 22 21:05:56 EDT 2025 Thu Jan 02 22:59:40 EST 2025 Thu Apr 24 23:11:16 EDT 2025 Tue Jul 01 03:06:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Human embryonic stem cells Biomarkers DNA methylation Cancer Epigenomics Cell differentiation |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c597t-e5511995f7fd16b39369a597db5f09968f15adf95801a7ea91c3e93649595c573 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2302-1600 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12885-019-5932-6 |
PMID | 31324166 |
PQID | 2264190897 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_92864af323504df7b7f36e19ade0cbb0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6642562 proquest_miscellaneous_2264190897 gale_infotracmisc_A594078436 gale_infotracacademiconefile_A594078436 gale_incontextgauss_ISR_A594078436 gale_healthsolutions_A594078436 pubmed_primary_31324166 crossref_citationtrail_10_1186_s12885_019_5932_6 crossref_primary_10_1186_s12885_019_5932_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-19 |
PublicationDateYYYYMMDD | 2019-07-19 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC cancer |
PublicationTitleAlternate | BMC Cancer |
PublicationYear | 2019 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | W Chan-On (5932_CR32) 2013; 45 E Aref-Eshghi (5932_CR42) 2018; 8 TB Toh (5932_CR25) 2017; 16 H Yan (5932_CR40) 2017; 15 S Maupetit-Mehouas (5932_CR45) 2018; 12 A Kreso (5932_CR58) 2014; 14 M Schoenhals (5932_CR23) 2009; 383 W Timp (5932_CR33) 2014; 6 DAD Munro (5932_CR52) 2017; 8 A Karlsson (5932_CR38) 2014; 20 I Baccelli (5932_CR14) 2012; 198 MA Song (5932_CR43) 2017; 8 S Sell (5932_CR2) 1993; 101 JD Lathia (5932_CR3) 2017; 12 S Zagorac (5932_CR49) 2016; 76 H Easwaran (5932_CR59) 2012; 22 S Epelman (5932_CR51) 2014; 41 M Mochizuki-Kashio (5932_CR61) 2011; 118 J Jeschke (5932_CR44) 2017; 127 CR Legendre (5932_CR30) 2016; 11 WC Sin (5932_CR6) 2017; 4 C Hadjimichael (5932_CR18) 2015; 7 MJ Munro (5932_CR9) 2018; 71 T Ramesh (5932_CR1) 2009; 2 J Shen (5932_CR37) 2013; 8 M Shackleton (5932_CR54) 2009; 138 K Eun (5932_CR5) 2017; 50 LA Salas (5932_CR27) 2018; 28 AR Safa (5932_CR60) 2016; 21 BA Smith (5932_CR24) 2018; 24 KK Huang (5932_CR31) 2018; 33 LN Abdullah (5932_CR11) 2013; 2 SA Farkas (5932_CR28) 2013; 8 Y Wen (5932_CR46) 2017; 8 F Michor (5932_CR56) 2010; 3 JW Riggs (5932_CR15) 2013; 22 JM Iglesias (5932_CR16) 2017; 6 5932_CR19 M Das (5932_CR12) 2018; 103 I Ben-Porath (5932_CR22) 2008; 40 Y Qin (5932_CR47) 2018; 5 Y Shiozawa (5932_CR13) 2013; 138 MJ Gerdes (5932_CR57) 2014; 4 N Zakaria (5932_CR8) 2017; 7 T Lanca (5932_CR48) 2012; 1 RA Burrell (5932_CR55) 2013; 501 MK Kirby (5932_CR41) 2017; 17 X Li (5932_CR35) 2014; 9 D Zhou (5932_CR50) 2018; 19 J Kim (5932_CR21) 2010; 143 EN Wainwright (5932_CR26) 2017; 3 DS Kong (5932_CR7) 2012; 5 Giorgio Parmiani (5932_CR10) 2016; 8 K Szosland (5932_CR62) 2006; 57 K Qureshi-Baig (5932_CR4) 2017; 16 D Friedmann-Morvinski (5932_CR17) 2014; 15 W Jiang (5932_CR34) 2015; 14 JM Albright (5932_CR53) 2016; 25 J Ramalho-Carvalho (5932_CR36) 2017; 10 J Kim (5932_CR20) 2011; 3 Rebecca G. Smith (5932_CR29) 2018; 14 J Wei (5932_CR39) 2016; 2016 |
References_xml | – volume: 12 start-page: 814 issue: 6 year: 2018 ident: 5932_CR45 publication-title: Mol Oncol doi: 10.1002/1878-0261.12191 – volume: 138 start-page: 822 issue: 5 year: 2009 ident: 5932_CR54 publication-title: Cell doi: 10.1016/j.cell.2009.08.017 – volume: 12 start-page: 387 issue: 4 year: 2017 ident: 5932_CR3 publication-title: Target Oncol doi: 10.1007/s11523-017-0508-3 – ident: 5932_CR19 doi: 10.1038/stemcells.2008.62 – volume: 28 start-page: 1285 issue: 9 year: 2018 ident: 5932_CR27 publication-title: Genome Res doi: 10.1101/gr.233213.117 – volume: 6 start-page: 335 issue: 2 year: 2017 ident: 5932_CR16 publication-title: Stem Cells Transl Med doi: 10.5966/sctm.2015-0225 – volume: 25 start-page: 805 issue: 15 year: 2016 ident: 5932_CR53 publication-title: Antioxid Redox Signal doi: 10.1089/ars.2016.6691 – volume: 3 start-page: 1361 issue: 11 year: 2010 ident: 5932_CR56 publication-title: Cancer Prev Res (Phila) doi: 10.1158/1940-6207.CAPR-10-0234 – volume: 22 start-page: 837 issue: 5 year: 2012 ident: 5932_CR59 publication-title: Genome Res doi: 10.1101/gr.131169.111 – volume: 103 start-page: 115 year: 2018 ident: 5932_CR12 publication-title: Int J Biochem Cell Biol doi: 10.1016/j.biocel.2018.08.011 – volume: 20 start-page: 6127 issue: 23 year: 2014 ident: 5932_CR38 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-14-1087 – volume: 57 start-page: 54 issue: 1 year: 2006 ident: 5932_CR62 publication-title: Endokrynol Pol – volume: 71 start-page: 110 issue: 2 year: 2018 ident: 5932_CR9 publication-title: J Clin Pathol doi: 10.1136/jclinpath-2017-204739 – volume: 15 start-page: 244 issue: 3 year: 2014 ident: 5932_CR17 publication-title: EMBO Rep doi: 10.1002/embr.201338254 – volume: 40 start-page: 499 issue: 5 year: 2008 ident: 5932_CR22 publication-title: Nat Genet doi: 10.1038/ng.127 – volume: 101 start-page: 15 issue: Suppl 5 year: 1993 ident: 5932_CR2 publication-title: Environ Health Perspect doi: 10.1289/ehp.93101s515 – volume: 16 start-page: 29 issue: 1 year: 2017 ident: 5932_CR25 publication-title: Mol Cancer doi: 10.1186/s12943-017-0596-9 – volume: 8 start-page: 37974 issue: 23 year: 2017 ident: 5932_CR46 publication-title: Oncotarget doi: 10.18632/oncotarget.16467 – volume: 45 start-page: 1474 issue: 12 year: 2013 ident: 5932_CR32 publication-title: Nat Genet doi: 10.1038/ng.2806 – volume: 118 start-page: 6553 issue: 25 year: 2011 ident: 5932_CR61 publication-title: Blood doi: 10.1182/blood-2011-03-340554 – volume: 143 start-page: 313 issue: 2 year: 2010 ident: 5932_CR21 publication-title: Cell doi: 10.1016/j.cell.2010.09.010 – volume: 33 start-page: 137 issue: 1 year: 2018 ident: 5932_CR31 publication-title: Cancer Cell doi: 10.1016/j.ccell.2017.11.018 – volume: 8 start-page: 114648 issue: 70 year: 2017 ident: 5932_CR43 publication-title: Oncotarget doi: 10.18632/oncotarget.22754 – volume: 14 start-page: 275 issue: 3 year: 2014 ident: 5932_CR58 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.02.006 – volume: 2 start-page: 18 issue: 1 year: 2009 ident: 5932_CR1 publication-title: Int J Stem Cells doi: 10.15283/ijsc.2009.2.1.18 – volume: 24 start-page: 3353 issue: 12 year: 2018 ident: 5932_CR24 publication-title: Cell Rep doi: 10.1016/j.celrep.2018.08.062 – volume: 41 start-page: 21 issue: 1 year: 2014 ident: 5932_CR51 publication-title: Immunity doi: 10.1016/j.immuni.2014.06.013 – volume: 17 start-page: 273 issue: 1 year: 2017 ident: 5932_CR41 publication-title: BMC Cancer doi: 10.1186/s12885-017-3252-2 – volume: 501 start-page: 338 issue: 7467 year: 2013 ident: 5932_CR55 publication-title: Nature doi: 10.1038/nature12625 – volume: 7 start-page: 1150 issue: 9 year: 2015 ident: 5932_CR18 publication-title: World J Stem Cells doi: 10.4252/wjsc.v7.i9.1150 – volume: 76 start-page: 4546 issue: 15 year: 2016 ident: 5932_CR49 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-15-3268 – volume: 7 start-page: 80 year: 2017 ident: 5932_CR8 publication-title: Front Oncol doi: 10.3389/fonc.2017.00080 – volume: 9 start-page: e103162 issue: 7 year: 2014 ident: 5932_CR35 publication-title: PLoS One doi: 10.1371/journal.pone.0103162 – volume: 2 start-page: 3 issue: 1 year: 2013 ident: 5932_CR11 publication-title: Clin Transl Med doi: 10.1186/2001-1326-2-3 – volume: 15 start-page: 26 issue: 1 year: 2017 ident: 5932_CR40 publication-title: J Transl Med doi: 10.1186/s12967-017-1122-y – volume: 8 start-page: 837 year: 2017 ident: 5932_CR52 publication-title: Front Physiol doi: 10.3389/fphys.2017.00837 – volume: 21 start-page: 203 issue: 3–4 year: 2016 ident: 5932_CR60 publication-title: Crit Rev Oncog doi: 10.1615/CritRevOncog.2016016976 – volume: 4 start-page: 96 year: 2017 ident: 5932_CR6 publication-title: Stem Cell Investig doi: 10.21037/sci.2017.11.03 – volume: 8 start-page: 34 issue: 1 year: 2013 ident: 5932_CR37 publication-title: Epigenetics doi: 10.4161/epi.23062 – volume: 5 start-page: 43 issue: 1 year: 2018 ident: 5932_CR47 publication-title: Genes Dis doi: 10.1016/j.gendis.2018.02.003 – volume: 14 start-page: 1580 issue: 12 year: 2018 ident: 5932_CR29 publication-title: Alzheimer's & Dementia doi: 10.1016/j.jalz.2018.01.017 – volume: 50 start-page: 117 issue: 3 year: 2017 ident: 5932_CR5 publication-title: BMB Rep doi: 10.5483/BMBRep.2017.50.3.222 – volume: 22 start-page: 37 issue: 1 year: 2013 ident: 5932_CR15 publication-title: Stem Cells Dev doi: 10.1089/scd.2012.0375 – volume: 14 start-page: 2864 issue: 12 year: 2015 ident: 5932_CR34 publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-15-0260 – volume: 1 start-page: 717 issue: 5 year: 2012 ident: 5932_CR48 publication-title: Oncoimmunology doi: 10.4161/onci.20068 – volume: 4 start-page: 366 year: 2014 ident: 5932_CR57 publication-title: Front Oncol doi: 10.3389/fonc.2014.00366 – volume: 383 start-page: 157 issue: 2 year: 2009 ident: 5932_CR23 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2009.02.156 – volume: 6 start-page: 61 issue: 8 year: 2014 ident: 5932_CR33 publication-title: Genome Med doi: 10.1186/s13073-014-0061-y – volume: 10 start-page: 43 issue: 1 year: 2017 ident: 5932_CR36 publication-title: J Hematol Oncol doi: 10.1186/s13045-017-0415-1 – volume: 8 start-page: 34 issue: 3 year: 2016 ident: 5932_CR10 publication-title: Cancers doi: 10.3390/cancers8030034 – volume: 8 start-page: 100 year: 2018 ident: 5932_CR42 publication-title: Front Oncol doi: 10.3389/fonc.2018.00100 – volume: 127 start-page: 3090 issue: 8 year: 2017 ident: 5932_CR44 publication-title: J Clin Invest doi: 10.1172/JCI91095 – volume: 3 start-page: 75 issue: 11 year: 2011 ident: 5932_CR20 publication-title: Genome Med doi: 10.1186/gm291 – volume: 138 start-page: 285 issue: 2 year: 2013 ident: 5932_CR13 publication-title: Pharmacol Ther doi: 10.1016/j.pharmthera.2013.01.014 – volume: 8 start-page: 1213 issue: 11 year: 2013 ident: 5932_CR28 publication-title: Epigenetics doi: 10.4161/epi.26346 – volume: 198 start-page: 281 issue: 3 year: 2012 ident: 5932_CR14 publication-title: J Cell Biol doi: 10.1083/jcb.201202014 – volume: 3 start-page: 372 issue: 5 year: 2017 ident: 5932_CR26 publication-title: Trends Cancer doi: 10.1016/j.trecan.2017.04.004 – volume: 5 start-page: 12 issue: 1 year: 2012 ident: 5932_CR7 publication-title: Int J Stem Cells doi: 10.15283/ijsc.2012.5.1.12 – volume: 2016 start-page: 2192853 year: 2016 ident: 5932_CR39 publication-title: Dis Markers doi: 10.1155/2016/2192853 – volume: 11 start-page: e0150629 issue: 3 year: 2016 ident: 5932_CR30 publication-title: PLoS One doi: 10.1371/journal.pone.0150629 – volume: 19 start-page: 43 issue: 1 year: 2018 ident: 5932_CR50 publication-title: Genome Biol doi: 10.1186/s13059-018-1420-6 – volume: 16 start-page: 40 issue: 1 year: 2017 ident: 5932_CR4 publication-title: Mol Cancer doi: 10.1186/s12943-017-0602-2 |
SSID | ssj0017808 |
Score | 2.2921674 |
Snippet | Differentiated cells that arise from stem cells in early development contain DNA methylation features that provide a memory trace of their fetal cell origin... Background Differentiated cells that arise from stem cells in early development contain DNA methylation features that provide a memory trace of their fetal... Abstract Background Differentiated cells that arise from stem cells in early development contain DNA methylation features that provide a memory trace of their... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 711 |
SubjectTerms | Adult Algorithms Analysis Biological markers Biomarkers Cancer Cancer Epigenomics Cancer genetics Cancer research Cell differentiation Cell Plasticity Cellular Reprogramming - genetics CpG Islands DNA DNA methylation DNA Methylation - genetics Embryonic stem cells Epigenesis, Genetic Female Gene expression Genetic Heterogeneity Genetic Loci Genomes Genomics Human embryonic stem cells Human Embryonic Stem Cells - metabolism Humans Linear Models Male Methylation Neoplasms - genetics Neoplasms - pathology Neoplastic Stem Cells - metabolism Pregnancy Regression analysis Statistics, Nonparametric Stem cells Transcriptome Tumors |
SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gL4s2WUgxCQkKyGiexYx-3QFVA7QGo1JvlJ1QqWbTZPfTfM-NkV2shwYVrPFaS8dgz45n5hpDXIaS2CoGzxIVjbfCKuZQic7rtVHLK2nzfcXYuTy_aT5ficqfVF-aEjfDAI-OOdK1ka1NTN6JqQ-pclxoZubYhVt657K2Dzts4U1P8oFOVmmKYXMmjAU5hhUlqmgkwWJgstFAG6__zSN7RSWW-5I4COrlH7k6WI52PX3yf3Ir9A3L7bIqNPySf527AbUoXidqexp9ueYO4txShmile0NP353OKLaNvxgQ4iskbGdiTXvU0d-ujHqVg-YhcnHz49u6UTa0SmAePYMWiwHigFqlLgUvXYJs-CyPBiQQ2oFSwFDYkLUAh2S5azX0TgQjcIy286JrHZK9f9PEpoXUL86s6NNxXbYrJcu-UdHASgO_jVT0j1YZ1xk844tjO4tpkf0JJM3LbALcNctvIGXm7nfJrBNH4G_ExrseWEPGv8wOQCjNJhfmXVMzIC1xNMxaTbnexmQuNgcu2gde8yhSIgdFjks13ux4G8_Hrl4LozUSUFvCP3k41C8AphM0qKA8KStikvhh-uRErg0OY2dbHxXowWMjMMfjazciTUcy2v46wmmAww-yuEMCCN-VIf_UjY4RL8CvBtN3_H8x8Ru7UVa51Y1wfkL3Vch2fgym2cod51_0GSUku8w priority: 102 providerName: Directory of Open Access Journals |
Title | Absence of an embryonic stem cell DNA methylation signature in human cancer |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31324166 https://www.proquest.com/docview/2264190897 https://pubmed.ncbi.nlm.nih.gov/PMC6642562 https://doaj.org/article/92864af323504df7b7f36e19ade0cbb0 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dixMxEA_3AeKL-G3Ps0YRBGG9_UyyDyKt3nEqLVItFF9CPs-Dc3t2W7D_vTPZbb3FQ_ClD5vJlp3MZGYyk98Q8sJan8fWJpFPCh3l1ohIe-8iXeZceC2UCucdozE7neYfZ8Vsh2zaW7UMrK8N7bCf1HRx8frXz_VbUPg3QeEFO6phjxVYglZGBbgjEdsl-2CYODY0GOV_kgpchAZ1CezHmFTgbZLz2ld0zFRA8_97z75itLoFlVcs1Mltcqt1LemgkYU7ZMdVd8mNUZs8v0c-DXSNekznnqqKuh96sUZgXIpYzhRP8On78YBiT-l1UyFHsbojIH_S84qGdn7UoJgs7pPpyfHXd6dR20shMhAyLCNXYMKwLDz3NmE6wz5-CkasLjw4iUzAWinrywIsluJOlYnJHBBB_FQWpuDZA7JXzSv3iNA0h_lxarPExLl3XiVGC6Zhq4DgyIi0R-IN66Rpgcax38WFDAGHYLLhtgRuS-S2ZD3yajvlskHZ-BfxENdjS4gA2eHBfHEmW32TZSpYrnyWZkWcW8819xlzSamsi43WcY88xdWUzW3TrZrLQVFiZjPP4G-eBwoEyaiwCudMrepafvgy6RC9bIn8HL7RqPZSA3AKcbU6lIcdStBi0xl-thEriUNY-la5-aqWeNM5wews75GHjZhtPx1xN8Gjhtm8I4Ad3nRHqvPvAUScQeAJvu_B_3D-MbmZxuHSW5SUh2RvuVi5J-CTLXWf7PIZ75P94fH486QfTjb6QfvgdzL89htmPTMO |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Absence+of+an+embryonic+stem+cell+DNA+methylation+signature+in+human+cancer&rft.jtitle=BMC+cancer&rft.au=Zhang%2C+Ze&rft.au=Wiencke%2C+John+K.&rft.au=Koestler%2C+Devin+C.&rft.au=Salas%2C+Lucas+A.&rft.date=2019-07-19&rft.issn=1471-2407&rft.eissn=1471-2407&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1186%2Fs12885-019-5932-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12885_019_5932_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2407&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2407&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2407&client=summon |