Microbiome analyses of 12 psyllid species of the family Psyllidae identified various bacteria including Fukatsuia and Serratia symbiotica, known as secondary symbionts of aphids
Psyllids (Hemiptera: Psylloidea) comprise a group of plant sap-sucking insects that includes important agricultural pests. They have close associations not only with plant pathogens, but also with various microbes, including obligate mutualists and facultative symbionts. Recent studies are revealing...
Saved in:
Published in | BMC microbiology Vol. 22; no. 1; pp. 15 - 21 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
07.01.2022
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Psyllids (Hemiptera: Psylloidea) comprise a group of plant sap-sucking insects that includes important agricultural pests. They have close associations not only with plant pathogens, but also with various microbes, including obligate mutualists and facultative symbionts. Recent studies are revealing that interactions among such bacterial populations are important for psyllid biology and host plant pathology. In the present study, to obtain further insight into the ecological and evolutionary behaviors of bacteria in Psylloidea, we analyzed the microbiomes of 12 psyllid species belonging to the family Psyllidae (11 from Psyllinae and one from Macrocorsinae), using high-throughput amplicon sequencing of the 16S rRNA gene.
The analysis showed that all 12 psyllids have the primary symbiont, Candidatus Carsonella ruddii (Gammaproteobacteria: Oceanospirillales), and at least one secondary symbiont. The majority of the secondary symbionts were gammaproteobacteria, especially those of the family Enterobacteriaceae (order: Enterobacteriales). Among them, symbionts belonging to "endosymbionts3", which is a genus-level monophyletic group assigned by the SILVA rRNA database, were the most prevalent and were found in 9 of 11 Psyllinae species. Ca. Fukatsuia symbiotica and Serratia symbiotica, which were recognized only as secondary symbionts of aphids, were also identified. In addition to other Enterobacteriaceae bacteria, including Arsenophonus, Sodalis, and "endosymbionts2", which is another genus-level clade, Pseudomonas (Pseudomonadales: Pseudomonadaceae) and Diplorickettsia (Diplorickettsiales: Diplorickettsiaceae) were identified. Regarding Alphaproteobacteria, the potential plant pathogen Ca. Liberibacter europaeus (Rhizobiales: Rhizobiaceae) was detected for the first time in Anomoneura mori (Psyllinae), a mulberry pest. Wolbachia (Rickettsiales: Anaplasmataceae) and Rickettsia (Rickettsiales: Rickettsiaceae), plausible host reproduction manipulators that are potential tools to control pest insects, were also detected.
The present study identified various bacterial symbionts including previously unexpected lineages in psyllids, suggesting considerable interspecific transfer of arthropod symbionts. The findings provide deeper insights into the evolution of interactions among insects, bacteria, and plants, which may be exploited to facilitate the control of pest psyllids in the future. |
---|---|
AbstractList | Background Psyllids (Hemiptera: Psylloidea) comprise a group of plant sap-sucking insects that includes important agricultural pests. They have close associations not only with plant pathogens, but also with various microbes, including obligate mutualists and facultative symbionts. Recent studies are revealing that interactions among such bacterial populations are important for psyllid biology and host plant pathology. In the present study, to obtain further insight into the ecological and evolutionary behaviors of bacteria in Psylloidea, we analyzed the microbiomes of 12 psyllid species belonging to the family Psyllidae (11 from Psyllinae and one from Macrocorsinae), using high-throughput amplicon sequencing of the 16S rRNA gene. Results The analysis showed that all 12 psyllids have the primary symbiont, Candidatus Carsonella ruddii (Gammaproteobacteria: Oceanospirillales), and at least one secondary symbiont. The majority of the secondary symbionts were gammaproteobacteria, especially those of the family Enterobacteriaceae (order: Enterobacteriales). Among them, symbionts belonging to “endosymbionts3”, which is a genus-level monophyletic group assigned by the SILVA rRNA database, were the most prevalent and were found in 9 of 11 Psyllinae species. Ca. Fukatsuia symbiotica and Serratia symbiotica, which were recognized only as secondary symbionts of aphids, were also identified. In addition to other Enterobacteriaceae bacteria, including Arsenophonus, Sodalis, and “endosymbionts2”, which is another genus-level clade, Pseudomonas (Pseudomonadales: Pseudomonadaceae) and Diplorickettsia (Diplorickettsiales: Diplorickettsiaceae) were identified. Regarding Alphaproteobacteria, the potential plant pathogen Ca. Liberibacter europaeus (Rhizobiales: Rhizobiaceae) was detected for the first time in Anomoneura mori (Psyllinae), a mulberry pest. Wolbachia (Rickettsiales: Anaplasmataceae) and Rickettsia (Rickettsiales: Rickettsiaceae), plausible host reproduction manipulators that are potential tools to control pest insects, were also detected. Conclusions The present study identified various bacterial symbionts including previously unexpected lineages in psyllids, suggesting considerable interspecific transfer of arthropod symbionts. The findings provide deeper insights into the evolution of interactions among insects, bacteria, and plants, which may be exploited to facilitate the control of pest psyllids in the future. Psyllids (Hemiptera: Psylloidea) comprise a group of plant sap-sucking insects that includes important agricultural pests. They have close associations not only with plant pathogens, but also with various microbes, including obligate mutualists and facultative symbionts. Recent studies are revealing that interactions among such bacterial populations are important for psyllid biology and host plant pathology. In the present study, to obtain further insight into the ecological and evolutionary behaviors of bacteria in Psylloidea, we analyzed the microbiomes of 12 psyllid species belonging to the family Psyllidae (11 from Psyllinae and one from Macrocorsinae), using high-throughput amplicon sequencing of the 16S rRNA gene. The analysis showed that all 12 psyllids have the primary symbiont, Candidatus Carsonella ruddii (Gammaproteobacteria: Oceanospirillales), and at least one secondary symbiont. The majority of the secondary symbionts were gammaproteobacteria, especially those of the family Enterobacteriaceae (order: Enterobacteriales). Among them, symbionts belonging to "endosymbionts3", which is a genus-level monophyletic group assigned by the SILVA rRNA database, were the most prevalent and were found in 9 of 11 Psyllinae species. Ca. Fukatsuia symbiotica and Serratia symbiotica, which were recognized only as secondary symbionts of aphids, were also identified. In addition to other Enterobacteriaceae bacteria, including Arsenophonus, Sodalis, and "endosymbionts2", which is another genus-level clade, Pseudomonas (Pseudomonadales: Pseudomonadaceae) and Diplorickettsia (Diplorickettsiales: Diplorickettsiaceae) were identified. Regarding Alphaproteobacteria, the potential plant pathogen Ca. Liberibacter europaeus (Rhizobiales: Rhizobiaceae) was detected for the first time in Anomoneura mori (Psyllinae), a mulberry pest. Wolbachia (Rickettsiales: Anaplasmataceae) and Rickettsia (Rickettsiales: Rickettsiaceae), plausible host reproduction manipulators that are potential tools to control pest insects, were also detected. The present study identified various bacterial symbionts including previously unexpected lineages in psyllids, suggesting considerable interspecific transfer of arthropod symbionts. The findings provide deeper insights into the evolution of interactions among insects, bacteria, and plants, which may be exploited to facilitate the control of pest psyllids in the future. Psyllids (Hemiptera: Psylloidea) comprise a group of plant sap-sucking insects that includes important agricultural pests. They have close associations not only with plant pathogens, but also with various microbes, including obligate mutualists and facultative symbionts. Recent studies are revealing that interactions among such bacterial populations are important for psyllid biology and host plant pathology. In the present study, to obtain further insight into the ecological and evolutionary behaviors of bacteria in Psylloidea, we analyzed the microbiomes of 12 psyllid species belonging to the family Psyllidae (11 from Psyllinae and one from Macrocorsinae), using high-throughput amplicon sequencing of the 16S rRNA gene. The analysis showed that all 12 psyllids have the primary symbiont, Candidatus Carsonella ruddii (Gammaproteobacteria: Oceanospirillales), and at least one secondary symbiont. The majority of the secondary symbionts were gammaproteobacteria, especially those of the family Enterobacteriaceae (order: Enterobacteriales). Among them, symbionts belonging to "endosymbionts3", which is a genus-level monophyletic group assigned by the SILVA rRNA database, were the most prevalent and were found in 9 of 11 Psyllinae species. Ca. Fukatsuia symbiotica and Serratia symbiotica, which were recognized only as secondary symbionts of aphids, were also identified. In addition to other Enterobacteriaceae bacteria, including Arsenophonus, Sodalis, and "endosymbionts2", which is another genus-level clade, Pseudomonas (Pseudomonadales: Pseudomonadaceae) and Diplorickettsia (Diplorickettsiales: Diplorickettsiaceae) were identified. Regarding Alphaproteobacteria, the potential plant pathogen Ca. Liberibacter europaeus (Rhizobiales: Rhizobiaceae) was detected for the first time in Anomoneura mori (Psyllinae), a mulberry pest. Wolbachia (Rickettsiales: Anaplasmataceae) and Rickettsia (Rickettsiales: Rickettsiaceae), plausible host reproduction manipulators that are potential tools to control pest insects, were also detected. The present study identified various bacterial symbionts including previously unexpected lineages in psyllids, suggesting considerable interspecific transfer of arthropod symbionts. The findings provide deeper insights into the evolution of interactions among insects, bacteria, and plants, which may be exploited to facilitate the control of pest psyllids in the future. Abstract Background Psyllids (Hemiptera: Psylloidea) comprise a group of plant sap-sucking insects that includes important agricultural pests. They have close associations not only with plant pathogens, but also with various microbes, including obligate mutualists and facultative symbionts. Recent studies are revealing that interactions among such bacterial populations are important for psyllid biology and host plant pathology. In the present study, to obtain further insight into the ecological and evolutionary behaviors of bacteria in Psylloidea, we analyzed the microbiomes of 12 psyllid species belonging to the family Psyllidae (11 from Psyllinae and one from Macrocorsinae), using high-throughput amplicon sequencing of the 16S rRNA gene. Results The analysis showed that all 12 psyllids have the primary symbiont, Candidatus Carsonella ruddii (Gammaproteobacteria: Oceanospirillales), and at least one secondary symbiont. The majority of the secondary symbionts were gammaproteobacteria, especially those of the family Enterobacteriaceae (order: Enterobacteriales). Among them, symbionts belonging to “endosymbionts3”, which is a genus-level monophyletic group assigned by the SILVA rRNA database, were the most prevalent and were found in 9 of 11 Psyllinae species. Ca. Fukatsuia symbiotica and Serratia symbiotica, which were recognized only as secondary symbionts of aphids, were also identified. In addition to other Enterobacteriaceae bacteria, including Arsenophonus, Sodalis, and “endosymbionts2”, which is another genus-level clade, Pseudomonas (Pseudomonadales: Pseudomonadaceae) and Diplorickettsia (Diplorickettsiales: Diplorickettsiaceae) were identified. Regarding Alphaproteobacteria, the potential plant pathogen Ca. Liberibacter europaeus (Rhizobiales: Rhizobiaceae) was detected for the first time in Anomoneura mori (Psyllinae), a mulberry pest. Wolbachia (Rickettsiales: Anaplasmataceae) and Rickettsia (Rickettsiales: Rickettsiaceae), plausible host reproduction manipulators that are potential tools to control pest insects, were also detected. Conclusions The present study identified various bacterial symbionts including previously unexpected lineages in psyllids, suggesting considerable interspecific transfer of arthropod symbionts. The findings provide deeper insights into the evolution of interactions among insects, bacteria, and plants, which may be exploited to facilitate the control of pest psyllids in the future. Psyllids (Hemiptera: Psylloidea) comprise a group of plant sap-sucking insects that includes important agricultural pests. They have close associations not only with plant pathogens, but also with various microbes, including obligate mutualists and facultative symbionts. Recent studies are revealing that interactions among such bacterial populations are important for psyllid biology and host plant pathology. In the present study, to obtain further insight into the ecological and evolutionary behaviors of bacteria in Psylloidea, we analyzed the microbiomes of 12 psyllid species belonging to the family Psyllidae (11 from Psyllinae and one from Macrocorsinae), using high-throughput amplicon sequencing of the 16S rRNA gene.BACKGROUNDPsyllids (Hemiptera: Psylloidea) comprise a group of plant sap-sucking insects that includes important agricultural pests. They have close associations not only with plant pathogens, but also with various microbes, including obligate mutualists and facultative symbionts. Recent studies are revealing that interactions among such bacterial populations are important for psyllid biology and host plant pathology. In the present study, to obtain further insight into the ecological and evolutionary behaviors of bacteria in Psylloidea, we analyzed the microbiomes of 12 psyllid species belonging to the family Psyllidae (11 from Psyllinae and one from Macrocorsinae), using high-throughput amplicon sequencing of the 16S rRNA gene.The analysis showed that all 12 psyllids have the primary symbiont, Candidatus Carsonella ruddii (Gammaproteobacteria: Oceanospirillales), and at least one secondary symbiont. The majority of the secondary symbionts were gammaproteobacteria, especially those of the family Enterobacteriaceae (order: Enterobacteriales). Among them, symbionts belonging to "endosymbionts3", which is a genus-level monophyletic group assigned by the SILVA rRNA database, were the most prevalent and were found in 9 of 11 Psyllinae species. Ca. Fukatsuia symbiotica and Serratia symbiotica, which were recognized only as secondary symbionts of aphids, were also identified. In addition to other Enterobacteriaceae bacteria, including Arsenophonus, Sodalis, and "endosymbionts2", which is another genus-level clade, Pseudomonas (Pseudomonadales: Pseudomonadaceae) and Diplorickettsia (Diplorickettsiales: Diplorickettsiaceae) were identified. Regarding Alphaproteobacteria, the potential plant pathogen Ca. Liberibacter europaeus (Rhizobiales: Rhizobiaceae) was detected for the first time in Anomoneura mori (Psyllinae), a mulberry pest. Wolbachia (Rickettsiales: Anaplasmataceae) and Rickettsia (Rickettsiales: Rickettsiaceae), plausible host reproduction manipulators that are potential tools to control pest insects, were also detected.RESULTSThe analysis showed that all 12 psyllids have the primary symbiont, Candidatus Carsonella ruddii (Gammaproteobacteria: Oceanospirillales), and at least one secondary symbiont. The majority of the secondary symbionts were gammaproteobacteria, especially those of the family Enterobacteriaceae (order: Enterobacteriales). Among them, symbionts belonging to "endosymbionts3", which is a genus-level monophyletic group assigned by the SILVA rRNA database, were the most prevalent and were found in 9 of 11 Psyllinae species. Ca. Fukatsuia symbiotica and Serratia symbiotica, which were recognized only as secondary symbionts of aphids, were also identified. In addition to other Enterobacteriaceae bacteria, including Arsenophonus, Sodalis, and "endosymbionts2", which is another genus-level clade, Pseudomonas (Pseudomonadales: Pseudomonadaceae) and Diplorickettsia (Diplorickettsiales: Diplorickettsiaceae) were identified. Regarding Alphaproteobacteria, the potential plant pathogen Ca. Liberibacter europaeus (Rhizobiales: Rhizobiaceae) was detected for the first time in Anomoneura mori (Psyllinae), a mulberry pest. Wolbachia (Rickettsiales: Anaplasmataceae) and Rickettsia (Rickettsiales: Rickettsiaceae), plausible host reproduction manipulators that are potential tools to control pest insects, were also detected.The present study identified various bacterial symbionts including previously unexpected lineages in psyllids, suggesting considerable interspecific transfer of arthropod symbionts. The findings provide deeper insights into the evolution of interactions among insects, bacteria, and plants, which may be exploited to facilitate the control of pest psyllids in the future.CONCLUSIONSThe present study identified various bacterial symbionts including previously unexpected lineages in psyllids, suggesting considerable interspecific transfer of arthropod symbionts. The findings provide deeper insights into the evolution of interactions among insects, bacteria, and plants, which may be exploited to facilitate the control of pest psyllids in the future. Background Psyllids (Hemiptera: Psylloidea) comprise a group of plant sap-sucking insects that includes important agricultural pests. They have close associations not only with plant pathogens, but also with various microbes, including obligate mutualists and facultative symbionts. Recent studies are revealing that interactions among such bacterial populations are important for psyllid biology and host plant pathology. In the present study, to obtain further insight into the ecological and evolutionary behaviors of bacteria in Psylloidea, we analyzed the microbiomes of 12 psyllid species belonging to the family Psyllidae (11 from Psyllinae and one from Macrocorsinae), using high-throughput amplicon sequencing of the 16S rRNA gene. Results The analysis showed that all 12 psyllids have the primary symbiont, Candidatus Carsonella ruddii (Gammaproteobacteria: Oceanospirillales), and at least one secondary symbiont. The majority of the secondary symbionts were gammaproteobacteria, especially those of the family Enterobacteriaceae (order: Enterobacteriales). Among them, symbionts belonging to "endosymbionts3", which is a genus-level monophyletic group assigned by the SILVA rRNA database, were the most prevalent and were found in 9 of 11 Psyllinae species. Ca. Fukatsuia symbiotica and Serratia symbiotica, which were recognized only as secondary symbionts of aphids, were also identified. In addition to other Enterobacteriaceae bacteria, including Arsenophonus, Sodalis, and "endosymbionts2", which is another genus-level clade, Pseudomonas (Pseudomonadales: Pseudomonadaceae) and Diplorickettsia (Diplorickettsiales: Diplorickettsiaceae) were identified. Regarding Alphaproteobacteria, the potential plant pathogen Ca. Liberibacter europaeus (Rhizobiales: Rhizobiaceae) was detected for the first time in Anomoneura mori (Psyllinae), a mulberry pest. Wolbachia (Rickettsiales: Anaplasmataceae) and Rickettsia (Rickettsiales: Rickettsiaceae), plausible host reproduction manipulators that are potential tools to control pest insects, were also detected. Conclusions The present study identified various bacterial symbionts including previously unexpected lineages in psyllids, suggesting considerable interspecific transfer of arthropod symbionts. The findings provide deeper insights into the evolution of interactions among insects, bacteria, and plants, which may be exploited to facilitate the control of pest psyllids in the future. Keywords: Psyllinae, Macrocorsinae, Liberibacter, Wolbachia, Rickettsia, Diplorickettsia, Fukatsuia, Serratia symbiotica, Sodalis, Arsenophonus |
ArticleNumber | 15 |
Audience | Academic |
Author | Inoue, Hiromitsu Nakabachi, Atsushi Hirose, Yuu |
Author_xml | – sequence: 1 givenname: Atsushi orcidid: 0000-0003-0281-1723 surname: Nakabachi fullname: Nakabachi, Atsushi – sequence: 2 givenname: Hiromitsu surname: Inoue fullname: Inoue, Hiromitsu – sequence: 3 givenname: Yuu surname: Hirose fullname: Hirose, Yuu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34996376$$D View this record in MEDLINE/PubMed |
BookMark | eNp9U9tu1DAQjVARbRd-gAdkiReQ2GI7ie28IFUVhZWKQBSerYkvu24Te2snhf0s_hDvpdCtEIqiODPnnLGPZ46LAx-8KYrnBJ8QItjbRKhgbIopyW9Fmyl9VByRipMpJQIf3FsfFscpXWFMuCj5k-KwrJqGlZwdFb8-ORVD60JvEHjoVskkFCwiFC3TquucRmlplNtGh4VBFnrXrdCXbRYMctr4wVlnNLqF6MKYUAtqMNEBcl51o3Z-js7HaxjSmGPgNbo0McKQf9Kqz8UHp-ANuvbhh0eQUDIqeA1xtUv7YVMdlgun09PisYUumWe776T4fv7-29nH6cXnD7Oz04upqhs-TDWjZSk4sJK2UAlNcCMMwdZqTS3mlNcGrOW8pZRjrGxdYW2bqm4ayjitVTkpZltdHeBKLqPr84ZkACc3gRDnEmLeeGdkW2uFBW_r2piK8VZYVRK-rlaVtdI4a73bai3HtjdaZcMidHui-xnvFnIebqXgFa6EyAKvdgIx3IwmDbJ3SZmuA2-y4ZIyIiiteT7zpHj5AHoVxpivdo2iuKkYJuwvag75AM7bkOuqtag8ZU3JmlpUTUad_AOVH216l-_IWJfje4TXe4SMGczPYQ5jSnJ2-XUf--K-KX_cuGvODBBbQO7QlKKxUrkhd01Ye-Q6SbBcz4HczoHMcyA3cyBpptIH1Dv1_5B-A1zQC7o |
CitedBy_id | crossref_primary_10_1007_s42690_023_00960_5 crossref_primary_10_1111_1462_2920_16138 crossref_primary_10_3390_ijms242115836 crossref_primary_10_7717_peerj_16347 crossref_primary_10_1128_msystems_00578_23 crossref_primary_10_1146_annurev_ento_120120_114738 crossref_primary_10_1128_spectrum_02249_23 crossref_primary_10_7717_peerj_18025 crossref_primary_10_1128_spectrum_01757_22 crossref_primary_10_1264_jsme2_ME22078 crossref_primary_10_1111_1462_2920_16180 crossref_primary_10_1111_eea_13497 crossref_primary_10_1264_jsme2_ME23045 crossref_primary_10_1038_s41598_022_20968_0 crossref_primary_10_1264_jsme2_ME24041 crossref_primary_10_1007_s42770_024_01465_0 crossref_primary_10_1128_spectrum_00170_24 crossref_primary_10_3389_fmicb_2023_1236731 crossref_primary_10_1007_s00284_025_04119_y crossref_primary_10_1016_j_jip_2023_107959 crossref_primary_10_1002_ece3_11628 crossref_primary_10_1016_j_jip_2025_108309 |
Cites_doi | 10.1007/978-3-642-66161-7_3 10.1007/s00284-011-9885-5 10.1093/gbe/evr002 10.1099/00207713-41-4-563 10.1038/s41587-019-0209-9 10.5852/ejt.2021.736.1257 10.1007/s00248-020-01491-z 10.1016/j.cois.2015.03.006 10.1002/ps.3643 10.3389/fmicb.2017.01037 10.1094/PHYTO-12-16-0426-RVW 10.1093/femsec/fiw205 10.1146/annurev.micro.53.1.71 10.1007/BF00403077 10.1046/j.1365-2583.2001.00231.x 10.1128/IAI.00889-17 10.1094/PHYTO-07-13-0182-R 10.1111/syen.12302 10.1371/journal.pgen.1000827 10.1111/1751-7915.12707 10.1371/journal.pone.0216599 10.1128/mBio.02475-19 10.1007/s00248-016-0733-9 10.1007/s00248-014-0463-9 10.1186/s40168-017-0276-4 10.1007/s00248-017-0971-5 10.1007/s00248-012-0150-7 10.1146/annurev.genet.41.110306.130119 10.1111/j.1462-2920.2010.02347.x 10.1111/1744-7917.12566 10.1186/s12866-020-01895-4 10.1371/journal.pone.0011478 10.1371/journal.pone.0050067 10.1371/journal.pone.0179531 10.1146/annurev-ento-120811-153542 10.1126/science.1195463 10.1186/1471-2105-10-421 10.1128/mSystems.00290-19 10.1007/s002840010138 10.1038/nrmicro3330 10.1016/j.cub.2013.06.027 10.3390/v7112903 10.5197/j.2044-0588.2020.041.003 10.1007/s00284-005-0092-0 10.3389/fmicb.2021.739763 10.1371/journal.pone.0189779 10.1007/s10658-012-0121-3 10.1371/journal.pone.0132248 10.1017/S0007485309006737 10.1038/ismej.2013.27 10.1046/j.1570-7458.1999.00485.x 10.1186/s40168-018-0470-z 10.1146/annurev-micro-091213-112901 10.7717/peerj.5486 10.1371/journal.pone.0227434 10.1007/s002840010240 10.1016/S0022-2011(03)00020-X 10.1371/journal.pone.0218190 10.1128/mBio.00359-21 10.1111/j.1365-2583.2009.00941.x 10.1016/j.cub.2014.06.038 10.1371/journal.pbio.1000313 10.1126/science.1134196 10.1016/j.jbiotec.2017.06.1198 10.1016/j.tim.2019.02.002 10.1371/journal.pbio.0020069 10.1128/AEM.01527-13 10.1093/oxfordjournals.molbev.a025878 10.1073/pnas.0409034102 10.1111/j.1365-2583.2009.00946.x 10.1016/s0022-1910(98)00104-8 10.1046/j.1365-2540.2001.00848.x 10.1016/j.syapm.2016.03.001 10.1111/syen.12345 10.5197/j.2044-0588.2013.027.006 10.1371/journal.pone.0082612 10.1016/j.jip.2005.08.009 10.1111/mec.12211 10.3389/fmicb.2019.01948 10.1038/nmeth.3869 10.1016/j.cois.2018.10.004 10.1099/ijs.0.063255-0 10.1093/molbev/msu004 10.1017/S0007485300031217 10.1111/1462-2920.12121 10.1128/AEM.01672-07 10.1128/AEM.02240-09 10.1016/S0965-1748(01)00115-1 10.1093/aesa/saw007 10.1111/j.1365-2583.2009.00956.x 10.1128/AEM.64.10.3599-3606.1998 10.1128/AEM.03049-13 10.1007/s12600-012-0225-5 10.1186/1741-7007-7-12 10.1371/journal.pone.0028695 10.1111/mec.12637 10.1093/gbe/evaa175 10.1007/s10658-010-9737-3 10.1038/srep32590 10.1080/00222930903437325 10.1146/annurev-ento-112408-085305 10.1093/bioinformatics/btu033 10.1128/AEM.66.7.2898-2905.2000 10.1093/bioinformatics/bts252 10.1603/EN13256 10.1186/1471-2180-9-143 10.1038/s41579-018-0025-0 10.1093/molbev/mss180 10.1016/j.jinsphys.2019.103931 10.1038/nrmicro2670 10.14806/ej.17.1.200 10.1111/1462-2920.13351 10.1038/nrmicro1969 10.2108/zsj.17.983 10.1007/s10096-011-1318-7 10.1128/mSphereDirect.00171-17 10.1007/s00248-018-1290-1 10.1371/journal.pone.0019135 10.1371/journal.pone.0216319 10.3389/fmicb.2019.00764 |
ContentType | Journal Article |
Copyright | 2022. The Author(s). COPYRIGHT 2022 BioMed Central Ltd. 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2022 |
Copyright_xml | – notice: 2022. The Author(s). – notice: COPYRIGHT 2022 BioMed Central Ltd. – notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QL 7T7 7U9 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s12866-021-02429-2 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2180 |
EndPage | 21 |
ExternalDocumentID | oai_doaj_org_article_b5dc087b55ee467b8fc317e10f435cd0 PMC8740488 A693695849 34996376 10_1186_s12866_021_02429_2 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Japan |
GeographicLocations_xml | – name: Japan |
GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8FE 8FH 8FI 8FJ A8Z AAFWJ AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR INH INR ISR ITC KQ8 LK5 LK8 M1P M48 M7P M7R MM. M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB ~02 -A0 3V. ACRMQ ADINQ AGJBV C24 CGR CUY CVF ECM EIF NPM PMFND 7QL 7T7 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c597t-d623387a632ba48d1098e10ffdd2f07275eaff77b22700cf540df9459926725c3 |
IEDL.DBID | M48 |
ISSN | 1471-2180 |
IngestDate | Wed Aug 27 01:28:53 EDT 2025 Thu Aug 21 18:21:34 EDT 2025 Mon Jul 21 11:06:58 EDT 2025 Fri Jul 25 10:44:25 EDT 2025 Tue Jun 17 21:43:24 EDT 2025 Tue Jun 10 20:23:01 EDT 2025 Fri Jun 27 04:19:57 EDT 2025 Wed Feb 19 02:27:01 EST 2025 Tue Jul 01 04:31:38 EDT 2025 Thu Apr 24 22:58:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Fukatsuia Macrocorsinae Serratia symbiotica Sodalis Psyllinae Wolbachia Diplorickettsia Arsenophonus Liberibacter Rickettsia |
Language | English |
License | 2022. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c597t-d623387a632ba48d1098e10ffdd2f07275eaff77b22700cf540df9459926725c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0281-1723 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12866-021-02429-2 |
PMID | 34996376 |
PQID | 2620946016 |
PQPubID | 42585 |
PageCount | 21 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b5dc087b55ee467b8fc317e10f435cd0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8740488 proquest_miscellaneous_2618225723 proquest_journals_2620946016 gale_infotracmisc_A693695849 gale_infotracacademiconefile_A693695849 gale_incontextgauss_ISR_A693695849 pubmed_primary_34996376 crossref_citationtrail_10_1186_s12866_021_02429_2 crossref_primary_10_1186_s12866_021_02429_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-07 |
PublicationDateYYYYMMDD | 2022-01-07 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC microbiology |
PublicationTitleAlternate | BMC Microbiol |
PublicationYear | 2022 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | C Chu (2429_CR115) 2019; 26 H Lin (2429_CR91) 2011; 6 A Nakabachi (2429_CR12) 1999; 45 M Mann (2429_CR61) 2018; 86 2429_CR5 JL Morrow (2429_CR28) 2017; 5 E Bolyen (2429_CR123) 2019; 37 R Stouthamer (2429_CR104) 1999; 53 2429_CR9 2429_CR44 ET Lawson (2429_CR117) 2001; 86 2429_CR43 A Arp (2429_CR23) 2014; 43 2429_CR46 J Profft (2429_CR13) 1937; 32 2429_CR48 EE Grafton-Cardwell (2429_CR8) 2013; 58 NA Moran (2429_CR36) 2008; 42 2429_CR47 RL Gherna (2429_CR74) 1991; 41 2429_CR107 ML Thao (2429_CR17) 2000; 41 JH Werren (2429_CR105) 2008; 6 H Inoue (2429_CR120) 2010; 44 FO Glöckner (2429_CR72) 2017; 261 WR Nelson (2429_CR93) 2013; 135 2429_CR31 2429_CR30 A Nakabachi (2429_CR58) 2013; 8 C Camerota (2429_CR98) 2012; 40 P Buchner (2429_CR14) 1965 A Kruse (2429_CR59) 2017; 12 A Nakabachi (2429_CR37) 2003; 82 2429_CR38 P Nachappa (2429_CR64) 2011; 62 N Nikoh (2429_CR49) 2009; 7 A Nakabachi (2429_CR57) 2019; 118 H Ziegler (2429_CR11) 1975 H Dan (2429_CR54) 2017; 12 E Pruesse (2429_CR127) 2012; 28 A Nakabachi (2429_CR56) 2019; 14 RLL Kellner (2429_CR82) 2002; 32 DB Sloan (2429_CR51) 2014; 31 WA Overholt (2429_CR24) 2015; 10 2429_CR67 ML Keremane (2429_CR90) 2015 MJ Ballinger (2429_CR41) 2019; 32 C Camacho (2429_CR126) 2009; 10 A Nakabachi (2429_CR35) 2006; 314 ID Hodkinson (2429_CR6) 1974; 64 M Martin (2429_CR124) 2011; 17 R Koga (2429_CR79) 2013; 15 H Toju (2429_CR78) 2013; 7 J Sandstrom (2429_CR10) 1999; 91 AS Guidolin (2429_CR113) 2013; 65 J Morris (2429_CR95) 2017; 10 BJ Callahan (2429_CR70) 2016; 13 P Yarza (2429_CR80) 2014; 12 AW Spaulding (2429_CR16) 1998; 15 CC Chu (2429_CR111) 2016; 71 KN Johnson (2429_CR40) 2015; 7 X Jing (2429_CR65) 2014; 23 G Subramanian (2429_CR85) 2012; 31 N Raddadi (2429_CR97) 2011; 13 S Saha (2429_CR112) 2012; 7 S Hosseinzadeh (2429_CR62) 2019; 78 D Ouvrard (2429_CR63) 2021 A Nakabachi (2429_CR53) 2015; 7 A Prodan (2429_CR71) 2020; 15 JR Fagen (2429_CR96) 2014; 64 M Tang (2429_CR103) 2010; 76 F Li (2429_CR119) 2011 FCA Dossi (2429_CR110) 2014; 68 S Thompson (2429_CR99) 2013; 27 O Mediannikov (2429_CR84) 2010; 5 NA Bokulich (2429_CR125) 2018; 6 T Tsuchida (2429_CR87) 2014; 80 GR Burke (2429_CR42) 2011; 3 V Patel (2429_CR76) 2019; 11 KS Pelz-Stelinski (2429_CR101) 2016; 109 L Karstens (2429_CR68) 2019; 4 Illumina. (2429_CR122) 2013 T Fukatsu (2429_CR15) 1998; 64 CD von Dohlen (2429_CR83) 2017; 8 A Nakabachi (2429_CR52) 2014; 24 M Lashkari (2429_CR114) 2014; 70 J Pascar (2429_CR106) 2018; 6 RA Barco (2429_CR81) 2020; 11 W Nelson (2429_CR92) 2011; 130 S Subandiyah (2429_CR18) 2000; 17 2429_CR77 AA Augustinos (2429_CR102) 2011; 6 B Jarausch (2429_CR7) 2010 AAG Hall (2429_CR25) 2016; 18 C Fromont (2429_CR26) 2016; 92 T Tsuchida (2429_CR88) 2010; 330 KM Oliver (2429_CR39) 2010; 55 DB Sloan (2429_CR21) 2012; 29 JP McCutcheon (2429_CR45) 2012; 10 ML Thao (2429_CR33) 2000; 66 DM Percy (2429_CR1) 2018; 43 JM Bové (2429_CR89) 2006; 88 C Tamborindeguy (2429_CR4) 2010; 19 JA Russell (2429_CR69) 2013; 22 T Yamada (2429_CR55) 2019; 14 A Stamatakis (2429_CR128) 2014; 30 2429_CR22 HA Flores (2429_CR108) 2018; 16 T Hagimori (2429_CR118) 2006; 52 D Burckhardt (2429_CR2) 2021; 736 2429_CR27 M Jain (2429_CR60) 2017; 2 ML Thao (2429_CR34) 2001; 42 L Meng (2429_CR66) 2019; 10 G Cho (2429_CR121) 2019; 44 E Novakova (2429_CR75) 2009; 9 M Tannières (2429_CR100) 2020; 41 International Aphid Genomics Consortium (2429_CR3) 2010; 8 RE Trowbridge (2429_CR73) 2006; 91 S Hosseinzadeh (2429_CR116) 2019; 14 Y Ishii (2429_CR86) 2013; 79 2429_CR94 S Shigenobu (2429_CR50) 2010; 19 AW Spaulding (2429_CR19) 2001; 10 AK Hansen (2429_CR20) 2007; 73 A Nakabachi (2429_CR32) 2010; 100 JL Morrow (2429_CR29) 2020; 20 P Brinker (2429_CR109) 2019; 27 |
References_xml | – start-page: 59 volume-title: Transport in plants I year: 1975 ident: 2429_CR11 doi: 10.1007/978-3-642-66161-7_3 – volume: 62 start-page: 1510 year: 2011 ident: 2429_CR64 publication-title: Curr Microbiol doi: 10.1007/s00284-011-9885-5 – volume: 3 start-page: 195 year: 2011 ident: 2429_CR42 publication-title: Genome Biol Evol. doi: 10.1093/gbe/evr002 – volume: 41 start-page: 563 year: 1991 ident: 2429_CR74 publication-title: Int J Syst Bacteriol doi: 10.1099/00207713-41-4-563 – volume: 37 start-page: 852 year: 2019 ident: 2429_CR123 publication-title: Nat Biotechnol doi: 10.1038/s41587-019-0209-9 – volume: 736 start-page: 137 year: 2021 ident: 2429_CR2 publication-title: Eur J Taxon doi: 10.5852/ejt.2021.736.1257 – ident: 2429_CR30 doi: 10.1007/s00248-020-01491-z – volume: 7 start-page: 24 year: 2015 ident: 2429_CR53 publication-title: Curr Opin Insect Sci doi: 10.1016/j.cois.2015.03.006 – volume: 70 start-page: 1033 year: 2014 ident: 2429_CR114 publication-title: Pest Manag Sci doi: 10.1002/ps.3643 – volume: 8 start-page: 1037 year: 2017 ident: 2429_CR83 publication-title: Front Microbiol doi: 10.3389/fmicb.2017.01037 – ident: 2429_CR9 doi: 10.1094/PHYTO-12-16-0426-RVW – volume: 92 start-page: fiw205 year: 2016 ident: 2429_CR26 publication-title: FEMS Microbiol Ecol doi: 10.1093/femsec/fiw205 – volume-title: Psyl’list – the world Psylloidea database year: 2021 ident: 2429_CR63 – volume: 53 start-page: 71 year: 1999 ident: 2429_CR104 publication-title: Annu Rev Microbiol doi: 10.1146/annurev.micro.53.1.71 – volume: 32 start-page: 289 year: 1937 ident: 2429_CR13 publication-title: Z Morphol Ökol Tiere doi: 10.1007/BF00403077 – volume: 10 start-page: 57 year: 2001 ident: 2429_CR19 publication-title: Insect Mol Biol doi: 10.1046/j.1365-2583.2001.00231.x – volume: 86 start-page: e00889 year: 2018 ident: 2429_CR61 publication-title: Infect Immun doi: 10.1128/IAI.00889-17 – volume-title: APS Annual Meeting 2015:101-O year: 2015 ident: 2429_CR90 – ident: 2429_CR94 doi: 10.1094/PHYTO-07-13-0182-R – volume: 43 start-page: 762 year: 2018 ident: 2429_CR1 publication-title: Syst Entomol doi: 10.1111/syen.12302 – ident: 2429_CR48 doi: 10.1371/journal.pgen.1000827 – volume: 10 start-page: 833 year: 2017 ident: 2429_CR95 publication-title: Microb Biotechnol doi: 10.1111/1751-7915.12707 – volume: 14 year: 2019 ident: 2429_CR116 publication-title: PLoS One doi: 10.1371/journal.pone.0216599 – volume: 11 start-page: e02475 year: 2020 ident: 2429_CR81 publication-title: MBio. doi: 10.1128/mBio.02475-19 – volume: 71 start-page: 999 year: 2016 ident: 2429_CR111 publication-title: Microb Ecol doi: 10.1007/s00248-016-0733-9 – volume: 68 start-page: 881 year: 2014 ident: 2429_CR110 publication-title: Microb Ecol doi: 10.1007/s00248-014-0463-9 – volume: 5 start-page: 58 year: 2017 ident: 2429_CR28 publication-title: Microbiome. doi: 10.1186/s40168-017-0276-4 – ident: 2429_CR27 doi: 10.1007/s00248-017-0971-5 – volume: 65 start-page: 475 year: 2013 ident: 2429_CR113 publication-title: Microb Ecol doi: 10.1007/s00248-012-0150-7 – volume: 42 start-page: 165 year: 2008 ident: 2429_CR36 publication-title: Annu Rev Genet doi: 10.1146/annurev.genet.41.110306.130119 – volume: 13 start-page: 414 year: 2011 ident: 2429_CR97 publication-title: Env Microbiol doi: 10.1111/j.1462-2920.2010.02347.x – volume: 26 start-page: 671 year: 2019 ident: 2429_CR115 publication-title: Insect Sci doi: 10.1111/1744-7917.12566 – volume: 20 start-page: 215 year: 2020 ident: 2429_CR29 publication-title: BMC Microbiol doi: 10.1186/s12866-020-01895-4 – volume: 5 start-page: e11478 year: 2010 ident: 2429_CR84 publication-title: PLoS One. doi: 10.1371/journal.pone.0011478 – volume: 7 year: 2012 ident: 2429_CR112 publication-title: PLoS One doi: 10.1371/journal.pone.0050067 – volume: 12 year: 2017 ident: 2429_CR59 publication-title: PLoS One doi: 10.1371/journal.pone.0179531 – volume: 58 start-page: 413 year: 2013 ident: 2429_CR8 publication-title: Annu Rev Entomol doi: 10.1146/annurev-ento-120811-153542 – volume: 330 start-page: 1102 year: 2010 ident: 2429_CR88 publication-title: Science (80- ) doi: 10.1126/science.1195463 – volume: 10 start-page: 421 year: 2009 ident: 2429_CR126 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-421 – start-page: 250 volume-title: Phytoplasmas: genomes, plant hosts and vectors year: 2010 ident: 2429_CR7 – volume: 4 start-page: e00290 year: 2019 ident: 2429_CR68 publication-title: mSystems. doi: 10.1128/mSystems.00290-19 – volume: 41 start-page: 300 year: 2000 ident: 2429_CR17 publication-title: Curr Microbiol doi: 10.1007/s002840010138 – volume: 12 start-page: 635 year: 2014 ident: 2429_CR80 publication-title: Nat Rev Microbiol. doi: 10.1038/nrmicro3330 – volume-title: 16S metagenomic sequencing library preparation Part#15044223 Rev.B year: 2013 ident: 2429_CR122 – ident: 2429_CR22 doi: 10.1016/j.cub.2013.06.027 – volume: 7 start-page: 5705 year: 2015 ident: 2429_CR40 publication-title: Viruses. doi: 10.3390/v7112903 – volume: 41 start-page: 3 year: 2020 ident: 2429_CR100 publication-title: New Dis Rep doi: 10.5197/j.2044-0588.2020.041.003 – volume: 52 start-page: 97 year: 2006 ident: 2429_CR118 publication-title: Curr Microbiol doi: 10.1007/s00284-005-0092-0 – ident: 2429_CR67 doi: 10.3389/fmicb.2021.739763 – volume: 12 year: 2017 ident: 2429_CR54 publication-title: PLoS One doi: 10.1371/journal.pone.0189779 – volume: 135 start-page: 633 year: 2013 ident: 2429_CR93 publication-title: Eur J Plant Pathol doi: 10.1007/s10658-012-0121-3 – volume: 88 start-page: 7 year: 2006 ident: 2429_CR89 publication-title: J Plant Pathol – volume: 10 start-page: 1 year: 2015 ident: 2429_CR24 publication-title: PLoS One doi: 10.1371/journal.pone.0132248 – volume: 100 start-page: 27 year: 2010 ident: 2429_CR32 publication-title: Bull Entomol Res doi: 10.1017/S0007485309006737 – volume: 7 start-page: 1378 year: 2013 ident: 2429_CR78 publication-title: ISME J doi: 10.1038/ismej.2013.27 – volume: 91 start-page: 203 year: 1999 ident: 2429_CR10 publication-title: Entomol Exp Appl doi: 10.1046/j.1570-7458.1999.00485.x – volume: 6 start-page: 90 year: 2018 ident: 2429_CR125 publication-title: Microbiome. doi: 10.1186/s40168-018-0470-z – ident: 2429_CR46 doi: 10.1146/annurev-micro-091213-112901 – volume: 6 year: 2018 ident: 2429_CR106 publication-title: PeerJ. doi: 10.7717/peerj.5486 – volume: 15 year: 2020 ident: 2429_CR71 publication-title: PLoS One doi: 10.1371/journal.pone.0227434 – volume: 42 start-page: 419 year: 2001 ident: 2429_CR34 publication-title: Curr Microbiol doi: 10.1007/s002840010240 – volume: 82 start-page: 152 year: 2003 ident: 2429_CR37 publication-title: J Invertebr Pathol doi: 10.1016/S0022-2011(03)00020-X – volume: 14 year: 2019 ident: 2429_CR56 publication-title: PLoS One doi: 10.1371/journal.pone.0218190 – ident: 2429_CR44 doi: 10.1128/mBio.00359-21 – ident: 2429_CR5 doi: 10.1111/j.1365-2583.2009.00941.x – volume: 24 start-page: R640 year: 2014 ident: 2429_CR52 publication-title: Curr Biol doi: 10.1016/j.cub.2014.06.038 – volume: 8 year: 2010 ident: 2429_CR3 publication-title: PLoS Biol doi: 10.1371/journal.pbio.1000313 – volume: 314 start-page: 267 year: 2006 ident: 2429_CR35 publication-title: Science. doi: 10.1126/science.1134196 – volume: 261 start-page: 169 year: 2017 ident: 2429_CR72 publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2017.06.1198 – volume: 27 start-page: 480 year: 2019 ident: 2429_CR109 publication-title: Trends Microbiol doi: 10.1016/j.tim.2019.02.002 – ident: 2429_CR38 doi: 10.1371/journal.pbio.0020069 – volume: 79 start-page: 5013 year: 2013 ident: 2429_CR86 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01527-13 – volume: 15 start-page: 1506 year: 1998 ident: 2429_CR16 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a025878 – ident: 2429_CR47 doi: 10.1073/pnas.0409034102 – volume: 19 start-page: 23 issue: SUPPL. 2 year: 2010 ident: 2429_CR50 publication-title: Insect Mol Biol doi: 10.1111/j.1365-2583.2009.00946.x – volume: 45 start-page: 1 year: 1999 ident: 2429_CR12 publication-title: J Insect Physiol doi: 10.1016/s0022-1910(98)00104-8 – volume: 86 start-page: 497 issue: Pt 4 year: 2001 ident: 2429_CR117 publication-title: Heredity (Edinb) doi: 10.1046/j.1365-2540.2001.00848.x – ident: 2429_CR107 doi: 10.1016/j.syapm.2016.03.001 – volume: 44 start-page: 638 year: 2019 ident: 2429_CR121 publication-title: Syst Entomol doi: 10.1111/syen.12345 – volume: 27 start-page: 6 year: 2013 ident: 2429_CR99 publication-title: New Dis Rep doi: 10.5197/j.2044-0588.2013.027.006 – volume: 8 year: 2013 ident: 2429_CR58 publication-title: PLoS One doi: 10.1371/journal.pone.0082612 – volume: 91 start-page: 64 year: 2006 ident: 2429_CR73 publication-title: J Invertebr Pathol doi: 10.1016/j.jip.2005.08.009 – volume: 22 start-page: 2045 year: 2013 ident: 2429_CR69 publication-title: Mol Ecol doi: 10.1111/mec.12211 – volume-title: Endosymbiosis of animals with plant microorganisms year: 1965 ident: 2429_CR14 – volume: 10 start-page: 1948 year: 2019 ident: 2429_CR66 publication-title: Front Microbiol doi: 10.3389/fmicb.2019.01948 – volume: 13 start-page: 581 year: 2016 ident: 2429_CR70 publication-title: Nat Methods doi: 10.1038/nmeth.3869 – volume: 32 start-page: 36 year: 2019 ident: 2429_CR41 publication-title: Curr Opin Insect Sci. doi: 10.1016/j.cois.2018.10.004 – volume: 64 start-page: 2461 year: 2014 ident: 2429_CR96 publication-title: Int J Syst Evol Microbiol doi: 10.1099/ijs.0.063255-0 – volume: 31 start-page: 857 year: 2014 ident: 2429_CR51 publication-title: Mol Biol Evol doi: 10.1093/molbev/msu004 – volume: 64 start-page: 325 year: 1974 ident: 2429_CR6 publication-title: Bull Entomol Res doi: 10.1017/S0007485300031217 – volume: 15 start-page: 2073 year: 2013 ident: 2429_CR79 publication-title: Environ Microbiol doi: 10.1111/1462-2920.12121 – volume: 73 start-page: 7531 year: 2007 ident: 2429_CR20 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01672-07 – volume: 76 start-page: 1740 year: 2010 ident: 2429_CR103 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02240-09 – volume: 32 start-page: 389 year: 2002 ident: 2429_CR82 publication-title: Insect Biochem Mol Biol doi: 10.1016/S0965-1748(01)00115-1 – volume: 109 start-page: 371 year: 2016 ident: 2429_CR101 publication-title: Ann Entomol Soc Am doi: 10.1093/aesa/saw007 – volume: 19 start-page: 259 year: 2010 ident: 2429_CR4 publication-title: Insect Mol Biol doi: 10.1111/j.1365-2583.2009.00956.x – volume: 64 start-page: 3599 year: 1998 ident: 2429_CR15 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.64.10.3599-3606.1998 – volume: 80 start-page: 525 year: 2014 ident: 2429_CR87 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.03049-13 – volume: 40 start-page: 213 year: 2012 ident: 2429_CR98 publication-title: Phytoparasitica. doi: 10.1007/s12600-012-0225-5 – volume: 7 start-page: 12 year: 2009 ident: 2429_CR49 publication-title: BMC Biol doi: 10.1186/1741-7007-7-12 – volume: 6 year: 2011 ident: 2429_CR102 publication-title: PLoS One doi: 10.1371/journal.pone.0028695 – volume: 23 start-page: 1433 year: 2014 ident: 2429_CR65 publication-title: Mol Ecol doi: 10.1111/mec.12637 – ident: 2429_CR31 doi: 10.1093/gbe/evaa175 – volume: 130 start-page: 5 year: 2011 ident: 2429_CR92 publication-title: Eur J Plant Pathol doi: 10.1007/s10658-010-9737-3 – ident: 2429_CR43 doi: 10.1038/srep32590 – start-page: 546 volume-title: Psyllidomorpha of China (Insecta: Hemiptera) year: 2011 ident: 2429_CR119 – volume: 44 start-page: 333 year: 2010 ident: 2429_CR120 publication-title: J Nat Hist doi: 10.1080/00222930903437325 – volume: 55 start-page: 247 year: 2010 ident: 2429_CR39 publication-title: Annu Rev Entomol doi: 10.1146/annurev-ento-112408-085305 – volume: 30 start-page: 1312 year: 2014 ident: 2429_CR128 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btu033 – volume: 66 start-page: 2898 year: 2000 ident: 2429_CR33 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.66.7.2898-2905.2000 – volume: 11 start-page: 3510 year: 2019 ident: 2429_CR76 publication-title: Genome Biol Evol. – volume: 28 start-page: 1823 year: 2012 ident: 2429_CR127 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/bts252 – volume: 43 start-page: 344 year: 2014 ident: 2429_CR23 publication-title: Environ Entomol doi: 10.1603/EN13256 – volume: 9 start-page: 143 year: 2009 ident: 2429_CR75 publication-title: BMC Microbiol doi: 10.1186/1471-2180-9-143 – volume: 16 start-page: 508 year: 2018 ident: 2429_CR108 publication-title: Nat Rev Microbiol doi: 10.1038/s41579-018-0025-0 – volume: 29 start-page: 3781 year: 2012 ident: 2429_CR21 publication-title: Mol Biol Evol doi: 10.1093/molbev/mss180 – volume: 118 year: 2019 ident: 2429_CR57 publication-title: J Insect Physiol doi: 10.1016/j.jinsphys.2019.103931 – volume: 10 start-page: 13 year: 2012 ident: 2429_CR45 publication-title: Nat Rev Microbiol. doi: 10.1038/nrmicro2670 – volume: 17 start-page: 10 year: 2011 ident: 2429_CR124 publication-title: EMBnet.journal. doi: 10.14806/ej.17.1.200 – volume: 18 start-page: 2591 year: 2016 ident: 2429_CR25 publication-title: Environ Microbiol doi: 10.1111/1462-2920.13351 – volume: 6 start-page: 741 year: 2008 ident: 2429_CR105 publication-title: Nat Rev Microbiol. doi: 10.1038/nrmicro1969 – volume: 17 start-page: 983 year: 2000 ident: 2429_CR18 publication-title: Zool Sci doi: 10.2108/zsj.17.983 – volume: 31 start-page: 365 year: 2012 ident: 2429_CR85 publication-title: Eur J Clin Microbiol Infect Dis doi: 10.1007/s10096-011-1318-7 – volume: 2 start-page: e00171 year: 2017 ident: 2429_CR60 publication-title: mSphere. doi: 10.1128/mSphereDirect.00171-17 – volume: 78 start-page: 206 year: 2019 ident: 2429_CR62 publication-title: Microb Ecol doi: 10.1007/s00248-018-1290-1 – volume: 6 year: 2011 ident: 2429_CR91 publication-title: PLoS One doi: 10.1371/journal.pone.0019135 – volume: 14 year: 2019 ident: 2429_CR55 publication-title: PLoS One doi: 10.1371/journal.pone.0216319 – ident: 2429_CR77 doi: 10.3389/fmicb.2019.00764 |
SSID | ssj0017837 |
Score | 2.4456074 |
Snippet | Psyllids (Hemiptera: Psylloidea) comprise a group of plant sap-sucking insects that includes important agricultural pests. They have close associations not... Background Psyllids (Hemiptera: Psylloidea) comprise a group of plant sap-sucking insects that includes important agricultural pests. They have close... Abstract Background Psyllids (Hemiptera: Psylloidea) comprise a group of plant sap-sucking insects that includes important agricultural pests. They have close... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 15 |
SubjectTerms | Agricultural pests Amino acids Animals Aphididae Aphidoidea Aphids - microbiology Bacteria Diplorickettsia Enterobacteriaceae Gammaproteobacteria - classification Gammaproteobacteria - genetics Gammaproteobacteria - isolation & purification Hemiptera - classification Hemiptera - microbiology Host plants Host-bacteria relationships Insects Liberibacter Liberibacter - classification Liberibacter - genetics Liberibacter - isolation & purification Macrocorsinae Microbiological research Microbiomes Microbiota Pathogens Pest control Pests Phylogenetics Phylogeny Physiological aspects Plant Diseases - microbiology Plant Diseases - parasitology Plant pathology Plant-pathogen relationships Psyllidae Psyllinae Psylloidea Rickettsia Rickettsia - classification Rickettsia - genetics Rickettsia - isolation & purification Rickettsiales rRNA 16S Serratia - classification Serratia - genetics Serratia - isolation & purification Serratia symbiotica Species Symbionts Symbiosis Wolbachia Wolbachia - classification Wolbachia - genetics Wolbachia - isolation & purification |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yIPgifls9JYrgg5bbZtumeTzF5RRORD24t5BPr9xedrm0wv5Z_ofONN1li6AvvnamtM1MMvNLJ78h5FUhBEhqn-Mx67wUWucNpLW5gVDEwSrae9yHPP1cn5yVn86r871WX1gTluiB08Ad6cqaWcN1VTkHk1o33kDIc8XMQ6A3dkDrEPO2YGr8f8ABd22PyDT1UYRVuMZiW4DOEJNEziZhaGDr_3NN3gtK04LJvQi0uENuj6kjPU6vfJfccOEeuZmaSW7uk1-nbSJVunJUDVQjLtKVpwWj67hZLltL8Vhlm65C3kfT5gb9kqTK0dam2iFn6U_A0Ks-Up3YnBVtg1n2GOjoor9UXezhmgqWwmKDTqRo3FzBw3Fr_C3FnbpAVaQR8bZV15tRHLrh6Wp90dr4gJwtPnx_f5KPDRlyA7ijyy3kSvOGq3rOtCobW8xEg5bw1jI_g0yocsp7zjXD39nGQzZovSgrIVjNWWXmD8lBWAX3mFDtm9IyJHd3qIUwkHsjNORvuvDMZKTY2keaka0cm2Ys5YBamlomm0qwqRxsKllG3uzuWSeujr9qv0Oz7zSRZ3u4AN4nR--T__K-jLxEp5HIpBGwVOeH6mOUH799lcc19kqE_E5k5PWo5FfwDUaNJx9gJJB8a6J5ONGEqW6m4q1vynGpiRI7CogSWXUy8mInxjuxfC448BXQARgJizObZ-RRcuXdd88B89YQZjLCJ04-GZipJLQXAxE5tnOEAPDkf4zkU3KL4ckS3N3ih-Sgu-7dM8j3Ov18mNq_AZLPU_4 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96Ivgifls9JYrgg5bbZrtN8ySnuJzCiagH9xbyeVfca9fNVtg_y__QmSa7XhHutTOlTWcyX538hpBXhRBAqXyOx6zzUmid1xDW5gZcEQepaO-xDnn8pTo6KT-fzk5TwS2ktsqtTRwMte0M1sgPEDhdlAge8m75K8epUfh3NY3QuE5uIHQZajU_3SVcBYfsa3tQpq4OAtjiCltuIYEGzyRyNnJGA2b__5b5kmsat01e8kPzO-R2CiDpYZT4XXLNtffIzThScnOf_DluIrTShaNqABxxgXaeFowuw2axaCzFw5VNvArRH40lDvo1UpWjjY0dRM7S35BJd32gOmI6K9q0ZtGju6Pz_qdahx6uqdZSMDmoSoqGzQU8HAvkbynW61qqAg2YdVu12iRyux6erpbnjQ0PyMn8448PR3kay5AbyD7WuYWIaVpzVU2ZVmVti4moXTHx3lrmJxAPzZzynnPN8Ke28RATWi_KmRCs4mxmpg_JXtu17jGh2telZQjx7pALk0HujdAQxenCM5ORYisfaRJmOY7OWMghd6krGWUqQaZykKlkGXmzu2cZETuu5H6PYt9xItr2cKFbncm0eaWeWTOpuYbXdOBYdO0NhF24Zgg2jZ1k5CUqjUQ8jRYbds5UH4L89P2bPKxwYiJEeSIjrxOT72ANRqXzD_AlEIJrxLk_4oQNb8bkrW7KZHCC_Lc9MvJiR8Y7sYmudaArwAPJJJhoNs3Io6jKu3VPIfOtwNlkhI-UfPRhxpS2OR_gyHGoI7iBJ1e_1lNyi-HJEaxe8X2yt1717hnEc2v9fNi0fwFLr0sA priority: 102 providerName: ProQuest |
Title | Microbiome analyses of 12 psyllid species of the family Psyllidae identified various bacteria including Fukatsuia and Serratia symbiotica, known as secondary symbionts of aphids |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34996376 https://www.proquest.com/docview/2620946016 https://www.proquest.com/docview/2618225723 https://pubmed.ncbi.nlm.nih.gov/PMC8740488 https://doaj.org/article/b5dc087b55ee467b8fc317e10f435cd0 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF6VVkhcEG8MJVoQEgcwtR3Hax8QalCjgpSqCkSquKz22VqkTsjGiPws_iEzXifUouolB8849u7Mzsu73xDyOi4KoGQ2xGPWYVpIGeYQ1oYKXBEDqUhrsQ45PsmOp-mXs8HZDtm0O2on0F2b2mE_qely9v73z_VHWPAfmgWfZwcObGyGW2khMQaPU4RgkvfAMzHsaDBO_31VYHmDoRmDQQ7BtUWbQzTX_kfHUTV4_v9b7Stuq7ul8oqPGt0jd9vgkh56bbhPdkz1gNz27SbXD8mfcelhly4NFQ0YiXF0bmmc0IVbz2alpnjwsvRXITKkvvxBTz1VGFpqv7vIaPoLsux57aj0eM-ClpWa1egK6aj-IVauhmui0hTMEaqZoG59CQ_H4vk7irW8igpHHWbkWizXLblaNU8Xi4tSu0dkOjr69uk4bFs2hAoyk1WoIZrq50xk_USKNNdxVOQmjqzVOrERxEoDI6xlTCb4wVtZiBe1LdJBUSQZSwaq_5jsVvPKPCVU2jzVCcK_G-TCRJFZVUiI8GRsExWQeCMfrlo8c2yrMeNNXpNn3MuUg0x5I1OeBOTt9p6FR_O4kXuIYt9yIhJ3c2G-POftwuZyoFWUMwmvacDpyNwqCMlwzBCIKh0F5BUqDUesjQo385yL2jn--euEH2bYTREiwCIgb1omO4cxKNGejYCZQHiuDud-hxOMgeqSN7rJN2uJY8-BIkXcnYC83JLxTtxgVxnQFeCBRBPMd9IPyBOvyttx9yErzsARBYR1lLwzMV1KVV40UOXY8BFcxLOb3_o5uZPgqRKsbLF9srta1uYFxHor2SO32Bnrkb3h0cnppNdUTHrNoobfyfD7X-bqVFg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6VIgQviBtDgQWBeACr9sbx8YBQOaqENhWCVsrbsmdrkdohG4Pyp5D4h8z4CLWQ-tZX7_hYz3i-mfEchDwPswxWYutjmbUfZVL6KZi1vgIoSoAr0lqMQ04O4tFR9Gk6nG6Q310tDKZVdjqxVtS6VBgj38bG6VmEzUPezn_4ODUK_652IzQasdgzq1_gsrk34w_A3xeM7X48fD_y26kCvgLjeelrAPxBmoh4wKSIUh0GWWrCwFqtmQ0AzodGWJskkuE_WWXBpNE2i4ZZxuKEDdUArnuJXIa9BejsJdO1gxcm4O11hTlpvO1A98eY4gsOOyBh5rMe-NUzAv5HgjNQ2E_TPIN7uzfI9dZgpTuNhN0kG6a4Ra40IyxXt8mfSd60cjo1VNQNToyjpaUho3O3ms1yTbGYM2-OgrVJm5AK_dysCkNz3WQsGU1_gudeVo7Kpoe0oHmhZhXCK92tvoulq-CYKDQFFYeiK6hbncLNMSD_mmJ8sKDCUYdevhaLVbtcLOu7i_lJrt0dcnQhDLtLNouyMPcJlTaNNMOW8gap0PlMrMokWI0ytEx5JOz4w1XbIx1Hdcx47SulMW94yoGnvOYpZx55tT5n3nQIOZf6HbJ9TYndvesD5eKYt8qCy6FWQZpIeEwDQCZTq8DMwz2Dcat04JFnKDQc-3cUmCB0LCrn-PjrF74T44RGsCozj7xsiWwJe1CirbeAN4Etv3qUWz1KUDCqv9zJJm8VnOP_PkePPF0v45mYtFcYkBWgAecVIIENPHKvEeX1vgfgaccAbh5JekLeezH9lSI_qduf4xBJgJ0H5z_WE3J1dDjZ5_vjg72H5BrDqhWMnCVbZHO5qMwjsCWX8nH9AVPy7aI1xl90MIal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbiome+analyses+of+12+psyllid+species+of+the+family+Psyllidae+identified+various+bacteria+including+Fukatsuia+and+Serratia+symbiotica%2C+known+as+secondary+symbionts+of+aphids&rft.jtitle=BMC+microbiology&rft.au=Nakabachi%2C+Atsushi&rft.au=Inoue%2C+Hiromitsu&rft.au=Hirose%2C+Yuu&rft.date=2022-01-07&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2180&rft.eissn=1471-2180&rft.volume=22&rft.issue=1&rft_id=info:doi/10.1186%2Fs12866-021-02429-2&rft.externalDocID=A693695849 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2180&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2180&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2180&client=summon |