MSM: A new flexible framework for Multimodal Surface Matching

Surface-based cortical registration methods that are driven by geometrical features, such as folding, provide sub-optimal alignment of many functional areas due to variable correlation between cortical folding patterns and function. This has led to the proposal of new registration methods using feat...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 100; pp. 414 - 426
Main Authors Robinson, Emma C., Jbabdi, Saad, Glasser, Matthew F., Andersson, Jesper, Burgess, Gregory C., Harms, Michael P., Smith, Stephen M., Van Essen, David C., Jenkinson, Mark
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.10.2014
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Surface-based cortical registration methods that are driven by geometrical features, such as folding, provide sub-optimal alignment of many functional areas due to variable correlation between cortical folding patterns and function. This has led to the proposal of new registration methods using features derived from functional and diffusion imaging. However, as yet there is no consensus over the best set of features for optimal alignment of brain function. In this paper we demonstrate the utility of a new Multimodal Surface Matching (MSM) algorithm capable of driving alignment using a wide variety of descriptors of brain architecture, function and connectivity. The versatility of the framework originates from adapting the discrete Markov Random Field (MRF) registration method to surface alignment. This has the benefit of being very flexible in the choice of a similarity measure and relatively insensitive to local minima. The method offers significant flexibility in the choice of feature set, and we demonstrate the advantages of this by performing registrations using univariate descriptors of surface curvature and myelination, multivariate feature sets derived from resting fMRI, and multimodal descriptors of surface curvature and myelination. We compare the results with two state of the art surface registration methods that use geometric features: FreeSurfer and Spherical Demons. In the future, the MSM technique will allow explorations into the best combinations of features and alignment strategies for inter-subject alignment of cortical functional areas for a wide range of neuroimaging data sets.
AbstractList Surface-based cortical registration methods that are driven by geometrical features, such as folding, provide sub-optimal alignment of many functional areas due to variable correlation between cortical folding patterns and function. This has led to the proposal of new registration methods using features derived from functional and diffusion imaging. However, as yet there is no consensus over the best set of features for optimal alignment of brain function. In this paper we demonstrate the utility of a new Multimodal Surface Matching (MSM) algorithm capable of driving alignment using a wide variety of descriptors of brain architecture, function and connectivity. The versatility of the framework originates from adapting the discrete Markov Random Field (MRF) registration method to surface alignment. This has the benefit of being very flexible in the choice of a similarity measure and relatively insensitive to local minima. The method offers significant flexibility in the choice of feature set, and we demonstrate the advantages of this by performing registrations using univariate descriptors of surface curvature and myelination, multivariate feature sets derived from resting fMRI, and multimodal descriptors of surface curvature and myelination. We compare the results with two state of the art surface registration methods that use geometric features: FreeSurfer and Spherical Demons. In the future, the MSM technique will allow explorations into the best combinations of features and alignment strategies for inter-subject alignment of cortical functional areas for a wide range of neuroimaging data sets.
Surface-based cortical registration methods that are driven by geometrical features, such as folding, provide sub-optimal alignment of many functional areas due to variable correlation between cortical folding patterns and function. This has led to the proposal of new registration methods using features derived from functional and diffusion imaging. However, as yet there is no consensus over the best set of features for optimal alignment of brain function. In this paper we demonstrate the utility of a new Multimodal Surface Matching (MSM) algorithm capable of driving alignment using a wide variety of descriptors of brain architecture, function and connectivity. The versatility of the framework originates from adapting the discrete Markov Random Field (MRF) registration method to surface alignment. This has the benefit of being unconstrained by choice of a similarity measure and relatively insensitive to local minima. The method offers significant flexibility in the choice of feature set, and we demonstrate the advantages of this by performing registrations using univariate descriptors of surface curvature and myelination, multivariate feature sets derived from resting fMRI, and multimodal descriptors of surface curvature and myelination. We compare the results with two state of the art surface registration methods that use geometric features: FreeSurfer and Spherical Demons. In the future, the MSM technique will allow explorations into the best combinations of features and alignment strategies for inter-subject alignment of cortical functional areas for a wide range of neuroimaging datasets.
Surface-based cortical registration methods that are driven by geometrical features, such as folding, provide sub-optimal alignment of many functional areas due to variable correlation between cortical folding patterns and function. This has led to the proposal of new registration methods using features derived from functional and diffusion imaging. However, as yet there is no consensus over the best set of features for optimal alignment of brain function. In this paper we demonstrate the utility of a new Multimodal Surface Matching (MSM) algorithm capable of driving alignment using a wide variety of descriptors of brain architecture, function and connectivity. The versatility of the framework originates from adapting the discrete Markov Random Field (MRF) registration method to surface alignment. This has the benefit of being very flexible in the choice of a similarity measure and relatively insensitive to local minima. The method offers significant flexibility in the choice of feature set, and we demonstrate the advantages of this by performing registrations using univariate descriptors of surface curvature and myelination, multivariate feature sets derived from resting fMRI, and multimodal descriptors of surface curvature and myelination. We compare the results with two state of the art surface registration methods that use geometric features: FreeSurfer and Spherical Demons. In the future, the MSM technique will allow explorations into the best combinations of features and alignment strategies for inter-subject alignment of cortical functional areas for a wide range of neuroimaging data sets.
Surface-based cortical registration methods that are driven by geometrical features, such as folding, provide sub-optimal alignment of many functional areas due to variable correlation between cortical folding patterns and function. This has led to the proposal of new registration methods using features derived from functional and diffusion imaging. However, as yet there is no consensus over the best set of features for optimal alignment of brain function. In this paper we demonstrate the utility of a new Multimodal Surface Matching (MSM) algorithm capable of driving alignment using a wide variety of descriptors of brain architecture, function and connectivity. The versatility of the framework originates from adapting the discrete Markov Random Field (MRF) registration method to surface alignment. This has the benefit of being very flexible in the choice of a similarity measure and relatively insensitive to local minima. The method offers significant flexibility in the choice of feature set, and we demonstrate the advantages of this by performing registrations using univariate descriptors of surface curvature and myelination, multivariate feature sets derived from resting fMRI, and multimodal descriptors of surface curvature and myelination. We compare the results with two state of the art surface registration methods that use geometric features: FreeSurfer and Spherical Demons. In the future, the MSM technique will allow explorations into the best combinations of features and alignment strategies for inter-subject alignment of cortical functional areas for a wide range of neuroimaging data sets.Surface-based cortical registration methods that are driven by geometrical features, such as folding, provide sub-optimal alignment of many functional areas due to variable correlation between cortical folding patterns and function. This has led to the proposal of new registration methods using features derived from functional and diffusion imaging. However, as yet there is no consensus over the best set of features for optimal alignment of brain function. In this paper we demonstrate the utility of a new Multimodal Surface Matching (MSM) algorithm capable of driving alignment using a wide variety of descriptors of brain architecture, function and connectivity. The versatility of the framework originates from adapting the discrete Markov Random Field (MRF) registration method to surface alignment. This has the benefit of being very flexible in the choice of a similarity measure and relatively insensitive to local minima. The method offers significant flexibility in the choice of feature set, and we demonstrate the advantages of this by performing registrations using univariate descriptors of surface curvature and myelination, multivariate feature sets derived from resting fMRI, and multimodal descriptors of surface curvature and myelination. We compare the results with two state of the art surface registration methods that use geometric features: FreeSurfer and Spherical Demons. In the future, the MSM technique will allow explorations into the best combinations of features and alignment strategies for inter-subject alignment of cortical functional areas for a wide range of neuroimaging data sets.
Author Andersson, Jesper
Smith, Stephen M.
Jenkinson, Mark
Robinson, Emma C.
Burgess, Gregory C.
Glasser, Matthew F.
Jbabdi, Saad
Harms, Michael P.
Van Essen, David C.
AuthorAffiliation b Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO, USA
c Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
d Department of Psychology, Washington University, St Louis, MO, USA
a FMRIB centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, OX3 9DU, UK
AuthorAffiliation_xml – name: a FMRIB centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, OX3 9DU, UK
– name: d Department of Psychology, Washington University, St Louis, MO, USA
– name: c Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
– name: b Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO, USA
Author_xml – sequence: 1
  givenname: Emma C.
  surname: Robinson
  fullname: Robinson, Emma C.
  organization: FMRIB centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, OX3 9DU, UK
– sequence: 2
  givenname: Saad
  surname: Jbabdi
  fullname: Jbabdi, Saad
  organization: FMRIB centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, OX3 9DU, UK
– sequence: 3
  givenname: Matthew F.
  surname: Glasser
  fullname: Glasser, Matthew F.
  organization: Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO, USA
– sequence: 4
  givenname: Jesper
  surname: Andersson
  fullname: Andersson, Jesper
  organization: FMRIB centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, OX3 9DU, UK
– sequence: 5
  givenname: Gregory C.
  surname: Burgess
  fullname: Burgess, Gregory C.
  organization: Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO, USA
– sequence: 6
  givenname: Michael P.
  surname: Harms
  fullname: Harms, Michael P.
  organization: Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
– sequence: 7
  givenname: Stephen M.
  surname: Smith
  fullname: Smith, Stephen M.
  organization: FMRIB centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, OX3 9DU, UK
– sequence: 8
  givenname: David C.
  surname: Van Essen
  fullname: Van Essen, David C.
  organization: Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO, USA
– sequence: 9
  givenname: Mark
  surname: Jenkinson
  fullname: Jenkinson, Mark
  email: mark@fmrib.ox.ac.uk
  organization: FMRIB centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, OX3 9DU, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24939340$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAURi1URB_wF1AkNmwSfONHYiQQpeIldcSisLY8zvXUU49dnKSl_55EU6bQ1axsyeceX33fMTmIKSIhBdAKKMg36yrimJPfmBVWNQVeUVFRqZ6QI6BKlEo09cF8F6xsAdQhOe77NaVUAW-fkcOaK6YYp0fk3eJi8bY4LSLeFi7gb78MWLhsNnib8lXhUi4WYxj8JnUmFBdjdsZisTCDvfRx9Zw8dSb0-OL-PCE_P3_6cfa1PP_-5dvZ6XlphWqG0jhuZN0p7uq6tY7KaT1nmRI17VAaZjvOGEjegkLnXGcoLLHlAqRyTnQtOyHvt97rcbnBzmIcsgn6Ok8J5DudjNf_v0R_qVfpRnNQlIGaBK_vBTn9GrEf9Mb3FkMwEdPYaxCSAlDZNnuggvNGAJMT-uoRuk5jjlMSM8U4tA2d_3757_K7rf-WMAHtFrA59X1Gt0OA6rlvvdYPfeu5b02Fnvp-CGY3av1gBp_mGHzYR_BxK8CpvhuPWffWY7TY-Yx20F3y-0g-PJLY4KO3Jlzh3X6KP7jS4rY
CitedBy_id crossref_primary_10_1016_j_neuroimage_2023_120110
crossref_primary_10_1016_j_neuroimage_2022_119087
crossref_primary_10_1002_hbm_25791
crossref_primary_10_7554_eLife_75401
crossref_primary_10_3389_fnins_2024_1491770
crossref_primary_10_1016_j_jneumeth_2020_108983
crossref_primary_10_1093_cercor_bhy305
crossref_primary_10_1016_j_neuroimage_2022_119765
crossref_primary_10_1038_s42003_024_06401_4
crossref_primary_10_1016_j_neuroimage_2018_01_054
crossref_primary_10_1073_pnas_2109380118
crossref_primary_10_7554_eLife_62324
crossref_primary_10_1016_j_neuroimage_2017_09_005
crossref_primary_10_1016_j_nicl_2022_103237
crossref_primary_10_1093_cercor_bhw241
crossref_primary_10_1073_pnas_1715451115
crossref_primary_10_1016_j_neuroimage_2020_117226
crossref_primary_10_1016_j_mri_2019_05_016
crossref_primary_10_1016_j_neuroimage_2017_02_018
crossref_primary_10_1016_j_neuroimage_2020_117346
crossref_primary_10_1002_nbm_5305
crossref_primary_10_1007_s12311_021_01284_1
crossref_primary_10_1016_j_dcn_2022_101103
crossref_primary_10_1016_j_neuroimage_2021_118036
crossref_primary_10_7554_eLife_33562
crossref_primary_10_1093_brain_awz412
crossref_primary_10_1523_JNEUROSCI_2223_23_2024
crossref_primary_10_1073_pnas_1801582115
crossref_primary_10_2139_ssrn_3188429
crossref_primary_10_1002_hbm_26517
crossref_primary_10_1016_j_biotno_2024_08_001
crossref_primary_10_1016_j_media_2018_03_004
crossref_primary_10_1016_j_neuroimage_2016_08_032
crossref_primary_10_1016_j_neuroimage_2022_119197
crossref_primary_10_1016_j_neuron_2019_01_017
crossref_primary_10_1038_s42003_022_04148_4
crossref_primary_10_1038_s42003_023_04796_0
crossref_primary_10_1088_1741_2552_ad0add
crossref_primary_10_3390_nu16010041
crossref_primary_10_1016_j_neuroimage_2023_120360
crossref_primary_10_1002_hbm_24213
crossref_primary_10_1038_s41598_018_35665_0
crossref_primary_10_1038_s41598_022_09141_9
crossref_primary_10_3389_fnins_2019_00434
crossref_primary_10_1016_j_media_2024_103297
crossref_primary_10_1016_j_dcn_2024_101473
crossref_primary_10_1016_j_neuroimage_2020_116800
crossref_primary_10_1016_j_media_2024_103292
crossref_primary_10_1016_j_neuroimage_2015_02_005
crossref_primary_10_1016_j_neuroimage_2021_117751
crossref_primary_10_1016_j_neuroimage_2018_12_032
crossref_primary_10_7554_eLife_64058
crossref_primary_10_1002_hbm_25776
crossref_primary_10_1016_j_neuroimage_2020_117693
crossref_primary_10_1038_s41593_020_00719_y
crossref_primary_10_1093_cercor_bhac503
crossref_primary_10_1002_hbm_26628
crossref_primary_10_1016_j_neuroimage_2023_120010
crossref_primary_10_1002_hbm_26660
crossref_primary_10_1002_hbm_25455
crossref_primary_10_1002_hbm_26423
crossref_primary_10_1162_imag_a_00504
crossref_primary_10_1016_j_neuroimage_2022_119423
crossref_primary_10_1177_1073858419860115
crossref_primary_10_1016_j_neuroimage_2023_119944
crossref_primary_10_1016_j_neuron_2018_07_002
crossref_primary_10_1016_j_nicl_2022_103258
crossref_primary_10_1016_j_neuroimage_2020_117205
crossref_primary_10_1016_j_ynirp_2022_100103
crossref_primary_10_1162_netn_a_00382
crossref_primary_10_1371_journal_pcbi_1009216
crossref_primary_10_1016_j_neuroimage_2020_117685
crossref_primary_10_1162_imag_a_00181
crossref_primary_10_1002_hbm_25447
crossref_primary_10_1016_j_neuroimage_2016_04_002
crossref_primary_10_1002_hbm_24237
crossref_primary_10_1016_j_cortex_2019_02_010
crossref_primary_10_1016_j_compbiomed_2023_107185
crossref_primary_10_1073_pnas_1721653115
crossref_primary_10_1016_j_neuroimage_2021_118252
crossref_primary_10_1002_hbm_22854
crossref_primary_10_1038_s41562_023_01542_8
crossref_primary_10_1016_j_neuron_2017_06_038
crossref_primary_10_1038_s41467_024_54243_9
crossref_primary_10_3389_fnins_2021_797500
crossref_primary_10_1038_s42003_019_0611_3
crossref_primary_10_1002_jmri_28972
crossref_primary_10_1016_j_neuroimage_2020_117429
crossref_primary_10_1016_j_neuroimage_2022_119418
crossref_primary_10_1016_j_neuroimage_2021_117726
crossref_primary_10_1016_j_neuroimage_2018_01_082
crossref_primary_10_1038_nature18933
crossref_primary_10_1007_s00429_020_02180_w
crossref_primary_10_1007_s00429_022_02480_3
crossref_primary_10_1016_j_neuroimage_2021_118145
crossref_primary_10_1016_j_neuroimage_2024_120956
crossref_primary_10_1109_TMI_2021_3069645
crossref_primary_10_1016_j_media_2024_103394
crossref_primary_10_1038_s41593_018_0195_0
crossref_primary_10_1016_j_bbih_2020_100153
crossref_primary_10_1016_j_neuroimage_2015_01_013
crossref_primary_10_1097_HRP_0000000000000166
crossref_primary_10_1016_j_celrep_2021_109732
crossref_primary_10_1111_jne_12891
crossref_primary_10_1016_j_neuroimage_2019_116319
crossref_primary_10_1016_j_neuroimage_2016_05_035
crossref_primary_10_1038_s41593_024_01679_3
crossref_primary_10_1038_s43587_021_00044_4
crossref_primary_10_1126_sciadv_abm6127
crossref_primary_10_1371_journal_pcbi_1006120
crossref_primary_10_1093_cercor_bhy218
crossref_primary_10_7554_eLife_44890
crossref_primary_10_1016_j_dcn_2022_101145
crossref_primary_10_2139_ssrn_4058693
crossref_primary_10_1162_imag_a_00046
crossref_primary_10_1017_S0033291722001313
crossref_primary_10_1523_JNEUROSCI_0856_23_2024
crossref_primary_10_1016_j_neuroimage_2022_119274
crossref_primary_10_1016_j_neuropsychologia_2017_11_015
crossref_primary_10_1016_j_nicl_2019_101890
crossref_primary_10_1016_j_neuroimage_2024_120660
crossref_primary_10_1089_brain_2017_0561
crossref_primary_10_1002_hbm_25189
crossref_primary_10_1016_j_neuroimage_2018_09_060
crossref_primary_10_1016_j_neuroimage_2018_10_050
crossref_primary_10_1038_s41467_023_38626_y
crossref_primary_10_1523_JNEUROSCI_1939_24_2025
crossref_primary_10_1038_s41467_024_54034_2
crossref_primary_10_1016_j_neuroimage_2021_117831
crossref_primary_10_1016_j_neuroimage_2021_118488
crossref_primary_10_1002_jmri_27420
crossref_primary_10_1002_mrm_26917
crossref_primary_10_1093_braincomms_fcac011
crossref_primary_10_1017_pen_2018_8
crossref_primary_10_1016_j_neuroimage_2024_120657
crossref_primary_10_1093_cercor_bhad358
crossref_primary_10_1126_sciadv_abq3851
crossref_primary_10_1002_hbm_26067
crossref_primary_10_1093_cercor_bhab064
crossref_primary_10_1093_cercor_bhy123
crossref_primary_10_1093_cercor_bhx030
crossref_primary_10_1016_j_neuroimage_2023_120213
crossref_primary_10_1038_s41598_022_20322_4
crossref_primary_10_7554_eLife_53232
crossref_primary_10_1016_j_neuroimage_2022_119744
crossref_primary_10_1016_j_neuroimage_2017_05_012
crossref_primary_10_1016_j_neuron_2024_07_023
crossref_primary_10_1038_s42003_024_06630_7
crossref_primary_10_1016_j_neuroimage_2018_03_042
crossref_primary_10_7554_eLife_90182
crossref_primary_10_1016_j_cobeha_2017_11_001
crossref_primary_10_1038_s41467_017_02815_3
crossref_primary_10_1093_schbul_sbz103
crossref_primary_10_1016_j_nicl_2021_102691
crossref_primary_10_1162_netn_a_00182
crossref_primary_10_1002_hbm_24315
crossref_primary_10_1016_j_neuron_2015_06_037
crossref_primary_10_1162_imag_a_00026
crossref_primary_10_1038_s42003_022_04281_0
crossref_primary_10_1093_cercor_bhad245
crossref_primary_10_1038_s41592_022_01625_w
crossref_primary_10_1088_1741_2552_ac0f4d
crossref_primary_10_1093_cercor_bhad011
crossref_primary_10_1093_cercor_bhz323
crossref_primary_10_1016_j_neuroimage_2022_119299
crossref_primary_10_1167_18_13_23
crossref_primary_10_1523_JNEUROSCI_0735_23_2023
crossref_primary_10_1002_brb3_2334
crossref_primary_10_1016_j_neuroimage_2018_10_070
crossref_primary_10_1093_cercor_bhx026
crossref_primary_10_1038_s42003_022_03265_4
crossref_primary_10_1093_cercor_bhw297
crossref_primary_10_1016_j_neuroimage_2018_04_077
crossref_primary_10_1016_j_neuroimage_2018_04_076
crossref_primary_10_1016_j_neuroimage_2021_118105
crossref_primary_10_1016_j_media_2024_103193
crossref_primary_10_1016_j_nicl_2020_102286
crossref_primary_10_1162_netn_a_00171
crossref_primary_10_1016_j_neuroimage_2016_04_037
crossref_primary_10_1002_hbm_23698
crossref_primary_10_1038_s41467_022_29770_y
crossref_primary_10_1016_j_neuroimage_2015_08_042
crossref_primary_10_1093_cercor_bhaa150
crossref_primary_10_1093_cercor_bhz113
crossref_primary_10_1093_cercor_bhab362
crossref_primary_10_7554_eLife_56601
crossref_primary_10_1371_journal_pbio_3000602
crossref_primary_10_1109_TNNLS_2022_3213581
crossref_primary_10_1016_j_neuroimage_2017_04_028
crossref_primary_10_1162_netn_a_00325
crossref_primary_10_3389_fpsyt_2023_1114703
crossref_primary_10_1093_cercor_bhx179
crossref_primary_10_1016_j_neuroimage_2023_120192
crossref_primary_10_1016_j_neuroimage_2020_117622
crossref_primary_10_1162_imag_a_00360
crossref_primary_10_1007_s12021_021_09528_5
crossref_primary_10_1038_s41467_024_50248_6
crossref_primary_10_1073_pnas_1700765114
crossref_primary_10_3389_fneur_2019_00874
crossref_primary_10_1016_j_celrep_2022_111617
crossref_primary_10_1162_imag_a_00488
crossref_primary_10_1371_journal_pone_0266349
crossref_primary_10_1523_ENEURO_0304_24_2025
crossref_primary_10_7554_eLife_32992
crossref_primary_10_1073_pnas_2321346121
crossref_primary_10_1016_j_neuroimage_2015_08_047
crossref_primary_10_1038_s41467_020_14610_8
crossref_primary_10_1002_hbm_24977
crossref_primary_10_1371_journal_pbio_2007032
crossref_primary_10_1016_j_neuroimage_2022_119360
crossref_primary_10_7554_eLife_70119
crossref_primary_10_1093_cercor_bhac342
crossref_primary_10_1249_ESM_0000000000000006
crossref_primary_10_1093_cercor_bhab374
crossref_primary_10_1038_nn_4164
crossref_primary_10_1002_nbm_3752
crossref_primary_10_1016_j_neuroimage_2022_119359
crossref_primary_10_1016_j_tics_2016_03_014
crossref_primary_10_1016_j_biopsych_2018_02_1174
crossref_primary_10_7554_eLife_67600
crossref_primary_10_1371_journal_pbio_3000284
crossref_primary_10_1016_j_neuroimage_2021_118204
crossref_primary_10_1038_s41598_019_55738_y
crossref_primary_10_1016_j_neuroimage_2017_07_019
crossref_primary_10_1007_s00429_021_02427_0
crossref_primary_10_3389_fncom_2019_00054
crossref_primary_10_1007_s12311_024_01691_0
crossref_primary_10_1016_j_neuroimage_2014_06_042
crossref_primary_10_1016_j_neuroimage_2018_10_006
crossref_primary_10_1093_cercor_bhac344
crossref_primary_10_1162_imag_a_00133
crossref_primary_10_1093_cercor_bhad314
crossref_primary_10_1162_imag_a_00253
crossref_primary_10_1016_j_neuroimage_2017_12_018
crossref_primary_10_1016_j_neuroimage_2022_119141
crossref_primary_10_1016_j_celrep_2022_111197
crossref_primary_10_1016_j_neuroimage_2015_05_092
crossref_primary_10_1093_cercor_bhac111
crossref_primary_10_1016_j_neuroimage_2022_118971
crossref_primary_10_1016_j_neuroimage_2017_01_079
crossref_primary_10_1016_j_neuroimage_2018_06_018
crossref_primary_10_1093_cercor_bhab260
crossref_primary_10_1007_s11682_018_9980_3
crossref_primary_10_1162_netn_a_00425
crossref_primary_10_1016_j_neuroimage_2017_07_027
crossref_primary_10_1016_j_compbiomed_2022_106414
crossref_primary_10_1038_s41467_024_54564_9
crossref_primary_10_1093_schbul_sbad072
crossref_primary_10_1093_texcom_tgaa076
crossref_primary_10_7554_eLife_36652
crossref_primary_10_1016_j_neuroimage_2021_118533
crossref_primary_10_2139_ssrn_4202046
crossref_primary_10_1093_cercor_bhab149
crossref_primary_10_1007_s00429_020_02096_5
crossref_primary_10_1016_j_dcn_2023_101202
crossref_primary_10_1016_j_neuroimage_2021_118770
crossref_primary_10_1038_s42003_024_05869_4
crossref_primary_10_1093_cercor_bhab387
crossref_primary_10_1002_hbm_24636
crossref_primary_10_1038_s41593_020_00726_z
crossref_primary_10_1007_s11427_019_9556_4
crossref_primary_10_1016_j_neuroimage_2014_06_010
crossref_primary_10_1016_j_neuroimage_2020_117161
crossref_primary_10_1093_cercor_bhaa063
crossref_primary_10_1371_journal_pbio_3000976
crossref_primary_10_1371_journal_pbio_3000979
crossref_primary_10_7554_eLife_77215
crossref_primary_10_1016_j_neuroimage_2015_05_087
crossref_primary_10_1002_jnr_70021
crossref_primary_10_1016_j_neuroimage_2022_118965
crossref_primary_10_1016_j_neuroimage_2020_116614
crossref_primary_10_1111_ejn_15386
crossref_primary_10_1016_j_brs_2021_07_009
crossref_primary_10_1016_j_neuroimage_2017_04_014
crossref_primary_10_1016_j_neuroimage_2020_117038
crossref_primary_10_1016_j_neuroimage_2021_118543
crossref_primary_10_2139_ssrn_4185559
crossref_primary_10_1016_j_neuroimage_2020_117273
crossref_primary_10_1162_imag_a_00478
crossref_primary_10_1093_cercor_bhaa188
crossref_primary_10_1093_cercor_bhaa069
crossref_primary_10_1002_hbm_24021
crossref_primary_10_1002_hbm_26320
crossref_primary_10_1093_cercor_bhae278
crossref_primary_10_1016_j_neuroimage_2018_01_016
crossref_primary_10_3389_fninf_2022_803934
crossref_primary_10_1007_s00429_018_1735_9
crossref_primary_10_1038_s42003_023_04843_w
crossref_primary_10_7554_eLife_20178
crossref_primary_10_1017_S0954579421000377
crossref_primary_10_1371_journal_pbio_3002266
crossref_primary_10_1016_j_dental_2019_07_023
crossref_primary_10_1016_j_media_2016_06_008
crossref_primary_10_1016_j_neuroimage_2020_116847
crossref_primary_10_1016_j_neuroimage_2021_118758
crossref_primary_10_3389_fnins_2020_596109
crossref_primary_10_1038_s41398_021_01321_x
crossref_primary_10_1126_science_aad8127
crossref_primary_10_1111_ejn_15393
crossref_primary_10_1007_s00429_023_02751_7
crossref_primary_10_1016_j_neuron_2018_10_010
crossref_primary_10_1016_j_neuroimage_2020_117141
crossref_primary_10_1017_S0954579418000342
crossref_primary_10_1038_s42003_024_06780_8
crossref_primary_10_1186_s13195_023_01349_9
crossref_primary_10_1093_cercor_bhac537
crossref_primary_10_1162_imag_a_00444
crossref_primary_10_1016_j_neuroimage_2021_118196
crossref_primary_10_1038_s42003_022_03196_0
crossref_primary_10_1016_j_neuroimage_2023_120044
crossref_primary_10_3389_fnana_2016_00112
crossref_primary_10_1002_hbm_26435
crossref_primary_10_1162_netn_a_00239
crossref_primary_10_1038_nn_4361
crossref_primary_10_3390_brainsci13071086
crossref_primary_10_1371_journal_pone_0218089
crossref_primary_10_1093_bjps_axz027
crossref_primary_10_1038_s41593_023_01299_3
crossref_primary_10_1016_j_neuroimage_2018_06_082
crossref_primary_10_1016_j_neuroimage_2020_116962
crossref_primary_10_1016_j_neuroimage_2021_118648
crossref_primary_10_7554_eLife_40224
crossref_primary_10_1016_j_neuroimage_2019_04_078
crossref_primary_10_1089_brain_2020_0970
crossref_primary_10_1073_pnas_2117234119
crossref_primary_10_1016_j_neuroimage_2020_116960
crossref_primary_10_1016_j_brain_2022_100045
crossref_primary_10_1038_s41598_023_32521_8
crossref_primary_10_3389_fpsyt_2021_678709
crossref_primary_10_1016_j_neuroimage_2021_118170
crossref_primary_10_1016_j_neuron_2024_10_005
crossref_primary_10_1093_cercor_bhae057
crossref_primary_10_1002_hbm_24960
crossref_primary_10_1002_hbm_25379
crossref_primary_10_1016_j_neuroimage_2023_120059
crossref_primary_10_1002_hbm_25256
crossref_primary_10_1016_j_neuroimage_2022_119589
crossref_primary_10_1038_s41586_023_05964_2
crossref_primary_10_3389_fninf_2024_1080173
crossref_primary_10_1016_j_imed_2022_06_002
crossref_primary_10_1038_s41593_024_01868_0
crossref_primary_10_1523_JNEUROSCI_2362_20_2021
crossref_primary_10_1016_j_neuroimage_2017_10_034
crossref_primary_10_1038_s42003_024_05766_w
crossref_primary_10_1093_cercor_bhx308
crossref_primary_10_1016_j_exger_2024_112513
crossref_primary_10_1016_j_neuroimage_2019_06_015
crossref_primary_10_1073_pnas_1808121115
crossref_primary_10_1016_j_neuroimage_2017_10_037
crossref_primary_10_1016_j_neuroscience_2020_03_010
crossref_primary_10_1093_cercor_bhaa254
crossref_primary_10_1093_cercor_bhab101
crossref_primary_10_7554_eLife_90182_3
crossref_primary_10_1016_j_media_2024_103122
crossref_primary_10_1002_hbm_26453
crossref_primary_10_1017_S0033291720004560
crossref_primary_10_1093_cercor_bhaa260
crossref_primary_10_1002_hbm_24275
crossref_primary_10_1002_hbm_25242
crossref_primary_10_1016_j_neuroimage_2022_119211
crossref_primary_10_1016_j_neuroimage_2022_119575
crossref_primary_10_1038_s41596_023_00806_x
crossref_primary_10_1038_s41562_019_0811_3
crossref_primary_10_1016_j_neuroimage_2017_04_053
crossref_primary_10_1109_TBME_2016_2571221
crossref_primary_10_1016_j_neuroimage_2015_09_030
crossref_primary_10_1038_s42003_024_07224_z
crossref_primary_10_1093_gigascience_giaf010
crossref_primary_10_1093_cercor_bhv239
crossref_primary_10_3389_fnins_2024_1237245
crossref_primary_10_1098_rsos_180857
crossref_primary_10_1016_j_neuroimage_2015_10_001
crossref_primary_10_1016_j_neuroimage_2020_117232
crossref_primary_10_1002_hbm_25116
crossref_primary_10_1093_cercor_bhad537
crossref_primary_10_1093_cercor_bhaa023
crossref_primary_10_1038_s41598_019_48671_7
Cites_doi 10.1016/j.neuroimage.2008.10.055
10.1109/MSP.2002.1028355
10.1016/j.neuroimage.2012.01.021
10.1137/S0895479801383877
10.1109/TMI.2003.822821
10.1016/j.neuroimage.2013.05.009
10.1016/j.neuroimage.2013.04.127
10.1109/TPAMI.2007.1061
10.1016/j.cviu.2008.06.007
10.1109/TPAMI.2006.200
10.1016/j.cviu.2008.06.006
10.1016/j.media.2010.07.002
10.1007/s10851-009-0161-2
10.1109/TMI.2009.2030797
10.1016/j.neuroimage.2013.05.039
10.1016/j.neuron.2011.08.026
10.1016/j.neuroimage.2004.07.051
10.1016/j.neuroimage.2013.05.041
10.1109/TMI.2013.2265603
10.1109/34.24792
10.1016/j.tics.2013.09.016
10.1016/j.biosystems.2006.02.008
10.1109/34.969114
10.1016/j.neuroimage.2007.02.037
10.1016/j.cviu.2013.07.004
10.1109/18.782114
10.1006/nimg.1998.0396
10.1523/JNEUROSCI.2180-11.2011
10.1016/j.neuroimage.2014.06.042
10.1016/j.media.2008.03.006
10.1146/annurev-bioeng-071910-124649
10.1016/j.neuroimage.2010.05.075
10.1002/mrm.22361
10.1093/cercor/bhr291
10.1016/j.neuroimage.2005.06.058
10.1109/TMI.2009.2016560
10.1093/cercor/bhm225
10.1016/j.neuroimage.2011.10.077
10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4
10.1109/42.796284
10.1109/TMI.2013.2241651
10.1016/j.neuroimage.2013.05.033
10.1016/j.neuroimage.2011.09.015
10.1093/cercor/bhp085
10.1023/B:VISI.0000022288.19776.77
ContentType Journal Article
Copyright 2014 Elsevier Inc.
Copyright © 2014 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Oct 15, 2014
Copyright_xml – notice: 2014 Elsevier Inc.
– notice: Copyright © 2014 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Oct 15, 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
5PM
DOI 10.1016/j.neuroimage.2014.05.069
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList Engineering Research Database
ProQuest One Psychology


MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 426
ExternalDocumentID PMC4190319
3403671121
24939340
10_1016_j_neuroimage_2014_05_069
S1053811914004546
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: F30 MH097312
– fundername: NIMH NIH HHS
  grantid: U54 MH091657
– fundername: NIMH NIH HHS
  grantid: F30-MH097312
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/C519938/1
– fundername: NIMH NIH HHS
  grantid: 1U54MH091657
– fundername: Wellcome Trust
  grantid: 098369
– fundername: Medical Research Council
  grantid: MR/L009013/1
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7QO
5PM
ID FETCH-LOGICAL-c597t-af4a62d94f228cf06572fc39520de6a3cd433164819efffda01be845169ff5d83
IEDL.DBID 7X7
ISSN 1053-8119
1095-9572
IngestDate Thu Aug 21 14:11:20 EDT 2025
Thu Jul 10 18:31:02 EDT 2025
Fri Jul 11 03:39:24 EDT 2025
Wed Aug 13 02:46:26 EDT 2025
Mon Jul 21 06:05:53 EDT 2025
Tue Jul 01 02:14:54 EDT 2025
Thu Apr 24 22:49:23 EDT 2025
Fri Feb 23 02:36:03 EST 2024
Tue Aug 26 16:31:41 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Functional alignment
Multimodal
Discrete optimisation
Surface-based cortical registration
Language English
License Copyright © 2014 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c597t-af4a62d94f228cf06572fc39520de6a3cd433164819efffda01be845169ff5d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally
OpenAccessLink http://doi.org/10.1016/j.neuroimage.2014.05.069
PMID 24939340
PQID 1553418709
PQPubID 2031077
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4190319
proquest_miscellaneous_1560110687
proquest_miscellaneous_1554475136
proquest_journals_1553418709
pubmed_primary_24939340
crossref_primary_10_1016_j_neuroimage_2014_05_069
crossref_citationtrail_10_1016_j_neuroimage_2014_05_069
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2014_05_069
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2014_05_069
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-10-15
PublicationDateYYYYMMDD 2014-10-15
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2014
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni (bb0085) 2013; 80
Hero, Michel (bb0115) 1999; 45
Smith, Beckmann, Andersson, Auerbach, Bijsterbosch, Douaud, Duff, Feinberg, Griffanti, Harms (bb0205) 2013; 80
Auzias, Lefevre, Le Troter, Fisher, Perrot, Régis, Coulon (bb0020) 2013; 35
Komodakis, Tziritas (bb0140) 2007; 29
Komodakis, Tziritas, Paragios (bb0145) 2008; 112
Moeller, Yacoub, Olman, Auerbach, Strupp, Harel, Uğurbil (bb0160) 2010; 63
Van Essen (bb0230) 2005; 28
Moakher (bb0155) 2002; 24
Wang, Komodakis, Paragios (bb0260) 2013; 117
Veksler (bb0250) 2005; vol. 2
Glocker, Komodakis, Tziritas, Navab, Paragios (bb0090) 2008; 12
Wainwright, Jaakkola, Willsky (bb0255) 2002; vol. 40
Van Essen (bb0235) 2012; 62
Glocker, Komodakis, Paragios, Navab (bb0095) 2009
Abdollahi, Kolster, Glasser, Robinson, Coalson, Dierker, Jenkinson, Van Essen, Orban (bb0005) 2014; 99
Neemuchwala (bb0165) 2005
Kwon, Lee, Yun, Lee (bb0150) 2011
Jenkinson, Beckmann, Behrens, Woolrich, Smith (bb0130) 2012; 62
Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (bb0245) 2013; 80
Fischl, Sereno, Tootell, Dale (bb0065) 1999; 8
Kolmogorov (bb0135) 2006; 28
Rueckert, Sonoda, Hayes, Hill, Leach, Hawkes (bb0180) 1999; 18
Ghosh, Kakunoori, Augustinack, Nieto-Castanon, Kovelman, Gaab, Christodoulou, Triantafyllou, Gabrieli, Fischl (bb0075) 2010; 53
Huynh (bb0125) 2009; 35
Sporns (bb0220) 2006; 85
Staring, van der Heide, Klein, Viergever, Pluim (bb0225) 2009; 28
Andersson, Jenkinson, Smith (bb0015) 2007
Barch, Burgess, Harms, Petersen, Schlaggar, Corbetta, Glasser, Curtiss, Dixit, Feldt (bb0025) 2013; 80
Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-Berg, Bannister, De Luca, Drobnjak, Flitney (bb0200) 2004; 23
Glasser, Van Essen (bb0080) 2011; 31
Beckmann, Smith (bb0030) 2004; 23
Glocker, Sotiras, Komodakis, Paragios (bb0100) 2011; 13
Hero, Ma, Michel, Gorman (bb0120) 2002; 19
Fischl, Rajendran, Busa, Augustinack, Hinds, Yeo, Mohlberg, Amunts, Zilles (bb0070) 2008; 18
Smith, Vidaurre, Beckmann, Glasser, Jenkinson, Miller, Nichols, Robinson, Salimi-Khorshidi, Woolrich (bb0210) 2013; 17
Fischl, Sereno, Dale (bb0060) 1999; 9
Sabuncu, Singer, Conroy, Bryan, Ramadge, Haxby (bb0190) 2010; 20
Woolrich, Jbabdi, Patenaude, Chappell, Makni, Behrens, Beckmann, Jenkinson, Smith (bb0265) 2009; 45
Robinson, Jbabdi, Andersson, Smith, Glasser, Van Essen, Burgess, Harms, Barch, Jenkinson (bb0175) 2013
Boykov, Veksler, Zabih (bb0040) 2001; 23
Ou, Sotiras, Paragios, Davatzikos (bb0170) 2011; 15
Conroy, Singer, Guntupalli, Ramadge, Haxby (bb0045) 2013; 81
Yeo, Sabuncu, Vercauteren, Ayache, Fischl, Golland (bb0270) 2010; 29
Rueckert, Aljabar, Heckemann, Hajnal, Hammers (bb0185) 2006
Heinrich, Jenkinson, Brady, Schnabel (bb0110) 2012
Fischl (bb0055) 2012; 62
Van Essen, Glasser, Dierker, Harwell, Coalson (bb0240) 2012; 22
Shekhovtsov, Kovtun, Hlaváč (bb0195) 2008; 112
Amunts, Schleicher, Zilles (bb0010) 2007; 37
Bookstein (bb0035) 1989; 11
Haxby, Guntupalli, Connolly, Halchenko, Conroy, Gobbini, Hanke, Ramadge (bb0105) 2011; 72
Sotiras, Davatzikos, Paragios (bb0215) 2013; 32
Felzenszwalb, Huttenlocher (bb0050) 2004; 59
Kwon (10.1016/j.neuroimage.2014.05.069_bb0150) 2011
Andersson (10.1016/j.neuroimage.2014.05.069_bb0015) 2007
Glasser (10.1016/j.neuroimage.2014.05.069_bb0085) 2013; 80
Rueckert (10.1016/j.neuroimage.2014.05.069_bb0180) 1999; 18
Glocker (10.1016/j.neuroimage.2014.05.069_bb0095) 2009
Huynh (10.1016/j.neuroimage.2014.05.069_bb0125) 2009; 35
Shekhovtsov (10.1016/j.neuroimage.2014.05.069_bb0195) 2008; 112
Wang (10.1016/j.neuroimage.2014.05.069_bb0260) 2013; 117
Yeo (10.1016/j.neuroimage.2014.05.069_bb0270) 2010; 29
Fischl (10.1016/j.neuroimage.2014.05.069_bb0055) 2012; 62
Fischl (10.1016/j.neuroimage.2014.05.069_bb0060) 1999; 9
Conroy (10.1016/j.neuroimage.2014.05.069_bb0045) 2013; 81
Fischl (10.1016/j.neuroimage.2014.05.069_bb0065) 1999; 8
Haxby (10.1016/j.neuroimage.2014.05.069_bb0105) 2011; 72
Wainwright (10.1016/j.neuroimage.2014.05.069_bb0255) 2002; vol. 40
Sabuncu (10.1016/j.neuroimage.2014.05.069_bb0190) 2010; 20
Abdollahi (10.1016/j.neuroimage.2014.05.069_bb0005) 2014; 99
Beckmann (10.1016/j.neuroimage.2014.05.069_bb0030) 2004; 23
Bookstein (10.1016/j.neuroimage.2014.05.069_bb0035) 1989; 11
Van Essen (10.1016/j.neuroimage.2014.05.069_bb0240) 2012; 22
Felzenszwalb (10.1016/j.neuroimage.2014.05.069_bb0050) 2004; 59
Komodakis (10.1016/j.neuroimage.2014.05.069_bb0145) 2008; 112
Robinson (10.1016/j.neuroimage.2014.05.069_bb0175) 2013
Kolmogorov (10.1016/j.neuroimage.2014.05.069_bb0135) 2006; 28
Glocker (10.1016/j.neuroimage.2014.05.069_bb0100) 2011; 13
Ghosh (10.1016/j.neuroimage.2014.05.069_bb0075) 2010; 53
Fischl (10.1016/j.neuroimage.2014.05.069_bb0070) 2008; 18
Moakher (10.1016/j.neuroimage.2014.05.069_bb0155) 2002; 24
Komodakis (10.1016/j.neuroimage.2014.05.069_bb0140) 2007; 29
Sporns (10.1016/j.neuroimage.2014.05.069_bb0220) 2006; 85
Boykov (10.1016/j.neuroimage.2014.05.069_bb0040) 2001; 23
Hero (10.1016/j.neuroimage.2014.05.069_bb0115) 1999; 45
Hero (10.1016/j.neuroimage.2014.05.069_bb0120) 2002; 19
Neemuchwala (10.1016/j.neuroimage.2014.05.069_bb0165) 2005
Auzias (10.1016/j.neuroimage.2014.05.069_bb0020) 2013; 35
Van Essen (10.1016/j.neuroimage.2014.05.069_bb0245) 2013; 80
Ou (10.1016/j.neuroimage.2014.05.069_bb0170) 2011; 15
Smith (10.1016/j.neuroimage.2014.05.069_bb0200) 2004; 23
Woolrich (10.1016/j.neuroimage.2014.05.069_bb0265) 2009; 45
Veksler (10.1016/j.neuroimage.2014.05.069_bb0250) 2005; vol. 2
Barch (10.1016/j.neuroimage.2014.05.069_bb0025) 2013; 80
Smith (10.1016/j.neuroimage.2014.05.069_bb0210) 2013; 17
Moeller (10.1016/j.neuroimage.2014.05.069_bb0160) 2010; 63
Smith (10.1016/j.neuroimage.2014.05.069_bb0205) 2013; 80
Van Essen (10.1016/j.neuroimage.2014.05.069_bb0230) 2005; 28
Rueckert (10.1016/j.neuroimage.2014.05.069_bb0185) 2006
Amunts (10.1016/j.neuroimage.2014.05.069_bb0010) 2007; 37
Glocker (10.1016/j.neuroimage.2014.05.069_bb0090) 2008; 12
Sotiras (10.1016/j.neuroimage.2014.05.069_bb0215) 2013; 32
Van Essen (10.1016/j.neuroimage.2014.05.069_bb0235) 2012; 62
Glasser (10.1016/j.neuroimage.2014.05.069_bb0080) 2011; 31
Jenkinson (10.1016/j.neuroimage.2014.05.069_bb0130) 2012; 62
Heinrich (10.1016/j.neuroimage.2014.05.069_bb0110) 2012
Staring (10.1016/j.neuroimage.2014.05.069_bb0225) 2009; 28
References_xml – volume: 17
  start-page: 666
  year: 2013
  end-page: 682
  ident: bb0210
  article-title: Functional connectomics from resting-state fMRI
  publication-title: Trends Cogn. Sci.
– volume: 45
  start-page: S173
  year: 2009
  end-page: S186
  ident: bb0265
  article-title: Bayesian analysis of neuroimaging data in FSL
  publication-title: NeuroImage
– volume: 23
  start-page: S208
  year: 2004
  end-page: S219
  ident: bb0200
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: NeuroImage
– volume: 28
  start-page: 635
  year: 2005
  end-page: 662
  ident: bb0230
  article-title: A population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex
  publication-title: NeuroImage
– volume: 29
  start-page: 1436
  year: 2007
  end-page: 1453
  ident: bb0140
  article-title: Approximate labeling via graph cuts based on linear programming
  publication-title: Pattern Anal. Mach. Intell. IEEE Trans.
– start-page: 1101
  year: 2009
  end-page: 1109
  ident: bb0095
  article-title: Approximated curvature penalty in non-rigid registration using pairwise MRFs
  publication-title: Advances in Visual Computing
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  ident: bb0245
  article-title: The WU-Minn human connectome project: an overview
  publication-title: NeuroImage
– volume: 35
  start-page: 873
  year: 2013
  end-page: 887
  ident: bb0020
  article-title: Model-driven harmonic parameterization of the cortical surface: HIP–HOP
  publication-title: IEEE Trans. Med. Imaging
– volume: 80
  start-page: 144
  year: 2013
  end-page: 168
  ident: bb0205
  article-title: Resting-state fMRI in the Human Connectome Project
  publication-title: NeuroImage
– volume: 28
  start-page: 1568
  year: 2006
  end-page: 1583
  ident: bb0135
  article-title: Convergent tree-reweighted message passing for energy minimization
  publication-title: Pattern Anal. Mach. Intell. IEEE Trans.
– volume: 28
  start-page: 1412
  year: 2009
  end-page: 1421
  ident: bb0225
  article-title: Registration of cervical MRI using multifeature mutual information
  publication-title: IEEE Trans. Med. Imaging
– volume: 62
  start-page: 782
  year: 2012
  end-page: 790
  ident: bb0130
  article-title: Fsl
  publication-title: NeuroImage
– volume: vol. 40
  start-page: 1565
  year: 2002
  end-page: 1575
  ident: bb0255
  article-title: MAP estimation via agreement on (hyper) trees: message-passing and linear programming approaches
  publication-title: Proceedings of the Annual Allerton Conference on Communication Control and Computing
– volume: 62
  start-page: 774
  year: 2012
  end-page: 781
  ident: bb0055
  article-title: FreeSurfer
  publication-title: NeuroImage
– volume: 45
  start-page: 1921
  year: 1999
  end-page: 1938
  ident: bb0115
  article-title: Asymptotic theory of greedy approximations to minimal k-point random graphs
  publication-title: IEEE Trans. Inf. Theory
– year: 2007
  ident: bb0015
  article-title: Non-linear registration aka spatial normalisation
  publication-title: Technical Rep. FMRIB
– volume: 20
  start-page: 130
  year: 2010
  end-page: 140
  ident: bb0190
  article-title: Function-based intersubject alignment of human cortical anatomy
  publication-title: Cereb. Cortex
– volume: 112
  start-page: 91
  year: 2008
  end-page: 99
  ident: bb0195
  article-title: Efficient MRF deformation model for non-rigid image matching
  publication-title: Comput. Vis. Image Underst.
– volume: 81
  start-page: 400
  year: 2013
  end-page: 411
  ident: bb0045
  article-title: Inter-subject alignment of human cortical anatomy using functional connectivity
  publication-title: NeuroImage
– year: 2005
  ident: bb0165
  article-title: Entropic Graphs for Image Registration
– volume: 8
  start-page: 272
  year: 1999
  end-page: 284
  ident: bb0065
  article-title: High-resolution intersubject averaging and a coordinate system for the cortical surface
  publication-title: Hum. Brain Mapp.
– volume: 63
  start-page: 1144
  year: 2010
  end-page: 1153
  ident: bb0160
  article-title: Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI
  publication-title: Magn. Reson. Med.
– volume: 23
  start-page: 137
  year: 2004
  end-page: 152
  ident: bb0030
  article-title: Probabilistic independent component analysis for functional magnetic resonance imaging
  publication-title: IEEE Trans. Med. Imaging
– volume: 18
  start-page: 1973
  year: 2008
  end-page: 1980
  ident: bb0070
  article-title: Cortical folding patterns and predicting cytoarchitecture
  publication-title: Cereb. Cortex
– start-page: 115
  year: 2012
  end-page: 122
  ident: bb0110
  article-title: Globally optimal deformable registration on a minimum spanning tree using dense displacement sampling
  publication-title: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2012
– volume: 15
  start-page: 622
  year: 2011
  end-page: 639
  ident: bb0170
  article-title: DRAMMS: deformable registration via attribute matching and mutual-saliency weighting
  publication-title: Med. Image Anal.
– year: 2011
  ident: bb0150
  article-title: Nonrigid image registration using higher-order MRF model with dense local descriptor
  publication-title: Computer Vision and Pattern Recognition Workshop
– volume: 117
  start-page: 1610
  year: 2013
  end-page: 1627
  ident: bb0260
  article-title: Markov Random Field modeling, inference & learning in computer vision & image understanding: a survey
  publication-title: Comput. Vis. Image Underst.
– volume: vol. 2
  start-page: 384
  year: 2005
  end-page: 390
  ident: bb0250
  article-title: Stereo correspondence by dynamic programming on a tree
  publication-title: Computer Vision and Pattern Recognition, 2005. CVPR 2005
– volume: 37
  start-page: 1061
  year: 2007
  end-page: 1065
  ident: bb0010
  article-title: Cytoarchitecture of the cerebral cortex — more than localization
  publication-title: NeuroImage
– volume: 62
  start-page: 757
  year: 2012
  end-page: 764
  ident: bb0235
  article-title: Cortical cartography and caret software
  publication-title: NeuroImage
– volume: 11
  start-page: 567
  year: 1989
  end-page: 585
  ident: bb0035
  article-title: Principal warps: thin-plate splines and the decomposition of deformations
  publication-title: Pattern Anal. Mach. Intell. IEEE Trans.
– volume: 59
  start-page: 167
  year: 2004
  end-page: 181
  ident: bb0050
  article-title: Efficient graph-based image segmentation
  publication-title: Int. J. Comput. Vis.
– volume: 35
  start-page: 155
  year: 2009
  end-page: 164
  ident: bb0125
  article-title: Metrics for 3D rotations: comparison and analysis
  publication-title: J. Math. Imaging Vis.
– volume: 29
  start-page: 650
  year: 2010
  end-page: 668
  ident: bb0270
  article-title: Spherical demons: fast diffeomorphic landmark-free surface registration
  publication-title: IEEE Trans. Med. Imaging
– volume: 9
  start-page: 195
  year: 1999
  end-page: 207
  ident: bb0060
  article-title: Cortical surface-based analysis II: inflation, flattening, and a surface-based coordinate system
  publication-title: NeuroImage
– volume: 12
  start-page: 731
  year: 2008
  end-page: 741
  ident: bb0090
  article-title: Dense image registration through MRFs and efficient linear programming
  publication-title: Med. Image Anal.
– volume: 24
  start-page: 1
  year: 2002
  end-page: 16
  ident: bb0155
  article-title: Means and averaging in the group of rotations
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 19
  start-page: 85
  year: 2002
  end-page: 95
  ident: bb0120
  article-title: Applications of entropic spanning graphs
  publication-title: IEEE Signal Proc. Mag.
– start-page: 702
  year: 2006
  end-page: 709
  ident: bb0185
  article-title: Diffeomorphic registration using B-splines
  publication-title: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2006
– volume: 85
  start-page: 55
  year: 2006
  end-page: 64
  ident: bb0220
  article-title: Small-world connectivity, motif composition, and complexity of fractal neuronal connections
  publication-title: Biosystems
– start-page: 475
  year: 2013
  end-page: 486
  ident: bb0175
  article-title: Multimodal surface matching: fast and generalisable cortical registration using discrete optimisation
  publication-title: Information Processing in Medical Imaging
– volume: 31
  start-page: 11597
  year: 2011
  end-page: 11616
  ident: bb0080
  article-title: Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI
  publication-title: J. Neurosci.
– volume: 112
  start-page: 14
  year: 2008
  end-page: 29
  ident: bb0145
  article-title: Performance vs computational efficiency for optimizing single and dynamic MRFs: setting the state of the art with primal–dual strategies
  publication-title: Comput. Vis. Image Underst.
– volume: 22
  start-page: 2241
  year: 2012
  end-page: 2262
  ident: bb0240
  article-title: Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases
  publication-title: Cereb. Cortex
– volume: 99
  start-page: 509
  year: 2014
  end-page: 524
  ident: bb0005
  article-title: Correspondences between retinotopic areas and myelin maps in human visual cortex
  publication-title: NeuroImage
– volume: 23
  start-page: 1222
  year: 2001
  end-page: 1239
  ident: bb0040
  article-title: Fast approximate energy minimization via graph cuts
  publication-title: Pattern Anal. Mach. Intell. IEEE Trans.
– volume: 53
  start-page: 85
  year: 2010
  end-page: 93
  ident: bb0075
  article-title: Evaluating the validity of volume-based and surface-based brain image registration for developmental cognitive neuroscience studies in children 4 to 11
  publication-title: NeuroImage
– volume: 80
  start-page: 169
  year: 2013
  end-page: 189
  ident: bb0025
  article-title: Function in the human connectome: task-fMRI and individual differences in behavior
  publication-title: NeuroImage
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  ident: bb0085
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: NeuroImage
– volume: 13
  start-page: 219
  year: 2011
  end-page: 244
  ident: bb0100
  article-title: Deformable medical image registration: setting the state of the art with discrete methods*
  publication-title: Annu. Rev. Biomed. Eng.
– volume: 18
  start-page: 712
  year: 1999
  end-page: 721
  ident: bb0180
  article-title: Nonrigid registration using free-form deformations: application to breast MR images
  publication-title: IEEE Trans. Med. Imaging
– volume: 32
  start-page: 1153
  year: 2013
  end-page: 1190
  ident: bb0215
  article-title: Deformable medical image registration: a survey
  publication-title: IEEE Trans. Med. Imaging
– volume: 72
  start-page: 404
  year: 2011
  end-page: 416
  ident: bb0105
  article-title: A common, high-dimensional model of the representational space in human ventral temporal cortex
  publication-title: Neuron
– volume: 45
  start-page: S173
  issue: 1
  year: 2009
  ident: 10.1016/j.neuroimage.2014.05.069_bb0265
  article-title: Bayesian analysis of neuroimaging data in FSL
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.10.055
– volume: 19
  start-page: 85
  issue: 5
  year: 2002
  ident: 10.1016/j.neuroimage.2014.05.069_bb0120
  article-title: Applications of entropic spanning graphs
  publication-title: IEEE Signal Proc. Mag.
  doi: 10.1109/MSP.2002.1028355
– volume: 62
  start-page: 774
  issue: 2
  year: 2012
  ident: 10.1016/j.neuroimage.2014.05.069_bb0055
  article-title: FreeSurfer
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.01.021
– start-page: 475
  year: 2013
  ident: 10.1016/j.neuroimage.2014.05.069_bb0175
  article-title: Multimodal surface matching: fast and generalisable cortical registration using discrete optimisation
– volume: 24
  start-page: 1
  issue: 1
  year: 2002
  ident: 10.1016/j.neuroimage.2014.05.069_bb0155
  article-title: Means and averaging in the group of rotations
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479801383877
– volume: 23
  start-page: 137
  issue: 2
  year: 2004
  ident: 10.1016/j.neuroimage.2014.05.069_bb0030
  article-title: Probabilistic independent component analysis for functional magnetic resonance imaging
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2003.822821
– volume: 81
  start-page: 400
  year: 2013
  ident: 10.1016/j.neuroimage.2014.05.069_bb0045
  article-title: Inter-subject alignment of human cortical anatomy using functional connectivity
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.009
– volume: 80
  start-page: 105
  issue: 15
  year: 2013
  ident: 10.1016/j.neuroimage.2014.05.069_bb0085
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.04.127
– volume: 29
  start-page: 1436
  issue: 8
  year: 2007
  ident: 10.1016/j.neuroimage.2014.05.069_bb0140
  article-title: Approximate labeling via graph cuts based on linear programming
  publication-title: Pattern Anal. Mach. Intell. IEEE Trans.
  doi: 10.1109/TPAMI.2007.1061
– volume: 112
  start-page: 14
  issue: 1
  year: 2008
  ident: 10.1016/j.neuroimage.2014.05.069_bb0145
  article-title: Performance vs computational efficiency for optimizing single and dynamic MRFs: setting the state of the art with primal–dual strategies
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2008.06.007
– volume: 28
  start-page: 1568
  issue: 10
  year: 2006
  ident: 10.1016/j.neuroimage.2014.05.069_bb0135
  article-title: Convergent tree-reweighted message passing for energy minimization
  publication-title: Pattern Anal. Mach. Intell. IEEE Trans.
  doi: 10.1109/TPAMI.2006.200
– volume: 112
  start-page: 91
  issue: 1
  year: 2008
  ident: 10.1016/j.neuroimage.2014.05.069_bb0195
  article-title: Efficient MRF deformation model for non-rigid image matching
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2008.06.006
– volume: 15
  start-page: 622
  issue: 4
  year: 2011
  ident: 10.1016/j.neuroimage.2014.05.069_bb0170
  article-title: DRAMMS: deformable registration via attribute matching and mutual-saliency weighting
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2010.07.002
– year: 2011
  ident: 10.1016/j.neuroimage.2014.05.069_bb0150
  article-title: Nonrigid image registration using higher-order MRF model with dense local descriptor
– volume: 35
  start-page: 155
  issue: 2
  year: 2009
  ident: 10.1016/j.neuroimage.2014.05.069_bb0125
  article-title: Metrics for 3D rotations: comparison and analysis
  publication-title: J. Math. Imaging Vis.
  doi: 10.1007/s10851-009-0161-2
– volume: 29
  start-page: 650
  issue: 3
  year: 2010
  ident: 10.1016/j.neuroimage.2014.05.069_bb0270
  article-title: Spherical demons: fast diffeomorphic landmark-free surface registration
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2030797
– volume: 80
  start-page: 144
  year: 2013
  ident: 10.1016/j.neuroimage.2014.05.069_bb0205
  article-title: Resting-state fMRI in the Human Connectome Project
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.039
– volume: 72
  start-page: 404
  issue: 2
  year: 2011
  ident: 10.1016/j.neuroimage.2014.05.069_bb0105
  article-title: A common, high-dimensional model of the representational space in human ventral temporal cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.08.026
– volume: 23
  start-page: S208
  year: 2004
  ident: 10.1016/j.neuroimage.2014.05.069_bb0200
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.07.051
– volume: 80
  start-page: 62
  year: 2013
  ident: 10.1016/j.neuroimage.2014.05.069_bb0245
  article-title: The WU-Minn human connectome project: an overview
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 32
  start-page: 1153
  issue: 7
  year: 2013
  ident: 10.1016/j.neuroimage.2014.05.069_bb0215
  article-title: Deformable medical image registration: a survey
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2013.2265603
– volume: 11
  start-page: 567
  issue: 6
  year: 1989
  ident: 10.1016/j.neuroimage.2014.05.069_bb0035
  article-title: Principal warps: thin-plate splines and the decomposition of deformations
  publication-title: Pattern Anal. Mach. Intell. IEEE Trans.
  doi: 10.1109/34.24792
– start-page: 115
  year: 2012
  ident: 10.1016/j.neuroimage.2014.05.069_bb0110
  article-title: Globally optimal deformable registration on a minimum spanning tree using dense displacement sampling
– volume: 17
  start-page: 666
  issue: 12
  year: 2013
  ident: 10.1016/j.neuroimage.2014.05.069_bb0210
  article-title: Functional connectomics from resting-state fMRI
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2013.09.016
– volume: 85
  start-page: 55
  issue: 1
  year: 2006
  ident: 10.1016/j.neuroimage.2014.05.069_bb0220
  article-title: Small-world connectivity, motif composition, and complexity of fractal neuronal connections
  publication-title: Biosystems
  doi: 10.1016/j.biosystems.2006.02.008
– year: 2005
  ident: 10.1016/j.neuroimage.2014.05.069_bb0165
– volume: 23
  start-page: 1222
  issue: 11
  year: 2001
  ident: 10.1016/j.neuroimage.2014.05.069_bb0040
  article-title: Fast approximate energy minimization via graph cuts
  publication-title: Pattern Anal. Mach. Intell. IEEE Trans.
  doi: 10.1109/34.969114
– volume: 37
  start-page: 1061
  issue: 4
  year: 2007
  ident: 10.1016/j.neuroimage.2014.05.069_bb0010
  article-title: Cytoarchitecture of the cerebral cortex — more than localization
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.02.037
– volume: vol. 2
  start-page: 384
  year: 2005
  ident: 10.1016/j.neuroimage.2014.05.069_bb0250
  article-title: Stereo correspondence by dynamic programming on a tree
– volume: 117
  start-page: 1610
  issue: 11
  year: 2013
  ident: 10.1016/j.neuroimage.2014.05.069_bb0260
  article-title: Markov Random Field modeling, inference & learning in computer vision & image understanding: a survey
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2013.07.004
– volume: 45
  start-page: 1921
  issue: 6
  year: 1999
  ident: 10.1016/j.neuroimage.2014.05.069_bb0115
  article-title: Asymptotic theory of greedy approximations to minimal k-point random graphs
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.782114
– start-page: 702
  year: 2006
  ident: 10.1016/j.neuroimage.2014.05.069_bb0185
  article-title: Diffeomorphic registration using B-splines
– volume: 9
  start-page: 195
  issue: 2
  year: 1999
  ident: 10.1016/j.neuroimage.2014.05.069_bb0060
  article-title: Cortical surface-based analysis II: inflation, flattening, and a surface-based coordinate system
  publication-title: NeuroImage
  doi: 10.1006/nimg.1998.0396
– volume: 31
  start-page: 11597
  issue: 32
  year: 2011
  ident: 10.1016/j.neuroimage.2014.05.069_bb0080
  article-title: Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2180-11.2011
– volume: 99
  start-page: 509
  year: 2014
  ident: 10.1016/j.neuroimage.2014.05.069_bb0005
  article-title: Correspondences between retinotopic areas and myelin maps in human visual cortex
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.06.042
– volume: 12
  start-page: 731
  issue: 6
  year: 2008
  ident: 10.1016/j.neuroimage.2014.05.069_bb0090
  article-title: Dense image registration through MRFs and efficient linear programming
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2008.03.006
– volume: 13
  start-page: 219
  year: 2011
  ident: 10.1016/j.neuroimage.2014.05.069_bb0100
  article-title: Deformable medical image registration: setting the state of the art with discrete methods*
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-071910-124649
– volume: 53
  start-page: 85
  issue: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2014.05.069_bb0075
  article-title: Evaluating the validity of volume-based and surface-based brain image registration for developmental cognitive neuroscience studies in children 4 to 11years of age
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.05.075
– volume: 63
  start-page: 1144
  issue: 5
  year: 2010
  ident: 10.1016/j.neuroimage.2014.05.069_bb0160
  article-title: Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22361
– volume: 22
  start-page: 2241
  issue: 10
  year: 2012
  ident: 10.1016/j.neuroimage.2014.05.069_bb0240
  article-title: Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhr291
– volume: 28
  start-page: 635
  issue: 3
  year: 2005
  ident: 10.1016/j.neuroimage.2014.05.069_bb0230
  article-title: A population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.06.058
– volume: 28
  start-page: 1412
  issue: 9
  year: 2009
  ident: 10.1016/j.neuroimage.2014.05.069_bb0225
  article-title: Registration of cervical MRI using multifeature mutual information
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2016560
– volume: 18
  start-page: 1973
  issue: 8
  year: 2008
  ident: 10.1016/j.neuroimage.2014.05.069_bb0070
  article-title: Cortical folding patterns and predicting cytoarchitecture
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhm225
– volume: 62
  start-page: 757
  issue: 2
  year: 2012
  ident: 10.1016/j.neuroimage.2014.05.069_bb0235
  article-title: Cortical cartography and caret software
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.10.077
– volume: 8
  start-page: 272
  issue: 4
  year: 1999
  ident: 10.1016/j.neuroimage.2014.05.069_bb0065
  article-title: High-resolution intersubject averaging and a coordinate system for the cortical surface
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4
– start-page: 1101
  year: 2009
  ident: 10.1016/j.neuroimage.2014.05.069_bb0095
  article-title: Approximated curvature penalty in non-rigid registration using pairwise MRFs
– volume: vol. 40
  start-page: 1565
  year: 2002
  ident: 10.1016/j.neuroimage.2014.05.069_bb0255
  article-title: MAP estimation via agreement on (hyper) trees: message-passing and linear programming approaches
– volume: 18
  start-page: 712
  issue: 8
  year: 1999
  ident: 10.1016/j.neuroimage.2014.05.069_bb0180
  article-title: Nonrigid registration using free-form deformations: application to breast MR images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.796284
– volume: 35
  start-page: 873
  issue: 5
  year: 2013
  ident: 10.1016/j.neuroimage.2014.05.069_bb0020
  article-title: Model-driven harmonic parameterization of the cortical surface: HIP–HOP
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2013.2241651
– volume: 80
  start-page: 169
  year: 2013
  ident: 10.1016/j.neuroimage.2014.05.069_bb0025
  article-title: Function in the human connectome: task-fMRI and individual differences in behavior
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.033
– year: 2007
  ident: 10.1016/j.neuroimage.2014.05.069_bb0015
  article-title: Non-linear registration aka spatial normalisation
– volume: 62
  start-page: 782
  issue: 2
  year: 2012
  ident: 10.1016/j.neuroimage.2014.05.069_bb0130
  article-title: Fsl
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 20
  start-page: 130
  issue: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2014.05.069_bb0190
  article-title: Function-based intersubject alignment of human cortical anatomy
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhp085
– volume: 59
  start-page: 167
  issue: 2
  year: 2004
  ident: 10.1016/j.neuroimage.2014.05.069_bb0050
  article-title: Efficient graph-based image segmentation
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000022288.19776.77
SSID ssj0009148
Score 2.6218264
Snippet Surface-based cortical registration methods that are driven by geometrical features, such as folding, provide sub-optimal alignment of many functional areas...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 414
SubjectTerms Adult
Algorithms
Brain
Brain Mapping - instrumentation
Brain Mapping - methods
Cerebral Cortex - anatomy & histology
Data Interpretation, Statistical
Discrete optimisation
Functional alignment
Humans
Image Processing, Computer-Assisted - instrumentation
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Multimodal
Neurosciences
Surface-based cortical registration
Young Adult
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFLYQh4nLBNvYCmwy0q6hSfwjCWiHqhpCk8KlVOrNchxbK4IUQXvlb-c9xwkU0FRpx8Z-Ufvi9_y5-d73CPmZ5sJanVaRMDaDA0qio4oLgyzzWJqYZZlvNlFeyosp_zMTsy0y7mphkFYZcn-b0322DleGwZvDu_l8OAFkANsN6pN5HTmU3eY8w1V-8vhM84DhthxOsAhnBzZPy_HympHzW4hcJHlxr-GJ1Of3t6i3EPQ1k_LF1nS-Sz4GTElH7dfeI1u2-UQ-lOGt-Wfyq5yUp3REAUFThwKY1Y2lrmNlUYCt1Nfh3i5quM1kde-0sbSEJI1_T30h0_PfV-OLKLRNiAycDpaRdlzLtC64S9PcOMAYWeoMK0Qa11ZqZmqskpIcsIB1ztU6TiqbY8PewjlR52yfbDeLxn4jlDFruMllVUkN50atEwhwXtRCFjoDZDkgWecpZYKmOLa2uFEdeexaPftYoY9VLBT4eECS3vKu1dXYwKboHobq6kYh0ylI_hvYnvW2a-trQ-uj7tmrEOMPCjsu8QTyHQwf98MQnfjKRTd2sfJzUFExYfJfcySCMJlnA_K1XU69S-BwzArGY3D02kLrJ6A6-PpIM__rVcI5QD3Irwf_9cMPyQ5-ws06EUdke3m_st8BhS2rHz7MngA1hjE_
  priority: 102
  providerName: Elsevier
Title MSM: A new flexible framework for Multimodal Surface Matching
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811914004546
https://dx.doi.org/10.1016/j.neuroimage.2014.05.069
https://www.ncbi.nlm.nih.gov/pubmed/24939340
https://www.proquest.com/docview/1553418709
https://www.proquest.com/docview/1554475136
https://www.proquest.com/docview/1560110687
https://pubmed.ncbi.nlm.nih.gov/PMC4190319
Volume 100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbYJiFeEONnYauMxGsgjn8lTAgVtKmAUiHGpL5ZjmOLoS0dW_vK3767xEkZoKlPfYivai9358_25-8IeZXl0nubVYl0XsMChdmkEtIhyzxVLuVat80mypmanojPczmPG25XkVbZ18S2UNcLh3vkb7C_jWAQXcX7i18Jdo3C09XYQmOL7KB0GUa1nuu16C4T3VU4yZMcBkQmT8fvavUiT88ha5HgJVr9TqQ9_396-hd-_s2i_GNaOnpA7kc8SSddAOySO755SO6W8cT8EXlXHpdv6YQCeqYBxS-rM09Dz8iiAFlpewf3fFHD1xyvLoN1npZQoHFr6jE5OTr8_nGaxJYJiYOVwTKxQViV1YUIWZa7APhCZ8HxQmZp7ZXlrsYbUkoADvAhhNqmrPI5NustQpB1zp-Q7WbR-GeEcu6dcLmqKmVhzWgtg-QWRS1VYTWgyhHRvaeMi3ri2NbizPTEsZ9m7WODPjapNODjEWGD5UWnqbGBTdG_DNPfGYUqZ6Dwb2B7MNhGXNHhhQ2t9_p3b2J-X5l1NI7Iy-ExZCYet9jGL1btGFRTZFzdNkYhAFO5HpGnXTgNLoGFMS-4SMHRNwJtGIDK4DefNKc_WoVwATAPauvz23_6C3IP_yfOxEzuke3l5crvA8RaVmOy9fo3G7fZNCY7k09fpjP4_HA4-_rtGqbQKgU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLZKkaAXxJuFAoMEx4hM5pEEVKEKqLa06aWttLdhMpkRRW22j10h_hS_ETuvpYCqvfSccZR4HPtz5rMN8DrJlPc2KSPlfIoJCrdRKZUjlnmsXSzStBk2Uezp8aH8MlGTFfjV18IQrbL3iY2jrqaO_pG_pfk2kqN15R9OzyKaGkWnq_0IjdYsdvzPH5iyXWxsf8L9fZMkW58PPo6jbqpA5BA8zyIbpNVJlcuQJJkLGILTJDiRqySuvLbCVVREpCWGSh9CqGzMS5_RPNs8BFVlAu97A25i4I0p2Usn6aLJL5dt6Z0SUcZ53jGHWj5Z05_y6AS9BBHKZNMvlGjW_w-H_8Ldv1mbf4TBrbtwp8OvbLM1uHuw4uv7cKvoTugfwEaxX7xjmwzROgvUbLM89iz0DDCGEJk1Nb8n0wpvsz8_D9Z5VmBAoF9hD-HwWpT5CFbrae2fABPCO-kyXZbaYo5qLUdnIvNK6dymiGJHkPaaMq7rX05jNI5NT1T7bhY6NqRjEyuDOh4BHyRP2x4eS8jk_WaYvkYVvarBQLOE7PtBtsMxLT5ZUnq933vT-ZMLs7D-EbwaLqMnoOMdW_vpvFlD3Ru50Fet0QT4dJaO4HFrToNKMBEXuZAxKvqSoQ0LqBP55Sv10bemI7lEWIm-_OnVj_4Sbo8Pil2zu7238wzW6J0JBXC1Dquz87l_jvBuVr5ovikGX6_7I_4N8KhjDA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ_gkRBfjN8eoq6JPjZ0u9ttqyEGhQuIvRCRhLd1u92NEOgh3MX4r_nXOdOvEzXkXnjuTnM3Ozvzm-5vZgBeRWnsnImKILYuwQSFm6CQsSWWeahsKJKkHjaRj9XOofx4FB8twa-uFoZolZ1PrB11ObH0jXyd5ttIjtaVrfuWFrG_NXp3_j2gCVJ009qN02hMZM_9_IHp2-XG7hbu9esoGm1_-bATtBMGAotAehoYL42Kykz6KEqtx3CcRN6KLI7C0ikjbEkFRUpi2HTe-9KEvHApzbbNvI_LVOB7b8FyQlnRAJbfb4_3P89b_nLZFOLFIkg5z1oeUcMuq7tVHp-hzyB6may7hxLp-v_B8V_w-zeH84-gOLoLd1o0yzYb87sHS666Dyt5e1__ADbyg_wN22SI3Zmn1pvFqWO-44MxBMysrgA-m5T4moPZhTfWsRzDA30YewiHN6LORzCoJpV7AkwIZ6VNVVEogxmrMRxdi8zKWGUmQUw7hKTTlLZtN3MaqnGqO9raiZ7rWJOOdRhr1PEQeC953nT0WEAm6zZDdxWr6GM1hp0FZN_2si2qadDKgtJr3d7r1rtc6vlZGMLL_jH6BbrsMZWbzOo11MuRC3XdGkXwT6XJEB435tSrBNNykQkZoqKvGFq_gPqSX31SHX-r-5NLBJno2Vev_-kvYAUPsP60O957CrfpLxMk4PEaDKYXM_cMsd60eN4eKgZfb_oc_wZ8xGin
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MSM%3A+A+new+flexible+framework+for+Multimodal+Surface+Matching&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Robinson%2C+Emma+C&rft.au=Jbabdi%2C+Saad&rft.au=Glasser%2C+Matthew+F&rft.au=Andersson%2C+Jesper&rft.date=2014-10-15&rft.issn=1053-8119&rft.volume=100&rft.spage=414&rft.epage=426&rft_id=info:doi/10.1016%2Fj.neuroimage.2014.05.069&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon