Microbiome analyses of 12 psyllid species of the family Psyllidae identified various bacteria including Fukatsuia and Serratia symbiotica, known as secondary symbionts of aphids

Psyllids (Hemiptera: Psylloidea) comprise a group of plant sap-sucking insects that includes important agricultural pests. They have close associations not only with plant pathogens, but also with various microbes, including obligate mutualists and facultative symbionts. Recent studies are revealing...

Full description

Saved in:
Bibliographic Details
Published inBMC microbiology Vol. 22; no. 1; pp. 15 - 21
Main Authors Nakabachi, Atsushi, Inoue, Hiromitsu, Hirose, Yuu
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 07.01.2022
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Psyllids (Hemiptera: Psylloidea) comprise a group of plant sap-sucking insects that includes important agricultural pests. They have close associations not only with plant pathogens, but also with various microbes, including obligate mutualists and facultative symbionts. Recent studies are revealing that interactions among such bacterial populations are important for psyllid biology and host plant pathology. In the present study, to obtain further insight into the ecological and evolutionary behaviors of bacteria in Psylloidea, we analyzed the microbiomes of 12 psyllid species belonging to the family Psyllidae (11 from Psyllinae and one from Macrocorsinae), using high-throughput amplicon sequencing of the 16S rRNA gene. The analysis showed that all 12 psyllids have the primary symbiont, Candidatus Carsonella ruddii (Gammaproteobacteria: Oceanospirillales), and at least one secondary symbiont. The majority of the secondary symbionts were gammaproteobacteria, especially those of the family Enterobacteriaceae (order: Enterobacteriales). Among them, symbionts belonging to "endosymbionts3", which is a genus-level monophyletic group assigned by the SILVA rRNA database, were the most prevalent and were found in 9 of 11 Psyllinae species. Ca. Fukatsuia symbiotica and Serratia symbiotica, which were recognized only as secondary symbionts of aphids, were also identified. In addition to other Enterobacteriaceae bacteria, including Arsenophonus, Sodalis, and "endosymbionts2", which is another genus-level clade, Pseudomonas (Pseudomonadales: Pseudomonadaceae) and Diplorickettsia (Diplorickettsiales: Diplorickettsiaceae) were identified. Regarding Alphaproteobacteria, the potential plant pathogen Ca. Liberibacter europaeus (Rhizobiales: Rhizobiaceae) was detected for the first time in Anomoneura mori (Psyllinae), a mulberry pest. Wolbachia (Rickettsiales: Anaplasmataceae) and Rickettsia (Rickettsiales: Rickettsiaceae), plausible host reproduction manipulators that are potential tools to control pest insects, were also detected. The present study identified various bacterial symbionts including previously unexpected lineages in psyllids, suggesting considerable interspecific transfer of arthropod symbionts. The findings provide deeper insights into the evolution of interactions among insects, bacteria, and plants, which may be exploited to facilitate the control of pest psyllids in the future.
AbstractList Background Psyllids (Hemiptera: Psylloidea) comprise a group of plant sap-sucking insects that includes important agricultural pests. They have close associations not only with plant pathogens, but also with various microbes, including obligate mutualists and facultative symbionts. Recent studies are revealing that interactions among such bacterial populations are important for psyllid biology and host plant pathology. In the present study, to obtain further insight into the ecological and evolutionary behaviors of bacteria in Psylloidea, we analyzed the microbiomes of 12 psyllid species belonging to the family Psyllidae (11 from Psyllinae and one from Macrocorsinae), using high-throughput amplicon sequencing of the 16S rRNA gene. Results The analysis showed that all 12 psyllids have the primary symbiont, Candidatus Carsonella ruddii (Gammaproteobacteria: Oceanospirillales), and at least one secondary symbiont. The majority of the secondary symbionts were gammaproteobacteria, especially those of the family Enterobacteriaceae (order: Enterobacteriales). Among them, symbionts belonging to “endosymbionts3”, which is a genus-level monophyletic group assigned by the SILVA rRNA database, were the most prevalent and were found in 9 of 11 Psyllinae species. Ca. Fukatsuia symbiotica and Serratia symbiotica, which were recognized only as secondary symbionts of aphids, were also identified. In addition to other Enterobacteriaceae bacteria, including Arsenophonus, Sodalis, and “endosymbionts2”, which is another genus-level clade, Pseudomonas (Pseudomonadales: Pseudomonadaceae) and Diplorickettsia (Diplorickettsiales: Diplorickettsiaceae) were identified. Regarding Alphaproteobacteria, the potential plant pathogen Ca. Liberibacter europaeus (Rhizobiales: Rhizobiaceae) was detected for the first time in Anomoneura mori (Psyllinae), a mulberry pest. Wolbachia (Rickettsiales: Anaplasmataceae) and Rickettsia (Rickettsiales: Rickettsiaceae), plausible host reproduction manipulators that are potential tools to control pest insects, were also detected. Conclusions The present study identified various bacterial symbionts including previously unexpected lineages in psyllids, suggesting considerable interspecific transfer of arthropod symbionts. The findings provide deeper insights into the evolution of interactions among insects, bacteria, and plants, which may be exploited to facilitate the control of pest psyllids in the future.
Psyllids (Hemiptera: Psylloidea) comprise a group of plant sap-sucking insects that includes important agricultural pests. They have close associations not only with plant pathogens, but also with various microbes, including obligate mutualists and facultative symbionts. Recent studies are revealing that interactions among such bacterial populations are important for psyllid biology and host plant pathology. In the present study, to obtain further insight into the ecological and evolutionary behaviors of bacteria in Psylloidea, we analyzed the microbiomes of 12 psyllid species belonging to the family Psyllidae (11 from Psyllinae and one from Macrocorsinae), using high-throughput amplicon sequencing of the 16S rRNA gene. The analysis showed that all 12 psyllids have the primary symbiont, Candidatus Carsonella ruddii (Gammaproteobacteria: Oceanospirillales), and at least one secondary symbiont. The majority of the secondary symbionts were gammaproteobacteria, especially those of the family Enterobacteriaceae (order: Enterobacteriales). Among them, symbionts belonging to "endosymbionts3", which is a genus-level monophyletic group assigned by the SILVA rRNA database, were the most prevalent and were found in 9 of 11 Psyllinae species. Ca. Fukatsuia symbiotica and Serratia symbiotica, which were recognized only as secondary symbionts of aphids, were also identified. In addition to other Enterobacteriaceae bacteria, including Arsenophonus, Sodalis, and "endosymbionts2", which is another genus-level clade, Pseudomonas (Pseudomonadales: Pseudomonadaceae) and Diplorickettsia (Diplorickettsiales: Diplorickettsiaceae) were identified. Regarding Alphaproteobacteria, the potential plant pathogen Ca. Liberibacter europaeus (Rhizobiales: Rhizobiaceae) was detected for the first time in Anomoneura mori (Psyllinae), a mulberry pest. Wolbachia (Rickettsiales: Anaplasmataceae) and Rickettsia (Rickettsiales: Rickettsiaceae), plausible host reproduction manipulators that are potential tools to control pest insects, were also detected. The present study identified various bacterial symbionts including previously unexpected lineages in psyllids, suggesting considerable interspecific transfer of arthropod symbionts. The findings provide deeper insights into the evolution of interactions among insects, bacteria, and plants, which may be exploited to facilitate the control of pest psyllids in the future.
Psyllids (Hemiptera: Psylloidea) comprise a group of plant sap-sucking insects that includes important agricultural pests. They have close associations not only with plant pathogens, but also with various microbes, including obligate mutualists and facultative symbionts. Recent studies are revealing that interactions among such bacterial populations are important for psyllid biology and host plant pathology. In the present study, to obtain further insight into the ecological and evolutionary behaviors of bacteria in Psylloidea, we analyzed the microbiomes of 12 psyllid species belonging to the family Psyllidae (11 from Psyllinae and one from Macrocorsinae), using high-throughput amplicon sequencing of the 16S rRNA gene. The analysis showed that all 12 psyllids have the primary symbiont, Candidatus Carsonella ruddii (Gammaproteobacteria: Oceanospirillales), and at least one secondary symbiont. The majority of the secondary symbionts were gammaproteobacteria, especially those of the family Enterobacteriaceae (order: Enterobacteriales). Among them, symbionts belonging to "endosymbionts3", which is a genus-level monophyletic group assigned by the SILVA rRNA database, were the most prevalent and were found in 9 of 11 Psyllinae species. Ca. Fukatsuia symbiotica and Serratia symbiotica, which were recognized only as secondary symbionts of aphids, were also identified. In addition to other Enterobacteriaceae bacteria, including Arsenophonus, Sodalis, and "endosymbionts2", which is another genus-level clade, Pseudomonas (Pseudomonadales: Pseudomonadaceae) and Diplorickettsia (Diplorickettsiales: Diplorickettsiaceae) were identified. Regarding Alphaproteobacteria, the potential plant pathogen Ca. Liberibacter europaeus (Rhizobiales: Rhizobiaceae) was detected for the first time in Anomoneura mori (Psyllinae), a mulberry pest. Wolbachia (Rickettsiales: Anaplasmataceae) and Rickettsia (Rickettsiales: Rickettsiaceae), plausible host reproduction manipulators that are potential tools to control pest insects, were also detected. The present study identified various bacterial symbionts including previously unexpected lineages in psyllids, suggesting considerable interspecific transfer of arthropod symbionts. The findings provide deeper insights into the evolution of interactions among insects, bacteria, and plants, which may be exploited to facilitate the control of pest psyllids in the future.
Abstract Background Psyllids (Hemiptera: Psylloidea) comprise a group of plant sap-sucking insects that includes important agricultural pests. They have close associations not only with plant pathogens, but also with various microbes, including obligate mutualists and facultative symbionts. Recent studies are revealing that interactions among such bacterial populations are important for psyllid biology and host plant pathology. In the present study, to obtain further insight into the ecological and evolutionary behaviors of bacteria in Psylloidea, we analyzed the microbiomes of 12 psyllid species belonging to the family Psyllidae (11 from Psyllinae and one from Macrocorsinae), using high-throughput amplicon sequencing of the 16S rRNA gene. Results The analysis showed that all 12 psyllids have the primary symbiont, Candidatus Carsonella ruddii (Gammaproteobacteria: Oceanospirillales), and at least one secondary symbiont. The majority of the secondary symbionts were gammaproteobacteria, especially those of the family Enterobacteriaceae (order: Enterobacteriales). Among them, symbionts belonging to “endosymbionts3”, which is a genus-level monophyletic group assigned by the SILVA rRNA database, were the most prevalent and were found in 9 of 11 Psyllinae species. Ca. Fukatsuia symbiotica and Serratia symbiotica, which were recognized only as secondary symbionts of aphids, were also identified. In addition to other Enterobacteriaceae bacteria, including Arsenophonus, Sodalis, and “endosymbionts2”, which is another genus-level clade, Pseudomonas (Pseudomonadales: Pseudomonadaceae) and Diplorickettsia (Diplorickettsiales: Diplorickettsiaceae) were identified. Regarding Alphaproteobacteria, the potential plant pathogen Ca. Liberibacter europaeus (Rhizobiales: Rhizobiaceae) was detected for the first time in Anomoneura mori (Psyllinae), a mulberry pest. Wolbachia (Rickettsiales: Anaplasmataceae) and Rickettsia (Rickettsiales: Rickettsiaceae), plausible host reproduction manipulators that are potential tools to control pest insects, were also detected. Conclusions The present study identified various bacterial symbionts including previously unexpected lineages in psyllids, suggesting considerable interspecific transfer of arthropod symbionts. The findings provide deeper insights into the evolution of interactions among insects, bacteria, and plants, which may be exploited to facilitate the control of pest psyllids in the future.
Psyllids (Hemiptera: Psylloidea) comprise a group of plant sap-sucking insects that includes important agricultural pests. They have close associations not only with plant pathogens, but also with various microbes, including obligate mutualists and facultative symbionts. Recent studies are revealing that interactions among such bacterial populations are important for psyllid biology and host plant pathology. In the present study, to obtain further insight into the ecological and evolutionary behaviors of bacteria in Psylloidea, we analyzed the microbiomes of 12 psyllid species belonging to the family Psyllidae (11 from Psyllinae and one from Macrocorsinae), using high-throughput amplicon sequencing of the 16S rRNA gene.BACKGROUNDPsyllids (Hemiptera: Psylloidea) comprise a group of plant sap-sucking insects that includes important agricultural pests. They have close associations not only with plant pathogens, but also with various microbes, including obligate mutualists and facultative symbionts. Recent studies are revealing that interactions among such bacterial populations are important for psyllid biology and host plant pathology. In the present study, to obtain further insight into the ecological and evolutionary behaviors of bacteria in Psylloidea, we analyzed the microbiomes of 12 psyllid species belonging to the family Psyllidae (11 from Psyllinae and one from Macrocorsinae), using high-throughput amplicon sequencing of the 16S rRNA gene.The analysis showed that all 12 psyllids have the primary symbiont, Candidatus Carsonella ruddii (Gammaproteobacteria: Oceanospirillales), and at least one secondary symbiont. The majority of the secondary symbionts were gammaproteobacteria, especially those of the family Enterobacteriaceae (order: Enterobacteriales). Among them, symbionts belonging to "endosymbionts3", which is a genus-level monophyletic group assigned by the SILVA rRNA database, were the most prevalent and were found in 9 of 11 Psyllinae species. Ca. Fukatsuia symbiotica and Serratia symbiotica, which were recognized only as secondary symbionts of aphids, were also identified. In addition to other Enterobacteriaceae bacteria, including Arsenophonus, Sodalis, and "endosymbionts2", which is another genus-level clade, Pseudomonas (Pseudomonadales: Pseudomonadaceae) and Diplorickettsia (Diplorickettsiales: Diplorickettsiaceae) were identified. Regarding Alphaproteobacteria, the potential plant pathogen Ca. Liberibacter europaeus (Rhizobiales: Rhizobiaceae) was detected for the first time in Anomoneura mori (Psyllinae), a mulberry pest. Wolbachia (Rickettsiales: Anaplasmataceae) and Rickettsia (Rickettsiales: Rickettsiaceae), plausible host reproduction manipulators that are potential tools to control pest insects, were also detected.RESULTSThe analysis showed that all 12 psyllids have the primary symbiont, Candidatus Carsonella ruddii (Gammaproteobacteria: Oceanospirillales), and at least one secondary symbiont. The majority of the secondary symbionts were gammaproteobacteria, especially those of the family Enterobacteriaceae (order: Enterobacteriales). Among them, symbionts belonging to "endosymbionts3", which is a genus-level monophyletic group assigned by the SILVA rRNA database, were the most prevalent and were found in 9 of 11 Psyllinae species. Ca. Fukatsuia symbiotica and Serratia symbiotica, which were recognized only as secondary symbionts of aphids, were also identified. In addition to other Enterobacteriaceae bacteria, including Arsenophonus, Sodalis, and "endosymbionts2", which is another genus-level clade, Pseudomonas (Pseudomonadales: Pseudomonadaceae) and Diplorickettsia (Diplorickettsiales: Diplorickettsiaceae) were identified. Regarding Alphaproteobacteria, the potential plant pathogen Ca. Liberibacter europaeus (Rhizobiales: Rhizobiaceae) was detected for the first time in Anomoneura mori (Psyllinae), a mulberry pest. Wolbachia (Rickettsiales: Anaplasmataceae) and Rickettsia (Rickettsiales: Rickettsiaceae), plausible host reproduction manipulators that are potential tools to control pest insects, were also detected.The present study identified various bacterial symbionts including previously unexpected lineages in psyllids, suggesting considerable interspecific transfer of arthropod symbionts. The findings provide deeper insights into the evolution of interactions among insects, bacteria, and plants, which may be exploited to facilitate the control of pest psyllids in the future.CONCLUSIONSThe present study identified various bacterial symbionts including previously unexpected lineages in psyllids, suggesting considerable interspecific transfer of arthropod symbionts. The findings provide deeper insights into the evolution of interactions among insects, bacteria, and plants, which may be exploited to facilitate the control of pest psyllids in the future.
Background Psyllids (Hemiptera: Psylloidea) comprise a group of plant sap-sucking insects that includes important agricultural pests. They have close associations not only with plant pathogens, but also with various microbes, including obligate mutualists and facultative symbionts. Recent studies are revealing that interactions among such bacterial populations are important for psyllid biology and host plant pathology. In the present study, to obtain further insight into the ecological and evolutionary behaviors of bacteria in Psylloidea, we analyzed the microbiomes of 12 psyllid species belonging to the family Psyllidae (11 from Psyllinae and one from Macrocorsinae), using high-throughput amplicon sequencing of the 16S rRNA gene. Results The analysis showed that all 12 psyllids have the primary symbiont, Candidatus Carsonella ruddii (Gammaproteobacteria: Oceanospirillales), and at least one secondary symbiont. The majority of the secondary symbionts were gammaproteobacteria, especially those of the family Enterobacteriaceae (order: Enterobacteriales). Among them, symbionts belonging to "endosymbionts3", which is a genus-level monophyletic group assigned by the SILVA rRNA database, were the most prevalent and were found in 9 of 11 Psyllinae species. Ca. Fukatsuia symbiotica and Serratia symbiotica, which were recognized only as secondary symbionts of aphids, were also identified. In addition to other Enterobacteriaceae bacteria, including Arsenophonus, Sodalis, and "endosymbionts2", which is another genus-level clade, Pseudomonas (Pseudomonadales: Pseudomonadaceae) and Diplorickettsia (Diplorickettsiales: Diplorickettsiaceae) were identified. Regarding Alphaproteobacteria, the potential plant pathogen Ca. Liberibacter europaeus (Rhizobiales: Rhizobiaceae) was detected for the first time in Anomoneura mori (Psyllinae), a mulberry pest. Wolbachia (Rickettsiales: Anaplasmataceae) and Rickettsia (Rickettsiales: Rickettsiaceae), plausible host reproduction manipulators that are potential tools to control pest insects, were also detected. Conclusions The present study identified various bacterial symbionts including previously unexpected lineages in psyllids, suggesting considerable interspecific transfer of arthropod symbionts. The findings provide deeper insights into the evolution of interactions among insects, bacteria, and plants, which may be exploited to facilitate the control of pest psyllids in the future. Keywords: Psyllinae, Macrocorsinae, Liberibacter, Wolbachia, Rickettsia, Diplorickettsia, Fukatsuia, Serratia symbiotica, Sodalis, Arsenophonus
ArticleNumber 15
Audience Academic
Author Inoue, Hiromitsu
Nakabachi, Atsushi
Hirose, Yuu
Author_xml – sequence: 1
  givenname: Atsushi
  orcidid: 0000-0003-0281-1723
  surname: Nakabachi
  fullname: Nakabachi, Atsushi
– sequence: 2
  givenname: Hiromitsu
  surname: Inoue
  fullname: Inoue, Hiromitsu
– sequence: 3
  givenname: Yuu
  surname: Hirose
  fullname: Hirose, Yuu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34996376$$D View this record in MEDLINE/PubMed
BookMark eNp9U9tu1DAQjVARbRd-gAdkiReQ2GI7ie28IFUVhZWKQBSerYkvu24Te2snhf0s_hDvpdCtEIqiODPnnLGPZ46LAx-8KYrnBJ8QItjbRKhgbIopyW9Fmyl9VByRipMpJQIf3FsfFscpXWFMuCj5k-KwrJqGlZwdFb8-ORVD60JvEHjoVskkFCwiFC3TquucRmlplNtGh4VBFnrXrdCXbRYMctr4wVlnNLqF6MKYUAtqMNEBcl51o3Z-js7HaxjSmGPgNbo0McKQf9Kqz8UHp-ANuvbhh0eQUDIqeA1xtUv7YVMdlgun09PisYUumWe776T4fv7-29nH6cXnD7Oz04upqhs-TDWjZSk4sJK2UAlNcCMMwdZqTS3mlNcGrOW8pZRjrGxdYW2bqm4ayjitVTkpZltdHeBKLqPr84ZkACc3gRDnEmLeeGdkW2uFBW_r2piK8VZYVRK-rlaVtdI4a73bai3HtjdaZcMidHui-xnvFnIebqXgFa6EyAKvdgIx3IwmDbJ3SZmuA2-y4ZIyIiiteT7zpHj5AHoVxpivdo2iuKkYJuwvag75AM7bkOuqtag8ZU3JmlpUTUad_AOVH216l-_IWJfje4TXe4SMGczPYQ5jSnJ2-XUf--K-KX_cuGvODBBbQO7QlKKxUrkhd01Ye-Q6SbBcz4HczoHMcyA3cyBpptIH1Dv1_5B-A1zQC7o
CitedBy_id crossref_primary_10_1007_s42690_023_00960_5
crossref_primary_10_1111_1462_2920_16138
crossref_primary_10_3390_ijms242115836
crossref_primary_10_7717_peerj_16347
crossref_primary_10_1128_msystems_00578_23
crossref_primary_10_1146_annurev_ento_120120_114738
crossref_primary_10_1128_spectrum_02249_23
crossref_primary_10_7717_peerj_18025
crossref_primary_10_1128_spectrum_01757_22
crossref_primary_10_1264_jsme2_ME22078
crossref_primary_10_1111_1462_2920_16180
crossref_primary_10_1111_eea_13497
crossref_primary_10_1264_jsme2_ME23045
crossref_primary_10_1038_s41598_022_20968_0
crossref_primary_10_1264_jsme2_ME24041
crossref_primary_10_1007_s42770_024_01465_0
crossref_primary_10_1128_spectrum_00170_24
crossref_primary_10_3389_fmicb_2023_1236731
crossref_primary_10_1007_s00284_025_04119_y
crossref_primary_10_1016_j_jip_2023_107959
crossref_primary_10_1002_ece3_11628
crossref_primary_10_1016_j_jip_2025_108309
Cites_doi 10.1007/978-3-642-66161-7_3
10.1007/s00284-011-9885-5
10.1093/gbe/evr002
10.1099/00207713-41-4-563
10.1038/s41587-019-0209-9
10.5852/ejt.2021.736.1257
10.1007/s00248-020-01491-z
10.1016/j.cois.2015.03.006
10.1002/ps.3643
10.3389/fmicb.2017.01037
10.1094/PHYTO-12-16-0426-RVW
10.1093/femsec/fiw205
10.1146/annurev.micro.53.1.71
10.1007/BF00403077
10.1046/j.1365-2583.2001.00231.x
10.1128/IAI.00889-17
10.1094/PHYTO-07-13-0182-R
10.1111/syen.12302
10.1371/journal.pgen.1000827
10.1111/1751-7915.12707
10.1371/journal.pone.0216599
10.1128/mBio.02475-19
10.1007/s00248-016-0733-9
10.1007/s00248-014-0463-9
10.1186/s40168-017-0276-4
10.1007/s00248-017-0971-5
10.1007/s00248-012-0150-7
10.1146/annurev.genet.41.110306.130119
10.1111/j.1462-2920.2010.02347.x
10.1111/1744-7917.12566
10.1186/s12866-020-01895-4
10.1371/journal.pone.0011478
10.1371/journal.pone.0050067
10.1371/journal.pone.0179531
10.1146/annurev-ento-120811-153542
10.1126/science.1195463
10.1186/1471-2105-10-421
10.1128/mSystems.00290-19
10.1007/s002840010138
10.1038/nrmicro3330
10.1016/j.cub.2013.06.027
10.3390/v7112903
10.5197/j.2044-0588.2020.041.003
10.1007/s00284-005-0092-0
10.3389/fmicb.2021.739763
10.1371/journal.pone.0189779
10.1007/s10658-012-0121-3
10.1371/journal.pone.0132248
10.1017/S0007485309006737
10.1038/ismej.2013.27
10.1046/j.1570-7458.1999.00485.x
10.1186/s40168-018-0470-z
10.1146/annurev-micro-091213-112901
10.7717/peerj.5486
10.1371/journal.pone.0227434
10.1007/s002840010240
10.1016/S0022-2011(03)00020-X
10.1371/journal.pone.0218190
10.1128/mBio.00359-21
10.1111/j.1365-2583.2009.00941.x
10.1016/j.cub.2014.06.038
10.1371/journal.pbio.1000313
10.1126/science.1134196
10.1016/j.jbiotec.2017.06.1198
10.1016/j.tim.2019.02.002
10.1371/journal.pbio.0020069
10.1128/AEM.01527-13
10.1093/oxfordjournals.molbev.a025878
10.1073/pnas.0409034102
10.1111/j.1365-2583.2009.00946.x
10.1016/s0022-1910(98)00104-8
10.1046/j.1365-2540.2001.00848.x
10.1016/j.syapm.2016.03.001
10.1111/syen.12345
10.5197/j.2044-0588.2013.027.006
10.1371/journal.pone.0082612
10.1016/j.jip.2005.08.009
10.1111/mec.12211
10.3389/fmicb.2019.01948
10.1038/nmeth.3869
10.1016/j.cois.2018.10.004
10.1099/ijs.0.063255-0
10.1093/molbev/msu004
10.1017/S0007485300031217
10.1111/1462-2920.12121
10.1128/AEM.01672-07
10.1128/AEM.02240-09
10.1016/S0965-1748(01)00115-1
10.1093/aesa/saw007
10.1111/j.1365-2583.2009.00956.x
10.1128/AEM.64.10.3599-3606.1998
10.1128/AEM.03049-13
10.1007/s12600-012-0225-5
10.1186/1741-7007-7-12
10.1371/journal.pone.0028695
10.1111/mec.12637
10.1093/gbe/evaa175
10.1007/s10658-010-9737-3
10.1038/srep32590
10.1080/00222930903437325
10.1146/annurev-ento-112408-085305
10.1093/bioinformatics/btu033
10.1128/AEM.66.7.2898-2905.2000
10.1093/bioinformatics/bts252
10.1603/EN13256
10.1186/1471-2180-9-143
10.1038/s41579-018-0025-0
10.1093/molbev/mss180
10.1016/j.jinsphys.2019.103931
10.1038/nrmicro2670
10.14806/ej.17.1.200
10.1111/1462-2920.13351
10.1038/nrmicro1969
10.2108/zsj.17.983
10.1007/s10096-011-1318-7
10.1128/mSphereDirect.00171-17
10.1007/s00248-018-1290-1
10.1371/journal.pone.0019135
10.1371/journal.pone.0216319
10.3389/fmicb.2019.00764
ContentType Journal Article
Copyright 2022. The Author(s).
COPYRIGHT 2022 BioMed Central Ltd.
2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2022
Copyright_xml – notice: 2022. The Author(s).
– notice: COPYRIGHT 2022 BioMed Central Ltd.
– notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QL
7T7
7U9
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s12866-021-02429-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE


MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2180
EndPage 21
ExternalDocumentID oai_doaj_org_article_b5dc087b55ee467b8fc317e10f435cd0
PMC8740488
A693695849
34996376
10_1186_s12866_021_02429_2
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8FE
8FH
8FI
8FJ
A8Z
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK5
LK8
M1P
M48
M7P
M7R
MM.
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
~02
-A0
3V.
ACRMQ
ADINQ
AGJBV
C24
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7QL
7T7
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c597t-d623387a632ba48d1098e10ffdd2f07275eaff77b22700cf540df9459926725c3
IEDL.DBID M48
ISSN 1471-2180
IngestDate Wed Aug 27 01:28:53 EDT 2025
Thu Aug 21 18:21:34 EDT 2025
Mon Jul 21 11:06:58 EDT 2025
Fri Jul 25 10:44:25 EDT 2025
Tue Jun 17 21:43:24 EDT 2025
Tue Jun 10 20:23:01 EDT 2025
Fri Jun 27 04:19:57 EDT 2025
Wed Feb 19 02:27:01 EST 2025
Tue Jul 01 04:31:38 EDT 2025
Thu Apr 24 22:58:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Fukatsuia
Macrocorsinae
Serratia symbiotica
Sodalis
Psyllinae
Wolbachia
Diplorickettsia
Arsenophonus
Liberibacter
Rickettsia
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c597t-d623387a632ba48d1098e10ffdd2f07275eaff77b22700cf540df9459926725c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0281-1723
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12866-021-02429-2
PMID 34996376
PQID 2620946016
PQPubID 42585
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_b5dc087b55ee467b8fc317e10f435cd0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8740488
proquest_miscellaneous_2618225723
proquest_journals_2620946016
gale_infotracmisc_A693695849
gale_infotracacademiconefile_A693695849
gale_incontextgauss_ISR_A693695849
pubmed_primary_34996376
crossref_citationtrail_10_1186_s12866_021_02429_2
crossref_primary_10_1186_s12866_021_02429_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-07
PublicationDateYYYYMMDD 2022-01-07
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-07
  day: 07
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC microbiology
PublicationTitleAlternate BMC Microbiol
PublicationYear 2022
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References C Chu (2429_CR115) 2019; 26
H Lin (2429_CR91) 2011; 6
A Nakabachi (2429_CR12) 1999; 45
M Mann (2429_CR61) 2018; 86
2429_CR5
JL Morrow (2429_CR28) 2017; 5
E Bolyen (2429_CR123) 2019; 37
R Stouthamer (2429_CR104) 1999; 53
2429_CR9
2429_CR44
ET Lawson (2429_CR117) 2001; 86
2429_CR43
A Arp (2429_CR23) 2014; 43
2429_CR46
J Profft (2429_CR13) 1937; 32
2429_CR48
EE Grafton-Cardwell (2429_CR8) 2013; 58
NA Moran (2429_CR36) 2008; 42
2429_CR47
RL Gherna (2429_CR74) 1991; 41
2429_CR107
ML Thao (2429_CR17) 2000; 41
JH Werren (2429_CR105) 2008; 6
H Inoue (2429_CR120) 2010; 44
FO Glöckner (2429_CR72) 2017; 261
WR Nelson (2429_CR93) 2013; 135
2429_CR31
2429_CR30
A Nakabachi (2429_CR58) 2013; 8
C Camerota (2429_CR98) 2012; 40
P Buchner (2429_CR14) 1965
A Kruse (2429_CR59) 2017; 12
A Nakabachi (2429_CR37) 2003; 82
2429_CR38
P Nachappa (2429_CR64) 2011; 62
N Nikoh (2429_CR49) 2009; 7
A Nakabachi (2429_CR57) 2019; 118
H Ziegler (2429_CR11) 1975
H Dan (2429_CR54) 2017; 12
E Pruesse (2429_CR127) 2012; 28
A Nakabachi (2429_CR56) 2019; 14
RLL Kellner (2429_CR82) 2002; 32
DB Sloan (2429_CR51) 2014; 31
WA Overholt (2429_CR24) 2015; 10
2429_CR67
ML Keremane (2429_CR90) 2015
MJ Ballinger (2429_CR41) 2019; 32
C Camacho (2429_CR126) 2009; 10
A Nakabachi (2429_CR35) 2006; 314
ID Hodkinson (2429_CR6) 1974; 64
M Martin (2429_CR124) 2011; 17
R Koga (2429_CR79) 2013; 15
H Toju (2429_CR78) 2013; 7
J Sandstrom (2429_CR10) 1999; 91
AS Guidolin (2429_CR113) 2013; 65
J Morris (2429_CR95) 2017; 10
BJ Callahan (2429_CR70) 2016; 13
P Yarza (2429_CR80) 2014; 12
AW Spaulding (2429_CR16) 1998; 15
CC Chu (2429_CR111) 2016; 71
KN Johnson (2429_CR40) 2015; 7
X Jing (2429_CR65) 2014; 23
G Subramanian (2429_CR85) 2012; 31
N Raddadi (2429_CR97) 2011; 13
S Saha (2429_CR112) 2012; 7
S Hosseinzadeh (2429_CR62) 2019; 78
D Ouvrard (2429_CR63) 2021
A Nakabachi (2429_CR53) 2015; 7
A Prodan (2429_CR71) 2020; 15
JR Fagen (2429_CR96) 2014; 64
M Tang (2429_CR103) 2010; 76
F Li (2429_CR119) 2011
FCA Dossi (2429_CR110) 2014; 68
S Thompson (2429_CR99) 2013; 27
O Mediannikov (2429_CR84) 2010; 5
NA Bokulich (2429_CR125) 2018; 6
T Tsuchida (2429_CR87) 2014; 80
GR Burke (2429_CR42) 2011; 3
V Patel (2429_CR76) 2019; 11
KS Pelz-Stelinski (2429_CR101) 2016; 109
L Karstens (2429_CR68) 2019; 4
Illumina. (2429_CR122) 2013
T Fukatsu (2429_CR15) 1998; 64
CD von Dohlen (2429_CR83) 2017; 8
A Nakabachi (2429_CR52) 2014; 24
M Lashkari (2429_CR114) 2014; 70
J Pascar (2429_CR106) 2018; 6
RA Barco (2429_CR81) 2020; 11
W Nelson (2429_CR92) 2011; 130
S Subandiyah (2429_CR18) 2000; 17
2429_CR77
AA Augustinos (2429_CR102) 2011; 6
B Jarausch (2429_CR7) 2010
AAG Hall (2429_CR25) 2016; 18
C Fromont (2429_CR26) 2016; 92
T Tsuchida (2429_CR88) 2010; 330
KM Oliver (2429_CR39) 2010; 55
DB Sloan (2429_CR21) 2012; 29
JP McCutcheon (2429_CR45) 2012; 10
ML Thao (2429_CR33) 2000; 66
DM Percy (2429_CR1) 2018; 43
JM Bové (2429_CR89) 2006; 88
C Tamborindeguy (2429_CR4) 2010; 19
JA Russell (2429_CR69) 2013; 22
T Yamada (2429_CR55) 2019; 14
A Stamatakis (2429_CR128) 2014; 30
2429_CR22
HA Flores (2429_CR108) 2018; 16
T Hagimori (2429_CR118) 2006; 52
D Burckhardt (2429_CR2) 2021; 736
2429_CR27
M Jain (2429_CR60) 2017; 2
ML Thao (2429_CR34) 2001; 42
L Meng (2429_CR66) 2019; 10
G Cho (2429_CR121) 2019; 44
E Novakova (2429_CR75) 2009; 9
M Tannières (2429_CR100) 2020; 41
International Aphid Genomics Consortium (2429_CR3) 2010; 8
RE Trowbridge (2429_CR73) 2006; 91
S Hosseinzadeh (2429_CR116) 2019; 14
Y Ishii (2429_CR86) 2013; 79
2429_CR94
S Shigenobu (2429_CR50) 2010; 19
AW Spaulding (2429_CR19) 2001; 10
AK Hansen (2429_CR20) 2007; 73
A Nakabachi (2429_CR32) 2010; 100
JL Morrow (2429_CR29) 2020; 20
P Brinker (2429_CR109) 2019; 27
References_xml – start-page: 59
  volume-title: Transport in plants I
  year: 1975
  ident: 2429_CR11
  doi: 10.1007/978-3-642-66161-7_3
– volume: 62
  start-page: 1510
  year: 2011
  ident: 2429_CR64
  publication-title: Curr Microbiol
  doi: 10.1007/s00284-011-9885-5
– volume: 3
  start-page: 195
  year: 2011
  ident: 2429_CR42
  publication-title: Genome Biol Evol.
  doi: 10.1093/gbe/evr002
– volume: 41
  start-page: 563
  year: 1991
  ident: 2429_CR74
  publication-title: Int J Syst Bacteriol
  doi: 10.1099/00207713-41-4-563
– volume: 37
  start-page: 852
  year: 2019
  ident: 2429_CR123
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-019-0209-9
– volume: 736
  start-page: 137
  year: 2021
  ident: 2429_CR2
  publication-title: Eur J Taxon
  doi: 10.5852/ejt.2021.736.1257
– ident: 2429_CR30
  doi: 10.1007/s00248-020-01491-z
– volume: 7
  start-page: 24
  year: 2015
  ident: 2429_CR53
  publication-title: Curr Opin Insect Sci
  doi: 10.1016/j.cois.2015.03.006
– volume: 70
  start-page: 1033
  year: 2014
  ident: 2429_CR114
  publication-title: Pest Manag Sci
  doi: 10.1002/ps.3643
– volume: 8
  start-page: 1037
  year: 2017
  ident: 2429_CR83
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2017.01037
– ident: 2429_CR9
  doi: 10.1094/PHYTO-12-16-0426-RVW
– volume: 92
  start-page: fiw205
  year: 2016
  ident: 2429_CR26
  publication-title: FEMS Microbiol Ecol
  doi: 10.1093/femsec/fiw205
– volume-title: Psyl’list – the world Psylloidea database
  year: 2021
  ident: 2429_CR63
– volume: 53
  start-page: 71
  year: 1999
  ident: 2429_CR104
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev.micro.53.1.71
– volume: 32
  start-page: 289
  year: 1937
  ident: 2429_CR13
  publication-title: Z Morphol Ökol Tiere
  doi: 10.1007/BF00403077
– volume: 10
  start-page: 57
  year: 2001
  ident: 2429_CR19
  publication-title: Insect Mol Biol
  doi: 10.1046/j.1365-2583.2001.00231.x
– volume: 86
  start-page: e00889
  year: 2018
  ident: 2429_CR61
  publication-title: Infect Immun
  doi: 10.1128/IAI.00889-17
– volume-title: APS Annual Meeting 2015:101-O
  year: 2015
  ident: 2429_CR90
– ident: 2429_CR94
  doi: 10.1094/PHYTO-07-13-0182-R
– volume: 43
  start-page: 762
  year: 2018
  ident: 2429_CR1
  publication-title: Syst Entomol
  doi: 10.1111/syen.12302
– ident: 2429_CR48
  doi: 10.1371/journal.pgen.1000827
– volume: 10
  start-page: 833
  year: 2017
  ident: 2429_CR95
  publication-title: Microb Biotechnol
  doi: 10.1111/1751-7915.12707
– volume: 14
  year: 2019
  ident: 2429_CR116
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0216599
– volume: 11
  start-page: e02475
  year: 2020
  ident: 2429_CR81
  publication-title: MBio.
  doi: 10.1128/mBio.02475-19
– volume: 71
  start-page: 999
  year: 2016
  ident: 2429_CR111
  publication-title: Microb Ecol
  doi: 10.1007/s00248-016-0733-9
– volume: 68
  start-page: 881
  year: 2014
  ident: 2429_CR110
  publication-title: Microb Ecol
  doi: 10.1007/s00248-014-0463-9
– volume: 5
  start-page: 58
  year: 2017
  ident: 2429_CR28
  publication-title: Microbiome.
  doi: 10.1186/s40168-017-0276-4
– ident: 2429_CR27
  doi: 10.1007/s00248-017-0971-5
– volume: 65
  start-page: 475
  year: 2013
  ident: 2429_CR113
  publication-title: Microb Ecol
  doi: 10.1007/s00248-012-0150-7
– volume: 42
  start-page: 165
  year: 2008
  ident: 2429_CR36
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev.genet.41.110306.130119
– volume: 13
  start-page: 414
  year: 2011
  ident: 2429_CR97
  publication-title: Env Microbiol
  doi: 10.1111/j.1462-2920.2010.02347.x
– volume: 26
  start-page: 671
  year: 2019
  ident: 2429_CR115
  publication-title: Insect Sci
  doi: 10.1111/1744-7917.12566
– volume: 20
  start-page: 215
  year: 2020
  ident: 2429_CR29
  publication-title: BMC Microbiol
  doi: 10.1186/s12866-020-01895-4
– volume: 5
  start-page: e11478
  year: 2010
  ident: 2429_CR84
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0011478
– volume: 7
  year: 2012
  ident: 2429_CR112
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0050067
– volume: 12
  year: 2017
  ident: 2429_CR59
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0179531
– volume: 58
  start-page: 413
  year: 2013
  ident: 2429_CR8
  publication-title: Annu Rev Entomol
  doi: 10.1146/annurev-ento-120811-153542
– volume: 330
  start-page: 1102
  year: 2010
  ident: 2429_CR88
  publication-title: Science (80- )
  doi: 10.1126/science.1195463
– volume: 10
  start-page: 421
  year: 2009
  ident: 2429_CR126
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-421
– start-page: 250
  volume-title: Phytoplasmas: genomes, plant hosts and vectors
  year: 2010
  ident: 2429_CR7
– volume: 4
  start-page: e00290
  year: 2019
  ident: 2429_CR68
  publication-title: mSystems.
  doi: 10.1128/mSystems.00290-19
– volume: 41
  start-page: 300
  year: 2000
  ident: 2429_CR17
  publication-title: Curr Microbiol
  doi: 10.1007/s002840010138
– volume: 12
  start-page: 635
  year: 2014
  ident: 2429_CR80
  publication-title: Nat Rev Microbiol.
  doi: 10.1038/nrmicro3330
– volume-title: 16S metagenomic sequencing library preparation Part#15044223 Rev.B
  year: 2013
  ident: 2429_CR122
– ident: 2429_CR22
  doi: 10.1016/j.cub.2013.06.027
– volume: 7
  start-page: 5705
  year: 2015
  ident: 2429_CR40
  publication-title: Viruses.
  doi: 10.3390/v7112903
– volume: 41
  start-page: 3
  year: 2020
  ident: 2429_CR100
  publication-title: New Dis Rep
  doi: 10.5197/j.2044-0588.2020.041.003
– volume: 52
  start-page: 97
  year: 2006
  ident: 2429_CR118
  publication-title: Curr Microbiol
  doi: 10.1007/s00284-005-0092-0
– ident: 2429_CR67
  doi: 10.3389/fmicb.2021.739763
– volume: 12
  year: 2017
  ident: 2429_CR54
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0189779
– volume: 135
  start-page: 633
  year: 2013
  ident: 2429_CR93
  publication-title: Eur J Plant Pathol
  doi: 10.1007/s10658-012-0121-3
– volume: 88
  start-page: 7
  year: 2006
  ident: 2429_CR89
  publication-title: J Plant Pathol
– volume: 10
  start-page: 1
  year: 2015
  ident: 2429_CR24
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0132248
– volume: 100
  start-page: 27
  year: 2010
  ident: 2429_CR32
  publication-title: Bull Entomol Res
  doi: 10.1017/S0007485309006737
– volume: 7
  start-page: 1378
  year: 2013
  ident: 2429_CR78
  publication-title: ISME J
  doi: 10.1038/ismej.2013.27
– volume: 91
  start-page: 203
  year: 1999
  ident: 2429_CR10
  publication-title: Entomol Exp Appl
  doi: 10.1046/j.1570-7458.1999.00485.x
– volume: 6
  start-page: 90
  year: 2018
  ident: 2429_CR125
  publication-title: Microbiome.
  doi: 10.1186/s40168-018-0470-z
– ident: 2429_CR46
  doi: 10.1146/annurev-micro-091213-112901
– volume: 6
  year: 2018
  ident: 2429_CR106
  publication-title: PeerJ.
  doi: 10.7717/peerj.5486
– volume: 15
  year: 2020
  ident: 2429_CR71
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0227434
– volume: 42
  start-page: 419
  year: 2001
  ident: 2429_CR34
  publication-title: Curr Microbiol
  doi: 10.1007/s002840010240
– volume: 82
  start-page: 152
  year: 2003
  ident: 2429_CR37
  publication-title: J Invertebr Pathol
  doi: 10.1016/S0022-2011(03)00020-X
– volume: 14
  year: 2019
  ident: 2429_CR56
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0218190
– ident: 2429_CR44
  doi: 10.1128/mBio.00359-21
– ident: 2429_CR5
  doi: 10.1111/j.1365-2583.2009.00941.x
– volume: 24
  start-page: R640
  year: 2014
  ident: 2429_CR52
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2014.06.038
– volume: 8
  year: 2010
  ident: 2429_CR3
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1000313
– volume: 314
  start-page: 267
  year: 2006
  ident: 2429_CR35
  publication-title: Science.
  doi: 10.1126/science.1134196
– volume: 261
  start-page: 169
  year: 2017
  ident: 2429_CR72
  publication-title: J Biotechnol
  doi: 10.1016/j.jbiotec.2017.06.1198
– volume: 27
  start-page: 480
  year: 2019
  ident: 2429_CR109
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2019.02.002
– ident: 2429_CR38
  doi: 10.1371/journal.pbio.0020069
– volume: 79
  start-page: 5013
  year: 2013
  ident: 2429_CR86
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01527-13
– volume: 15
  start-page: 1506
  year: 1998
  ident: 2429_CR16
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a025878
– ident: 2429_CR47
  doi: 10.1073/pnas.0409034102
– volume: 19
  start-page: 23
  issue: SUPPL. 2
  year: 2010
  ident: 2429_CR50
  publication-title: Insect Mol Biol
  doi: 10.1111/j.1365-2583.2009.00946.x
– volume: 45
  start-page: 1
  year: 1999
  ident: 2429_CR12
  publication-title: J Insect Physiol
  doi: 10.1016/s0022-1910(98)00104-8
– volume: 86
  start-page: 497
  issue: Pt 4
  year: 2001
  ident: 2429_CR117
  publication-title: Heredity (Edinb)
  doi: 10.1046/j.1365-2540.2001.00848.x
– ident: 2429_CR107
  doi: 10.1016/j.syapm.2016.03.001
– volume: 44
  start-page: 638
  year: 2019
  ident: 2429_CR121
  publication-title: Syst Entomol
  doi: 10.1111/syen.12345
– volume: 27
  start-page: 6
  year: 2013
  ident: 2429_CR99
  publication-title: New Dis Rep
  doi: 10.5197/j.2044-0588.2013.027.006
– volume: 8
  year: 2013
  ident: 2429_CR58
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0082612
– volume: 91
  start-page: 64
  year: 2006
  ident: 2429_CR73
  publication-title: J Invertebr Pathol
  doi: 10.1016/j.jip.2005.08.009
– volume: 22
  start-page: 2045
  year: 2013
  ident: 2429_CR69
  publication-title: Mol Ecol
  doi: 10.1111/mec.12211
– volume-title: Endosymbiosis of animals with plant microorganisms
  year: 1965
  ident: 2429_CR14
– volume: 10
  start-page: 1948
  year: 2019
  ident: 2429_CR66
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2019.01948
– volume: 13
  start-page: 581
  year: 2016
  ident: 2429_CR70
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3869
– volume: 32
  start-page: 36
  year: 2019
  ident: 2429_CR41
  publication-title: Curr Opin Insect Sci.
  doi: 10.1016/j.cois.2018.10.004
– volume: 64
  start-page: 2461
  year: 2014
  ident: 2429_CR96
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijs.0.063255-0
– volume: 31
  start-page: 857
  year: 2014
  ident: 2429_CR51
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msu004
– volume: 64
  start-page: 325
  year: 1974
  ident: 2429_CR6
  publication-title: Bull Entomol Res
  doi: 10.1017/S0007485300031217
– volume: 15
  start-page: 2073
  year: 2013
  ident: 2429_CR79
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.12121
– volume: 73
  start-page: 7531
  year: 2007
  ident: 2429_CR20
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01672-07
– volume: 76
  start-page: 1740
  year: 2010
  ident: 2429_CR103
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02240-09
– volume: 32
  start-page: 389
  year: 2002
  ident: 2429_CR82
  publication-title: Insect Biochem Mol Biol
  doi: 10.1016/S0965-1748(01)00115-1
– volume: 109
  start-page: 371
  year: 2016
  ident: 2429_CR101
  publication-title: Ann Entomol Soc Am
  doi: 10.1093/aesa/saw007
– volume: 19
  start-page: 259
  year: 2010
  ident: 2429_CR4
  publication-title: Insect Mol Biol
  doi: 10.1111/j.1365-2583.2009.00956.x
– volume: 64
  start-page: 3599
  year: 1998
  ident: 2429_CR15
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.64.10.3599-3606.1998
– volume: 80
  start-page: 525
  year: 2014
  ident: 2429_CR87
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.03049-13
– volume: 40
  start-page: 213
  year: 2012
  ident: 2429_CR98
  publication-title: Phytoparasitica.
  doi: 10.1007/s12600-012-0225-5
– volume: 7
  start-page: 12
  year: 2009
  ident: 2429_CR49
  publication-title: BMC Biol
  doi: 10.1186/1741-7007-7-12
– volume: 6
  year: 2011
  ident: 2429_CR102
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0028695
– volume: 23
  start-page: 1433
  year: 2014
  ident: 2429_CR65
  publication-title: Mol Ecol
  doi: 10.1111/mec.12637
– ident: 2429_CR31
  doi: 10.1093/gbe/evaa175
– volume: 130
  start-page: 5
  year: 2011
  ident: 2429_CR92
  publication-title: Eur J Plant Pathol
  doi: 10.1007/s10658-010-9737-3
– ident: 2429_CR43
  doi: 10.1038/srep32590
– start-page: 546
  volume-title: Psyllidomorpha of China (Insecta: Hemiptera)
  year: 2011
  ident: 2429_CR119
– volume: 44
  start-page: 333
  year: 2010
  ident: 2429_CR120
  publication-title: J Nat Hist
  doi: 10.1080/00222930903437325
– volume: 55
  start-page: 247
  year: 2010
  ident: 2429_CR39
  publication-title: Annu Rev Entomol
  doi: 10.1146/annurev-ento-112408-085305
– volume: 30
  start-page: 1312
  year: 2014
  ident: 2429_CR128
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btu033
– volume: 66
  start-page: 2898
  year: 2000
  ident: 2429_CR33
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.66.7.2898-2905.2000
– volume: 11
  start-page: 3510
  year: 2019
  ident: 2429_CR76
  publication-title: Genome Biol Evol.
– volume: 28
  start-page: 1823
  year: 2012
  ident: 2429_CR127
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/bts252
– volume: 43
  start-page: 344
  year: 2014
  ident: 2429_CR23
  publication-title: Environ Entomol
  doi: 10.1603/EN13256
– volume: 9
  start-page: 143
  year: 2009
  ident: 2429_CR75
  publication-title: BMC Microbiol
  doi: 10.1186/1471-2180-9-143
– volume: 16
  start-page: 508
  year: 2018
  ident: 2429_CR108
  publication-title: Nat Rev Microbiol
  doi: 10.1038/s41579-018-0025-0
– volume: 29
  start-page: 3781
  year: 2012
  ident: 2429_CR21
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mss180
– volume: 118
  year: 2019
  ident: 2429_CR57
  publication-title: J Insect Physiol
  doi: 10.1016/j.jinsphys.2019.103931
– volume: 10
  start-page: 13
  year: 2012
  ident: 2429_CR45
  publication-title: Nat Rev Microbiol.
  doi: 10.1038/nrmicro2670
– volume: 17
  start-page: 10
  year: 2011
  ident: 2429_CR124
  publication-title: EMBnet.journal.
  doi: 10.14806/ej.17.1.200
– volume: 18
  start-page: 2591
  year: 2016
  ident: 2429_CR25
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.13351
– volume: 6
  start-page: 741
  year: 2008
  ident: 2429_CR105
  publication-title: Nat Rev Microbiol.
  doi: 10.1038/nrmicro1969
– volume: 17
  start-page: 983
  year: 2000
  ident: 2429_CR18
  publication-title: Zool Sci
  doi: 10.2108/zsj.17.983
– volume: 31
  start-page: 365
  year: 2012
  ident: 2429_CR85
  publication-title: Eur J Clin Microbiol Infect Dis
  doi: 10.1007/s10096-011-1318-7
– volume: 2
  start-page: e00171
  year: 2017
  ident: 2429_CR60
  publication-title: mSphere.
  doi: 10.1128/mSphereDirect.00171-17
– volume: 78
  start-page: 206
  year: 2019
  ident: 2429_CR62
  publication-title: Microb Ecol
  doi: 10.1007/s00248-018-1290-1
– volume: 6
  year: 2011
  ident: 2429_CR91
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0019135
– volume: 14
  year: 2019
  ident: 2429_CR55
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0216319
– ident: 2429_CR77
  doi: 10.3389/fmicb.2019.00764
SSID ssj0017837
Score 2.4456074
Snippet Psyllids (Hemiptera: Psylloidea) comprise a group of plant sap-sucking insects that includes important agricultural pests. They have close associations not...
Background Psyllids (Hemiptera: Psylloidea) comprise a group of plant sap-sucking insects that includes important agricultural pests. They have close...
Abstract Background Psyllids (Hemiptera: Psylloidea) comprise a group of plant sap-sucking insects that includes important agricultural pests. They have close...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 15
SubjectTerms Agricultural pests
Amino acids
Animals
Aphididae
Aphidoidea
Aphids - microbiology
Bacteria
Diplorickettsia
Enterobacteriaceae
Gammaproteobacteria - classification
Gammaproteobacteria - genetics
Gammaproteobacteria - isolation & purification
Hemiptera - classification
Hemiptera - microbiology
Host plants
Host-bacteria relationships
Insects
Liberibacter
Liberibacter - classification
Liberibacter - genetics
Liberibacter - isolation & purification
Macrocorsinae
Microbiological research
Microbiomes
Microbiota
Pathogens
Pest control
Pests
Phylogenetics
Phylogeny
Physiological aspects
Plant Diseases - microbiology
Plant Diseases - parasitology
Plant pathology
Plant-pathogen relationships
Psyllidae
Psyllinae
Psylloidea
Rickettsia
Rickettsia - classification
Rickettsia - genetics
Rickettsia - isolation & purification
Rickettsiales
rRNA 16S
Serratia - classification
Serratia - genetics
Serratia - isolation & purification
Serratia symbiotica
Species
Symbionts
Symbiosis
Wolbachia
Wolbachia - classification
Wolbachia - genetics
Wolbachia - isolation & purification
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yIPgifls9JYrgg5bbZtumeTzF5RRORD24t5BPr9xedrm0wv5Z_ofONN1li6AvvnamtM1MMvNLJ78h5FUhBEhqn-Mx67wUWucNpLW5gVDEwSrae9yHPP1cn5yVn86r871WX1gTluiB08Ad6cqaWcN1VTkHk1o33kDIc8XMQ6A3dkDrEPO2YGr8f8ABd22PyDT1UYRVuMZiW4DOEJNEziZhaGDr_3NN3gtK04LJvQi0uENuj6kjPU6vfJfccOEeuZmaSW7uk1-nbSJVunJUDVQjLtKVpwWj67hZLltL8Vhlm65C3kfT5gb9kqTK0dam2iFn6U_A0Ks-Up3YnBVtg1n2GOjoor9UXezhmgqWwmKDTqRo3FzBw3Fr_C3FnbpAVaQR8bZV15tRHLrh6Wp90dr4gJwtPnx_f5KPDRlyA7ijyy3kSvOGq3rOtCobW8xEg5bw1jI_g0yocsp7zjXD39nGQzZovSgrIVjNWWXmD8lBWAX3mFDtm9IyJHd3qIUwkHsjNORvuvDMZKTY2keaka0cm2Ys5YBamlomm0qwqRxsKllG3uzuWSeujr9qv0Oz7zSRZ3u4AN4nR--T__K-jLxEp5HIpBGwVOeH6mOUH799lcc19kqE_E5k5PWo5FfwDUaNJx9gJJB8a6J5ONGEqW6m4q1vynGpiRI7CogSWXUy8mInxjuxfC448BXQARgJizObZ-RRcuXdd88B89YQZjLCJ04-GZipJLQXAxE5tnOEAPDkf4zkU3KL4ckS3N3ih-Sgu-7dM8j3Ov18mNq_AZLPU_4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96Ivgifls9JYrgg5bbZrtN8ySnuJzCiagH9xbyeVfca9fNVtg_y__QmSa7XhHutTOlTWcyX538hpBXhRBAqXyOx6zzUmid1xDW5gZcEQepaO-xDnn8pTo6KT-fzk5TwS2ktsqtTRwMte0M1sgPEDhdlAge8m75K8epUfh3NY3QuE5uIHQZajU_3SVcBYfsa3tQpq4OAtjiCltuIYEGzyRyNnJGA2b__5b5kmsat01e8kPzO-R2CiDpYZT4XXLNtffIzThScnOf_DluIrTShaNqABxxgXaeFowuw2axaCzFw5VNvArRH40lDvo1UpWjjY0dRM7S35BJd32gOmI6K9q0ZtGju6Pz_qdahx6uqdZSMDmoSoqGzQU8HAvkbynW61qqAg2YdVu12iRyux6erpbnjQ0PyMn8448PR3kay5AbyD7WuYWIaVpzVU2ZVmVti4moXTHx3lrmJxAPzZzynnPN8Ke28RATWi_KmRCs4mxmpg_JXtu17jGh2telZQjx7pALk0HujdAQxenCM5ORYisfaRJmOY7OWMghd6krGWUqQaZykKlkGXmzu2cZETuu5H6PYt9xItr2cKFbncm0eaWeWTOpuYbXdOBYdO0NhF24Zgg2jZ1k5CUqjUQ8jRYbds5UH4L89P2bPKxwYiJEeSIjrxOT72ANRqXzD_AlEIJrxLk_4oQNb8bkrW7KZHCC_Lc9MvJiR8Y7sYmudaArwAPJJJhoNs3Io6jKu3VPIfOtwNlkhI-UfPRhxpS2OR_gyHGoI7iBJ1e_1lNyi-HJEaxe8X2yt1717hnEc2v9fNi0fwFLr0sA
  priority: 102
  providerName: ProQuest
Title Microbiome analyses of 12 psyllid species of the family Psyllidae identified various bacteria including Fukatsuia and Serratia symbiotica, known as secondary symbionts of aphids
URI https://www.ncbi.nlm.nih.gov/pubmed/34996376
https://www.proquest.com/docview/2620946016
https://www.proquest.com/docview/2618225723
https://pubmed.ncbi.nlm.nih.gov/PMC8740488
https://doaj.org/article/b5dc087b55ee467b8fc317e10f435cd0
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF6VVkhcEG8MJVoQEgcwtR3Hax8QalCjgpSqCkSquKz22VqkTsjGiPws_iEzXifUouolB8849u7Mzsu73xDyOi4KoGQ2xGPWYVpIGeYQ1oYKXBEDqUhrsQ45PsmOp-mXs8HZDtm0O2on0F2b2mE_qely9v73z_VHWPAfmgWfZwcObGyGW2khMQaPU4RgkvfAMzHsaDBO_31VYHmDoRmDQQ7BtUWbQzTX_kfHUTV4_v9b7Stuq7ul8oqPGt0jd9vgkh56bbhPdkz1gNz27SbXD8mfcelhly4NFQ0YiXF0bmmc0IVbz2alpnjwsvRXITKkvvxBTz1VGFpqv7vIaPoLsux57aj0eM-ClpWa1egK6aj-IVauhmui0hTMEaqZoG59CQ_H4vk7irW8igpHHWbkWizXLblaNU8Xi4tSu0dkOjr69uk4bFs2hAoyk1WoIZrq50xk_USKNNdxVOQmjqzVOrERxEoDI6xlTCb4wVtZiBe1LdJBUSQZSwaq_5jsVvPKPCVU2jzVCcK_G-TCRJFZVUiI8GRsExWQeCMfrlo8c2yrMeNNXpNn3MuUg0x5I1OeBOTt9p6FR_O4kXuIYt9yIhJ3c2G-POftwuZyoFWUMwmvacDpyNwqCMlwzBCIKh0F5BUqDUesjQo385yL2jn--euEH2bYTREiwCIgb1omO4cxKNGejYCZQHiuDud-hxOMgeqSN7rJN2uJY8-BIkXcnYC83JLxTtxgVxnQFeCBRBPMd9IPyBOvyttx9yErzsARBYR1lLwzMV1KVV40UOXY8BFcxLOb3_o5uZPgqRKsbLF9srta1uYFxHor2SO32Bnrkb3h0cnppNdUTHrNoobfyfD7X-bqVFg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6VIgQviBtDgQWBeACr9sbx8YBQOaqENhWCVsrbsmdrkdohG4Pyp5D4h8z4CLWQ-tZX7_hYz3i-mfEchDwPswxWYutjmbUfZVL6KZi1vgIoSoAr0lqMQ04O4tFR9Gk6nG6Q310tDKZVdjqxVtS6VBgj38bG6VmEzUPezn_4ODUK_652IzQasdgzq1_gsrk34w_A3xeM7X48fD_y26kCvgLjeelrAPxBmoh4wKSIUh0GWWrCwFqtmQ0AzodGWJskkuE_WWXBpNE2i4ZZxuKEDdUArnuJXIa9BejsJdO1gxcm4O11hTlpvO1A98eY4gsOOyBh5rMe-NUzAv5HgjNQ2E_TPIN7uzfI9dZgpTuNhN0kG6a4Ra40IyxXt8mfSd60cjo1VNQNToyjpaUho3O3ms1yTbGYM2-OgrVJm5AK_dysCkNz3WQsGU1_gudeVo7Kpoe0oHmhZhXCK92tvoulq-CYKDQFFYeiK6hbncLNMSD_mmJ8sKDCUYdevhaLVbtcLOu7i_lJrt0dcnQhDLtLNouyMPcJlTaNNMOW8gap0PlMrMokWI0ytEx5JOz4w1XbIx1Hdcx47SulMW94yoGnvOYpZx55tT5n3nQIOZf6HbJ9TYndvesD5eKYt8qCy6FWQZpIeEwDQCZTq8DMwz2Dcat04JFnKDQc-3cUmCB0LCrn-PjrF74T44RGsCozj7xsiWwJe1CirbeAN4Etv3qUWz1KUDCqv9zJJm8VnOP_PkePPF0v45mYtFcYkBWgAecVIIENPHKvEeX1vgfgaccAbh5JekLeezH9lSI_qduf4xBJgJ0H5z_WE3J1dDjZ5_vjg72H5BrDqhWMnCVbZHO5qMwjsCWX8nH9AVPy7aI1xl90MIal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbiome+analyses+of+12+psyllid+species+of+the+family+Psyllidae+identified+various+bacteria+including+Fukatsuia+and+Serratia+symbiotica%2C+known+as+secondary+symbionts+of+aphids&rft.jtitle=BMC+microbiology&rft.au=Nakabachi%2C+Atsushi&rft.au=Inoue%2C+Hiromitsu&rft.au=Hirose%2C+Yuu&rft.date=2022-01-07&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2180&rft.eissn=1471-2180&rft.volume=22&rft.issue=1&rft_id=info:doi/10.1186%2Fs12866-021-02429-2&rft.externalDocID=A693695849
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2180&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2180&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2180&client=summon