A novel computational strategy for DNA methylation imputation using mixture regression model (MRM)

DNA methylation is an important heritable epigenetic mark that plays a crucial role in transcriptional regulation and the pathogenesis of various human disorders. The commonly used DNA methylation measurement approaches, e.g., Illumina Infinium HumanMethylation-27 and -450 BeadChip arrays (27 K and...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 21; no. 1; pp. 552 - 17
Main Authors Yu, Fangtang, Xu, Chao, Deng, Hong-Wen, Shen, Hui
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 01.12.2020
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract DNA methylation is an important heritable epigenetic mark that plays a crucial role in transcriptional regulation and the pathogenesis of various human disorders. The commonly used DNA methylation measurement approaches, e.g., Illumina Infinium HumanMethylation-27 and -450 BeadChip arrays (27 K and 450 K arrays) and reduced representation bisulfite sequencing (RRBS), only cover a small proportion of the total CpG sites in the human genome, which considerably limited the scope of the DNA methylation analysis in those studies. We proposed a new computational strategy to impute the methylation value at the unmeasured CpG sites using the mixture of regression model (MRM) of radial basis functions, integrating information of neighboring CpGs and the similarities in local methylation patterns across subjects and across multiple genomic regions. Our method achieved a better imputation accuracy over a set of competing methods on both simulated and empirical data, particularly when the missing rate is high. By applying MRM to an RRBS dataset from subjects with low versus high bone mineral density (BMD), we recovered methylation values of ~ 300 K CpGs in the promoter regions of chromosome 17 and identified some novel differentially methylated CpGs that are significantly associated with BMD. Our method is well applicable to the numerous methylation studies. By expanding the coverage of the methylation dataset to unmeasured sites, it can significantly enhance the discovery of novel differential methylation signals and thus reveal the mechanisms underlying various human disorders/traits.
AbstractList Background DNA methylation is an important heritable epigenetic mark that plays a crucial role in transcriptional regulation and the pathogenesis of various human disorders. The commonly used DNA methylation measurement approaches, e.g., Illumina Infinium HumanMethylation-27 and -450 BeadChip arrays (27 K and 450 K arrays) and reduced representation bisulfite sequencing (RRBS), only cover a small proportion of the total CpG sites in the human genome, which considerably limited the scope of the DNA methylation analysis in those studies. Results We proposed a new computational strategy to impute the methylation value at the unmeasured CpG sites using the mixture of regression model (MRM) of radial basis functions, integrating information of neighboring CpGs and the similarities in local methylation patterns across subjects and across multiple genomic regions. Our method achieved a better imputation accuracy over a set of competing methods on both simulated and empirical data, particularly when the missing rate is high. By applying MRM to an RRBS dataset from subjects with low versus high bone mineral density (BMD), we recovered methylation values of ~ 300 K CpGs in the promoter regions of chromosome 17 and identified some novel differentially methylated CpGs that are significantly associated with BMD. Conclusions Our method is well applicable to the numerous methylation studies. By expanding the coverage of the methylation dataset to unmeasured sites, it can significantly enhance the discovery of novel differential methylation signals and thus reveal the mechanisms underlying various human disorders/traits.
Background DNA methylation is an important heritable epigenetic mark that plays a crucial role in transcriptional regulation and the pathogenesis of various human disorders. The commonly used DNA methylation measurement approaches, e.g., Illumina Infinium HumanMethylation-27 and -450 BeadChip arrays (27 K and 450 K arrays) and reduced representation bisulfite sequencing (RRBS), only cover a small proportion of the total CpG sites in the human genome, which considerably limited the scope of the DNA methylation analysis in those studies. Results We proposed a new computational strategy to impute the methylation value at the unmeasured CpG sites using the mixture of regression model (MRM) of radial basis functions, integrating information of neighboring CpGs and the similarities in local methylation patterns across subjects and across multiple genomic regions. Our method achieved a better imputation accuracy over a set of competing methods on both simulated and empirical data, particularly when the missing rate is high. By applying MRM to an RRBS dataset from subjects with low versus high bone mineral density (BMD), we recovered methylation values of ~ 300 K CpGs in the promoter regions of chromosome 17 and identified some novel differentially methylated CpGs that are significantly associated with BMD. Conclusions Our method is well applicable to the numerous methylation studies. By expanding the coverage of the methylation dataset to unmeasured sites, it can significantly enhance the discovery of novel differential methylation signals and thus reveal the mechanisms underlying various human disorders/traits. Keywords: Methylation, Imputation, Mixture of regression models, Epigenomic association studies
DNA methylation is an important heritable epigenetic mark that plays a crucial role in transcriptional regulation and the pathogenesis of various human disorders. The commonly used DNA methylation measurement approaches, e.g., Illumina Infinium HumanMethylation-27 and -450 BeadChip arrays (27 K and 450 K arrays) and reduced representation bisulfite sequencing (RRBS), only cover a small proportion of the total CpG sites in the human genome, which considerably limited the scope of the DNA methylation analysis in those studies.BACKGROUNDDNA methylation is an important heritable epigenetic mark that plays a crucial role in transcriptional regulation and the pathogenesis of various human disorders. The commonly used DNA methylation measurement approaches, e.g., Illumina Infinium HumanMethylation-27 and -450 BeadChip arrays (27 K and 450 K arrays) and reduced representation bisulfite sequencing (RRBS), only cover a small proportion of the total CpG sites in the human genome, which considerably limited the scope of the DNA methylation analysis in those studies.We proposed a new computational strategy to impute the methylation value at the unmeasured CpG sites using the mixture of regression model (MRM) of radial basis functions, integrating information of neighboring CpGs and the similarities in local methylation patterns across subjects and across multiple genomic regions. Our method achieved a better imputation accuracy over a set of competing methods on both simulated and empirical data, particularly when the missing rate is high. By applying MRM to an RRBS dataset from subjects with low versus high bone mineral density (BMD), we recovered methylation values of ~ 300 K CpGs in the promoter regions of chromosome 17 and identified some novel differentially methylated CpGs that are significantly associated with BMD.RESULTSWe proposed a new computational strategy to impute the methylation value at the unmeasured CpG sites using the mixture of regression model (MRM) of radial basis functions, integrating information of neighboring CpGs and the similarities in local methylation patterns across subjects and across multiple genomic regions. Our method achieved a better imputation accuracy over a set of competing methods on both simulated and empirical data, particularly when the missing rate is high. By applying MRM to an RRBS dataset from subjects with low versus high bone mineral density (BMD), we recovered methylation values of ~ 300 K CpGs in the promoter regions of chromosome 17 and identified some novel differentially methylated CpGs that are significantly associated with BMD.Our method is well applicable to the numerous methylation studies. By expanding the coverage of the methylation dataset to unmeasured sites, it can significantly enhance the discovery of novel differential methylation signals and thus reveal the mechanisms underlying various human disorders/traits.CONCLUSIONSOur method is well applicable to the numerous methylation studies. By expanding the coverage of the methylation dataset to unmeasured sites, it can significantly enhance the discovery of novel differential methylation signals and thus reveal the mechanisms underlying various human disorders/traits.
Abstract Background DNA methylation is an important heritable epigenetic mark that plays a crucial role in transcriptional regulation and the pathogenesis of various human disorders. The commonly used DNA methylation measurement approaches, e.g., Illumina Infinium HumanMethylation-27 and -450 BeadChip arrays (27 K and 450 K arrays) and reduced representation bisulfite sequencing (RRBS), only cover a small proportion of the total CpG sites in the human genome, which considerably limited the scope of the DNA methylation analysis in those studies. Results We proposed a new computational strategy to impute the methylation value at the unmeasured CpG sites using the mixture of regression model (MRM) of radial basis functions, integrating information of neighboring CpGs and the similarities in local methylation patterns across subjects and across multiple genomic regions. Our method achieved a better imputation accuracy over a set of competing methods on both simulated and empirical data, particularly when the missing rate is high. By applying MRM to an RRBS dataset from subjects with low versus high bone mineral density (BMD), we recovered methylation values of ~ 300 K CpGs in the promoter regions of chromosome 17 and identified some novel differentially methylated CpGs that are significantly associated with BMD. Conclusions Our method is well applicable to the numerous methylation studies. By expanding the coverage of the methylation dataset to unmeasured sites, it can significantly enhance the discovery of novel differential methylation signals and thus reveal the mechanisms underlying various human disorders/traits.
DNA methylation is an important heritable epigenetic mark that plays a crucial role in transcriptional regulation and the pathogenesis of various human disorders. The commonly used DNA methylation measurement approaches, e.g., Illumina Infinium HumanMethylation-27 and -450 BeadChip arrays (27 K and 450 K arrays) and reduced representation bisulfite sequencing (RRBS), only cover a small proportion of the total CpG sites in the human genome, which considerably limited the scope of the DNA methylation analysis in those studies. We proposed a new computational strategy to impute the methylation value at the unmeasured CpG sites using the mixture of regression model (MRM) of radial basis functions, integrating information of neighboring CpGs and the similarities in local methylation patterns across subjects and across multiple genomic regions. Our method achieved a better imputation accuracy over a set of competing methods on both simulated and empirical data, particularly when the missing rate is high. By applying MRM to an RRBS dataset from subjects with low versus high bone mineral density (BMD), we recovered methylation values of ~ 300 K CpGs in the promoter regions of chromosome 17 and identified some novel differentially methylated CpGs that are significantly associated with BMD. Our method is well applicable to the numerous methylation studies. By expanding the coverage of the methylation dataset to unmeasured sites, it can significantly enhance the discovery of novel differential methylation signals and thus reveal the mechanisms underlying various human disorders/traits.
DNA methylation is an important heritable epigenetic mark that plays a crucial role in transcriptional regulation and the pathogenesis of various human disorders. The commonly used DNA methylation measurement approaches, e.g., Illumina Infinium HumanMethylation-27 and -450 BeadChip arrays (27 K and 450 K arrays) and reduced representation bisulfite sequencing (RRBS), only cover a small proportion of the total CpG sites in the human genome, which considerably limited the scope of the DNA methylation analysis in those studies. We proposed a new computational strategy to impute the methylation value at the unmeasured CpG sites using the mixture of regression model (MRM) of radial basis functions, integrating information of neighboring CpGs and the similarities in local methylation patterns across subjects and across multiple genomic regions. Our method achieved a better imputation accuracy over a set of competing methods on both simulated and empirical data, particularly when the missing rate is high. By applying MRM to an RRBS dataset from subjects with low versus high bone mineral density (BMD), we recovered methylation values of ~ 300 K CpGs in the promoter regions of chromosome 17 and identified some novel differentially methylated CpGs that are significantly associated with BMD. Our method is well applicable to the numerous methylation studies. By expanding the coverage of the methylation dataset to unmeasured sites, it can significantly enhance the discovery of novel differential methylation signals and thus reveal the mechanisms underlying various human disorders/traits.
ArticleNumber 552
Audience Academic
Author Yu, Fangtang
Deng, Hong-Wen
Shen, Hui
Xu, Chao
Author_xml – sequence: 1
  givenname: Fangtang
  surname: Yu
  fullname: Yu, Fangtang
– sequence: 2
  givenname: Chao
  surname: Xu
  fullname: Xu, Chao
– sequence: 3
  givenname: Hong-Wen
  surname: Deng
  fullname: Deng, Hong-Wen
– sequence: 4
  givenname: Hui
  surname: Shen
  fullname: Shen, Hui
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33261550$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv3CAUha0qVfNo_0AXlaVukoVTwDzMptIofY2UtFLarhHG4DCyzQRwlMmvLzNO0jiqKi-wuN85Fy7nMNsb3KCz7C0EpxBW9EOAqCK8AAgUoKwoKe5eZAcQM1ggCMjek__97DCEFQCQVYC8yvbLElFICDjI6kU-uBvd5cr16zHKaN0guzxEL6NuN7lxPv_0fZH3Ol5tul05t49kPgY7tHlvb-Pode5163UI20LvmmR6fHF5cfI6e2lkF_Sb-_Uo-_3l86-zb8X5j6_Ls8V5oQhnsWhMSRtZU9aohgDMjeGwkqQ0NeWUswrLWlLDEEASGQNwU5fIcC45VhoCDMujbDn5Nk6uxNrbXvqNcNKK3YbzrZA-WtVpkZowrSliAAOsalojVMHUSNKybiQ3yevj5LUe6143Sg9pIN3MdF4Z7JVo3Y1gDFQIsmRwfG_g3fWoQxS9DUp3nRy0G4NAmFLEMWVVQt8_Q1du9OkVthSDMN0Ywb9UK9MF7GBc6qu2pmJBCSAcEkYSdfoPKn2N7q1K8TE27c8EJzNBYqK-ja0cQxDLn5dz9t3ToTxO4yFNCagmQHkXgtdGKDsFJZ3CdgICsQ2umIIrUnDFLrjiLknRM-mD-39EfwC-8O8_
CitedBy_id crossref_primary_10_1016_j_cmpbup_2022_100083
crossref_primary_10_3389_fgene_2022_910439
crossref_primary_10_1007_s11634_023_00570_6
crossref_primary_10_1093_bioinformatics_btab746
crossref_primary_10_3390_biology11030360
crossref_primary_10_1093_bioinformatics_btad474
crossref_primary_10_3389_fcvm_2021_587768
crossref_primary_10_1186_s13072_023_00479_6
crossref_primary_10_1038_s41698_024_00718_3
crossref_primary_10_1214_21_AOAS1511
Cites_doi 10.1038/ng1909
10.1016/j.ajhg.2014.02.011
10.1038/ng.2849
10.1038/s41588-018-0302-x
10.1002/sim.7374
10.18637/jss.v011.i08
10.1038/nsmb.2518
10.1038/nbt.2487
10.1074/jbc.M114.580365
10.1093/ije/dyr238
10.1093/bioinformatics/17.6.520
10.1093/nar/gkt1380
10.1093/bioinformatics/btu049
10.1371/journal.pone.0200785
10.1038/nbt.1630
10.1186/s12864-018-4766-y
10.1016/j.jkss.2018.11.002
10.1186/s13072-018-0194-0
10.1186/s13059-015-0856-1
10.1002/bmb.20433
10.1080/10618600.2000.10474879
10.1038/nrg3230
10.1101/gr.101907.109
10.1186/s13059-017-1233-z
10.1186/s13059-015-0581-9
10.1016/j.isci.2020.100847
10.1093/hmg/ddv493
10.1038/ng1089
10.1177/1947601910393957
10.1093/bioinformatics/btw089
10.1007/s11749-010-0197-z
10.1186/s12859-016-1122-6
10.1016/j.ajhg.2018.11.008
10.1186/s13059-019-1665-8
10.1093/biomet/44.1-2.168
10.1093/bioinformatics/btt498
10.1093/bioinformatics/btz635
10.3389/fgene.2020.00060
10.1371/journal.pone.0121811
10.1186/gb-2012-13-10-r87
10.1038/nature08514
10.1371/journal.pbio.0040072
10.1038/ng.3949
10.1002/gepi.21969
10.2217/epi.15.21
10.1038/nn.3786
10.1186/1756-8935-8-6
10.1016/j.bone.2018.05.012
10.1038/s41598-018-37186-2
10.1186/gb-2012-13-10-r83
10.1007/s40300-015-0064-5
ContentType Journal Article
Copyright COPYRIGHT 2020 BioMed Central Ltd.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2020
Copyright_xml – notice: COPYRIGHT 2020 BioMed Central Ltd.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s12859-020-03865-z
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
Proquest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic


MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (ND)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 17
ExternalDocumentID oai_doaj_org_article_67d7ee6270404cb6b2281fb6a63bda9f
PMC7708217
A650591575
33261550
10_1186_s12859_020_03865_z
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIH HHS
  grantid: R01AG061917
– fundername: NIH HHS
  grantid: R01AR069055
– fundername: NIH HHS
  grantid: U19AG055373
– fundername: NIH HHS
  grantid: R01MH104680
– fundername: NIAMS NIH HHS
  grantid: R01 AR069055
– fundername: NIA NIH HHS
  grantid: R01 AG061917
– fundername: NIH HHS
  grantid: R01AR059781
– fundername: NIA NIH HHS
  grantid: U19 AG055373
– fundername: NIH HHS
  grantid: P20GM109036
– fundername: ;
  grantid: R01AR069055; R01MH104680; R01AR059781; R01AG061917; U19AG055373; P20GM109036
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PMFND
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c597t-df36dab67dcd5049ff918a53fb6969784aba6f7202a2ff04db32f99a94ce10413
IEDL.DBID DOA
ISSN 1471-2105
IngestDate Wed Aug 27 01:02:59 EDT 2025
Thu Aug 21 18:10:47 EDT 2025
Thu Jul 10 20:26:38 EDT 2025
Fri Jul 25 10:46:32 EDT 2025
Tue Jun 17 20:43:33 EDT 2025
Tue Jun 10 20:24:04 EDT 2025
Fri Jun 27 04:03:33 EDT 2025
Mon Jul 21 05:49:00 EDT 2025
Thu Apr 24 23:12:16 EDT 2025
Tue Jul 01 03:38:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Epigenomic association studies
Mixture of regression models
Imputation
Methylation
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c597t-df36dab67dcd5049ff918a53fb6969784aba6f7202a2ff04db32f99a94ce10413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/67d7ee6270404cb6b2281fb6a63bda9f
PMID 33261550
PQID 2471120221
PQPubID 44065
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_67d7ee6270404cb6b2281fb6a63bda9f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7708217
proquest_miscellaneous_2466294678
proquest_journals_2471120221
gale_infotracmisc_A650591575
gale_infotracacademiconefile_A650591575
gale_incontextgauss_ISR_A650591575
pubmed_primary_33261550
crossref_citationtrail_10_1186_s12859_020_03865_z
crossref_primary_10_1186_s12859_020_03865_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2020
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References BF Voight (3865_CR19) 2006; 4
Y Liu (3865_CR9) 2013; 31
C Qiu (3865_CR32) 2020; 23
F Eckhardt (3865_CR47) 2006; 38
RA Groeneveld (3865_CR30) 1984; 33
JA Morris (3865_CR41) 2019; 51
D Lin (3865_CR27) 2016; 17
PL De Jager (3865_CR8) 2014; 17
GL Galea (3865_CR42) 2014; 289
MJ Birnbaum (3865_CR37) 2010; 38
AE Jaffe (3865_CR49) 2012; 41
Z Sun (3865_CR11) 2015; 7
KD Hansen (3865_CR21) 2012; 13
G Zhang (3865_CR13) 2016; 40
L Laurent (3865_CR3) 2010; 20
A Akalin (3865_CR35) 2012; 13
R Jaenisch (3865_CR1) 2003; 33
SK Kim (3865_CR39) 2018; 13
J-H Park (3865_CR45) 2019; 48
J Sun (3865_CR46) 2017; 36
RM Neal (3865_CR44) 2000; 9
T Sofer (3865_CR29) 2013; 29
CL Kleinman (3865_CR7) 2014; 46
Y Liu (3865_CR20) 2014; 94
F Yu (3865_CR34) 2020; 11
C-A Kapourani (3865_CR26) 2019; 20
TJ Peters (3865_CR50) 2015; 8
MJ Aryee (3865_CR48) 2014; 30
L Breiman (3865_CR54) 1996; 24
R-H Chung (3865_CR23) 2020; 36
L Zhou (3865_CR12) 2019; 9
SS Nair (3865_CR22) 2018; 11
N Städler (3865_CR51) 2010; 19
M Bertoletti (3865_CR53) 2015; 73
PA Jones (3865_CR5) 2012; 13
3865_CR24
C Soriano-Tárraga (3865_CR10) 2015; 25
S Fan (3865_CR15) 2016; 32
DE Barton (3865_CR31) 1957; 44
G Kichaev (3865_CR38) 2019; 104
R Lister (3865_CR4) 2009; 462
JP Kemp (3865_CR43) 2017; 49
X-B Mo (3865_CR33) 2015; 10
W Zhang (3865_CR14) 2015; 16
LS Zou (3865_CR17) 2018; 19
CY McLean (3865_CR36) 2010; 28
B Jin (3865_CR2) 2011; 2
Y Bergman (3865_CR6) 2013; 20
S Busche (3865_CR28) 2015; 16
3865_CR52
B Ma (3865_CR18) 2014; 42
X-H Meng (3865_CR40) 2018; 113
C Angermueller (3865_CR16) 2017; 18
O Troyanskaya (3865_CR25) 2001; 17
References_xml – volume: 38
  start-page: 1378
  issue: 12
  year: 2006
  ident: 3865_CR47
  publication-title: Nat Genet
  doi: 10.1038/ng1909
– volume: 94
  start-page: 485
  issue: 4
  year: 2014
  ident: 3865_CR20
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2014.02.011
– volume: 46
  start-page: 39
  issue: 1
  year: 2014
  ident: 3865_CR7
  publication-title: Nat Genetics.
  doi: 10.1038/ng.2849
– volume: 51
  start-page: 258
  issue: 2
  year: 2019
  ident: 3865_CR41
  publication-title: Nat Genet
  doi: 10.1038/s41588-018-0302-x
– volume: 36
  start-page: 3495
  issue: 22
  year: 2017
  ident: 3865_CR46
  publication-title: Stat Med
  doi: 10.1002/sim.7374
– ident: 3865_CR52
  doi: 10.18637/jss.v011.i08
– volume: 20
  start-page: 274
  issue: 3
  year: 2013
  ident: 3865_CR6
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.2518
– volume: 31
  start-page: 142
  issue: 2
  year: 2013
  ident: 3865_CR9
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2487
– volume: 289
  start-page: 25509
  issue: 37
  year: 2014
  ident: 3865_CR42
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M114.580365
– volume: 41
  start-page: 200
  issue: 1
  year: 2012
  ident: 3865_CR49
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dyr238
– volume: 17
  start-page: 520
  issue: 6
  year: 2001
  ident: 3865_CR25
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.6.520
– volume: 42
  start-page: 3515
  issue: 6
  year: 2014
  ident: 3865_CR18
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1380
– volume: 30
  start-page: 1363
  issue: 10
  year: 2014
  ident: 3865_CR48
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu049
– volume: 13
  start-page: e0200785
  issue: 7
  year: 2018
  ident: 3865_CR39
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0200785
– volume: 28
  start-page: 495
  issue: 5
  year: 2010
  ident: 3865_CR36
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1630
– volume: 33
  start-page: 391
  issue: 4
  year: 1984
  ident: 3865_CR30
  publication-title: J R Stat Soc Ser D (Statistician)
– volume: 19
  start-page: 390
  issue: 1
  year: 2018
  ident: 3865_CR17
  publication-title: BMC Genomics
  doi: 10.1186/s12864-018-4766-y
– volume: 48
  start-page: 207
  issue: 2
  year: 2019
  ident: 3865_CR45
  publication-title: J Korean Stat Soc
  doi: 10.1016/j.jkss.2018.11.002
– volume: 11
  start-page: 24
  issue: 1
  year: 2018
  ident: 3865_CR22
  publication-title: Epigenetics Chromatin
  doi: 10.1186/s13072-018-0194-0
– volume: 16
  start-page: 290
  issue: 1
  year: 2015
  ident: 3865_CR28
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0856-1
– volume: 38
  start-page: 385
  issue: 6
  year: 2010
  ident: 3865_CR37
  publication-title: Biochem Mol Biol Educ
  doi: 10.1002/bmb.20433
– volume: 9
  start-page: 249
  issue: 2
  year: 2000
  ident: 3865_CR44
  publication-title: J Comput Graph Stat
  doi: 10.1080/10618600.2000.10474879
– volume: 13
  start-page: 484
  issue: 7
  year: 2012
  ident: 3865_CR5
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3230
– volume: 20
  start-page: 320
  issue: 3
  year: 2010
  ident: 3865_CR3
  publication-title: Genome Res
  doi: 10.1101/gr.101907.109
– volume: 18
  start-page: 90
  issue: 1
  year: 2017
  ident: 3865_CR16
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1233-z
– ident: 3865_CR24
– volume: 16
  start-page: 14
  issue: 1
  year: 2015
  ident: 3865_CR14
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0581-9
– volume: 23
  start-page: 100847
  issue: 2
  year: 2020
  ident: 3865_CR32
  publication-title: Iscience
  doi: 10.1016/j.isci.2020.100847
– volume: 25
  start-page: 609
  issue: 3
  year: 2015
  ident: 3865_CR10
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddv493
– volume: 33
  start-page: 245
  year: 2003
  ident: 3865_CR1
  publication-title: Nat Genet
  doi: 10.1038/ng1089
– volume: 2
  start-page: 607
  issue: 6
  year: 2011
  ident: 3865_CR2
  publication-title: Genes Cancer
  doi: 10.1177/1947601910393957
– volume: 32
  start-page: 1773
  issue: 12
  year: 2016
  ident: 3865_CR15
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw089
– volume: 19
  start-page: 209
  issue: 2
  year: 2010
  ident: 3865_CR51
  publication-title: Test
  doi: 10.1007/s11749-010-0197-z
– volume: 17
  start-page: 247
  issue: 1
  year: 2016
  ident: 3865_CR27
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-1122-6
– volume: 104
  start-page: 65
  issue: 1
  year: 2019
  ident: 3865_CR38
  publication-title: Am J Hum Genetics
  doi: 10.1016/j.ajhg.2018.11.008
– volume: 20
  start-page: 61
  issue: 1
  year: 2019
  ident: 3865_CR26
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1665-8
– volume: 44
  start-page: 168
  issue: 1–2
  year: 1957
  ident: 3865_CR31
  publication-title: Biometrika
  doi: 10.1093/biomet/44.1-2.168
– volume: 29
  start-page: 2884
  issue: 22
  year: 2013
  ident: 3865_CR29
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt498
– volume: 24
  start-page: 49
  issue: 1
  year: 1996
  ident: 3865_CR54
  publication-title: Mach Learn
– volume: 36
  start-page: 660
  issue: 3
  year: 2020
  ident: 3865_CR23
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz635
– volume: 11
  start-page: 60
  year: 2020
  ident: 3865_CR34
  publication-title: Front Genetics
  doi: 10.3389/fgene.2020.00060
– volume: 10
  start-page: e0121811
  issue: 3
  year: 2015
  ident: 3865_CR33
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0121811
– volume: 13
  start-page: R87
  issue: 10
  year: 2012
  ident: 3865_CR35
  publication-title: Genome Biol
  doi: 10.1186/gb-2012-13-10-r87
– volume: 462
  start-page: 315
  issue: 7271
  year: 2009
  ident: 3865_CR4
  publication-title: Nature
  doi: 10.1038/nature08514
– volume: 4
  start-page: e72
  issue: 3
  year: 2006
  ident: 3865_CR19
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0040072
– volume: 49
  start-page: 1468
  issue: 10
  year: 2017
  ident: 3865_CR43
  publication-title: Nat Genet
  doi: 10.1038/ng.3949
– volume: 40
  start-page: 333
  issue: 4
  year: 2016
  ident: 3865_CR13
  publication-title: Genet Epidemiol
  doi: 10.1002/gepi.21969
– volume: 7
  start-page: 813
  issue: 5
  year: 2015
  ident: 3865_CR11
  publication-title: Epigenomics
  doi: 10.2217/epi.15.21
– volume: 17
  start-page: 1156
  issue: 9
  year: 2014
  ident: 3865_CR8
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3786
– volume: 8
  start-page: 6
  issue: 1
  year: 2015
  ident: 3865_CR50
  publication-title: Epigenetics Chromatin
  doi: 10.1186/1756-8935-8-6
– volume: 113
  start-page: 41
  year: 2018
  ident: 3865_CR40
  publication-title: Bone
  doi: 10.1016/j.bone.2018.05.012
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 3865_CR12
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-37186-2
– volume: 13
  start-page: R83
  issue: 10
  year: 2012
  ident: 3865_CR21
  publication-title: Genome Biol
  doi: 10.1186/gb-2012-13-10-r83
– volume: 73
  start-page: 177
  issue: 2
  year: 2015
  ident: 3865_CR53
  publication-title: Metron
  doi: 10.1007/s40300-015-0064-5
SSID ssj0017805
Score 2.4116309
Snippet DNA methylation is an important heritable epigenetic mark that plays a crucial role in transcriptional regulation and the pathogenesis of various human...
Background DNA methylation is an important heritable epigenetic mark that plays a crucial role in transcriptional regulation and the pathogenesis of various...
Abstract Background DNA methylation is an important heritable epigenetic mark that plays a crucial role in transcriptional regulation and the pathogenesis of...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 552
SubjectTerms Annotations
Arrays
Binding sites
Bisulfite
Bone mineral density
Chromosome 17
Chromosomes
Computational biology
Computer applications
CpG islands
CpG Islands - genetics
Datasets
Deoxyribonucleic acid
Disorders
DNA
DNA Methylation
DNA sequencing
Empirical analysis
Epigenesis, Genetic
Epigenetic inheritance
Epigenetics
Epigenomic association studies
Gene regulation
Genetic research
Genetic transcription
Genome, Human - genetics
Genomes
Genomics - methods
Humans
Imputation
Methodology
Methods
Methylation
Mixture of regression models
Nucleotide sequencing
Pathogenesis
Radial basis function
Regions
Regression Analysis
Regression models
Statistical models
Stem cells
Support vector machines
Transcription
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9QwFA66Ivgi3q2uEkVQkbKTJk3aJxkvyyrMPqwuzFtI0mQcWNt1OiPO_nrPaTN1i7DQp-YEkpzkXNLT7yPkFbpFMHs2BXfuU2FtkRoxcanKgyhk4MIavBqYHcujU_F1ns_jhVsbyyp3NrEz1FXj8I78IAMryiBTz9j7818pskbh19VIoXGd3EDoMizpUvMh4WKI17_7UaaQBy1DtLYUE6YJUl2mFyNn1GH2_2-ZL7mmcdnkJT90eIfcjgEknfYav0uu-foeudlTSm7vEzuldfPbn1HX0TXEqz7a9iC0WwoxKv10PKXIHL3t6-DocpCkWAa_oD-Xf_DDAl35RV8mW9OOMYe-mZ3M3j4gp4efv388SiOPQuogXVinVeCyMlaqylU5ZAQhlKwwOQ9WlhKySGGskUHB4poshImoLM9CWZpSOA_ZGuMPyV7d1P4xobnLBDwqhxbhJhype3wx8byCwIIXIiFst6DaRZBx5Lo4012yUUjdK0GDEnSnBH2RkHdDn_MeYuNK6Q-op0ES4bG7F81qoeNp0zBV5T2MDUyUcFbaLCsYTNdIbitThoS8RC1rBMCoscJmYTZtq798O9FTCFnzkkEUm5DXUSg0MAdn4g8LsBKImTWS3B9Jwgl14-bdZtLRQrT6335OyIuhGXti1Vvtmw3KSJmV4MqKhDzq994wbw5xN6aXCVGjXTlamHFLvfzR4YcrBXEfU0-uHtZTcivDo9KV7uyTvfVq459BALa2z7tT9hc1Hi3m
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA_nieCL-G3PU6IIKlLtR5q0DyLrx3EKew-nC_cWkjRZF9b23O7K7f31zqQfXvHwSehTM4FmJpOZaae_HyHPMCzCsadDCOc2ZFrnoWKRCUXmWM5dyrTCVwPTI344Y19OspMd0tMddQpsLi3tkE9qtlq-Pvu5fQcO_9Y7fM7fNDGisIVYCEVIYRmeXyFXITIJdNQp-_NVAfH7-x9nLp03Ck4ew__vk_pCqBq3UV6ISwc3yY0uoaSTdgfcIju2uk2utRST2ztET2hV_7JLajx9Q_fqjzYtKO2WQs5KPx5NKDJJb9u-OLoYJCm2xc_pj8UZfmigKztv22Yr6hl06Ivp8fTlXTI7-PTtw2HY8SqEBsqHdVi6lJdKc1GaMoMKwbkizlWWOs0LDlUlU1pxJ5IoUYlzESt1mriiUAUzFqq3OL1Hdqu6sg8IzUzC4BIZjDATpUjlY_PIpiUkGmnOAhL3CpWmAx1H7oul9MVHzmVrBAlGkN4I8jwgr4Y5py3kxj-l36OdBkmEy_Y36tVcdt4nYanCWng2OLKY0VwnSR7DchVPdakKF5CnaGWJgBgVdtzM1aZp5Oevx3ICKWxWxJDVBuR5J-RqWINR3Q8MoAnE0BpJ7o8kwWPNeLjfTLLf8BKUCE4DGVUckCfDMM7ELrjK1huU4TwpILTlAbnf7r1h3Snk4VhuBkSMduVIMeORavHd44kLAXlgLPb-hyYfkusJOpRv-Nknu-vVxj6CtG2tH3tf_A1b6z7A
  priority: 102
  providerName: Scholars Portal
Title A novel computational strategy for DNA methylation imputation using mixture regression model (MRM)
URI https://www.ncbi.nlm.nih.gov/pubmed/33261550
https://www.proquest.com/docview/2471120221
https://www.proquest.com/docview/2466294678
https://pubmed.ncbi.nlm.nih.gov/PMC7708217
https://doaj.org/article/67d7ee6270404cb6b2281fb6a63bda9f
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9NAEF_0RPBF_DbnWVYRVCRcPja7m8ecXj0LLdLzoG_L7ma3Fs70uLZi7693JklDg6AvQkggO4FkZnZnJpn8foS8wbAIy54JIZy7kBkjQ80iG4rMM8l9yozGVwPjCT-7YKNZNtuj-sKesAYeuFHcMRelcI4nAryNWcNNksjYG655akqde1x9Iebtiqn2-wEi9e9-kZH8eBUjTluIpVKEJJfhTS8M1Wj9f67Je0Gp3zC5F4GGD8j9NnWkRXPLD8ktVz0idxsyye1jYgpaLX-6S2proob2JR9dNfCzWwrZKf00KShyRm-bDji66CQpNsDP6Y_FL_ykQK_dvGmQrWjNlUPfjafj90_IxfD028ezsGVQCC0UCuuw9CkvtQEd2jKDWsD7PJY6S0F_OYf6kWmjuRdJlOjE-4iVJk18nuucWQd1Wpw-JQfVsnLPCc1swmATGYwwG6VI2uNk5NISUopUsoDEO4Uq28KLI8vFparLDMlVYwQFRlC1EdRNQD5011w14Bp_lT5BO3WSCIxdnwB3Ua27qH-5S0Beo5UVQl9U2Fsz15vVSn05n6oCktUsjyF_DcjbVsgv4Rmsbn9VAE0gWlZP8qgnCXPT9od3zqTatWGlQIkwPSB3igPyqhvGK7HfrXLLDcpwnuQQxGRAnjW-1z13Chk3FpYBET2v7CmmP1ItvtfI4UJAxheLw_-hyRfkXoITqm7tOSIH6-uNewkJ2toMyG0xE7CXw88DcqcoRucjOJ6cTr5OB_U8hf2Yyd9ZijzO
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIIXxJ3AAINAMKFouThO8oBQYUwtW_swNqlvxnbsUmkko2mB7kfxGzknNxYh7W1Sn-KTNPa5O8fnI-QlukUwe8oFd25cplTiSuZpN44sS7gNmZK4NTCe8OEx-zyNphvkT3sWBssqW5tYGeqs0LhHvhOAFfUhUw_896c_XESNwq-rLYRGLRb7Zv0LUrby3WgX-PsqCPY-HX0cug2qgKsheF66mQ15JhWPM51FEB9bm_qJjEKreMohp2JSSW5j-CsZWOuxTIWBTVOZMm0gd_FDeO4VchUcr4caFU-7BM9HfID2YE7Cd0ofu8O5mKB5CK3pnvWcX4UR8L8nOOcK-2Wa5_ze3i1yswlY6aCWsNtkw-R3yLUawnJ9l6gBzYuf5oTqCh6i2VqkZd30dk0hJqa7kwFFpOp1XXdH5x0lxbL7Gf0-_40fMujCzOqy3JxWCD30zfhwvH2PHF_KCt8nm3mRm4eERjpg8IsjGGHaCxEqyCSeCTMIZMKEOcRvF1Topqk5YmuciCq5SbiomSCACaJigjhzyNvuntO6pceF1B-QTx0ltuOuLhSLmWi0W8BUY2Pg3cAkMq24CoLEh-lKHqpMptYhL5DLAhtu5FjRM5OrshSjL4diACFylPoQNTvkdUNkC5iDls0BCVgJ7NHVo9zqUYJF0P3hVphEY5FK8U9_HPK8G8Y7scouN8UKaTgPUnCdiUMe1LLXzTuEOB_TWYfEPansLUx_JJ9_q_qVxzHEmX786OLXekauD4_GB-JgNNl_TG4EqDZV2dAW2VwuVuYJBH9L9bTSOEq-XraK_wUJgGtv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+computational+strategy+for+DNA+methylation+imputation+using+mixture+regression+model+%28MRM%29&rft.jtitle=BMC+bioinformatics&rft.au=Fangtang+Yu&rft.au=Chao+Xu&rft.au=Hong-Wen+Deng&rft.au=Hui+Shen&rft.date=2020-12-01&rft.pub=BMC&rft.eissn=1471-2105&rft.volume=21&rft.issue=1&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1186%2Fs12859-020-03865-z&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_67d7ee6270404cb6b2281fb6a63bda9f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon