Linker histone variant H1t is closely associated with repressed repeat-element chromatin domains in pachytene spermatocytes

H1t is the major linker histone variant in pachytene spermatocytes, where it constitutes 50-60% of total H1. This linker histone variant was previously reported to localize in the nucleolar rDNA element in mouse spermatocytes. Our main aim was to determine the extra-nucleolar localization of this li...

Full description

Saved in:
Bibliographic Details
Published inEpigenetics & chromatin Vol. 13; no. 1; p. 9
Main Authors Mahadevan, Iyer Aditya, Kumar, Sanjeev, Rao, Manchanahalli R Satyanarayana
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 04.03.2020
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract H1t is the major linker histone variant in pachytene spermatocytes, where it constitutes 50-60% of total H1. This linker histone variant was previously reported to localize in the nucleolar rDNA element in mouse spermatocytes. Our main aim was to determine the extra-nucleolar localization of this linker histone variant in pachytene spermatocytes. We generated H1t-specific antibodies in rabbits and validated its specificity by multiple assays like ELISA, western blot, etc. Genome-wide occupancy studies, as determined by ChIP-sequencing in P20 mouse testicular cells revealed that H1t did not closely associate with active gene promoters and open chromatin regions. Annotation of H1t-bound genomic regions revealed that H1t is depleted from DSB hotspots and TSS, but are predominantly associated with retrotransposable repeat elements like LINE and LTR in pachytene spermatocytes. These chromatin domains are repressed based on co-association of H1t observed with methylated CpGs and repressive histone marks like H3K9me3 and H4K20me3 in vivo. Mass spectrometric analysis of proteins associated with H1t-containing oligonucleosomes identified piRNA-PIWI pathway proteins, repeat repression-associated proteins and heterochromatin proteins confirming the association with repressed repeat-element genomic regions. We validated the interaction of key proteins with H1t-containing oligonucleosomes by use of ChIP-western blot assays. On the other hand, we observe majority of H1t peaks to be associated with the intergenic spacer of the rDNA element, also in association with SINE elements of the rDNA element. Thus, we have identified the genomic and chromatin features of both nucleolar and extranucleolar localization patterns of linker histone H1t in the context of pachytene spermatocytes. H1t-containing repeat-element LINE and LTR chromatin domains are associated with repressive marks like methylated CpGs, histone modifications H3K9me3 and H4K20me3, and heterochromatin proteins like HP1β, Trim28, PIWIL1, etc. Apart from localization of H1t at the rDNA element, we demonstrate the extranucleolar association of this linker histone variant at repeat-associated chromatin domains in pachytene spermatocytes. We hypothesize that H1t might induce local chromatin relaxation to recruit heterochromatin and repeat repression-associated protein factors necessary for TE (transposable element) repression, the final biological effect being formation of closed chromatin repressed structures.
AbstractList BACKGROUNDH1t is the major linker histone variant in pachytene spermatocytes, where it constitutes 50-60% of total H1. This linker histone variant was previously reported to localize in the nucleolar rDNA element in mouse spermatocytes. Our main aim was to determine the extra-nucleolar localization of this linker histone variant in pachytene spermatocytes. RESULTSWe generated H1t-specific antibodies in rabbits and validated its specificity by multiple assays like ELISA, western blot, etc. Genome-wide occupancy studies, as determined by ChIP-sequencing in P20 mouse testicular cells revealed that H1t did not closely associate with active gene promoters and open chromatin regions. Annotation of H1t-bound genomic regions revealed that H1t is depleted from DSB hotspots and TSS, but are predominantly associated with retrotransposable repeat elements like LINE and LTR in pachytene spermatocytes. These chromatin domains are repressed based on co-association of H1t observed with methylated CpGs and repressive histone marks like H3K9me3 and H4K20me3 in vivo. Mass spectrometric analysis of proteins associated with H1t-containing oligonucleosomes identified piRNA-PIWI pathway proteins, repeat repression-associated proteins and heterochromatin proteins confirming the association with repressed repeat-element genomic regions. We validated the interaction of key proteins with H1t-containing oligonucleosomes by use of ChIP-western blot assays. On the other hand, we observe majority of H1t peaks to be associated with the intergenic spacer of the rDNA element, also in association with SINE elements of the rDNA element. Thus, we have identified the genomic and chromatin features of both nucleolar and extranucleolar localization patterns of linker histone H1t in the context of pachytene spermatocytes. CONCLUSIONSH1t-containing repeat-element LINE and LTR chromatin domains are associated with repressive marks like methylated CpGs, histone modifications H3K9me3 and H4K20me3, and heterochromatin proteins like HP1β, Trim28, PIWIL1, etc. Apart from localization of H1t at the rDNA element, we demonstrate the extranucleolar association of this linker histone variant at repeat-associated chromatin domains in pachytene spermatocytes. We hypothesize that H1t might induce local chromatin relaxation to recruit heterochromatin and repeat repression-associated protein factors necessary for TE (transposable element) repression, the final biological effect being formation of closed chromatin repressed structures.
Background H1t is the major linker histone variant in pachytene spermatocytes, where it constitutes 50-60% of total H1. This linker histone variant was previously reported to localize in the nucleolar rDNA element in mouse spermatocytes. Our main aim was to determine the extra-nucleolar localization of this linker histone variant in pachytene spermatocytes. Results We generated H1t-specific antibodies in rabbits and validated its specificity by multiple assays like ELISA, western blot, etc. Genome-wide occupancy studies, as determined by ChIP-sequencing in P20 mouse testicular cells revealed that H1t did not closely associate with active gene promoters and open chromatin regions. Annotation of H1t-bound genomic regions revealed that H1t is depleted from DSB hotspots and TSS, but are predominantly associated with retrotransposable repeat elements like LINE and LTR in pachytene spermatocytes. These chromatin domains are repressed based on co-association of H1t observed with methylated CpGs and repressive histone marks like H3K9me3 and H4K20me3 in vivo. Mass spectrometric analysis of proteins associated with H1t-containing oligonucleosomes identified piRNA-PIWI pathway proteins, repeat repression-associated proteins and heterochromatin proteins confirming the association with repressed repeat-element genomic regions. We validated the interaction of key proteins with H1t-containing oligonucleosomes by use of ChIP-western blot assays. On the other hand, we observe majority of H1t peaks to be associated with the intergenic spacer of the rDNA element, also in association with SINE elements of the rDNA element. Thus, we have identified the genomic and chromatin features of both nucleolar and extranucleolar localization patterns of linker histone H1t in the context of pachytene spermatocytes. Conclusions H1t-containing repeat-element LINE and LTR chromatin domains are associated with repressive marks like methylated CpGs, histone modifications H3K9me3 and H4K20me3, and heterochromatin proteins like HP1[beta], Trim28, PIWIL1, etc. Apart from localization of H1t at the rDNA element, we demonstrate the extranucleolar association of this linker histone variant at repeat-associated chromatin domains in pachytene spermatocytes. We hypothesize that H1t might induce local chromatin relaxation to recruit heterochromatin and repeat repression-associated protein factors necessary for TE (transposable element) repression, the final biological effect being formation of closed chromatin repressed structures. Keywords: Linker histones, H1t, LTR, LINE, Histone variants, Mammalian spermatogenesis
H1t is the major linker histone variant in pachytene spermatocytes, where it constitutes 50-60% of total H1. This linker histone variant was previously reported to localize in the nucleolar rDNA element in mouse spermatocytes. Our main aim was to determine the extra-nucleolar localization of this linker histone variant in pachytene spermatocytes. We generated H1t-specific antibodies in rabbits and validated its specificity by multiple assays like ELISA, western blot, etc. Genome-wide occupancy studies, as determined by ChIP-sequencing in P20 mouse testicular cells revealed that H1t did not closely associate with active gene promoters and open chromatin regions. Annotation of H1t-bound genomic regions revealed that H1t is depleted from DSB hotspots and TSS, but are predominantly associated with retrotransposable repeat elements like LINE and LTR in pachytene spermatocytes. These chromatin domains are repressed based on co-association of H1t observed with methylated CpGs and repressive histone marks like H3K9me3 and H4K20me3 in vivo. Mass spectrometric analysis of proteins associated with H1t-containing oligonucleosomes identified piRNA-PIWI pathway proteins, repeat repression-associated proteins and heterochromatin proteins confirming the association with repressed repeat-element genomic regions. We validated the interaction of key proteins with H1t-containing oligonucleosomes by use of ChIP-western blot assays. On the other hand, we observe majority of H1t peaks to be associated with the intergenic spacer of the rDNA element, also in association with SINE elements of the rDNA element. Thus, we have identified the genomic and chromatin features of both nucleolar and extranucleolar localization patterns of linker histone H1t in the context of pachytene spermatocytes. H1t-containing repeat-element LINE and LTR chromatin domains are associated with repressive marks like methylated CpGs, histone modifications H3K9me3 and H4K20me3, and heterochromatin proteins like HP1β, Trim28, PIWIL1, etc. Apart from localization of H1t at the rDNA element, we demonstrate the extranucleolar association of this linker histone variant at repeat-associated chromatin domains in pachytene spermatocytes. We hypothesize that H1t might induce local chromatin relaxation to recruit heterochromatin and repeat repression-associated protein factors necessary for TE (transposable element) repression, the final biological effect being formation of closed chromatin repressed structures.
Abstract Background H1t is the major linker histone variant in pachytene spermatocytes, where it constitutes 50–60% of total H1. This linker histone variant was previously reported to localize in the nucleolar rDNA element in mouse spermatocytes. Our main aim was to determine the extra-nucleolar localization of this linker histone variant in pachytene spermatocytes. Results We generated H1t-specific antibodies in rabbits and validated its specificity by multiple assays like ELISA, western blot, etc. Genome-wide occupancy studies, as determined by ChIP-sequencing in P20 mouse testicular cells revealed that H1t did not closely associate with active gene promoters and open chromatin regions. Annotation of H1t-bound genomic regions revealed that H1t is depleted from DSB hotspots and TSS, but are predominantly associated with retrotransposable repeat elements like LINE and LTR in pachytene spermatocytes. These chromatin domains are repressed based on co-association of H1t observed with methylated CpGs and repressive histone marks like H3K9me3 and H4K20me3 in vivo. Mass spectrometric analysis of proteins associated with H1t-containing oligonucleosomes identified piRNA–PIWI pathway proteins, repeat repression-associated proteins and heterochromatin proteins confirming the association with repressed repeat-element genomic regions. We validated the interaction of key proteins with H1t-containing oligonucleosomes by use of ChIP-western blot assays. On the other hand, we observe majority of H1t peaks to be associated with the intergenic spacer of the rDNA element, also in association with SINE elements of the rDNA element. Thus, we have identified the genomic and chromatin features of both nucleolar and extranucleolar localization patterns of linker histone H1t in the context of pachytene spermatocytes. Conclusions H1t-containing repeat-element LINE and LTR chromatin domains are associated with repressive marks like methylated CpGs, histone modifications H3K9me3 and H4K20me3, and heterochromatin proteins like HP1β, Trim28, PIWIL1, etc. Apart from localization of H1t at the rDNA element, we demonstrate the extranucleolar association of this linker histone variant at repeat-associated chromatin domains in pachytene spermatocytes. We hypothesize that H1t might induce local chromatin relaxation to recruit heterochromatin and repeat repression-associated protein factors necessary for TE (transposable element) repression, the final biological effect being formation of closed chromatin repressed structures.
Background H1t is the major linker histone variant in pachytene spermatocytes, where it constitutes 50–60% of total H1. This linker histone variant was previously reported to localize in the nucleolar rDNA element in mouse spermatocytes. Our main aim was to determine the extra-nucleolar localization of this linker histone variant in pachytene spermatocytes. Results We generated H1t-specific antibodies in rabbits and validated its specificity by multiple assays like ELISA, western blot, etc. Genome-wide occupancy studies, as determined by ChIP-sequencing in P20 mouse testicular cells revealed that H1t did not closely associate with active gene promoters and open chromatin regions. Annotation of H1t-bound genomic regions revealed that H1t is depleted from DSB hotspots and TSS, but are predominantly associated with retrotransposable repeat elements like LINE and LTR in pachytene spermatocytes. These chromatin domains are repressed based on co-association of H1t observed with methylated CpGs and repressive histone marks like H3K9me3 and H4K20me3 in vivo. Mass spectrometric analysis of proteins associated with H1t-containing oligonucleosomes identified piRNA–PIWI pathway proteins, repeat repression-associated proteins and heterochromatin proteins confirming the association with repressed repeat-element genomic regions. We validated the interaction of key proteins with H1t-containing oligonucleosomes by use of ChIP-western blot assays. On the other hand, we observe majority of H1t peaks to be associated with the intergenic spacer of the rDNA element, also in association with SINE elements of the rDNA element. Thus, we have identified the genomic and chromatin features of both nucleolar and extranucleolar localization patterns of linker histone H1t in the context of pachytene spermatocytes. Conclusions H1t-containing repeat-element LINE and LTR chromatin domains are associated with repressive marks like methylated CpGs, histone modifications H3K9me3 and H4K20me3, and heterochromatin proteins like HP1β, Trim28, PIWIL1, etc. Apart from localization of H1t at the rDNA element, we demonstrate the extranucleolar association of this linker histone variant at repeat-associated chromatin domains in pachytene spermatocytes. We hypothesize that H1t might induce local chromatin relaxation to recruit heterochromatin and repeat repression-associated protein factors necessary for TE (transposable element) repression, the final biological effect being formation of closed chromatin repressed structures.
H1t is the major linker histone variant in pachytene spermatocytes, where it constitutes 50-60% of total H1. This linker histone variant was previously reported to localize in the nucleolar rDNA element in mouse spermatocytes. Our main aim was to determine the extra-nucleolar localization of this linker histone variant in pachytene spermatocytes. We generated H1t-specific antibodies in rabbits and validated its specificity by multiple assays like ELISA, western blot, etc. Genome-wide occupancy studies, as determined by ChIP-sequencing in P20 mouse testicular cells revealed that H1t did not closely associate with active gene promoters and open chromatin regions. Annotation of H1t-bound genomic regions revealed that H1t is depleted from DSB hotspots and TSS, but are predominantly associated with retrotransposable repeat elements like LINE and LTR in pachytene spermatocytes. These chromatin domains are repressed based on co-association of H1t observed with methylated CpGs and repressive histone marks like H3K9me3 and H4K20me3 in vivo. Mass spectrometric analysis of proteins associated with H1t-containing oligonucleosomes identified piRNA-PIWI pathway proteins, repeat repression-associated proteins and heterochromatin proteins confirming the association with repressed repeat-element genomic regions. We validated the interaction of key proteins with H1t-containing oligonucleosomes by use of ChIP-western blot assays. On the other hand, we observe majority of H1t peaks to be associated with the intergenic spacer of the rDNA element, also in association with SINE elements of the rDNA element. Thus, we have identified the genomic and chromatin features of both nucleolar and extranucleolar localization patterns of linker histone H1t in the context of pachytene spermatocytes. H1t-containing repeat-element LINE and LTR chromatin domains are associated with repressive marks like methylated CpGs, histone modifications H3K9me3 and H4K20me3, and heterochromatin proteins like HP1[beta], Trim28, PIWIL1, etc. Apart from localization of H1t at the rDNA element, we demonstrate the extranucleolar association of this linker histone variant at repeat-associated chromatin domains in pachytene spermatocytes. We hypothesize that H1t might induce local chromatin relaxation to recruit heterochromatin and repeat repression-associated protein factors necessary for TE (transposable element) repression, the final biological effect being formation of closed chromatin repressed structures.
Abstract Background H1t is the major linker histone variant in pachytene spermatocytes, where it constitutes 50–60% of total H1. This linker histone variant was previously reported to localize in the nucleolar rDNA element in mouse spermatocytes. Our main aim was to determine the extra-nucleolar localization of this linker histone variant in pachytene spermatocytes. Results We generated H1t-specific antibodies in rabbits and validated its specificity by multiple assays like ELISA, western blot, etc. Genome-wide occupancy studies, as determined by ChIP-sequencing in P20 mouse testicular cells revealed that H1t did not closely associate with active gene promoters and open chromatin regions. Annotation of H1t-bound genomic regions revealed that H1t is depleted from DSB hotspots and TSS, but are predominantly associated with retrotransposable repeat elements like LINE and LTR in pachytene spermatocytes. These chromatin domains are repressed based on co-association of H1t observed with methylated CpGs and repressive histone marks like H3K9me3 and H4K20me3 in vivo. Mass spectrometric analysis of proteins associated with H1t-containing oligonucleosomes identified piRNA–PIWI pathway proteins, repeat repression-associated proteins and heterochromatin proteins confirming the association with repressed repeat-element genomic regions. We validated the interaction of key proteins with H1t-containing oligonucleosomes by use of ChIP-western blot assays. On the other hand, we observe majority of H1t peaks to be associated with the intergenic spacer of the rDNA element, also in association with SINE elements of the rDNA element. Thus, we have identified the genomic and chromatin features of both nucleolar and extranucleolar localization patterns of linker histone H1t in the context of pachytene spermatocytes. Conclusions H1t-containing repeat-element LINE and LTR chromatin domains are associated with repressive marks like methylated CpGs, histone modifications H3K9me3 and H4K20me3, and heterochromatin proteins like HP1β, Trim28, PIWIL1, etc. Apart from localization of H1t at the rDNA element, we demonstrate the extranucleolar association of this linker histone variant at repeat-associated chromatin domains in pachytene spermatocytes. We hypothesize that H1t might induce local chromatin relaxation to recruit heterochromatin and repeat repression-associated protein factors necessary for TE (transposable element) repression, the final biological effect being formation of closed chromatin repressed structures.
ArticleNumber 9
Audience Academic
Author Rao, Manchanahalli R Satyanarayana
Mahadevan, Iyer Aditya
Kumar, Sanjeev
Author_xml – sequence: 1
  givenname: Iyer Aditya
  surname: Mahadevan
  fullname: Mahadevan, Iyer Aditya
  organization: Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
– sequence: 2
  givenname: Sanjeev
  surname: Kumar
  fullname: Kumar, Sanjeev
  organization: BioCOS Life Sciences Private Limited, SAAMI Building, 851/A, AECS Layout, B-Block, Singasandra Hosur Road, Bangalore, India
– sequence: 3
  givenname: Manchanahalli R Satyanarayana
  orcidid: 0000-0003-0201-9437
  surname: Rao
  fullname: Rao, Manchanahalli R Satyanarayana
  email: mrsrao@jncasr.ac.in
  organization: Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India. mrsrao@jncasr.ac.in
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32131873$$D View this record in MEDLINE/PubMed
BookMark eNptUttuEzEQXaEieoEf4AGtxEt52OLL-rIvSFUFNFIkJC7Pltc7mzhs1sF2SiJ-nklSSoOQJXvGPueMZnzOi5MxjFAULym5olTLt4lyolhFGKkI4VxUmyfFGVVCVrrh4uRRfFqcp7QgRDJdk2fFKWeUU634WfFr6sfvEMu5TxnVyzsbvR1zeUtz6VPphpBg2JY2peC8zdCVP32elxFWEVLCFCOwuYIBloA8N49habMfyw5PP6YSw5V1820GlE8riPgcHKbpefG0t0OCF_fnRfHtw_uvN7fV9NPHyc31tHKiUblqO0kAGtaCdqSrHcO8J1w4DraVrXZQO9cxRQVpWK9B9kIAd5o5VivuKL8oJgfdLtiFWUW_tHFrgvVmfxHizNiYvRvAONk0wBVvay5qolSrWqpr2TbKaa7kTuvdQWu1bpfQOew52uFI9Phl9HMzC3dGEaGkYihweS8Qw481pGyWPjkYBjtCWCfDuKJa4Lar9fof6CKs44ij2qG0Flpy8Rc1s9iAH_uAdd1O1FxLKtEXao-6-g8KVwdL7_Dne4_3R4Q3RwTEZNjkmV2nZCZfPh9j2QHrYkgpQv8wD0rMzqrmYFWDVjV7q5oNkl49nuQD5Y83-W9iT-am
CitedBy_id crossref_primary_10_3390_genes12101562
crossref_primary_10_1007_s00412_023_00803_9
crossref_primary_10_1007_s11356_023_25874_0
crossref_primary_10_1016_j_bbrc_2020_05_119
crossref_primary_10_1186_s12885_023_11426_9
crossref_primary_10_1016_j_jid_2021_04_002
crossref_primary_10_1242_dev_196477
crossref_primary_10_3389_fcell_2021_674203
crossref_primary_10_1186_s13072_020_00376_2
crossref_primary_10_1242_jcs_244749
Cites_doi 10.1074/jbc.M400070200
10.1101/gad.220095.113
10.1093/nar/gkg481
10.1016/j.molcel.2016.06.008
10.1002/j.1460-2075.1989.tb03440.x
10.1016/j.cell.2018.05.043
10.1534/g3.113.009290
10.1371/journal.pgen.1000889
10.1095/biolreprod64.2.425
10.1038/nature10672
10.1016/j.cell.2013.02.001
10.1111/j.1365-2443.2009.01342.x
10.1128/MCB.20.6.2122-2128.2000
10.1038/ncb2113
10.1007/BF02484408
10.1016/0014-4827(82)90162-8
10.1111/j.1432-1033.2004.04266.x
10.1016/S0092-8674(01)00542-6
10.1016/0012-1606(84)90009-5
10.1038/nprot.2007.202
10.1023/A:1018445520117
10.1016/j.devcel.2014.05.024
10.1080/15592294.2016.1159369
10.1038/nrg3454
10.1038/nature02886
10.1007/s004410050986
10.1021/bi00048a025
10.1146/annurev-genom-091212-153515
10.1371/journal.pgen.1000635
10.1186/s13072-016-0072-6
10.1002/prot.10204
10.1016/bs.mie.2016.09.031
10.1016/0378-1119(91)90284-I
10.1016/j.febslet.2006.09.061
10.1016/S0888-7543(03)00199-X
10.1091/mbc.e10-06-0508
10.1093/nar/gkl198
10.1016/j.cell.2005.10.028
10.1016/j.celrep.2015.07.060
10.1016/j.devcel.2009.10.012
10.1101/802173
10.1016/j.ceb.2013.10.002
10.1093/nar/gkx1052
10.1038/emboj.2013.121
10.1021/bi961617p
10.1093/nar/gkt863
10.1038/bjc.1963.24
10.1002/(SICI)1097-4644(20000101)76:1<20::AID-JCB3>3.0.CO;2-Y
10.1038/sj.emboj.7601513
10.1111/j.1432-1033.1977.tb11639.x
10.1111/j.1432-1033.1977.tb11975.x
10.1021/bi00618a030
10.1038/nsmb.1615
10.15252/embr.201947952
10.1016/j.devcel.2014.05.023
10.1016/j.bbagrm.2015.09.009
10.1101/gad.240895.114
10.1038/nrm3965
10.1095/biolreprod.110.087361
10.1006/bbrc.1994.1005
10.1111/j.1432-1033.1975.tb02327.x
10.1101/gad.244350.114
10.1186/1471-2164-15-284
10.1016/j.ceb.2005.02.006
10.1186/s13072-018-0214-0
10.1038/s41467-019-12455-4
10.1093/biolre/iox150
10.1371/journal.pone.0178821
10.1038/nmeth.1923
10.1038/nrg2008
10.1016/S0378-1119(02)01201-5
10.1093/molehr/4.10.939
10.1101/gad.257840.114
10.1016/j.molcel.2019.10.011
10.1016/j.celrep.2013.05.003
10.1016/0378-1119(93)90332-W
10.1016/j.cell.2015.02.040
10.1093/bioinformatics/btr167
10.1016/0005-2795(79)90159-4
ContentType Journal Article
Copyright COPYRIGHT 2020 BioMed Central Ltd.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2020
Copyright_xml – notice: COPYRIGHT 2020 BioMed Central Ltd.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2020
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
ISR
3V.
7TM
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOA
DOI 10.1186/s13072-020-00335-x
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Nucleic Acids Abstracts
Health & Medicine (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Biotechnology and BioEngineering Abstracts
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 1756-8935
EndPage 9
ExternalDocumentID oai_doaj_org_article_c699e373b4354077b7b1846b97c83761
A616335735
10_1186_s13072_020_00335_x
32131873
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Department of Biotechnology , Ministry of Science and Technology
  grantid: BT/01/COE/07/09
– fundername: Department of Biotechnology , Ministry of Science and Technology
  grantid: DBT/INF/22/SP27679/2018
– fundername: ;
  grantid: BT/01/COE/07/09; DBT/INF/22/SP27679/2018
GroupedDBID ---
-56
-5G
-A0
-BR
0R~
29G
2WC
3V.
53G
5GY
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
ABDBF
ABUWG
ACGFS
ACIHN
ACPRK
ACRMQ
ADBBV
ADINQ
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C24
C6C
CCPQU
CGR
CUY
CVF
DIK
DU5
E3Z
EBD
EBLON
EBS
ECM
EIF
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
NPM
O5R
O5S
OK1
P2P
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
AAYXX
CITATION
AFGXO
ABVAZ
AFNRJ
7TM
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ID FETCH-LOGICAL-c597t-bd60ee92be8c0d4c2d60f035c3eab6b8ce4ccd2715092f8e6f55e3c82c2473c13
IEDL.DBID RPM
ISSN 1756-8935
IngestDate Fri Oct 04 13:12:52 EDT 2024
Tue Sep 17 21:25:56 EDT 2024
Thu Aug 15 22:33:57 EDT 2024
Thu Oct 10 16:50:30 EDT 2024
Thu Feb 22 23:38:40 EST 2024
Fri Feb 02 04:09:41 EST 2024
Thu Aug 01 19:37:12 EDT 2024
Thu Sep 12 17:08:55 EDT 2024
Sat Sep 28 08:27:42 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Linker histones
H1t
LTR
Mammalian spermatogenesis
Histone variants
LINE
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c597t-bd60ee92be8c0d4c2d60f035c3eab6b8ce4ccd2715092f8e6f55e3c82c2473c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0201-9437
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7057672/
PMID 32131873
PQID 2378858635
PQPubID 54669
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_c699e373b4354077b7b1846b97c83761
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7057672
proquest_miscellaneous_2371853711
proquest_journals_2378858635
gale_infotracmisc_A616335735
gale_infotracacademiconefile_A616335735
gale_incontextgauss_ISR_A616335735
crossref_primary_10_1186_s13072_020_00335_x
pubmed_primary_32131873
PublicationCentury 2000
PublicationDate 2020-03-04
PublicationDateYYYYMMDD 2020-03-04
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-04
  day: 04
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Epigenetics & chromatin
PublicationTitleAlternate Epigenetics Chromatin
PublicationYear 2020
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References WA Bickmore (335_CR57) 2013; 152
I Nagamori (335_CR26) 2015; 12
AH Peters (335_CR42) 2005; 17
L Ma (335_CR28) 2009; 5
J Dekker (335_CR59) 2013; 14
J Dong (335_CR47) 2019; 10
TL Bailey (335_CR80) 2006; 34
Y Fan (335_CR51) 2005; 123
WA Bickmore (335_CR58) 2013; 14
DA Fantz (335_CR18) 2001; 64
MM Bharath (335_CR23) 2002; 49
S van Koningsbruggen (335_CR64) 2010; 21
B Drabent (335_CR22) 1991; 103
M Guthmann (335_CR46) 2019; 20
B Samans (335_CR67) 2014; 30
M Reuter (335_CR44) 2011; 480
MM Bharath (335_CR1) 2003; 31
RW Lennox (335_CR9) 1984; 103
E Montellier (335_CR72) 2013; 27
N Zamudio (335_CR50) 2015; 29
MR Faraone-Mennella (335_CR69) 1999; 76
PG Hartman (335_CR4) 1977; 77
M Suzuki (335_CR21) 1989; 8
AK Ghosh (335_CR55) 1993; 125
J Choi (335_CR52) 2020; 77
JR Khadake (335_CR19) 1995; 34
HW Rattle (335_CR6) 1977; 81
SI Grewal (335_CR40) 2007; 8
AH Peters (335_CR76) 1997; 5
M Shoji (335_CR27) 2009; 17
K Steger (335_CR10) 1998; 4
JP Saxe (335_CR45) 2013; 32
YW Iwasaki (335_CR53) 2016; 63
BR Carone (335_CR66) 2014; 30
GE Zentner (335_CR54) 2014; 4
J Hu (335_CR32) 2018; 98
J Govin (335_CR15) 2004; 271
S Maezawa (335_CR35) 2018; 46
K Kojima (335_CR29) 2009; 14
Q Lin (335_CR16) 2000; 20
LR Bucci (335_CR13) 1982; 140
AH Peters (335_CR41) 2001; 107
RT Simpson (335_CR2) 1978; 17
A Nemeth (335_CR63) 2010; 6
T Sexton (335_CR62) 2015; 160
N Gupta (335_CR74) 2017; 586
MJ Hendzel (335_CR8) 2004; 279
S Ramesh (335_CR25) 2006; 580
D Shechter (335_CR75) 2007; 2
F De Lucia (335_CR20) 1994; 198
R Cong (335_CR56) 2014; 42
LJ Luense (335_CR71) 2016; 9
JR Khadake (335_CR24) 1997; 36
FJ Aviles (335_CR5) 1979; 578
M Reuter (335_CR30) 2009; 16
JY Lu (335_CR49) 2019
ML Meyer-Ficca (335_CR70) 2011; 84
LN Mishra (335_CR68) 2018; 11
AS Belmont (335_CR60) 2014; 26
S Dillinger (335_CR65) 2017; 12
B Langmead (335_CR78) 2012; 9
D Bourc’his (335_CR36) 2004; 431
A Roque (335_CR7) 2016; 1859
IA Mahadevan (335_CR81) 2019; 12
F Krueger (335_CR79) 2011; 27
SR Grimes (335_CR14) 2003; 304
R Tani (335_CR31) 2016; 11
D Pezic (335_CR38) 2014; 28
M Percharde (335_CR48) 2018; 174
L Shen (335_CR34) 2014; 15
K Delaval (335_CR39) 2007; 26
M Tardat (335_CR77) 2010; 12
D Burston (335_CR73) 1963; 17
A Molaro (335_CR37) 2014; 28
A Izzo (335_CR33) 2013; 3
B Drabent (335_CR11) 1996; 106
P Grozdanov (335_CR43) 2003; 82
EM Bradbury (335_CR3) 1975; 57
B Drabent (335_CR12) 1998; 291
B Drabent (335_CR17) 2003; 103
A Pombo (335_CR61) 2015; 16
References_xml – volume: 279
  start-page: 20028
  issue: 19
  year: 2004
  ident: 335_CR8
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M400070200
  contributor:
    fullname: MJ Hendzel
– volume: 27
  start-page: 1680
  issue: 15
  year: 2013
  ident: 335_CR72
  publication-title: Genes Dev
  doi: 10.1101/gad.220095.113
  contributor:
    fullname: E Montellier
– volume: 31
  start-page: 4264
  issue: 14
  year: 2003
  ident: 335_CR1
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkg481
  contributor:
    fullname: MM Bharath
– volume: 103
  start-page: 307
  issue: 3–4
  year: 2003
  ident: 335_CR17
  publication-title: Cytogenet Genome Res.
  contributor:
    fullname: B Drabent
– volume: 63
  start-page: 408
  issue: 3
  year: 2016
  ident: 335_CR53
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2016.06.008
  contributor:
    fullname: YW Iwasaki
– volume: 8
  start-page: 797
  issue: 3
  year: 1989
  ident: 335_CR21
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1989.tb03440.x
  contributor:
    fullname: M Suzuki
– volume: 174
  start-page: 391
  issue: 2
  year: 2018
  ident: 335_CR48
  publication-title: Cell
  doi: 10.1016/j.cell.2018.05.043
  contributor:
    fullname: M Percharde
– volume: 4
  start-page: 243
  issue: 2
  year: 2014
  ident: 335_CR54
  publication-title: G3.
  doi: 10.1534/g3.113.009290
  contributor:
    fullname: GE Zentner
– volume: 6
  start-page: e1000889
  issue: 3
  year: 2010
  ident: 335_CR63
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000889
  contributor:
    fullname: A Nemeth
– volume: 64
  start-page: 425
  issue: 2
  year: 2001
  ident: 335_CR18
  publication-title: Biol Reprod
  doi: 10.1095/biolreprod64.2.425
  contributor:
    fullname: DA Fantz
– volume: 480
  start-page: 264
  issue: 7376
  year: 2011
  ident: 335_CR44
  publication-title: Nature
  doi: 10.1038/nature10672
  contributor:
    fullname: M Reuter
– volume: 152
  start-page: 1270
  issue: 6
  year: 2013
  ident: 335_CR57
  publication-title: Cell
  doi: 10.1016/j.cell.2013.02.001
  contributor:
    fullname: WA Bickmore
– volume: 14
  start-page: 1155
  issue: 10
  year: 2009
  ident: 335_CR29
  publication-title: Genes Cells
  doi: 10.1111/j.1365-2443.2009.01342.x
  contributor:
    fullname: K Kojima
– volume: 20
  start-page: 2122
  issue: 6
  year: 2000
  ident: 335_CR16
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.20.6.2122-2128.2000
  contributor:
    fullname: Q Lin
– volume: 12
  start-page: 1086
  issue: 11
  year: 2010
  ident: 335_CR77
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2113
  contributor:
    fullname: M Tardat
– volume: 106
  start-page: 247
  issue: 2
  year: 1996
  ident: 335_CR11
  publication-title: Histochem Cell Biol
  doi: 10.1007/BF02484408
  contributor:
    fullname: B Drabent
– volume: 140
  start-page: 111
  issue: 1
  year: 1982
  ident: 335_CR13
  publication-title: Exp Cell Res
  doi: 10.1016/0014-4827(82)90162-8
  contributor:
    fullname: LR Bucci
– volume: 271
  start-page: 3459
  issue: 17
  year: 2004
  ident: 335_CR15
  publication-title: Eur J Biochem
  doi: 10.1111/j.1432-1033.2004.04266.x
  contributor:
    fullname: J Govin
– volume: 107
  start-page: 323
  issue: 3
  year: 2001
  ident: 335_CR41
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00542-6
  contributor:
    fullname: AH Peters
– volume: 103
  start-page: 80
  issue: 1
  year: 1984
  ident: 335_CR9
  publication-title: Dev Biol.
  doi: 10.1016/0012-1606(84)90009-5
  contributor:
    fullname: RW Lennox
– volume: 2
  start-page: 1445
  issue: 6
  year: 2007
  ident: 335_CR75
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2007.202
  contributor:
    fullname: D Shechter
– volume: 5
  start-page: 66
  issue: 1
  year: 1997
  ident: 335_CR76
  publication-title: Chromosome Res
  doi: 10.1023/A:1018445520117
  contributor:
    fullname: AH Peters
– volume: 30
  start-page: 11
  issue: 1
  year: 2014
  ident: 335_CR66
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2014.05.024
  contributor:
    fullname: BR Carone
– volume: 11
  start-page: 288
  issue: 4
  year: 2016
  ident: 335_CR31
  publication-title: Epigenetics.
  doi: 10.1080/15592294.2016.1159369
  contributor:
    fullname: R Tani
– volume: 14
  start-page: 390
  issue: 6
  year: 2013
  ident: 335_CR59
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3454
  contributor:
    fullname: J Dekker
– volume: 431
  start-page: 96
  issue: 7004
  year: 2004
  ident: 335_CR36
  publication-title: Nature
  doi: 10.1038/nature02886
  contributor:
    fullname: D Bourc’his
– volume: 291
  start-page: 127
  issue: 1
  year: 1998
  ident: 335_CR12
  publication-title: Cell Tissue Res
  doi: 10.1007/s004410050986
  contributor:
    fullname: B Drabent
– volume: 34
  start-page: 15792
  issue: 48
  year: 1995
  ident: 335_CR19
  publication-title: Biochemistry
  doi: 10.1021/bi00048a025
  contributor:
    fullname: JR Khadake
– volume: 14
  start-page: 67
  year: 2013
  ident: 335_CR58
  publication-title: Annu Rev Genomics Hum Genet
  doi: 10.1146/annurev-genom-091212-153515
  contributor:
    fullname: WA Bickmore
– volume: 5
  start-page: e1000635
  issue: 9
  year: 2009
  ident: 335_CR28
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000635
  contributor:
    fullname: L Ma
– volume: 9
  start-page: 24
  year: 2016
  ident: 335_CR71
  publication-title: Epigenet Chromat.
  doi: 10.1186/s13072-016-0072-6
  contributor:
    fullname: LJ Luense
– volume: 49
  start-page: 71
  issue: 1
  year: 2002
  ident: 335_CR23
  publication-title: Proteins.
  doi: 10.1002/prot.10204
  contributor:
    fullname: MM Bharath
– volume: 586
  start-page: 115
  year: 2017
  ident: 335_CR74
  publication-title: Methods Enzymol
  doi: 10.1016/bs.mie.2016.09.031
  contributor:
    fullname: N Gupta
– volume: 103
  start-page: 263
  issue: 2
  year: 1991
  ident: 335_CR22
  publication-title: Gene
  doi: 10.1016/0378-1119(91)90284-I
  contributor:
    fullname: B Drabent
– volume: 580
  start-page: 5999
  issue: 25
  year: 2006
  ident: 335_CR25
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2006.09.061
  contributor:
    fullname: S Ramesh
– volume: 82
  start-page: 637
  issue: 6
  year: 2003
  ident: 335_CR43
  publication-title: Genomics
  doi: 10.1016/S0888-7543(03)00199-X
  contributor:
    fullname: P Grozdanov
– volume: 21
  start-page: 3735
  issue: 21
  year: 2010
  ident: 335_CR64
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.e10-06-0508
  contributor:
    fullname: S van Koningsbruggen
– volume: 34
  start-page: W369
  issue: Web Server issu
  year: 2006
  ident: 335_CR80
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl198
  contributor:
    fullname: TL Bailey
– volume: 123
  start-page: 1199
  issue: 7
  year: 2005
  ident: 335_CR51
  publication-title: Cell
  doi: 10.1016/j.cell.2005.10.028
  contributor:
    fullname: Y Fan
– volume: 12
  start-page: 1541
  issue: 10
  year: 2015
  ident: 335_CR26
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.07.060
  contributor:
    fullname: I Nagamori
– volume: 17
  start-page: 775
  issue: 6
  year: 2009
  ident: 335_CR27
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2009.10.012
  contributor:
    fullname: M Shoji
– year: 2019
  ident: 335_CR49
  publication-title: BioRxiv.
  doi: 10.1101/802173
  contributor:
    fullname: JY Lu
– volume: 26
  start-page: 69
  year: 2014
  ident: 335_CR60
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/j.ceb.2013.10.002
  contributor:
    fullname: AS Belmont
– volume: 46
  start-page: 593
  issue: 2
  year: 2018
  ident: 335_CR35
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1052
  contributor:
    fullname: S Maezawa
– volume: 32
  start-page: 1869
  issue: 13
  year: 2013
  ident: 335_CR45
  publication-title: EMBO J
  doi: 10.1038/emboj.2013.121
  contributor:
    fullname: JP Saxe
– volume: 36
  start-page: 1041
  issue: 5
  year: 1997
  ident: 335_CR24
  publication-title: Biochemistry
  doi: 10.1021/bi961617p
  contributor:
    fullname: JR Khadake
– volume: 42
  start-page: 181
  issue: 1
  year: 2014
  ident: 335_CR56
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt863
  contributor:
    fullname: R Cong
– volume: 17
  start-page: 162
  year: 1963
  ident: 335_CR73
  publication-title: Br J Cancer
  doi: 10.1038/bjc.1963.24
  contributor:
    fullname: D Burston
– volume: 76
  start-page: 20
  issue: 1
  year: 1999
  ident: 335_CR69
  publication-title: J Cell Biochem
  doi: 10.1002/(SICI)1097-4644(20000101)76:1<20::AID-JCB3>3.0.CO;2-Y
  contributor:
    fullname: MR Faraone-Mennella
– volume: 26
  start-page: 720
  issue: 3
  year: 2007
  ident: 335_CR39
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7601513
  contributor:
    fullname: K Delaval
– volume: 77
  start-page: 45
  issue: 1
  year: 1977
  ident: 335_CR4
  publication-title: Eur J Biochem
  doi: 10.1111/j.1432-1033.1977.tb11639.x
  contributor:
    fullname: PG Hartman
– volume: 81
  start-page: 499
  issue: 3
  year: 1977
  ident: 335_CR6
  publication-title: Eur J Biochem
  doi: 10.1111/j.1432-1033.1977.tb11975.x
  contributor:
    fullname: HW Rattle
– volume: 17
  start-page: 5524
  issue: 25
  year: 1978
  ident: 335_CR2
  publication-title: Biochemistry
  doi: 10.1021/bi00618a030
  contributor:
    fullname: RT Simpson
– volume: 16
  start-page: 639
  issue: 6
  year: 2009
  ident: 335_CR30
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.1615
  contributor:
    fullname: M Reuter
– volume: 20
  start-page: e47952
  year: 2019
  ident: 335_CR46
  publication-title: EMBO Rep
  doi: 10.15252/embr.201947952
  contributor:
    fullname: M Guthmann
– volume: 30
  start-page: 23
  issue: 1
  year: 2014
  ident: 335_CR67
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2014.05.023
  contributor:
    fullname: B Samans
– volume: 1859
  start-page: 444
  issue: 3
  year: 2016
  ident: 335_CR7
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbagrm.2015.09.009
  contributor:
    fullname: A Roque
– volume: 28
  start-page: 1410
  issue: 13
  year: 2014
  ident: 335_CR38
  publication-title: Genes Dev
  doi: 10.1101/gad.240895.114
  contributor:
    fullname: D Pezic
– volume: 16
  start-page: 245
  issue: 4
  year: 2015
  ident: 335_CR61
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm3965
  contributor:
    fullname: A Pombo
– volume: 84
  start-page: 218
  issue: 2
  year: 2011
  ident: 335_CR70
  publication-title: Biol Reprod
  doi: 10.1095/biolreprod.110.087361
  contributor:
    fullname: ML Meyer-Ficca
– volume: 198
  start-page: 32
  issue: 1
  year: 1994
  ident: 335_CR20
  publication-title: Biochem Biophys Res Commun
  doi: 10.1006/bbrc.1994.1005
  contributor:
    fullname: F De Lucia
– volume: 57
  start-page: 521
  issue: 2
  year: 1975
  ident: 335_CR3
  publication-title: Eur J Biochem
  doi: 10.1111/j.1432-1033.1975.tb02327.x
  contributor:
    fullname: EM Bradbury
– volume: 28
  start-page: 1544
  issue: 14
  year: 2014
  ident: 335_CR37
  publication-title: Genes Dev
  doi: 10.1101/gad.244350.114
  contributor:
    fullname: A Molaro
– volume: 15
  start-page: 284
  year: 2014
  ident: 335_CR34
  publication-title: BMC Genomics.
  doi: 10.1186/1471-2164-15-284
  contributor:
    fullname: L Shen
– volume: 17
  start-page: 230
  issue: 2
  year: 2005
  ident: 335_CR42
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/j.ceb.2005.02.006
  contributor:
    fullname: AH Peters
– volume: 11
  start-page: 1
  year: 2018
  ident: 335_CR68
  publication-title: Epigenet Chromat.
  doi: 10.1186/s13072-018-0214-0
  contributor:
    fullname: LN Mishra
– volume: 12
  start-page: 53
  issue: 1
  year: 2019
  ident: 335_CR81
  publication-title: EpigenetChromat.
  contributor:
    fullname: IA Mahadevan
– volume: 10
  start-page: 4705
  issue: 1
  year: 2019
  ident: 335_CR47
  publication-title: Nat Commun.
  doi: 10.1038/s41467-019-12455-4
  contributor:
    fullname: J Dong
– volume: 98
  start-page: 102
  issue: 1
  year: 2018
  ident: 335_CR32
  publication-title: Biol Reprod
  doi: 10.1093/biolre/iox150
  contributor:
    fullname: J Hu
– volume: 12
  start-page: e0178821
  issue: 6
  year: 2017
  ident: 335_CR65
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0178821
  contributor:
    fullname: S Dillinger
– volume: 9
  start-page: 357
  issue: 4
  year: 2012
  ident: 335_CR78
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1923
  contributor:
    fullname: B Langmead
– volume: 8
  start-page: 35
  issue: 1
  year: 2007
  ident: 335_CR40
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2008
  contributor:
    fullname: SI Grewal
– volume: 304
  start-page: 13
  year: 2003
  ident: 335_CR14
  publication-title: Gene
  doi: 10.1016/S0378-1119(02)01201-5
  contributor:
    fullname: SR Grimes
– volume: 4
  start-page: 939
  issue: 10
  year: 1998
  ident: 335_CR10
  publication-title: Mol Hum Reprod
  doi: 10.1093/molehr/4.10.939
  contributor:
    fullname: K Steger
– volume: 29
  start-page: 1256
  issue: 12
  year: 2015
  ident: 335_CR50
  publication-title: Genes Dev
  doi: 10.1101/gad.257840.114
  contributor:
    fullname: N Zamudio
– volume: 77
  start-page: 310
  issue: 2
  year: 2020
  ident: 335_CR52
  publication-title: Mol Cell.
  doi: 10.1016/j.molcel.2019.10.011
  contributor:
    fullname: J Choi
– volume: 3
  start-page: 2142
  issue: 6
  year: 2013
  ident: 335_CR33
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.05.003
  contributor:
    fullname: A Izzo
– volume: 125
  start-page: 217
  issue: 2
  year: 1993
  ident: 335_CR55
  publication-title: Gene
  doi: 10.1016/0378-1119(93)90332-W
  contributor:
    fullname: AK Ghosh
– volume: 160
  start-page: 1049
  issue: 6
  year: 2015
  ident: 335_CR62
  publication-title: Cell
  doi: 10.1016/j.cell.2015.02.040
  contributor:
    fullname: T Sexton
– volume: 27
  start-page: 1571
  issue: 11
  year: 2011
  ident: 335_CR79
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr167
  contributor:
    fullname: F Krueger
– volume: 578
  start-page: 290
  issue: 2
  year: 1979
  ident: 335_CR5
  publication-title: Biochim Biophys Acta
  doi: 10.1016/0005-2795(79)90159-4
  contributor:
    fullname: FJ Aviles
SSID ssj0062840
Score 2.3114934
Snippet H1t is the major linker histone variant in pachytene spermatocytes, where it constitutes 50-60% of total H1. This linker histone variant was previously...
Abstract Background H1t is the major linker histone variant in pachytene spermatocytes, where it constitutes 50–60% of total H1. This linker histone variant...
Background H1t is the major linker histone variant in pachytene spermatocytes, where it constitutes 50-60% of total H1. This linker histone variant was...
Background H1t is the major linker histone variant in pachytene spermatocytes, where it constitutes 50–60% of total H1. This linker histone variant was...
BACKGROUNDH1t is the major linker histone variant in pachytene spermatocytes, where it constitutes 50-60% of total H1. This linker histone variant was...
Abstract Background H1t is the major linker histone variant in pachytene spermatocytes, where it constitutes 50–60% of total H1. This linker histone variant...
SourceID doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 9
SubjectTerms Analysis
Animals
Antibodies
Antigens
Binding sites
Chromatin
Competition
CpG Islands
Deoxyribonucleic acid
DNA
DNA binding proteins
DNA methylation
Enzyme-linked immunosorbent assay
Genes
Genetic aspects
Genomes
Genomics
H1t
Histone Code
Histone variants
Histones
Histones - chemistry
Histones - genetics
Immunoglobulins
LINE
Linker histones
Localization
Long Interspersed Nucleotide Elements
LTR
Male
Mammalian spermatogenesis
Mass spectrometry
Mice
Nucleosomes - chemistry
Nucleosomes - genetics
Occupancy
Pachytene
Pachytene Stage
Proteins
Scientific imaging
Spermatocytes
Spermatocytes - metabolism
Spermatogenesis
Stem cells
Terminal Repeat Sequences
Transposons
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yIPgifrt6ShTBBwnX5ruPp3isgj6oB4cvoUln3YWjle2u3OE_70zaXbb44ItPbXamS5KZTGbCzC-MvSrqGpItlDCgrdBeLkQsPQFBxgYUlKqpqHb402c7P9cfL8zFwVVflBM2wAMPE3eSbFWBcipqOqFwLjr8L21j5RLGVmPgU5pdMDXYYItGt9iVyHh70qOldlJQqESXlxlxNdmGMlr_3zb5YFOaJkwe7EBnd9jt0XXkp0OX77Ib0N5jN793-WD8PvtNYSWseUYQboH_wigYp43Pyw1f9Txddj1cXvN6lAc0nM5g-XpIhcUmvqFhFjAklPO0XHfkzra8weeq7Tm-YoS9vEY3GzghjCO5S9jsH7Dzs_ff3s3FeLWCSBhBbERsbAFQyQg-FY1OEtuLQpmkoI42-gQ6pUY6dBcrufBgF8aASl4mqZ1KpXrIjlocy2PGXbIgIxXYWorHXJVMXSsPUtdUx2tm7M1upsPPAUEj5MjD2zDIJaBcQpZLuJqxtySMPSehX-cfUCfCqBPhXzoxYy9JlIHwLVpKoPlRb_s-fPj6JZxadECVcQr79XpkWnQo1FSP9Qg4KoLEmnAeTzhxAaYpeacxYTQAfZCE02-8JfKLPZm-pKS2Frpt5iFvyZXY4UeDgu3HrWSJ1tapGXMT1ZtMzJTSrpYZHtyhC26dfPI_ZvIpuyXzqlGi0MfsaLPewjP0wjbxeV5wfwCV4y6l
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3_a9UwEA-6IfiL-N3npkQR_EHC2qRN2p9kk42n4JDpYPhLaK_XvQejna_vjQ3_ee_avOeK4E9tmitNcpfLXXr3iRDvoqJAsJFRKSZWJZmuVRlnDARZVmgwNlXOucNfj-30NPlylp6FDbcuhFWudWKvqKsWeI98TzPweZrR-vjx8pfiU6P472o4QuOu2NZxwr9ptw8Oj7-drHWxJeUbrVNlMrvXkcZ2WrHLxIeYpep6tBz1qP3_6uZbi9M4cPLWSnT0UDwIJqTcH3j-SNzB5rG497PtN8ifiN_sXuJC9kjCDcor8oZp-OQ0Xsp5J-Gi7fDiRhaBL1hJ3ouViyEklop0Rwpa4RBYLmG2aNmsbWRF13nTSbolT3t2Q-Y2SkYap-oWqNg9FadHhz8-TVU4YkEBeRJLVVY2Qsx1iRlEVQKaynVkUjBYlLbMABOASjsyG3NdZ2jrNEUDmQadOAOxeSa2GurLCyEdWNQlJ9pa9stcDmlRmAx1UnA-bzoRH9Yj7S8HJA3feyCZ9QNfPPHF93zx1xNxwMzYUDIKdv-gXZz7MKk82DxH4wx9lXEEXelIzhJb5g7I77bxRLxlVnrGuWg4kOa8WHWd__z9xO9bMkRN6gy1630gqltiKhQhL4F6xdBYI8rdESVNRBhXryXGB0XQ-b9iOxFvNtX8Jge3Ndiuehq2mlxMDX4-CNim30bHpHWdmQg3Er3RwIxrmvmshwl3ZIpbp1_-v1k74r7u54NRUbIrtpaLFb4iO2tZvg6T6Q-2YCk7
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA_HieCL-O3qKVEEH6TaJmmSPoic4rEK54O6cPgS2nR6u7C02u7KLf7zzqTtcsV78KlNZ0qbzEwy0878wtiLOM_B61hGKSgdKSuqqEgsAUEWJUhIZJlR7fDpFz1fqM9n6dkBG7c7GgawuzK0o_2kFu369cWv3Ts0-LfB4K1-0-E8bEREgRBtTZZG6FNeE0oq0vhTtf-roHEqjsfCmSvvmyxOAcP_35n60lI1TaO8tC6d3GI3B4eSH_cacJsdQH2HXf_RhM_ld9kfCjah5QFXuAb-G2NjHEw-TzZ81XG_bjpY73g-SAlKTl9medsnyGITz3C6jqBPM-d-2Tbk5Na8xOOq7jieYty93KHzDZxwx5HceGx299ji5OP3D_No2HAh8hhXbKKi1DFAJgqwPi6VF9iuYpl6CXmhC-tBeV8Kg05kJioLukpTkN4KL5SRPpH32WGNfXnIuPEaREFlt5qiNJP5NM-lBaFyqu5NZ-zVONLuZ4-r4UI8YrXr5eJQLi7IxV3M2HsSxp6TMLHDhaY9d4OJOa-zDKSR-FRCFTSFQa1TusiMxyhcJzP2nETpCPWiprSa83zbde7Tt6_uWKNbKlMj8b1eDkxVg0L1-VClgL0ioKwJ59GEE83ST8mjxrhRq50g9P7UaiI_25PpTkp1q6HZBh7yoUyCL_ygV7B9v6VIcA42csbMRPUmAzOl1KtlAA036JhrIx79x3MfsxsiGIWMYnXEDjftFp6g67UpngZ7-gu-OC0s
  priority: 102
  providerName: Scholars Portal
Title Linker histone variant H1t is closely associated with repressed repeat-element chromatin domains in pachytene spermatocytes
URI https://www.ncbi.nlm.nih.gov/pubmed/32131873
https://www.proquest.com/docview/2378858635
https://search.proquest.com/docview/2371853711
https://pubmed.ncbi.nlm.nih.gov/PMC7057672
https://doaj.org/article/c699e373b4354077b7b1846b97c83761
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdtx2AvY9_N1gVtDPYw3NiSLdmPaWnJAimlXSHsRdjyuQmkdomTsbJ_fneyHWr2tpfYyslY0n3oTtz9zNgXP03BKl96EYTKC2NReFkQExBkloOEQOYJ1Q7PLtTkJpzOo_kei7paGJe0b7Plcbm6Oy6XC5dbeX9nR12e2OhydqrRyVBajPbZvpayC9Eb86vQ3vpddUysRjUaaS08ipLou2WRR8jTUgQoy1r2NiOH2f-vZX60NfXTJh_tQ-cv2PPWgeTjZqAv2R6Ur9jTn5U7Hn_N_lBwCWvucIRL4L8wFsbF45Ngw5c1t6uqhtUDT1uuQM7pJJavm4RYbOIdmmcPmrRybhfripzakud4XZY1x1uMsxcP6GwDJ5xxJFcWm_UbdnN-9uN04rUfWPAsxhEbL8uVD5CIDGLr56EV2C58GVkJaaay2EJobS40Oo2JKGJQRRSBtLGwItTSBvItOyhxLoeMa6tAZFRmqygq04mN0lTGIMKUqnmjAfvWrbS5b3A0jIs_YmUaFhlkkXEsMr8H7ISYsetJGNjuj2p9a1pJMFYlCUgt8a2EIqgzjVIWqizRFqNuFQzYZ2KlIZSLktJobtNtXZvv11dmrNANlZGWOK6vbaeiQqbatK1KwFkRMFav51GvJ6qh7ZM7iTGtGaiNILT-KFZE_rQj05OU2lZCtXV9yGfSAQ74XSNgu3l3cjpguid6vYXpU1BnHEh4qyPv__vJD-yZcFojPT88Ygeb9RY-ogO2yYaodnM9ZE_G4-n1FK8nZxeXV0N3nIG_szAeOpX8C5CqNpI
link.rule.ids 230,315,733,786,790,870,891,2115,12083,21416,24346,27955,27956,31752,31753,33777,33778,43343,43838,53825,53827
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDI9gCMEL4nMUBgSExAOK1iZp0j6hgZhusO0BNunES9Smvt1JUzvaO7SJfx477R2rkHhq07hqEjuOndq_MPY2LgrwJlYiBW2EzuRMlElGQJBlBQoSVeWUO3x0bCan-ss0nQ4bbt0QVrnWiUFRV42nPfJdScDnaYbr44eLn4JOjaK_q8MRGjfZLa2UJjm3043DZVD1xutEmczsdqivrRTkMNERZqm4HC1GAbP_X818bWkah01eW4f277N7gwHJ93qOP2A3oH7Ibv9owvb4I_abnEtoecARroH_Ql8YB49PkiVfdNyfNx2cX_Fi4ApUnHZiedsHxGIR71A9C-jDyrmftw0ZtTWv8LqoO4636GfPr9DYBk4441jdeCx2j9np_ueTTxMxHLAgPPoRS1FWJgbIZQmZjyvtJZZnsUq9gqI0ZeZBe19Ji0ZjLmcZmFmagvKZ9FJb5RP1hG3V2JenjFtvQJaUZmvIK7O5T4tCZSB1Qdm8acTer0faXfQ4Gi74H5lxPV8c8sUFvrjLiH0kZmwoCQM7PGjaMzdMKedNnoOyCr9KKIK2tChl2pS59eh1myRib4iVjlAuagqjOStWXecOvn9zewbNUJVahe16NxDNGmSqL4asBOwVAWONKHdGlDgN_bh6LTFuUAOd-yu0EXu9qaY3KbSthmYVaMhmsgk2eLsXsE2_lUxQ51oVMTsSvdHAjGvqxTyAhFs0xI2Vz_7frFfszuTk6NAdHhx_fc7uyjA3lIj1Dttatit4gRbXsnwZptUf1bMqwg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgCMQL34PCAIOQeEBpEzuxk8cxqDZg0wRMmvZixc5lreiSqmkRg3-eu3xUDbztqXHvouZ6H76L7n5m7I2fpuCUL70IQuWFscg9G8QEBGkzkBDILKHZ4cMjtX8SfjqNTjeO-qqb9p2dDovZxbCYTureyvmFG3V9YqPjwz2NSYbSYjTP8tF1dgN9VuiuUG-CsMKo63czMrEaVRiqtfCoVqLTyyKP8KelCNCitextSTVy___xeWOD6jdPbuxG47vsrJOjaUL5MVwt7dD9_gfi8UqC3mN32hyV7zYs99k1KB6wm2dl_Qb-IftD9SsseA1VXAD_ieU26ofvB0s-rbiblRXMLnnaKh4yTi97-aLpucUlXuEO4EHTuc7dZFFS3lzwDD-nRcXxEkv5ySXm88AJyhzJpcNl9YidjD9-39v32jMcPIelytKzmfIBEmEhdn4WOoHr3JeRk5BaZWMHoXOZ0JiXJiKPQeVRBNLFwolQSxfIbbZVoCxPGNdOgbA0yauo8NOJi9JUxiDClAaGowF716nRzBuoDlOXOLEyjf4N6t_U-je_Buw9aXrNSTDb9Rfl4ty0OjBOJQlILfFXCahQW42GHCqbaIeFvQoG7DXZiSEgjYI6dc7TVVWZg29fza7CTFdGWuJzvW2Z8hItxqXt4ANKRdhbPc6dHid6uuuTO3M0baSpjKADAaJYEfnVmkx3UvdcAeWq5qG0TAf4wI8b613L3TnBgOmeXff-mD4FrbXGIW-t8-mV73zJbh1_GJsvB0efn7HbovZO6fnhDttaLlbwHNO9pX1RO_ZfT4VVLg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linker+histone+variant+H1t+is+closely+associated+with+repressed+repeat-element+chromatin+domains+in+pachytene+spermatocytes&rft.jtitle=Epigenetics+%26+chromatin&rft.au=Mahadevan%2C+Iyer+Aditya&rft.au=Kumar%2C+Sanjeev&rft.au=Rao%2C+Manchanahalli+R+Satyanarayana&rft.date=2020-03-04&rft.eissn=1756-8935&rft.volume=13&rft.issue=1&rft.spage=9&rft.epage=9&rft_id=info:doi/10.1186%2Fs13072-020-00335-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-8935&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-8935&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-8935&client=summon