Multivariate statistical analysis of diffusion imaging parameters using partial least squares: Application to white matter variations in Alzheimer's disease
Diffusion magnetic resonance imaging (dMRI) is a unique technology that allows the noninvasive quantification of microstructural tissue properties of the human brain in healthy subjects as well as the probing of disease-induced variations. Population studies of dMRI data have been essential in ident...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 134; pp. 573 - 586 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.07.2016
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Diffusion magnetic resonance imaging (dMRI) is a unique technology that allows the noninvasive quantification of microstructural tissue properties of the human brain in healthy subjects as well as the probing of disease-induced variations. Population studies of dMRI data have been essential in identifying pathological structural changes in various conditions, such as Alzheimer's and Huntington's diseases (Salat et al., 2010; Rosas et al., 2006). The most common form of dMRI involves fitting a tensor to the underlying imaging data (known as diffusion tensor imaging, or DTI), then deriving parametric maps, each quantifying a different aspect of the underlying microstructure, e.g. fractional anisotropy and mean diffusivity. To date, the statistical methods utilized in most DTI population studies either analyzed only one such map or analyzed several of them, each in isolation. However, it is most likely that variations in the microstructure due to pathology or normal variability would affect several parameters simultaneously, with differing variations modulating the various parameters to differing degrees. Therefore, joint analysis of the available diffusion maps can be more powerful in characterizing histopathology and distinguishing between conditions than the widely used univariate analysis. In this article, we propose a multivariate approach for statistical analysis of diffusion parameters that uses partial least squares correlation (PLSC) analysis and permutation testing as building blocks in a voxel-wise fashion. Stemming from the common formulation, we present three different multivariate procedures for group analysis, regressing-out nuisance parameters and comparing effects of different conditions. We used the proposed procedures to study the effects of non-demented aging, Alzheimer's disease and mild cognitive impairment on the white matter. Here, we present results demonstrating that the proposed PLSC-based approach can differentiate between effects of different conditions in the same region as well as uncover spatial variations of effects across the white matter. The proposed procedures were able to answer questions on structural variations such as: “are there regions in the white matter where Alzheimer's disease has a different effect than aging or similar effect as aging?” and “are there regions in the white matter that are affected by both mild cognitive impairment and Alzheimer's disease but with differing multivariate effects?”
•Voxel-wise multivariate statistical method is proposed.•The method allows sophisticated multivariate hypotheses to be tested.•Results with diffusion imaging are demonstrated.•Method is applied to study effects of AD, MCI and aging. |
---|---|
AbstractList | Diffusion magnetic resonance imaging (dMRI) is a unique technology that allows the noninvasive quantification of microstructural tissue properties of the human brain in healthy subjects as well as the probing of disease-induced variations. Population studies of dMRI data have been essential in identifying pathological structural changes in various conditions, such as Alzheimer's and Huntington's diseases (Salat et al., 2010; Rosas et al., 2006). The most common form of dMRI involves fitting a tensor to the underlying imaging data (known as diffusion tensor imaging, or DTI), then deriving parametric maps, each quantifying a different aspect of the underlying microstructure, e.g. fractional anisotropy and mean diffusivity. To date, the statistical methods utilized in most DTI population studies either analyzed only one such map or analyzed several of them, each in isolation. However, it is most likely that variations in the microstructure due to pathology or normal variability would affect several parameters simultaneously, with differing variations modulating the various parameters to differing degrees. Therefore, joint analysis of the available diffusion maps can be more powerful in characterizing histopathology and distinguishing between conditions than the widely used univariate analysis. In this article, we propose a multivariate approach for statistical analysis of diffusion parameters that uses partial least squares correlation (PLSC) analysis and permutation testing as building blocks in a voxel-wise fashion. Stemming from the common formulation, we present three different multivariate procedures for group analysis, regressing-out nuisance parameters and comparing effects of different conditions. We used the proposed procedures to study the effects of non-demented aging, Alzheimer's disease and mild cognitive impairment on the white matter. Here, we present results demonstrating that the proposed PLSC-based approach can differentiate between effects of different conditions in the same region as well as uncover spatial variations of effects across the white matter. The proposed procedures were able to answer questions on structural variations such as: “are there regions in the white matter where Alzheimer's disease has a different effect than aging or similar effect as aging?” and “are there regions in the white matter that are affected by both mild cognitive impairment and Alzheimer's disease but with differing multivariate effects?” Diffusion magnetic resonance imaging (dMRI) is a unique technology that allows the noninvasive quantification of microstructural tissue properties of the human brain in healthy subjects as well as the probing of disease-induced variations. Population studies of dMRI data have been essential in identifying pathological structural changes in various conditions, such as Alzheimer’s and Huntington’s diseases 1 , 2 . The most common form of dMRI involves fitting a tensor to the underlying imaging data (known as Diffusion Tensor Imaging, or DTI), then deriving parametric maps, each quantifying a different aspect of the underlying microstructure, e.g. fractional anisotropy and mean diffusivity. To date, the statistical methods utilized in most DTI population studies either analyzed only one such map or analyzed several of them, each in isolation. However, it is most likely that variations in the microstructure due to pathology or normal variability would affect several parameters simultaneously, with differing variations modulating the various parameters to differing degrees. Therefore, joint analysis of the available diffusion maps can be more powerful in characterizing histopathology and distinguishing between conditions than the widely used univariate analysis. In this article, we propose a multivariate approach for statistical analysis of diffusion parameters that uses partial least squares correlation (PLSC) analysis and permutation testing as building blocks in a voxel-wise fashion. Stemming from the common formulation, we present three different multivariate procedures for group analysis, regressing-out nuisance parameters and comparing effects of different conditions. We used the proposed procedures to study the effects of non-demented aging, Alzheimer’s disease and mild cognitive impairment on the white matter. Here, we present results demonstrating that the proposed PLSC-based approach can differentiate between effects of different conditions in the same region as well as uncover spatial variations of effects across the white matter. The proposed procedures were able to answer questions on structural variations such as: “are there regions in the white matter where Alzheimer’s disease has a different effect than aging or similar effect as aging?” and “are there regions in the white matter that are affected by both mild cognitive impairment and Alzheimer’s disease but with differing multivariate effects?” Diffusion magnetic resonance imaging (dMRI) is a unique technology that allows the noninvasive quantification of microstructural tissue properties of the human brain in healthy subjects as well as the probing of disease-induced variations. Population studies of dMRI data have been essential in identifying pathological structural changes in various conditions, such as Alzheimer's and Huntington's diseases (Salat et al., 2010; Rosas et al., 2006). The most common form of dMRI involves fitting a tensor to the underlying imaging data (known as diffusion tensor imaging, or DTI), then deriving parametric maps, each quantifying a different aspect of the underlying microstructure, e.g. fractional anisotropy and mean diffusivity. To date, the statistical methods utilized in most DTI population studies either analyzed only one such map or analyzed several of them, each in isolation. However, it is most likely that variations in the microstructure due to pathology or normal variability would affect several parameters simultaneously, with differing variations modulating the various parameters to differing degrees. Therefore, joint analysis of the available diffusion maps can be more powerful in characterizing histopathology and distinguishing between conditions than the widely used univariate analysis. In this article, we propose a multivariate approach for statistical analysis of diffusion parameters that uses partial least squares correlation (PLSC) analysis and permutation testing as building blocks in a voxel-wise fashion. Stemming from the common formulation, we present three different multivariate procedures for group analysis, regressing-out nuisance parameters and comparing effects of different conditions. We used the proposed procedures to study the effects of non-demented aging, Alzheimer's disease and mild cognitive impairment on the white matter. Here, we present results demonstrating that the proposed PLSC-based approach can differentiate between effects of different conditions in the same region as well as uncover spatial variations of effects across the white matter. The proposed procedures were able to answer questions on structural variations such as: “are there regions in the white matter where Alzheimer's disease has a different effect than aging or similar effect as aging?” and “are there regions in the white matter that are affected by both mild cognitive impairment and Alzheimer's disease but with differing multivariate effects?” •Voxel-wise multivariate statistical method is proposed.•The method allows sophisticated multivariate hypotheses to be tested.•Results with diffusion imaging are demonstrated.•Method is applied to study effects of AD, MCI and aging. Diffusion magnetic resonance imaging (dMRI) is a unique technology that allows the noninvasive quantification of microstructural tissue properties of the human brain in healthy subjects as well as the probing of disease-induced variations. Population studies of dMRI data have been essential in identifying pathological structural changes in various conditions, such as Alzheimer's and Huntington's diseases (Salat et al., 2010; Rosas et al., 2006). The most common form of dMRI involves fitting a tensor to the underlying imaging data (known as diffusion tensor imaging, or DTI), then deriving parametric maps, each quantifying a different aspect of the underlying microstructure, e.g. fractional anisotropy and mean diffusivity. To date, the statistical methods utilized in most DTI population studies either analyzed only one such map or analyzed several of them, each in isolation. However, it is most likely that variations in the microstructure due to pathology or normal variability would affect several parameters simultaneously, with differing variations modulating the various parameters to differing degrees. Therefore, joint analysis of the available diffusion maps can be more powerful in characterizing histopathology and distinguishing between conditions than the widely used univariate analysis. In this article, we propose a multivariate approach for statistical analysis of diffusion parameters that uses partial least squares correlation (PLSC) analysis and permutation testing as building blocks in a voxel-wise fashion. Stemming from the common formulation, we present three different multivariate procedures for group analysis, regressing-out nuisance parameters and comparing effects of different conditions. We used the proposed procedures to study the effects of non-demented aging, Alzheimer's disease and mild cognitive impairment on the white matter. Here, we present results demonstrating that the proposed PLSC-based approach can differentiate between effects of different conditions in the same region as well as uncover spatial variations of effects across the white matter. The proposed procedures were able to answer questions on structural variations such as: "are there regions in the white matter where Alzheimer's disease has a different effect than aging or similar effect as aging?" and "are there regions in the white matter that are affected by both mild cognitive impairment and Alzheimer's disease but with differing multivariate effects?"Diffusion magnetic resonance imaging (dMRI) is a unique technology that allows the noninvasive quantification of microstructural tissue properties of the human brain in healthy subjects as well as the probing of disease-induced variations. Population studies of dMRI data have been essential in identifying pathological structural changes in various conditions, such as Alzheimer's and Huntington's diseases (Salat et al., 2010; Rosas et al., 2006). The most common form of dMRI involves fitting a tensor to the underlying imaging data (known as diffusion tensor imaging, or DTI), then deriving parametric maps, each quantifying a different aspect of the underlying microstructure, e.g. fractional anisotropy and mean diffusivity. To date, the statistical methods utilized in most DTI population studies either analyzed only one such map or analyzed several of them, each in isolation. However, it is most likely that variations in the microstructure due to pathology or normal variability would affect several parameters simultaneously, with differing variations modulating the various parameters to differing degrees. Therefore, joint analysis of the available diffusion maps can be more powerful in characterizing histopathology and distinguishing between conditions than the widely used univariate analysis. In this article, we propose a multivariate approach for statistical analysis of diffusion parameters that uses partial least squares correlation (PLSC) analysis and permutation testing as building blocks in a voxel-wise fashion. Stemming from the common formulation, we present three different multivariate procedures for group analysis, regressing-out nuisance parameters and comparing effects of different conditions. We used the proposed procedures to study the effects of non-demented aging, Alzheimer's disease and mild cognitive impairment on the white matter. Here, we present results demonstrating that the proposed PLSC-based approach can differentiate between effects of different conditions in the same region as well as uncover spatial variations of effects across the white matter. The proposed procedures were able to answer questions on structural variations such as: "are there regions in the white matter where Alzheimer's disease has a different effect than aging or similar effect as aging?" and "are there regions in the white matter that are affected by both mild cognitive impairment and Alzheimer's disease but with differing multivariate effects?" |
Author | Salat, David H. Fischl, Bruce Konukoglu, Ender Coutu, Jean-Philippe |
AuthorAffiliation | a MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA c Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA d Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, MA, USA e Computer Science and Artificial Intelligence Laboratory, MIT, USA b Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA |
AuthorAffiliation_xml | – name: c Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA – name: e Computer Science and Artificial Intelligence Laboratory, MIT, USA – name: d Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, MA, USA – name: a MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA – name: b Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA |
Author_xml | – sequence: 1 givenname: Ender surname: Konukoglu fullname: Konukoglu, Ender email: enderk@nmr.mgh.harvard.edu organization: MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA – sequence: 2 givenname: Jean-Philippe surname: Coutu fullname: Coutu, Jean-Philippe organization: MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA – sequence: 3 givenname: David H. surname: Salat fullname: Salat, David H. organization: MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA – sequence: 4 givenname: Bruce surname: Fischl fullname: Fischl, Bruce organization: MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27103138$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1vEzEQhleoiLaBv4AscYBLgr0f9poDIlR8SUVc4Gx5d2eTCY6d2t6g8Fv4sXiTlkIu5GTLM-_zznjmMjuzzkKWEUZnjDL-cjWzMHiHa72AWZ5eZrSc0aJ-kF0wKquprER-Nt6rYlozJs-zyxBWlFLJyvpRdp4LRgtW1BfZr8-DibjVHnUEEqKOGCK22hBttdkFDMT1pMO-HwI6S0ZLtAuy0V6vIYIPJAUODxGTzIAOkYSbQXsIr8h8szEJF0dtdOTHEpPNWsekJAfXFAkELZmbn0vANfjnIfmFhIHH2cNemwBPbs9J9u39u69XH6fXXz58uppfT9tKijjtNBfAuhYkiKoqGi0a2fCyyUUheM_KUle9FBpyVrRV33W0L0UFgnLeSFpJXUyy1wfuZmjWkEA2em3Uxqdu_U45jerfiMWlWritKiXLZcET4MUtwLubAUJUawwtGKMtuCEoVtOaS8Hz-v-pQtY5L3jiTrJnR6krN_g0ln2WrIUo-Oj99O_i_1R9N-P77lrvQvDQqxbj_t9TL2gUo2pcKrVS90ulxqVStFR0D6iPAHceJ0jfHqSQxrdF8Cq0CLaFDj20UXUOT4G8OYK0Bu24pN9hdxriN7ldCK8 |
CitedBy_id | crossref_primary_10_3389_fnhum_2024_1378896 crossref_primary_10_1016_j_clinbiochem_2019_07_008 crossref_primary_10_1371_journal_pone_0222977 crossref_primary_10_1016_j_msard_2021_103442 crossref_primary_10_3389_fneur_2020_00648 crossref_primary_10_1016_j_nicl_2018_10_026 crossref_primary_10_1109_JBHI_2019_2932565 crossref_primary_10_1002_dad2_12040 crossref_primary_10_1016_j_pscychresns_2022_111576 crossref_primary_10_3389_fneur_2023_1094313 crossref_primary_10_1371_journal_pone_0316544 crossref_primary_10_1159_000486565 crossref_primary_10_1016_j_cca_2017_04_019 crossref_primary_10_3389_fnagi_2019_00378 crossref_primary_10_1016_j_neurobiolaging_2017_04_024 crossref_primary_10_1002_jcp_28359 crossref_primary_10_1017_S0033291717001210 |
Cites_doi | 10.1002/1522-2594(200008)44:2<259::AID-MRM13>3.0.CO;2-6 10.1016/j.neuroimage.2009.04.053 10.1016/j.neuroimage.2011.05.055 10.1016/j.neuroscience.2014.02.017 10.1016/j.neuroimage.2012.06.038 10.1002/hbm.22217 10.1016/j.neuroimage.2008.03.061 10.1016/j.neuroimage.2011.10.015 10.1016/j.neurobiolaging.2003.09.005 10.1002/hbm.20563 10.1016/j.neurobiolaging.2013.12.001 10.1212/WNL.34.7.939 10.1016/j.neuroimage.2004.07.020 10.1016/j.neuroimage.2010.09.073 10.1002/hbm.22030 10.1002/jmri.21049 10.1006/nimg.1996.0016 10.1212/WNL.57.2.216 10.1007/978-1-62703-059-5_23 10.1523/JNEUROSCI.1392-08.2008 10.1016/j.neurobiolaging.2008.03.013 10.1007/BF02289009 10.1002/mds.20979 10.1006/nimg.1995.1019 10.1016/j.neuroimage.2013.11.027 10.1136/jnnp.72.6.742 10.1016/j.neuroimage.2010.10.026 10.1159/000084560 10.1093/jnci/92.24.2029 10.3389/fneur.2011.00054 10.1016/j.neuroimage.2011.01.007 10.1002/hbm.1058 10.1016/j.neuroimage.2010.01.041 10.1016/j.jneumeth.2011.10.031 10.1016/j.neuroscience.2015.05.049 10.1016/j.neuroscience.2015.06.031 10.1016/j.neuroimage.2010.07.034 10.1016/j.neuroimage.2005.01.028 10.1002/nbm.782 10.1016/j.cub.2012.07.002 10.1016/j.neuroimage.2010.12.008 10.1016/j.neuroimage.2006.07.047 10.1002/hipo.20573 10.1016/j.neurobiolaging.2004.09.017 10.1016/j.neuroimage.2014.06.077 10.3233/JAD-150184 10.3233/JAD-131481 10.1002/nbm.786 10.1136/jnnp.69.4.528 10.1006/nimg.2002.1267 10.1117/12.2042237 10.1016/j.neuroimage.2003.07.005 10.1016/S0304-3940(02)00914-X 10.1016/j.neuroimage.2006.02.024 10.3233/JAD-122431 10.1212/WNL.43.11.2412-a 10.3233/JAD-2012-112111 10.1097/YCO.0b013e32835ed6e8 10.1016/j.neuroimage.2012.10.051 10.1002/nbm.785 10.1038/nprot.2007.45 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Inc. Copyright © 2016 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Jul 1, 2016 |
Copyright_xml | – notice: 2016 Elsevier Inc. – notice: Copyright © 2016 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Jul 1, 2016 |
CorporateAuthor | the Alzheimer's Disease Neuroimaging Initiative (ADNI) Alzheimer's Disease Neuroimaging Initiative (ADNI) |
CorporateAuthor_xml | – name: the Alzheimer's Disease Neuroimaging Initiative (ADNI) – name: Alzheimer's Disease Neuroimaging Initiative (ADNI) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO 5PM |
DOI | 10.1016/j.neuroimage.2016.04.038 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | ProQuest One Psychology MEDLINE MEDLINE - Academic Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics |
EISSN | 1095-9572 |
EndPage | 586 |
ExternalDocumentID | PMC4912936 4102315591 27103138 10_1016_j_neuroimage_2016_04_038 S1053811916300787 |
Genre | Journal Article |
GeographicLocations | Canada United States--US California |
GeographicLocations_xml | – name: Canada – name: United States--US – name: California |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: U01 NS086625 – fundername: NCCIH NIH HHS grantid: RC1 AT005728 – fundername: NINDS NIH HHS grantid: R01 NS083534 – fundername: NIA NIH HHS grantid: R01 AG022381 – fundername: NIBIB NIH HHS grantid: P41 EB015896 – fundername: NIA NIH HHS grantid: R01 AG050595 – fundername: NCRR NIH HHS grantid: S10 RR019254 – fundername: NINR NIH HHS grantid: R01 NR010827 – fundername: NIA NIH HHS grantid: U01 AG024904 – fundername: NIMH NIH HHS grantid: U01 MH093765 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGQPQ AGRNS AIGII AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT 0SF CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO 5PM |
ID | FETCH-LOGICAL-c597t-da67e1dce9e7553ba7b9b64b27376f144a5f97ae213c5fdd0f475e7066b9059a3 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Aug 21 18:29:41 EDT 2025 Mon Jul 21 11:40:33 EDT 2025 Fri Jul 11 02:16:52 EDT 2025 Wed Aug 13 07:23:44 EDT 2025 Wed Feb 19 02:42:46 EST 2025 Thu Apr 24 23:07:40 EDT 2025 Tue Jul 01 03:01:47 EDT 2025 Fri Feb 23 02:25:06 EST 2024 Tue Aug 26 20:08:39 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multivariate analysis Alzheimer's disease Partial least squares Diffusion tensor imaging |
Language | English |
License | Copyright © 2016 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c597t-da67e1dce9e7553ba7b9b64b27376f144a5f97ae213c5fdd0f475e7066b9059a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/am/pii/S1053811916300787?via%3Dihub |
PMID | 27103138 |
PQID | 1799877366 |
PQPubID | 2031077 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4912936 proquest_miscellaneous_1808697628 proquest_miscellaneous_1798263629 proquest_journals_1799877366 pubmed_primary_27103138 crossref_citationtrail_10_1016_j_neuroimage_2016_04_038 crossref_primary_10_1016_j_neuroimage_2016_04_038 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2016_04_038 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2016_04_038 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-07-01 |
PublicationDateYYYYMMDD | 2016-07-01 |
PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2016 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Smith (bb0235) 2007; 2 Sotak (bb0255) 2002; 15 Beaulieu (bb0035) 2002 Xie (bb0315) 2015; 47 Ouyang (bb0185) 2015; 301 Lu (bb0135) 2014; 39 Smith, Nichols (bb0225) 2009; 44 Takahashi (bb0280) 2002; 332 Shi, Liu, Zhou, Yu, Jiang (bb0220) 2009; 19 Smith (bb0230) 2006; 31 Williams (bb0310) 2013; 34 Jack (bb0105) 2008; 27 Song (bb0250) 2005; 26 Villain (bb0295) 2008; 28 Salat (bb0210) 2005; 26 Lee, Coutu, Wilkens, Yendiki, Rosas (bb0130) 2015 Morris (bb0155) 1993 Suk, Lee, Shen (bb0275) 2014; 101 Moseley (bb0160) 2002 Oishi, Akhter, Mielke, Ceritoglu, Zhang (bb0175) 2011 Amlien, Fjell (bb0015) 2014; 276 Krishnan, Williams, McIntosh, Abdi (bb0125) 2011; 56 Salat (bb0215) 2010; 31 Abdi (bb0010) 2012; 31 Pfefferbaum, Sullivan, Hedehus (bb0190) 2000 Wee (bb0300) 2011; 54 Rose (bb0200) 2000; 69 Abdi, Williams (bb0005) 2013; 930 Teipel (bb0285) 2007; 34 Naylor (bb0165) 2014; 35 Sui (bb0270) 2013; 66 Klawiter (bb0115) 2011; 55 McIntosh, Lobaugh (bb0140) 2004; 23 McKhann (bb0150) 1984; 34 Ouyang, X. et al. Independent component analysis of DTI data reveals white matter covariances in Alzheimer's disease. in (eds. Molthen, R. C. & Weaver, J. B.) 9038, (90380B–7) (SPIE, 2014). Kincses (bb0110) 2013; 36 Chen (bb0050) 2009; 47 Barnes (bb0025) 2005; 19 Bartzokis (bb0030) 2004; 25 Damoiseaux (bb0065) 2009; 30 Chenevert (bb0055) 2000; 92 Good (bb0085) 2005 Wee (bb0305) 2012; 59 McIntosh, Bookstein, Haxby, Grady (bb0145) 1996; 3 Galton (bb0080) 2001; 57 Sachdev, Zhuang, Braidy, Wen (bb0205) 2013; 26 Song (bb0245) 2003; 20 Avants, Cook, Ungar, Gee, Grossman (bb0020) 2010; 50 Bozzali (bb0040) 2002; 72 Izenman (bb0100) 2008 Nichols, Holmes (bb0170) 2002; 15 Brown (bb0045) 2012; 22 Sui, Adali, Yu, Chen, Calhoun (bb0265) 2012; 204 Kovacevic, Abdi, Beaton, McIntosh (bb0120) 2013; 56 Tucker (bb0290) 1958; 23 Groves, Beckmann, Smith, Woolrich (bb0090) 2011; 54 Yendiki, Koldewyn, Kakunoori, Kanwisher, Fischl (bb0320) 2014; 88 Coutu, Chen, Rosas, Salat (bb0060) 2014; 35 Sui (bb0260) 2011; 57 Douaud (bb0070) 2011; 55 Friston, Frith, Frackowiak, Turner (bb0075) 1995; 2 Groves (bb0095) 2012; 63 Song (bb0240) 2002; 17 Rosas (bb0195) 2006; 21 Sui (10.1016/j.neuroimage.2016.04.038_bb0260) 2011; 57 Izenman (10.1016/j.neuroimage.2016.04.038_bb0100) 2008 McIntosh (10.1016/j.neuroimage.2016.04.038_bb0140) 2004; 23 Smith (10.1016/j.neuroimage.2016.04.038_bb0225) 2009; 44 Sotak (10.1016/j.neuroimage.2016.04.038_bb0255) 2002; 15 10.1016/j.neuroimage.2016.04.038_bb0180 Good (10.1016/j.neuroimage.2016.04.038_bb0085) 2005 Abdi (10.1016/j.neuroimage.2016.04.038_bb0010) 2012; 31 Pfefferbaum (10.1016/j.neuroimage.2016.04.038_bb0190) 2000 McKhann (10.1016/j.neuroimage.2016.04.038_bb0150) 1984; 34 Smith (10.1016/j.neuroimage.2016.04.038_bb0230) 2006; 31 Beaulieu (10.1016/j.neuroimage.2016.04.038_bb0035) 2002 Oishi (10.1016/j.neuroimage.2016.04.038_bb0175) 2011 Smith (10.1016/j.neuroimage.2016.04.038_bb0235) 2007; 2 Sui (10.1016/j.neuroimage.2016.04.038_bb0270) 2013; 66 Teipel (10.1016/j.neuroimage.2016.04.038_bb0285) 2007; 34 Song (10.1016/j.neuroimage.2016.04.038_bb0245) 2003; 20 Salat (10.1016/j.neuroimage.2016.04.038_bb0210) 2005; 26 Tucker (10.1016/j.neuroimage.2016.04.038_bb0290) 1958; 23 Brown (10.1016/j.neuroimage.2016.04.038_bb0045) 2012; 22 Chen (10.1016/j.neuroimage.2016.04.038_bb0050) 2009; 47 Song (10.1016/j.neuroimage.2016.04.038_bb0250) 2005; 26 Suk (10.1016/j.neuroimage.2016.04.038_bb0275) 2014; 101 Rose (10.1016/j.neuroimage.2016.04.038_bb0200) 2000; 69 Ouyang (10.1016/j.neuroimage.2016.04.038_bb0185) 2015; 301 Wee (10.1016/j.neuroimage.2016.04.038_bb0305) 2012; 59 Amlien (10.1016/j.neuroimage.2016.04.038_bb0015) 2014; 276 Douaud (10.1016/j.neuroimage.2016.04.038_bb0070) 2011; 55 Chenevert (10.1016/j.neuroimage.2016.04.038_bb0055) 2000; 92 Lee (10.1016/j.neuroimage.2016.04.038_bb0130) 2015 Moseley (10.1016/j.neuroimage.2016.04.038_bb0160) 2002 Sachdev (10.1016/j.neuroimage.2016.04.038_bb0205) 2013; 26 Klawiter (10.1016/j.neuroimage.2016.04.038_bb0115) 2011; 55 Naylor (10.1016/j.neuroimage.2016.04.038_bb0165) 2014; 35 Abdi (10.1016/j.neuroimage.2016.04.038_bb0005) 2013; 930 Avants (10.1016/j.neuroimage.2016.04.038_bb0020) 2010; 50 Lu (10.1016/j.neuroimage.2016.04.038_bb0135) 2014; 39 McIntosh (10.1016/j.neuroimage.2016.04.038_bb0145) 1996; 3 Xie (10.1016/j.neuroimage.2016.04.038_bb0315) 2015; 47 Groves (10.1016/j.neuroimage.2016.04.038_bb0090) 2011; 54 Jack (10.1016/j.neuroimage.2016.04.038_bb0105) 2008; 27 Sui (10.1016/j.neuroimage.2016.04.038_bb0265) 2012; 204 Krishnan (10.1016/j.neuroimage.2016.04.038_bb0125) 2011; 56 Coutu (10.1016/j.neuroimage.2016.04.038_bb0060) 2014; 35 Song (10.1016/j.neuroimage.2016.04.038_bb0240) 2002; 17 Groves (10.1016/j.neuroimage.2016.04.038_bb0095) 2012; 63 Villain (10.1016/j.neuroimage.2016.04.038_bb0295) 2008; 28 Nichols (10.1016/j.neuroimage.2016.04.038_bb0170) 2002; 15 Shi (10.1016/j.neuroimage.2016.04.038_bb0220) 2009; 19 Barnes (10.1016/j.neuroimage.2016.04.038_bb0025) 2005; 19 Kincses (10.1016/j.neuroimage.2016.04.038_bb0110) 2013; 36 Bartzokis (10.1016/j.neuroimage.2016.04.038_bb0030) 2004; 25 Friston (10.1016/j.neuroimage.2016.04.038_bb0075) 1995; 2 Kovacevic (10.1016/j.neuroimage.2016.04.038_bb0120) 2013; 56 Morris (10.1016/j.neuroimage.2016.04.038_bb0155) 1993 Rosas (10.1016/j.neuroimage.2016.04.038_bb0195) 2006; 21 Salat (10.1016/j.neuroimage.2016.04.038_bb0215) 2010; 31 Williams (10.1016/j.neuroimage.2016.04.038_bb0310) 2013; 34 Galton (10.1016/j.neuroimage.2016.04.038_bb0080) 2001; 57 Damoiseaux (10.1016/j.neuroimage.2016.04.038_bb0065) 2009; 30 Wee (10.1016/j.neuroimage.2016.04.038_bb0300) 2011; 54 Yendiki (10.1016/j.neuroimage.2016.04.038_bb0320) 2014; 88 Bozzali (10.1016/j.neuroimage.2016.04.038_bb0040) 2002; 72 Takahashi (10.1016/j.neuroimage.2016.04.038_bb0280) 2002; 332 24378085 - Neurobiol Aging. 2014 Jun;35(6):1412-21 19309039 - Hippocampus. 2009 Nov;19(11):1055-64 12377381 - Neurosci Lett. 2002 Oct 25;332(1):45-8 22019883 - Neuroimage. 2012 Feb 1;59(3):2045-56 18302232 - J Magn Reson Imaging. 2008 Apr;27(4):685-91 23493128 - Curr Opin Psychiatry. 2013 May;26(3):244-51 21640835 - Neuroimage. 2011 Aug 1;57(3):839-55 6610841 - Neurology. 1984 Jul;34(7):939-44 21904533 - Front Neurol. 2011 Aug 24;2:54 18501637 - Neuroimage. 2009 Jan 1;44(1):83-98 11121466 - J Natl Cancer Inst. 2000 Dec 20;92(24):2029-36 26116521 - Neuroscience. 2015 Aug 20;301:553-62 24583036 - Neuroscience. 2014 Sep 12;276:206-15 14642481 - Neuroimage. 2003 Nov;20(3):1714-22 22785390 - J Alzheimers Dis. 2012;31 Suppl 3:S189-201 16624579 - Neuroimage. 2006 Jul 15;31(4):1487-505 24269273 - Neuroimage. 2014 Mar;88:79-90 17166745 - Neuroimage. 2007 Feb 1;34(3):985-95 11747097 - Hum Brain Mapp. 2002 Jan;15(1):1-25 18455835 - Neurobiol Aging. 2010 Feb;31(2):244-56 15917106 - Neurobiol Aging. 2005 Aug-Sep;26(8):1215-27 15785035 - Dement Geriatr Cogn Disord. 2005;19(5-6):338-44 16755582 - Mov Disord. 2006 Sep;21(9):1317-25 18412132 - Hum Brain Mapp. 2009 Apr;30(4):1051-9 17406613 - Nat Protoc. 2007;2(3):499-503 23086857 - Methods Mol Biol. 2013;930:549-79 15862213 - Neuroimage. 2005 May 15;26(1):132-40 23408378 - Hum Brain Mapp. 2014 Mar;35(3):831-46 23542867 - J Alzheimers Dis. 2013;36(1):119-28 9345485 - Neuroimage. 1996 Jun;3(3 Pt 1):143-57 18550759 - J Neurosci. 2008 Jun 11;28(24):6174-81 15501095 - Neuroimage. 2004;23 Suppl 1:S250-63 12414282 - Neuroimage. 2002 Nov;17(3):1429-36 25042445 - Neuroimage. 2014 Nov 1;101:569-82 15212838 - Neurobiol Aging. 2004 Aug;25(7):843-51 24150110 - J Alzheimers Dis. 2014;39(2):261-9 12489102 - NMR Biomed. 2002 Nov-Dec;15(7-8):561-9 10918325 - Magn Reson Med. 2000 Aug;44(2):259-68 12023417 - J Neurol Neurosurg Psychiatry. 2002 Jun;72(6):742-6 22438182 - Hum Brain Mapp. 2013 Aug;34(8):1826-41 12489094 - NMR Biomed. 2002 Nov-Dec;15(7-8):435-55 9343599 - Neuroimage. 1995 Jun;2(2):166-72 21238597 - Neuroimage. 2011 Apr 15;55(4):1454-60 8232972 - Neurology. 1993 Nov;43(11):2412-4 22902750 - Curr Biol. 2012 Sep 25;22(18):1693-8 19393744 - Neuroimage. 2009 Aug 15;47(2):602-10 12489101 - NMR Biomed. 2002 Nov-Dec;15(7-8):553-60 26401572 - J Alzheimers Dis. 2015 ;47(2):509-22 26026680 - Neuroscience. 2015 Aug 20;301:79-89 20083207 - Neuroimage. 2010 Apr 15;50(3):1004-16 10990518 - J Neurol Neurosurg Psychiatry. 2000 Oct;69(4):528-30 22108139 - J Neurosci Methods. 2012 Feb 15;204(1):68-81 21182970 - Neuroimage. 2011 Apr 1;55(3):880-90 20970508 - Neuroimage. 2011 Feb 1;54(3):1812-22 20932919 - Neuroimage. 2011 Feb 1;54(3):2198-217 11468305 - Neurology. 2001 Jul 24;57(2):216-25 22750721 - Neuroimage. 2012 Oct 15;63(1):365-80 20656037 - Neuroimage. 2011 May 15;56(2):455-75 23108278 - Neuroimage. 2013 Feb 1;66:119-32 |
References_xml | – volume: 31 start-page: S189 year: 2012 end-page: S201 ident: bb0010 article-title: Analysis of regional cerebral blood flow data to discriminate among Alzheimer's disease, frontotemporal dementia, and elderly controls: a multi-block barycentric discriminant analysis (MUBADA) methodology publication-title: J. Alzheimers Dis. – volume: 47 start-page: 602 year: 2009 end-page: 610 ident: bb0050 article-title: Linking functional and structural brain images with multivariate network analyses: a novel application of the partial least square method publication-title: NeuroImage – volume: 19 start-page: 1055 year: 2009 end-page: 1064 ident: bb0220 article-title: Hippocampal volume and asymmetry in mild cognitive impairment and Alzheimer's disease: meta-analyses of MRI studies publication-title: Hippocampus – volume: 57 start-page: 839 year: 2011 end-page: 855 ident: bb0260 article-title: Discriminating schizophrenia and bipolar disorder by fusing fMRI and DTI in a multimodal CCA publication-title: NeuroImage – volume: 56 start-page: 159 year: 2013 end-page: 170 ident: bb0120 publication-title: New Perspectives in Partial Least Squares and Related Methods – volume: 3 start-page: 143 year: 1996 end-page: 157 ident: bb0145 article-title: Spatial pattern analysis of functional brain images using partial least squares publication-title: NeuroImage – volume: 15 start-page: 1 year: 2002 end-page: 25 ident: bb0170 article-title: Nonparametric permutation tests for functional neuroimaging: a primer with examples publication-title: Hum. Brain Mapp. – volume: 35 start-page: 1412 year: 2014 end-page: 1421 ident: bb0060 article-title: Non-Gaussian water diffusion in aging white matter publication-title: Neurobiol. Aging – volume: 23 start-page: S250 year: 2004 end-page: S263 ident: bb0140 article-title: Partial least squares analysis of neuroimaging data: applications and advances publication-title: NeuroImage – volume: 88 start-page: 79 year: 2014 end-page: 90 ident: bb0320 article-title: Spurious group differences due to head motion in a diffusion MRI study publication-title: NeuroImage – volume: 63 start-page: 365 year: 2012 end-page: 380 ident: bb0095 article-title: Benefits of multi-modal fusion analysis on a large-scale dataset: life-span patterns of inter-subject variability in cortical morphometry and white matter microstructure publication-title: NeuroImage – volume: 35 start-page: 831 year: 2014 end-page: 846 ident: bb0165 article-title: Voxelwise multivariate analysis of multimodality magnetic resonance imaging publication-title: Hum. Brain Mapp. – volume: 31 start-page: 1487 year: 2006 end-page: 1505 ident: bb0230 article-title: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data publication-title: NeuroImage – volume: 2 start-page: 499 year: 2007 end-page: 503 ident: bb0235 article-title: Acquisition and voxelwise analysis of multi-subject diffusion data with tract-based spatial statistics publication-title: Nat. Protoc. – volume: 26 start-page: 244 year: 2013 end-page: 251 ident: bb0205 article-title: Is Alzheimer's a disease of the white matter? publication-title: Curr. Opin. Psychiatry – year: 2015 ident: bb0130 article-title: Tract-based analysis of white matter degeneration in Alzheimer's disease publication-title: Neuroscience – volume: 26 start-page: 1215 year: 2005 end-page: 1227 ident: bb0210 article-title: Age-related alterations in white matter microstructure measured by diffusion tensor imaging publication-title: Neurobiol. Aging – volume: 34 start-page: 985 year: 2007 end-page: 995 ident: bb0285 article-title: Multivariate network analysis of fiber tract integrity in Alzheimer's disease publication-title: NeuroImage – volume: 54 start-page: 2198 year: 2011 end-page: 2217 ident: bb0090 article-title: Linked independent component analysis for multimodal data fusion publication-title: NeuroImage – volume: 204 start-page: 68 year: 2012 end-page: 81 ident: bb0265 article-title: A review of multivariate methods for multimodal fusion of brain imaging data publication-title: J. Neurosci. Methods – volume: 301 start-page: 553 year: 2015 end-page: 562 ident: bb0185 article-title: Simultaneous changes in gray matter volume and white matter fractional anisotropy in Alzheimer's disease revealed by multimodal CCA and joint ICA publication-title: Neuroscience – year: 2002 ident: bb0035 article-title: The basis of anisotropic water diffusion in the nervous system—a technical review publication-title: NMR Biomed. – volume: 34 start-page: 1826 year: 2013 end-page: 1841 ident: bb0310 article-title: Interindividual variation in serum cholesterol is associated with regional white matter tissue integrity in older adults publication-title: Hum. Brain Mapp. – volume: 332 start-page: 45 year: 2002 end-page: 48 ident: bb0280 article-title: Selective reduction of diffusion anisotropy in white matter of Alzheimer disease brains measured by 3.0 tesla magnetic resonance imaging publication-title: Neurosci. Lett. – volume: 26 start-page: 132 year: 2005 end-page: 140 ident: bb0250 article-title: Demyelination increases radial diffusivity in corpus callosum of mouse brain publication-title: NeuroImage – volume: 56 start-page: 455 year: 2011 end-page: 475 ident: bb0125 article-title: Partial least squares (PLS) methods for neuroimaging: a tutorial and review publication-title: NeuroImage – volume: 50 start-page: 1004 year: 2010 end-page: 1016 ident: bb0020 article-title: Dementia induces correlated reductions in white matter integrity and cortical thickness: a multivariate neuroimaging study with sparse canonical correlation analysis publication-title: NeuroImage – volume: 72 start-page: 742 year: 2002 end-page: 746 ident: bb0040 article-title: White matter damage in Alzheimer's disease assessed in vivo using diffusion tensor magnetic resonance imaging publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 47 start-page: 509 year: 2015 end-page: 522 ident: bb0315 article-title: Identification of amnestic mild cognitive impairment using multi-modal brain features: a combined structural MRI and diffusion tensor imaging study publication-title: J. Alzheimers Dis. – volume: 34 start-page: 939 year: 1984 ident: bb0150 article-title: Clinical diagnosis of Alzheimer's disease report of the NINCDS-ADRDA work group* under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease publication-title: Neurology – volume: 930 start-page: 549 year: 2013 end-page: 579 ident: bb0005 article-title: Partial least squares methods: partial least squares correlation and partial least square regression publication-title: Methods Mol. Biol. – year: 2011 ident: bb0175 article-title: Multi-modal MRI analysis with disease-specific spatial filtering: initial testing to predict mild cognitive impairment patients who convert to Alzheimer's disease publication-title: Front. Neurol. – volume: 17 start-page: 1429 year: 2002 end-page: 1436 ident: bb0240 article-title: Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water publication-title: NeuroImage – year: 2002 ident: bb0160 article-title: Diffusion tensor imaging and aging—a review publication-title: NMR Biomed. – volume: 54 start-page: 1812 year: 2011 end-page: 1822 ident: bb0300 article-title: Enriched white matter connectivity networks for accurate identification of MCI patients publication-title: NeuroImage – volume: 25 start-page: 843 year: 2004 end-page: 851 ident: bb0030 article-title: Heterogeneous age-related breakdown of white matter structural integrity: implications for cortical ‘disconnection’ in aging and Alzheimer's disease publication-title: Neurobiol. Aging – year: 2008 ident: bb0100 article-title: Modern Multivariate Statistical Techniques – volume: 69 start-page: 528 year: 2000 end-page: 530 ident: bb0200 article-title: Loss of connectivity in Alzheimer's disease: an evaluation of white matter tract integrity with colour coded MR diffusion tensor imaging publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 31 start-page: 244 year: 2010 end-page: 256 ident: bb0215 article-title: White matter pathology isolates the hippocampal formation in Alzheimer's disease publication-title: Neurobiol. Aging – volume: 36 start-page: 119 year: 2013 end-page: 128 ident: bb0110 article-title: The pattern of diffusion parameter changes in Alzheimer's disease, identified by means of linked independent component analysis publication-title: J. Alzheimers Dis. – volume: 28 start-page: 6174 year: 2008 end-page: 6181 ident: bb0295 article-title: Relationships between hippocampal atrophy, white matter disruption, and gray matter hypometabolism in Alzheimer's disease publication-title: J. Neurosci. – volume: 30 start-page: 1051 year: 2009 end-page: 1059 ident: bb0065 article-title: White matter tract integrity in aging and Alzheimer's disease publication-title: Hum. Brain Mapp. – volume: 39 start-page: 261 year: 2014 end-page: 269 ident: bb0135 article-title: Regional differences in white matter breakdown between frontotemporal dementia and early-onset Alzheimer's disease publication-title: J. Alzheimers Dis. – volume: 15 start-page: 561 year: 2002 end-page: 569 ident: bb0255 article-title: The role of diffusion tensor imaging in the evaluation of ischemic brain injury — a review publication-title: NMR Biomed. – year: 1993 ident: bb0155 article-title: The clinical dementia rating (CDR): current version and scoring rules publication-title: Neurology – volume: 101 start-page: 569 year: 2014 end-page: 582 ident: bb0275 article-title: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis publication-title: NeuroImage – volume: 2 start-page: 166 year: 1995 end-page: 172 ident: bb0075 article-title: Characterizing dynamic brain responses with fMRI: a multivariate approach publication-title: NeuroImage – volume: 55 start-page: 880 year: 2011 end-page: 890 ident: bb0070 article-title: DTI measures in crossing-fibre areas: increased diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer's disease publication-title: NeuroImage – volume: 23 start-page: 111 year: 1958 end-page: 136 ident: bb0290 article-title: An inter-battery method of factor analysis publication-title: Psychometrika – volume: 22 start-page: 1693 year: 2012 end-page: 1698 ident: bb0045 article-title: Neuroanatomical assessment of biological maturity publication-title: Curr. Biol. – volume: 44 start-page: 83 year: 2009 end-page: 98 ident: bb0225 article-title: Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference publication-title: NeuroImage – volume: 66 start-page: 119 year: 2013 end-page: 132 ident: bb0270 article-title: Three-way (N-way) fusion of brain imaging data based on mCCA publication-title: NeuroImage – reference: Ouyang, X. et al. Independent component analysis of DTI data reveals white matter covariances in Alzheimer's disease. in (eds. Molthen, R. C. & Weaver, J. B.) 9038, (90380B–7) (SPIE, 2014). – volume: 20 start-page: 1714 year: 2003 end-page: 1722 ident: bb0245 article-title: Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia publication-title: NeuroImage – volume: 276 start-page: 206 year: 2014 end-page: 215 ident: bb0015 article-title: Diffusion tensor imaging of white matter degeneration in Alzheimer's disease and mild cognitive impairment publication-title: Neuroscience – volume: 27 start-page: 685 year: 2008 end-page: 691 ident: bb0105 article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods publication-title: J. Magn. Reson. Imaging – volume: 55 start-page: 1454 year: 2011 end-page: 1460 ident: bb0115 article-title: Radial diffusivity predicts demyelination in ex vivo multiple sclerosis spinal cords publication-title: NeuroImage – volume: 59 start-page: 2045 year: 2012 end-page: 2056 ident: bb0305 article-title: Identification of MCI individuals using structural and functional connectivity networks publication-title: NeuroImage – volume: 57 start-page: 216 year: 2001 end-page: 225 ident: bb0080 article-title: Differing patterns of temporal atrophy in Alzheimer's disease and semantic dementia publication-title: Neurology – volume: 19 start-page: 338 year: 2005 end-page: 344 ident: bb0025 article-title: Does Alzheimer's disease affect hippocampal asymmetry? Evidence from a cross-sectional and longitudinal volumetric MRI study publication-title: Dement. Geriatr. Cogn. Disord. – volume: 21 start-page: 1317 year: 2006 end-page: 1325 ident: bb0195 article-title: Diffusion tensor imaging in presymptomatic and early Huntington's disease: selective white matter pathology and its relationship to clinical measures publication-title: Mov. Disord. – year: 2005 ident: bb0085 article-title: Permutation, Parametric, and Bootstrap Tests of Hypotheses – year: 2000 ident: bb0190 article-title: Age-related decline in brain white matter anisotropy measured with spatially corrected echo-planar diffusion tensor imaging publication-title: Magn. Reson. Med. – volume: 92 start-page: 2029 year: 2000 end-page: 2036 ident: bb0055 article-title: Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors publication-title: J. Natl. Cancer Inst. – year: 2000 ident: 10.1016/j.neuroimage.2016.04.038_bb0190 article-title: Age-related decline in brain white matter anisotropy measured with spatially corrected echo-planar diffusion tensor imaging publication-title: Magn. Reson. Med. doi: 10.1002/1522-2594(200008)44:2<259::AID-MRM13>3.0.CO;2-6 – volume: 47 start-page: 602 year: 2009 ident: 10.1016/j.neuroimage.2016.04.038_bb0050 article-title: Linking functional and structural brain images with multivariate network analyses: a novel application of the partial least square method publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.04.053 – volume: 56 start-page: 159 year: 2013 ident: 10.1016/j.neuroimage.2016.04.038_bb0120 – volume: 57 start-page: 839 year: 2011 ident: 10.1016/j.neuroimage.2016.04.038_bb0260 article-title: Discriminating schizophrenia and bipolar disorder by fusing fMRI and DTI in a multimodal CCA+ joint ICA model publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.05.055 – volume: 276 start-page: 206 year: 2014 ident: 10.1016/j.neuroimage.2016.04.038_bb0015 article-title: Diffusion tensor imaging of white matter degeneration in Alzheimer's disease and mild cognitive impairment publication-title: Neuroscience doi: 10.1016/j.neuroscience.2014.02.017 – volume: 63 start-page: 365 year: 2012 ident: 10.1016/j.neuroimage.2016.04.038_bb0095 article-title: Benefits of multi-modal fusion analysis on a large-scale dataset: life-span patterns of inter-subject variability in cortical morphometry and white matter microstructure publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.06.038 – volume: 35 start-page: 831 year: 2014 ident: 10.1016/j.neuroimage.2016.04.038_bb0165 article-title: Voxelwise multivariate analysis of multimodality magnetic resonance imaging publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22217 – volume: 44 start-page: 83 year: 2009 ident: 10.1016/j.neuroimage.2016.04.038_bb0225 article-title: Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.03.061 – volume: 59 start-page: 2045 year: 2012 ident: 10.1016/j.neuroimage.2016.04.038_bb0305 article-title: Identification of MCI individuals using structural and functional connectivity networks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.10.015 – volume: 25 start-page: 843 year: 2004 ident: 10.1016/j.neuroimage.2016.04.038_bb0030 article-title: Heterogeneous age-related breakdown of white matter structural integrity: implications for cortical ‘disconnection’ in aging and Alzheimer's disease publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2003.09.005 – volume: 30 start-page: 1051 year: 2009 ident: 10.1016/j.neuroimage.2016.04.038_bb0065 article-title: White matter tract integrity in aging and Alzheimer's disease publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20563 – volume: 35 start-page: 1412 year: 2014 ident: 10.1016/j.neuroimage.2016.04.038_bb0060 article-title: Non-Gaussian water diffusion in aging white matter publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2013.12.001 – volume: 34 start-page: 939 year: 1984 ident: 10.1016/j.neuroimage.2016.04.038_bb0150 article-title: Clinical diagnosis of Alzheimer's disease report of the NINCDS-ADRDA work group* under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease publication-title: Neurology doi: 10.1212/WNL.34.7.939 – year: 2005 ident: 10.1016/j.neuroimage.2016.04.038_bb0085 – volume: 23 start-page: S250 year: 2004 ident: 10.1016/j.neuroimage.2016.04.038_bb0140 article-title: Partial least squares analysis of neuroimaging data: applications and advances publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.07.020 – volume: 54 start-page: 2198 year: 2011 ident: 10.1016/j.neuroimage.2016.04.038_bb0090 article-title: Linked independent component analysis for multimodal data fusion publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.09.073 – volume: 34 start-page: 1826 year: 2013 ident: 10.1016/j.neuroimage.2016.04.038_bb0310 article-title: Interindividual variation in serum cholesterol is associated with regional white matter tissue integrity in older adults publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22030 – volume: 27 start-page: 685 year: 2008 ident: 10.1016/j.neuroimage.2016.04.038_bb0105 article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.21049 – volume: 3 start-page: 143 year: 1996 ident: 10.1016/j.neuroimage.2016.04.038_bb0145 article-title: Spatial pattern analysis of functional brain images using partial least squares publication-title: NeuroImage doi: 10.1006/nimg.1996.0016 – volume: 57 start-page: 216 year: 2001 ident: 10.1016/j.neuroimage.2016.04.038_bb0080 article-title: Differing patterns of temporal atrophy in Alzheimer's disease and semantic dementia publication-title: Neurology doi: 10.1212/WNL.57.2.216 – volume: 930 start-page: 549 year: 2013 ident: 10.1016/j.neuroimage.2016.04.038_bb0005 article-title: Partial least squares methods: partial least squares correlation and partial least square regression publication-title: Methods Mol. Biol. doi: 10.1007/978-1-62703-059-5_23 – volume: 28 start-page: 6174 year: 2008 ident: 10.1016/j.neuroimage.2016.04.038_bb0295 article-title: Relationships between hippocampal atrophy, white matter disruption, and gray matter hypometabolism in Alzheimer's disease publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1392-08.2008 – volume: 31 start-page: 244 year: 2010 ident: 10.1016/j.neuroimage.2016.04.038_bb0215 article-title: White matter pathology isolates the hippocampal formation in Alzheimer's disease publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2008.03.013 – volume: 23 start-page: 111 year: 1958 ident: 10.1016/j.neuroimage.2016.04.038_bb0290 article-title: An inter-battery method of factor analysis publication-title: Psychometrika doi: 10.1007/BF02289009 – volume: 21 start-page: 1317 year: 2006 ident: 10.1016/j.neuroimage.2016.04.038_bb0195 article-title: Diffusion tensor imaging in presymptomatic and early Huntington's disease: selective white matter pathology and its relationship to clinical measures publication-title: Mov. Disord. doi: 10.1002/mds.20979 – volume: 2 start-page: 166 year: 1995 ident: 10.1016/j.neuroimage.2016.04.038_bb0075 article-title: Characterizing dynamic brain responses with fMRI: a multivariate approach publication-title: NeuroImage doi: 10.1006/nimg.1995.1019 – volume: 88 start-page: 79 year: 2014 ident: 10.1016/j.neuroimage.2016.04.038_bb0320 article-title: Spurious group differences due to head motion in a diffusion MRI study publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.11.027 – volume: 72 start-page: 742 year: 2002 ident: 10.1016/j.neuroimage.2016.04.038_bb0040 article-title: White matter damage in Alzheimer's disease assessed in vivo using diffusion tensor magnetic resonance imaging publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.72.6.742 – volume: 54 start-page: 1812 year: 2011 ident: 10.1016/j.neuroimage.2016.04.038_bb0300 article-title: Enriched white matter connectivity networks for accurate identification of MCI patients publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.10.026 – volume: 19 start-page: 338 year: 2005 ident: 10.1016/j.neuroimage.2016.04.038_bb0025 article-title: Does Alzheimer's disease affect hippocampal asymmetry? Evidence from a cross-sectional and longitudinal volumetric MRI study publication-title: Dement. Geriatr. Cogn. Disord. doi: 10.1159/000084560 – volume: 92 start-page: 2029 year: 2000 ident: 10.1016/j.neuroimage.2016.04.038_bb0055 article-title: Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/92.24.2029 – year: 2011 ident: 10.1016/j.neuroimage.2016.04.038_bb0175 article-title: Multi-modal MRI analysis with disease-specific spatial filtering: initial testing to predict mild cognitive impairment patients who convert to Alzheimer's disease publication-title: Front. Neurol. doi: 10.3389/fneur.2011.00054 – volume: 55 start-page: 1454 year: 2011 ident: 10.1016/j.neuroimage.2016.04.038_bb0115 article-title: Radial diffusivity predicts demyelination in ex vivo multiple sclerosis spinal cords publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.01.007 – volume: 15 start-page: 1 year: 2002 ident: 10.1016/j.neuroimage.2016.04.038_bb0170 article-title: Nonparametric permutation tests for functional neuroimaging: a primer with examples publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.1058 – volume: 50 start-page: 1004 year: 2010 ident: 10.1016/j.neuroimage.2016.04.038_bb0020 article-title: Dementia induces correlated reductions in white matter integrity and cortical thickness: a multivariate neuroimaging study with sparse canonical correlation analysis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.01.041 – volume: 204 start-page: 68 year: 2012 ident: 10.1016/j.neuroimage.2016.04.038_bb0265 article-title: A review of multivariate methods for multimodal fusion of brain imaging data publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2011.10.031 – year: 2015 ident: 10.1016/j.neuroimage.2016.04.038_bb0130 article-title: Tract-based analysis of white matter degeneration in Alzheimer's disease publication-title: Neuroscience doi: 10.1016/j.neuroscience.2015.05.049 – volume: 301 start-page: 553 year: 2015 ident: 10.1016/j.neuroimage.2016.04.038_bb0185 article-title: Simultaneous changes in gray matter volume and white matter fractional anisotropy in Alzheimer's disease revealed by multimodal CCA and joint ICA publication-title: Neuroscience doi: 10.1016/j.neuroscience.2015.06.031 – volume: 56 start-page: 455 year: 2011 ident: 10.1016/j.neuroimage.2016.04.038_bb0125 article-title: Partial least squares (PLS) methods for neuroimaging: a tutorial and review publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.07.034 – volume: 26 start-page: 132 year: 2005 ident: 10.1016/j.neuroimage.2016.04.038_bb0250 article-title: Demyelination increases radial diffusivity in corpus callosum of mouse brain publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.01.028 – year: 2002 ident: 10.1016/j.neuroimage.2016.04.038_bb0035 article-title: The basis of anisotropic water diffusion in the nervous system—a technical review publication-title: NMR Biomed. doi: 10.1002/nbm.782 – volume: 22 start-page: 1693 year: 2012 ident: 10.1016/j.neuroimage.2016.04.038_bb0045 article-title: Neuroanatomical assessment of biological maturity publication-title: Curr. Biol. doi: 10.1016/j.cub.2012.07.002 – volume: 55 start-page: 880 year: 2011 ident: 10.1016/j.neuroimage.2016.04.038_bb0070 article-title: DTI measures in crossing-fibre areas: increased diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer's disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.12.008 – volume: 34 start-page: 985 year: 2007 ident: 10.1016/j.neuroimage.2016.04.038_bb0285 article-title: Multivariate network analysis of fiber tract integrity in Alzheimer's disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.07.047 – volume: 19 start-page: 1055 year: 2009 ident: 10.1016/j.neuroimage.2016.04.038_bb0220 article-title: Hippocampal volume and asymmetry in mild cognitive impairment and Alzheimer's disease: meta-analyses of MRI studies publication-title: Hippocampus doi: 10.1002/hipo.20573 – volume: 26 start-page: 1215 year: 2005 ident: 10.1016/j.neuroimage.2016.04.038_bb0210 article-title: Age-related alterations in white matter microstructure measured by diffusion tensor imaging publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2004.09.017 – year: 2008 ident: 10.1016/j.neuroimage.2016.04.038_bb0100 – volume: 101 start-page: 569 year: 2014 ident: 10.1016/j.neuroimage.2016.04.038_bb0275 article-title: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.06.077 – volume: 47 start-page: 509 year: 2015 ident: 10.1016/j.neuroimage.2016.04.038_bb0315 article-title: Identification of amnestic mild cognitive impairment using multi-modal brain features: a combined structural MRI and diffusion tensor imaging study publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-150184 – volume: 39 start-page: 261 year: 2014 ident: 10.1016/j.neuroimage.2016.04.038_bb0135 article-title: Regional differences in white matter breakdown between frontotemporal dementia and early-onset Alzheimer's disease publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-131481 – volume: 15 start-page: 561 year: 2002 ident: 10.1016/j.neuroimage.2016.04.038_bb0255 article-title: The role of diffusion tensor imaging in the evaluation of ischemic brain injury — a review publication-title: NMR Biomed. doi: 10.1002/nbm.786 – volume: 69 start-page: 528 year: 2000 ident: 10.1016/j.neuroimage.2016.04.038_bb0200 article-title: Loss of connectivity in Alzheimer's disease: an evaluation of white matter tract integrity with colour coded MR diffusion tensor imaging publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.69.4.528 – volume: 17 start-page: 1429 year: 2002 ident: 10.1016/j.neuroimage.2016.04.038_bb0240 article-title: Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water publication-title: NeuroImage doi: 10.1006/nimg.2002.1267 – ident: 10.1016/j.neuroimage.2016.04.038_bb0180 doi: 10.1117/12.2042237 – volume: 20 start-page: 1714 year: 2003 ident: 10.1016/j.neuroimage.2016.04.038_bb0245 article-title: Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia publication-title: NeuroImage doi: 10.1016/j.neuroimage.2003.07.005 – volume: 332 start-page: 45 year: 2002 ident: 10.1016/j.neuroimage.2016.04.038_bb0280 article-title: Selective reduction of diffusion anisotropy in white matter of Alzheimer disease brains measured by 3.0 tesla magnetic resonance imaging publication-title: Neurosci. Lett. doi: 10.1016/S0304-3940(02)00914-X – volume: 31 start-page: 1487 year: 2006 ident: 10.1016/j.neuroimage.2016.04.038_bb0230 article-title: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.02.024 – volume: 36 start-page: 119 year: 2013 ident: 10.1016/j.neuroimage.2016.04.038_bb0110 article-title: The pattern of diffusion parameter changes in Alzheimer's disease, identified by means of linked independent component analysis publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-122431 – year: 1993 ident: 10.1016/j.neuroimage.2016.04.038_bb0155 article-title: The clinical dementia rating (CDR): current version and scoring rules publication-title: Neurology doi: 10.1212/WNL.43.11.2412-a – volume: 31 start-page: S189 issue: Suppl. 3 year: 2012 ident: 10.1016/j.neuroimage.2016.04.038_bb0010 article-title: Analysis of regional cerebral blood flow data to discriminate among Alzheimer's disease, frontotemporal dementia, and elderly controls: a multi-block barycentric discriminant analysis (MUBADA) methodology publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-2012-112111 – volume: 26 start-page: 244 year: 2013 ident: 10.1016/j.neuroimage.2016.04.038_bb0205 article-title: Is Alzheimer's a disease of the white matter? publication-title: Curr. Opin. Psychiatry doi: 10.1097/YCO.0b013e32835ed6e8 – volume: 66 start-page: 119 year: 2013 ident: 10.1016/j.neuroimage.2016.04.038_bb0270 article-title: Three-way (N-way) fusion of brain imaging data based on mCCA+jICA and its application to discriminating schizophrenia publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.10.051 – year: 2002 ident: 10.1016/j.neuroimage.2016.04.038_bb0160 article-title: Diffusion tensor imaging and aging—a review publication-title: NMR Biomed. doi: 10.1002/nbm.785 – volume: 2 start-page: 499 year: 2007 ident: 10.1016/j.neuroimage.2016.04.038_bb0235 article-title: Acquisition and voxelwise analysis of multi-subject diffusion data with tract-based spatial statistics publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.45 – reference: 9343599 - Neuroimage. 1995 Jun;2(2):166-72 – reference: 24378085 - Neurobiol Aging. 2014 Jun;35(6):1412-21 – reference: 18455835 - Neurobiol Aging. 2010 Feb;31(2):244-56 – reference: 11747097 - Hum Brain Mapp. 2002 Jan;15(1):1-25 – reference: 8232972 - Neurology. 1993 Nov;43(11):2412-4 – reference: 18550759 - J Neurosci. 2008 Jun 11;28(24):6174-81 – reference: 26401572 - J Alzheimers Dis. 2015 ;47(2):509-22 – reference: 24269273 - Neuroimage. 2014 Mar;88:79-90 – reference: 22019883 - Neuroimage. 2012 Feb 1;59(3):2045-56 – reference: 17406613 - Nat Protoc. 2007;2(3):499-503 – reference: 21182970 - Neuroimage. 2011 Apr 1;55(3):880-90 – reference: 19309039 - Hippocampus. 2009 Nov;19(11):1055-64 – reference: 19393744 - Neuroimage. 2009 Aug 15;47(2):602-10 – reference: 22785390 - J Alzheimers Dis. 2012;31 Suppl 3:S189-201 – reference: 12489102 - NMR Biomed. 2002 Nov-Dec;15(7-8):561-9 – reference: 25042445 - Neuroimage. 2014 Nov 1;101:569-82 – reference: 18302232 - J Magn Reson Imaging. 2008 Apr;27(4):685-91 – reference: 17166745 - Neuroimage. 2007 Feb 1;34(3):985-95 – reference: 26116521 - Neuroscience. 2015 Aug 20;301:553-62 – reference: 20970508 - Neuroimage. 2011 Feb 1;54(3):1812-22 – reference: 22438182 - Hum Brain Mapp. 2013 Aug;34(8):1826-41 – reference: 22750721 - Neuroimage. 2012 Oct 15;63(1):365-80 – reference: 23542867 - J Alzheimers Dis. 2013;36(1):119-28 – reference: 15785035 - Dement Geriatr Cogn Disord. 2005;19(5-6):338-44 – reference: 12489094 - NMR Biomed. 2002 Nov-Dec;15(7-8):435-55 – reference: 15212838 - Neurobiol Aging. 2004 Aug;25(7):843-51 – reference: 20083207 - Neuroimage. 2010 Apr 15;50(3):1004-16 – reference: 23086857 - Methods Mol Biol. 2013;930:549-79 – reference: 11121466 - J Natl Cancer Inst. 2000 Dec 20;92(24):2029-36 – reference: 12377381 - Neurosci Lett. 2002 Oct 25;332(1):45-8 – reference: 15501095 - Neuroimage. 2004;23 Suppl 1:S250-63 – reference: 20932919 - Neuroimage. 2011 Feb 1;54(3):2198-217 – reference: 18412132 - Hum Brain Mapp. 2009 Apr;30(4):1051-9 – reference: 22902750 - Curr Biol. 2012 Sep 25;22(18):1693-8 – reference: 26026680 - Neuroscience. 2015 Aug 20;301:79-89 – reference: 15917106 - Neurobiol Aging. 2005 Aug-Sep;26(8):1215-27 – reference: 16624579 - Neuroimage. 2006 Jul 15;31(4):1487-505 – reference: 23108278 - Neuroimage. 2013 Feb 1;66:119-32 – reference: 12414282 - Neuroimage. 2002 Nov;17(3):1429-36 – reference: 23493128 - Curr Opin Psychiatry. 2013 May;26(3):244-51 – reference: 24150110 - J Alzheimers Dis. 2014;39(2):261-9 – reference: 23408378 - Hum Brain Mapp. 2014 Mar;35(3):831-46 – reference: 6610841 - Neurology. 1984 Jul;34(7):939-44 – reference: 9345485 - Neuroimage. 1996 Jun;3(3 Pt 1):143-57 – reference: 18501637 - Neuroimage. 2009 Jan 1;44(1):83-98 – reference: 10918325 - Magn Reson Med. 2000 Aug;44(2):259-68 – reference: 11468305 - Neurology. 2001 Jul 24;57(2):216-25 – reference: 12489101 - NMR Biomed. 2002 Nov-Dec;15(7-8):553-60 – reference: 20656037 - Neuroimage. 2011 May 15;56(2):455-75 – reference: 15862213 - Neuroimage. 2005 May 15;26(1):132-40 – reference: 16755582 - Mov Disord. 2006 Sep;21(9):1317-25 – reference: 22108139 - J Neurosci Methods. 2012 Feb 15;204(1):68-81 – reference: 12023417 - J Neurol Neurosurg Psychiatry. 2002 Jun;72(6):742-6 – reference: 21640835 - Neuroimage. 2011 Aug 1;57(3):839-55 – reference: 21904533 - Front Neurol. 2011 Aug 24;2:54 – reference: 14642481 - Neuroimage. 2003 Nov;20(3):1714-22 – reference: 24583036 - Neuroscience. 2014 Sep 12;276:206-15 – reference: 10990518 - J Neurol Neurosurg Psychiatry. 2000 Oct;69(4):528-30 – reference: 21238597 - Neuroimage. 2011 Apr 15;55(4):1454-60 |
SSID | ssj0009148 |
Score | 2.3078153 |
Snippet | Diffusion magnetic resonance imaging (dMRI) is a unique technology that allows the noninvasive quantification of microstructural tissue properties of the human... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 573 |
SubjectTerms | Aged Aging Alzheimer Disease - diagnostic imaging Alzheimer Disease - pathology Alzheimer's disease Brain - diagnostic imaging Brain - pathology Cognitive ability Cognitive Dysfunction - diagnostic imaging Cognitive Dysfunction - pathology Data processing Diffusion Magnetic Resonance Imaging - methods Diffusion tensor imaging Female Histopathology Humans Least-Squares Analysis Magnetic resonance imaging Male Medical imaging Multivariate Analysis Neurodegenerative diseases Neuroimaging NMR Nuclear magnetic resonance Partial least squares Pharmaceutical industry Population studies R&D Research & development Spatial variations Statistical analysis Statistics Substantia alba Variation White Matter - diagnostic imaging White Matter - pathology |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEA9aQfoiWr-uVhlB8Gnx9ivZ6IMcYilCfbJwbyHZTejJ3W7bvVPo3-If60yS3bMq5V4vGTZ7Mzv5TWbyG8beoFPEjT3Tia0qjQFKbRNZUYqdO1Pwhhpd0XnH6Vd-clZ8mZfzeODWx7LKwSd6R910NZ2RvyPmskqInPOPF5cJdY2i7GpsoXGX3SPqMirpEnOxJd1Ni3AVrsyTCifESp5Q3-X5Ihcr_GqpwIt7wlO6pfL_7elf-Pl3FeUf29LxQ_Yg4kmYBQN4xO7Y9oDdP40Z8wO2T2gykDE_Zr_8ddsfGB4jwoR-GEF5HblJoHNAPVM2dIgGtG7c2oD4wVdUN9MD1cn7H9AzLGFJnX-gv9zQLab3MNtmw2HdwU9KUcDKM3hCeCoZOSxamC2vz-1iZa_e9hBzRE_Y2fHnb59OktieIakxClknjebCpvj60oqyzI0WRhpeGAREgjsM1HTppNA2S_O6dE0zdYUorUCMYySCOp0_ZXtt19rnDEoMW2prmtRJXqQuQwwzxdjZOJOnmrtmwsSgFVVH7nJqobFUQ5Had7XVpyJ9qmmhUJ8Tlo6SF4G_YwcZOSheDfdT0aMq3GR2kP0wykYME7DJjtJHg52p6Et6tbX8CXs9DqMXoNSObm238XMwTkQwIm-ZU2H4iugzw8c8C6Y7_iWZoHYftABxw6jHCcRCfnOkXZx7NvJCEmTkh7cv_QXbp_cMhc5HbG99tbEvEc6tzSv_zf4GARFQSg priority: 102 providerName: ProQuest |
Title | Multivariate statistical analysis of diffusion imaging parameters using partial least squares: Application to white matter variations in Alzheimer's disease |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811916300787 https://dx.doi.org/10.1016/j.neuroimage.2016.04.038 https://www.ncbi.nlm.nih.gov/pubmed/27103138 https://www.proquest.com/docview/1799877366 https://www.proquest.com/docview/1798263629 https://www.proquest.com/docview/1808697628 https://pubmed.ncbi.nlm.nih.gov/PMC4912936 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemISFeEIyvwjYZCYmn0CZx7BieumlTAa1CwKS-WXZia5nadKwtSDzwl_DHcuc46QoIVeKlUROf4sTn-8jd_Y6QFyAUQbEnOrJ5rsFBKWwkcwyxc2cYL7HRFX7vOBvz0Tl7N8kmO-S4rYXBtMog-xuZ7qV1ONMPb7N_VVX9T2AZgLoBfwNRo4DvsIKdCeTyVz_WaR4yZk05XJZGODpk8zQ5Xh4zsprBzsUkL-5BT7FS5e8q6k8T9PdMyhuq6fQeuRtsSjpspn2f7Nh6j9w-C1HzB-Snr7L9Cl4xGJYUS4g8OjOQ6ABJQueOYquUFX47ozhV0GgUYcFnmC6zoJge70-AQJjSKTb8oYsvKyxeek2H6yA4Xc7pN4xM0JkH7qTNXZG3aVXT4fT7ha1m9vrlgobQ0ENyfnry-XgUha4MUQHOxzIqNRc2hieWVmRZarQw0nBmwA4S3IF_pjMnhbZJnBaZK8uBYyKzAkwbI8GW0-kjslvPa_uE0Ay8lcKaMnaSs9glYLoMwGU2zqSx5q7sEdEuhCoCZDl2zpiqNjftUq2XUOESqgFTsIQ9EneUVw1sxxY0sl1r1ZalgiBVoFu2oH3T0W6w75bU-y1rqSBCFgqh-nIhUs575Hl3GTY_RnR0becrPwbcQ7BB5D_G5OC1gtGZwG0eN9zavZJEYJcPnIDY4ONuAIKPb16pqwsPQs4kWor86X89-DNyB_816c_7ZHd5vbIHYOQtzaHfxfArJuKQ3Bq-fT8aw_HoZPzh4y8VHVtP |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJsFeEIyvwgAjgXiKaL7sGIRQgU0dWyuENmlvnp3YWlGbbEvLBH8LfwN_I3ex0zJAU1_2WvsaJ2ff_c73RchzEIqg2CMVmCxTYKDkJhAZutiZ1QkrsNEV3ncMhqx_kHw6TA9XyK82FwbDKluZ2AjqosrxjvwVVi7LOI8Ze3dyGmDXKPSuti003LbYNd_PwWSr3-58BP6-iKLtrf0P_cB3FQhyAM_ToFCMm7DIjTA8TWOtuBaaJRr0OGcW7AuVWsGVicI4T21RdG3CU8NBNWsBWETF8L_XyFoCLwmCYO391vDzl0WZ3zBxyXdpHGRhKHzskIsoaypUjiYgJzCkjDUlVjEv5v8K8V_A-3fc5h-KcPsWuekRLO25LXebrJhyg1wfeB_9BllH_OrKP98hP5sE329gkAOmpXU7AvTKV0OhlaXYpWWG13YU1w3KlGJF8glG6tQUI_ObH0AWjekYew3R-nSGeVOvaW_hf6fTip6jU4ROmpqh1D0VjxUdlbQ3_nFsRhNz9rKm3it1lxxcCevukdWyKs0DQlMwlHKji9AKloQ2AtTUBWtdWx2HitmiQ3jLFZn7aunYtGMs27C4r3LBT4n8lN1EAj87JJxTnriKIUvQiJbxss2IBRkuQa0tQftmTutRk0NDS1JvtvtMeulVy8VZ65Bn82GQO-hMUqWpZs0csEwB_ohL5mRgMAPejeAx993WnX-SiGODEVwAv7Cp5xOw7vnFkXJ03NQ_TwSCVPbw8qU_JTf6-4M9ubcz3H1E1vGdXZj1Jlmdns3MYwCTU_3En2BKjq5aaPwGbFeO5Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKkapeUCk_DRQwEojTqtk_ew1CKKJELaUVByrlZuxdWw1Kdttu0gqehSfh6ZhZezcUUJVLr7Enu8nYM994xt8Q8gKMIjj2SAUmyxQEKLkJRIYpdmZ1wgpsdIXnHYdHbO84-ThKRyvkV3sXBssqW5vYGOqiyvGMfAeZyzLOY8Z2rC-L-Lw7fHd6FmAHKcy0tu003BI5MN8vIXyr3-7vgq5fRtHww5f3e4HvMBDkAKRnQaEYN2GRG2F4msZacS00SzT4dM4sxBoqtYIrE4Vxntqi6NuEp4aDm9YCcImK4Xtvkds8TkPcY3zEF4S_YeKu4aVxkIWh8FVErras4aocT8FiYHEZa8hW8YbM_13jv9D37wrOP1zicIPc8ViWDtziu0tWTLlJ1g59tn6TrCOSdUTQ98jP5qrvBYTmgG5p3Y6AvPK8KLSyFPu1zPEAj-J7g1ulyE0-xZqdmmKNfvMBWKUJnWDXIVqfzfEG1Ws6WGTi6ayil5geodOGPZS6p-IGo-OSDiY_Tsx4as5f1dTnp-6T4xtR3AOyWlal2SI0hZApN7oIrWBJaCPAT32I27XVcaiYLXqEt1qRuedNx_YdE9kWyH2TC31K1KfsJxL02SNhJ3nquEOWkBGt4mV7NxasuQQHt4Tsm07W4yeHi5aU3m7XmfR2rJaLXdcjz7thsECYVlKlqebNHIhRAQiJa-ZkEDoD8o3gMQ_d0u3-kohjqxF8AX5lUXcTkAH96kg5PmmY0BOBcJU9uv7Vn5E1MBXy0_7RwWOyjj_Z1Vtvk9XZ-dw8AVQ500-b7UvJ15u2F78BEdmRtQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+statistical+analysis+of+diffusion+imaging+parameters+using+partial+least+squares%3A+Application+to+white+matter+variations+in+Alzheimer%27s+disease&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Konukoglu%2C+Ender&rft.au=Coutu%2C+Jean-Philippe&rft.au=Salat%2C+David+H&rft.au=Fischl%2C+Bruce&rft.date=2016-07-01&rft.issn=1095-9572&rft.eissn=1095-9572&rft.volume=134&rft.spage=573&rft_id=info:doi/10.1016%2Fj.neuroimage.2016.04.038&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |