MSM: A new flexible framework for Multimodal Surface Matching
Surface-based cortical registration methods that are driven by geometrical features, such as folding, provide sub-optimal alignment of many functional areas due to variable correlation between cortical folding patterns and function. This has led to the proposal of new registration methods using feat...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 100; pp. 414 - 426 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.10.2014
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Surface-based cortical registration methods that are driven by geometrical features, such as folding, provide sub-optimal alignment of many functional areas due to variable correlation between cortical folding patterns and function. This has led to the proposal of new registration methods using features derived from functional and diffusion imaging. However, as yet there is no consensus over the best set of features for optimal alignment of brain function.
In this paper we demonstrate the utility of a new Multimodal Surface Matching (MSM) algorithm capable of driving alignment using a wide variety of descriptors of brain architecture, function and connectivity. The versatility of the framework originates from adapting the discrete Markov Random Field (MRF) registration method to surface alignment. This has the benefit of being very flexible in the choice of a similarity measure and relatively insensitive to local minima. The method offers significant flexibility in the choice of feature set, and we demonstrate the advantages of this by performing registrations using univariate descriptors of surface curvature and myelination, multivariate feature sets derived from resting fMRI, and multimodal descriptors of surface curvature and myelination. We compare the results with two state of the art surface registration methods that use geometric features: FreeSurfer and Spherical Demons. In the future, the MSM technique will allow explorations into the best combinations of features and alignment strategies for inter-subject alignment of cortical functional areas for a wide range of neuroimaging data sets. |
---|---|
AbstractList | Surface-based cortical registration methods that are driven by geometrical features, such as folding, provide sub-optimal alignment of many functional areas due to variable correlation between cortical folding patterns and function. This has led to the proposal of new registration methods using features derived from functional and diffusion imaging. However, as yet there is no consensus over the best set of features for optimal alignment of brain function. In this paper we demonstrate the utility of a new Multimodal Surface Matching (MSM) algorithm capable of driving alignment using a wide variety of descriptors of brain architecture, function and connectivity. The versatility of the framework originates from adapting the discrete Markov Random Field (MRF) registration method to surface alignment. This has the benefit of being very flexible in the choice of a similarity measure and relatively insensitive to local minima. The method offers significant flexibility in the choice of feature set, and we demonstrate the advantages of this by performing registrations using univariate descriptors of surface curvature and myelination, multivariate feature sets derived from resting fMRI, and multimodal descriptors of surface curvature and myelination. We compare the results with two state of the art surface registration methods that use geometric features: FreeSurfer and Spherical Demons. In the future, the MSM technique will allow explorations into the best combinations of features and alignment strategies for inter-subject alignment of cortical functional areas for a wide range of neuroimaging data sets. Surface-based cortical registration methods that are driven by geometrical features, such as folding, provide sub-optimal alignment of many functional areas due to variable correlation between cortical folding patterns and function. This has led to the proposal of new registration methods using features derived from functional and diffusion imaging. However, as yet there is no consensus over the best set of features for optimal alignment of brain function. In this paper we demonstrate the utility of a new Multimodal Surface Matching (MSM) algorithm capable of driving alignment using a wide variety of descriptors of brain architecture, function and connectivity. The versatility of the framework originates from adapting the discrete Markov Random Field (MRF) registration method to surface alignment. This has the benefit of being unconstrained by choice of a similarity measure and relatively insensitive to local minima. The method offers significant flexibility in the choice of feature set, and we demonstrate the advantages of this by performing registrations using univariate descriptors of surface curvature and myelination, multivariate feature sets derived from resting fMRI, and multimodal descriptors of surface curvature and myelination. We compare the results with two state of the art surface registration methods that use geometric features: FreeSurfer and Spherical Demons. In the future, the MSM technique will allow explorations into the best combinations of features and alignment strategies for inter-subject alignment of cortical functional areas for a wide range of neuroimaging datasets. Surface-based cortical registration methods that are driven by geometrical features, such as folding, provide sub-optimal alignment of many functional areas due to variable correlation between cortical folding patterns and function. This has led to the proposal of new registration methods using features derived from functional and diffusion imaging. However, as yet there is no consensus over the best set of features for optimal alignment of brain function. In this paper we demonstrate the utility of a new Multimodal Surface Matching (MSM) algorithm capable of driving alignment using a wide variety of descriptors of brain architecture, function and connectivity. The versatility of the framework originates from adapting the discrete Markov Random Field (MRF) registration method to surface alignment. This has the benefit of being very flexible in the choice of a similarity measure and relatively insensitive to local minima. The method offers significant flexibility in the choice of feature set, and we demonstrate the advantages of this by performing registrations using univariate descriptors of surface curvature and myelination, multivariate feature sets derived from resting fMRI, and multimodal descriptors of surface curvature and myelination. We compare the results with two state of the art surface registration methods that use geometric features: FreeSurfer and Spherical Demons. In the future, the MSM technique will allow explorations into the best combinations of features and alignment strategies for inter-subject alignment of cortical functional areas for a wide range of neuroimaging data sets. Surface-based cortical registration methods that are driven by geometrical features, such as folding, provide sub-optimal alignment of many functional areas due to variable correlation between cortical folding patterns and function. This has led to the proposal of new registration methods using features derived from functional and diffusion imaging. However, as yet there is no consensus over the best set of features for optimal alignment of brain function. In this paper we demonstrate the utility of a new Multimodal Surface Matching (MSM) algorithm capable of driving alignment using a wide variety of descriptors of brain architecture, function and connectivity. The versatility of the framework originates from adapting the discrete Markov Random Field (MRF) registration method to surface alignment. This has the benefit of being very flexible in the choice of a similarity measure and relatively insensitive to local minima. The method offers significant flexibility in the choice of feature set, and we demonstrate the advantages of this by performing registrations using univariate descriptors of surface curvature and myelination, multivariate feature sets derived from resting fMRI, and multimodal descriptors of surface curvature and myelination. We compare the results with two state of the art surface registration methods that use geometric features: FreeSurfer and Spherical Demons. In the future, the MSM technique will allow explorations into the best combinations of features and alignment strategies for inter-subject alignment of cortical functional areas for a wide range of neuroimaging data sets.Surface-based cortical registration methods that are driven by geometrical features, such as folding, provide sub-optimal alignment of many functional areas due to variable correlation between cortical folding patterns and function. This has led to the proposal of new registration methods using features derived from functional and diffusion imaging. However, as yet there is no consensus over the best set of features for optimal alignment of brain function. In this paper we demonstrate the utility of a new Multimodal Surface Matching (MSM) algorithm capable of driving alignment using a wide variety of descriptors of brain architecture, function and connectivity. The versatility of the framework originates from adapting the discrete Markov Random Field (MRF) registration method to surface alignment. This has the benefit of being very flexible in the choice of a similarity measure and relatively insensitive to local minima. The method offers significant flexibility in the choice of feature set, and we demonstrate the advantages of this by performing registrations using univariate descriptors of surface curvature and myelination, multivariate feature sets derived from resting fMRI, and multimodal descriptors of surface curvature and myelination. We compare the results with two state of the art surface registration methods that use geometric features: FreeSurfer and Spherical Demons. In the future, the MSM technique will allow explorations into the best combinations of features and alignment strategies for inter-subject alignment of cortical functional areas for a wide range of neuroimaging data sets. |
Author | Andersson, Jesper Smith, Stephen M. Jenkinson, Mark Robinson, Emma C. Burgess, Gregory C. Glasser, Matthew F. Jbabdi, Saad Harms, Michael P. Van Essen, David C. |
AuthorAffiliation | b Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO, USA c Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA d Department of Psychology, Washington University, St Louis, MO, USA a FMRIB centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, OX3 9DU, UK |
AuthorAffiliation_xml | – name: a FMRIB centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, OX3 9DU, UK – name: d Department of Psychology, Washington University, St Louis, MO, USA – name: c Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA – name: b Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO, USA |
Author_xml | – sequence: 1 givenname: Emma C. surname: Robinson fullname: Robinson, Emma C. organization: FMRIB centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, OX3 9DU, UK – sequence: 2 givenname: Saad surname: Jbabdi fullname: Jbabdi, Saad organization: FMRIB centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, OX3 9DU, UK – sequence: 3 givenname: Matthew F. surname: Glasser fullname: Glasser, Matthew F. organization: Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO, USA – sequence: 4 givenname: Jesper surname: Andersson fullname: Andersson, Jesper organization: FMRIB centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, OX3 9DU, UK – sequence: 5 givenname: Gregory C. surname: Burgess fullname: Burgess, Gregory C. organization: Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO, USA – sequence: 6 givenname: Michael P. surname: Harms fullname: Harms, Michael P. organization: Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA – sequence: 7 givenname: Stephen M. surname: Smith fullname: Smith, Stephen M. organization: FMRIB centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, OX3 9DU, UK – sequence: 8 givenname: David C. surname: Van Essen fullname: Van Essen, David C. organization: Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO, USA – sequence: 9 givenname: Mark surname: Jenkinson fullname: Jenkinson, Mark email: mark@fmrib.ox.ac.uk organization: FMRIB centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, OX3 9DU, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24939340$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtv1DAURi1URB_wF1AkNmwSfONHYiQQpeIldcSisLY8zvXUU49dnKSl_55EU6bQ1axsyeceX33fMTmIKSIhBdAKKMg36yrimJPfmBVWNQVeUVFRqZ6QI6BKlEo09cF8F6xsAdQhOe77NaVUAW-fkcOaK6YYp0fk3eJi8bY4LSLeFi7gb78MWLhsNnib8lXhUi4WYxj8JnUmFBdjdsZisTCDvfRx9Zw8dSb0-OL-PCE_P3_6cfa1PP_-5dvZ6XlphWqG0jhuZN0p7uq6tY7KaT1nmRI17VAaZjvOGEjegkLnXGcoLLHlAqRyTnQtOyHvt97rcbnBzmIcsgn6Ok8J5DudjNf_v0R_qVfpRnNQlIGaBK_vBTn9GrEf9Mb3FkMwEdPYaxCSAlDZNnuggvNGAJMT-uoRuk5jjlMSM8U4tA2d_3757_K7rf-WMAHtFrA59X1Gt0OA6rlvvdYPfeu5b02Fnvp-CGY3av1gBp_mGHzYR_BxK8CpvhuPWffWY7TY-Yx20F3y-0g-PJLY4KO3Jlzh3X6KP7jS4rY |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2023_120110 crossref_primary_10_1016_j_neuroimage_2022_119087 crossref_primary_10_1002_hbm_25791 crossref_primary_10_7554_eLife_75401 crossref_primary_10_3389_fnins_2024_1491770 crossref_primary_10_1016_j_jneumeth_2020_108983 crossref_primary_10_1093_cercor_bhy305 crossref_primary_10_1016_j_neuroimage_2022_119765 crossref_primary_10_1038_s42003_024_06401_4 crossref_primary_10_1016_j_neuroimage_2018_01_054 crossref_primary_10_1073_pnas_2109380118 crossref_primary_10_7554_eLife_62324 crossref_primary_10_1016_j_neuroimage_2017_09_005 crossref_primary_10_1016_j_nicl_2022_103237 crossref_primary_10_1093_cercor_bhw241 crossref_primary_10_1073_pnas_1715451115 crossref_primary_10_1016_j_neuroimage_2020_117226 crossref_primary_10_1016_j_mri_2019_05_016 crossref_primary_10_1016_j_neuroimage_2017_02_018 crossref_primary_10_1016_j_neuroimage_2020_117346 crossref_primary_10_1002_nbm_5305 crossref_primary_10_1007_s12311_021_01284_1 crossref_primary_10_1016_j_dcn_2022_101103 crossref_primary_10_1016_j_neuroimage_2021_118036 crossref_primary_10_7554_eLife_33562 crossref_primary_10_1093_brain_awz412 crossref_primary_10_1523_JNEUROSCI_2223_23_2024 crossref_primary_10_1073_pnas_1801582115 crossref_primary_10_2139_ssrn_3188429 crossref_primary_10_1002_hbm_26517 crossref_primary_10_1016_j_biotno_2024_08_001 crossref_primary_10_1016_j_media_2018_03_004 crossref_primary_10_1016_j_neuroimage_2016_08_032 crossref_primary_10_1016_j_neuroimage_2022_119197 crossref_primary_10_1016_j_neuron_2019_01_017 crossref_primary_10_1038_s42003_022_04148_4 crossref_primary_10_1038_s42003_023_04796_0 crossref_primary_10_1088_1741_2552_ad0add crossref_primary_10_3390_nu16010041 crossref_primary_10_1016_j_neuroimage_2023_120360 crossref_primary_10_1002_hbm_24213 crossref_primary_10_1038_s41598_018_35665_0 crossref_primary_10_1038_s41598_022_09141_9 crossref_primary_10_3389_fnins_2019_00434 crossref_primary_10_1016_j_media_2024_103297 crossref_primary_10_1016_j_dcn_2024_101473 crossref_primary_10_1016_j_neuroimage_2020_116800 crossref_primary_10_1016_j_media_2024_103292 crossref_primary_10_1016_j_neuroimage_2015_02_005 crossref_primary_10_1016_j_neuroimage_2021_117751 crossref_primary_10_1016_j_neuroimage_2018_12_032 crossref_primary_10_7554_eLife_64058 crossref_primary_10_1002_hbm_25776 crossref_primary_10_1016_j_neuroimage_2020_117693 crossref_primary_10_1038_s41593_020_00719_y crossref_primary_10_1093_cercor_bhac503 crossref_primary_10_1002_hbm_26628 crossref_primary_10_1016_j_neuroimage_2023_120010 crossref_primary_10_1002_hbm_26660 crossref_primary_10_1002_hbm_25455 crossref_primary_10_1002_hbm_26423 crossref_primary_10_1162_imag_a_00504 crossref_primary_10_1016_j_neuroimage_2022_119423 crossref_primary_10_1177_1073858419860115 crossref_primary_10_1016_j_neuroimage_2023_119944 crossref_primary_10_1016_j_neuron_2018_07_002 crossref_primary_10_1016_j_nicl_2022_103258 crossref_primary_10_1016_j_neuroimage_2020_117205 crossref_primary_10_1016_j_ynirp_2022_100103 crossref_primary_10_1162_netn_a_00382 crossref_primary_10_1371_journal_pcbi_1009216 crossref_primary_10_1016_j_neuroimage_2020_117685 crossref_primary_10_1162_imag_a_00181 crossref_primary_10_1002_hbm_25447 crossref_primary_10_1016_j_neuroimage_2016_04_002 crossref_primary_10_1002_hbm_24237 crossref_primary_10_1016_j_cortex_2019_02_010 crossref_primary_10_1016_j_compbiomed_2023_107185 crossref_primary_10_1073_pnas_1721653115 crossref_primary_10_1016_j_neuroimage_2021_118252 crossref_primary_10_1002_hbm_22854 crossref_primary_10_1038_s41562_023_01542_8 crossref_primary_10_1016_j_neuron_2017_06_038 crossref_primary_10_1038_s41467_024_54243_9 crossref_primary_10_3389_fnins_2021_797500 crossref_primary_10_1038_s42003_019_0611_3 crossref_primary_10_1002_jmri_28972 crossref_primary_10_1016_j_neuroimage_2020_117429 crossref_primary_10_1016_j_neuroimage_2022_119418 crossref_primary_10_1016_j_neuroimage_2021_117726 crossref_primary_10_1016_j_neuroimage_2018_01_082 crossref_primary_10_1038_nature18933 crossref_primary_10_1007_s00429_020_02180_w crossref_primary_10_1007_s00429_022_02480_3 crossref_primary_10_1016_j_neuroimage_2021_118145 crossref_primary_10_1016_j_neuroimage_2024_120956 crossref_primary_10_1109_TMI_2021_3069645 crossref_primary_10_1016_j_media_2024_103394 crossref_primary_10_1038_s41593_018_0195_0 crossref_primary_10_1016_j_bbih_2020_100153 crossref_primary_10_1016_j_neuroimage_2015_01_013 crossref_primary_10_1097_HRP_0000000000000166 crossref_primary_10_1016_j_celrep_2021_109732 crossref_primary_10_1111_jne_12891 crossref_primary_10_1016_j_neuroimage_2019_116319 crossref_primary_10_1016_j_neuroimage_2016_05_035 crossref_primary_10_1038_s41593_024_01679_3 crossref_primary_10_1038_s43587_021_00044_4 crossref_primary_10_1126_sciadv_abm6127 crossref_primary_10_1371_journal_pcbi_1006120 crossref_primary_10_1093_cercor_bhy218 crossref_primary_10_7554_eLife_44890 crossref_primary_10_1016_j_dcn_2022_101145 crossref_primary_10_2139_ssrn_4058693 crossref_primary_10_1162_imag_a_00046 crossref_primary_10_1017_S0033291722001313 crossref_primary_10_1523_JNEUROSCI_0856_23_2024 crossref_primary_10_1016_j_neuroimage_2022_119274 crossref_primary_10_1016_j_neuropsychologia_2017_11_015 crossref_primary_10_1016_j_nicl_2019_101890 crossref_primary_10_1016_j_neuroimage_2024_120660 crossref_primary_10_1089_brain_2017_0561 crossref_primary_10_1002_hbm_25189 crossref_primary_10_1016_j_neuroimage_2018_09_060 crossref_primary_10_1016_j_neuroimage_2018_10_050 crossref_primary_10_1038_s41467_023_38626_y crossref_primary_10_1523_JNEUROSCI_1939_24_2025 crossref_primary_10_1038_s41467_024_54034_2 crossref_primary_10_1016_j_neuroimage_2021_117831 crossref_primary_10_1016_j_neuroimage_2021_118488 crossref_primary_10_1002_jmri_27420 crossref_primary_10_1002_mrm_26917 crossref_primary_10_1093_braincomms_fcac011 crossref_primary_10_1017_pen_2018_8 crossref_primary_10_1016_j_neuroimage_2024_120657 crossref_primary_10_1093_cercor_bhad358 crossref_primary_10_1126_sciadv_abq3851 crossref_primary_10_1002_hbm_26067 crossref_primary_10_1093_cercor_bhab064 crossref_primary_10_1093_cercor_bhy123 crossref_primary_10_1093_cercor_bhx030 crossref_primary_10_1016_j_neuroimage_2023_120213 crossref_primary_10_1038_s41598_022_20322_4 crossref_primary_10_7554_eLife_53232 crossref_primary_10_1016_j_neuroimage_2022_119744 crossref_primary_10_1016_j_neuroimage_2017_05_012 crossref_primary_10_1016_j_neuron_2024_07_023 crossref_primary_10_1038_s42003_024_06630_7 crossref_primary_10_1016_j_neuroimage_2018_03_042 crossref_primary_10_7554_eLife_90182 crossref_primary_10_1016_j_cobeha_2017_11_001 crossref_primary_10_1038_s41467_017_02815_3 crossref_primary_10_1093_schbul_sbz103 crossref_primary_10_1016_j_nicl_2021_102691 crossref_primary_10_1162_netn_a_00182 crossref_primary_10_1002_hbm_24315 crossref_primary_10_1016_j_neuron_2015_06_037 crossref_primary_10_1162_imag_a_00026 crossref_primary_10_1038_s42003_022_04281_0 crossref_primary_10_1093_cercor_bhad245 crossref_primary_10_1038_s41592_022_01625_w crossref_primary_10_1088_1741_2552_ac0f4d crossref_primary_10_1093_cercor_bhad011 crossref_primary_10_1093_cercor_bhz323 crossref_primary_10_1016_j_neuroimage_2022_119299 crossref_primary_10_1167_18_13_23 crossref_primary_10_1523_JNEUROSCI_0735_23_2023 crossref_primary_10_1002_brb3_2334 crossref_primary_10_1016_j_neuroimage_2018_10_070 crossref_primary_10_1093_cercor_bhx026 crossref_primary_10_1038_s42003_022_03265_4 crossref_primary_10_1093_cercor_bhw297 crossref_primary_10_1016_j_neuroimage_2018_04_077 crossref_primary_10_1016_j_neuroimage_2018_04_076 crossref_primary_10_1016_j_neuroimage_2021_118105 crossref_primary_10_1016_j_media_2024_103193 crossref_primary_10_1016_j_nicl_2020_102286 crossref_primary_10_1162_netn_a_00171 crossref_primary_10_1016_j_neuroimage_2016_04_037 crossref_primary_10_1002_hbm_23698 crossref_primary_10_1038_s41467_022_29770_y crossref_primary_10_1016_j_neuroimage_2015_08_042 crossref_primary_10_1093_cercor_bhaa150 crossref_primary_10_1093_cercor_bhz113 crossref_primary_10_1093_cercor_bhab362 crossref_primary_10_7554_eLife_56601 crossref_primary_10_1371_journal_pbio_3000602 crossref_primary_10_1109_TNNLS_2022_3213581 crossref_primary_10_1016_j_neuroimage_2017_04_028 crossref_primary_10_1162_netn_a_00325 crossref_primary_10_3389_fpsyt_2023_1114703 crossref_primary_10_1093_cercor_bhx179 crossref_primary_10_1016_j_neuroimage_2023_120192 crossref_primary_10_1016_j_neuroimage_2020_117622 crossref_primary_10_1162_imag_a_00360 crossref_primary_10_1007_s12021_021_09528_5 crossref_primary_10_1038_s41467_024_50248_6 crossref_primary_10_1073_pnas_1700765114 crossref_primary_10_3389_fneur_2019_00874 crossref_primary_10_1016_j_celrep_2022_111617 crossref_primary_10_1162_imag_a_00488 crossref_primary_10_1371_journal_pone_0266349 crossref_primary_10_1523_ENEURO_0304_24_2025 crossref_primary_10_7554_eLife_32992 crossref_primary_10_1073_pnas_2321346121 crossref_primary_10_1016_j_neuroimage_2015_08_047 crossref_primary_10_1038_s41467_020_14610_8 crossref_primary_10_1002_hbm_24977 crossref_primary_10_1371_journal_pbio_2007032 crossref_primary_10_1016_j_neuroimage_2022_119360 crossref_primary_10_7554_eLife_70119 crossref_primary_10_1093_cercor_bhac342 crossref_primary_10_1249_ESM_0000000000000006 crossref_primary_10_1093_cercor_bhab374 crossref_primary_10_1038_nn_4164 crossref_primary_10_1002_nbm_3752 crossref_primary_10_1016_j_neuroimage_2022_119359 crossref_primary_10_1016_j_tics_2016_03_014 crossref_primary_10_1016_j_biopsych_2018_02_1174 crossref_primary_10_7554_eLife_67600 crossref_primary_10_1371_journal_pbio_3000284 crossref_primary_10_1016_j_neuroimage_2021_118204 crossref_primary_10_1038_s41598_019_55738_y crossref_primary_10_1016_j_neuroimage_2017_07_019 crossref_primary_10_1007_s00429_021_02427_0 crossref_primary_10_3389_fncom_2019_00054 crossref_primary_10_1007_s12311_024_01691_0 crossref_primary_10_1016_j_neuroimage_2014_06_042 crossref_primary_10_1016_j_neuroimage_2018_10_006 crossref_primary_10_1093_cercor_bhac344 crossref_primary_10_1162_imag_a_00133 crossref_primary_10_1093_cercor_bhad314 crossref_primary_10_1162_imag_a_00253 crossref_primary_10_1016_j_neuroimage_2017_12_018 crossref_primary_10_1016_j_neuroimage_2022_119141 crossref_primary_10_1016_j_celrep_2022_111197 crossref_primary_10_1016_j_neuroimage_2015_05_092 crossref_primary_10_1093_cercor_bhac111 crossref_primary_10_1016_j_neuroimage_2022_118971 crossref_primary_10_1016_j_neuroimage_2017_01_079 crossref_primary_10_1016_j_neuroimage_2018_06_018 crossref_primary_10_1093_cercor_bhab260 crossref_primary_10_1007_s11682_018_9980_3 crossref_primary_10_1162_netn_a_00425 crossref_primary_10_1016_j_neuroimage_2017_07_027 crossref_primary_10_1016_j_compbiomed_2022_106414 crossref_primary_10_1038_s41467_024_54564_9 crossref_primary_10_1093_schbul_sbad072 crossref_primary_10_1093_texcom_tgaa076 crossref_primary_10_7554_eLife_36652 crossref_primary_10_1016_j_neuroimage_2021_118533 crossref_primary_10_2139_ssrn_4202046 crossref_primary_10_1093_cercor_bhab149 crossref_primary_10_1007_s00429_020_02096_5 crossref_primary_10_1016_j_dcn_2023_101202 crossref_primary_10_1016_j_neuroimage_2021_118770 crossref_primary_10_1038_s42003_024_05869_4 crossref_primary_10_1093_cercor_bhab387 crossref_primary_10_1002_hbm_24636 crossref_primary_10_1038_s41593_020_00726_z crossref_primary_10_1007_s11427_019_9556_4 crossref_primary_10_1016_j_neuroimage_2014_06_010 crossref_primary_10_1016_j_neuroimage_2020_117161 crossref_primary_10_1093_cercor_bhaa063 crossref_primary_10_1371_journal_pbio_3000976 crossref_primary_10_1371_journal_pbio_3000979 crossref_primary_10_7554_eLife_77215 crossref_primary_10_1016_j_neuroimage_2015_05_087 crossref_primary_10_1002_jnr_70021 crossref_primary_10_1016_j_neuroimage_2022_118965 crossref_primary_10_1016_j_neuroimage_2020_116614 crossref_primary_10_1111_ejn_15386 crossref_primary_10_1016_j_brs_2021_07_009 crossref_primary_10_1016_j_neuroimage_2017_04_014 crossref_primary_10_1016_j_neuroimage_2020_117038 crossref_primary_10_1016_j_neuroimage_2021_118543 crossref_primary_10_2139_ssrn_4185559 crossref_primary_10_1016_j_neuroimage_2020_117273 crossref_primary_10_1162_imag_a_00478 crossref_primary_10_1093_cercor_bhaa188 crossref_primary_10_1093_cercor_bhaa069 crossref_primary_10_1002_hbm_24021 crossref_primary_10_1002_hbm_26320 crossref_primary_10_1093_cercor_bhae278 crossref_primary_10_1016_j_neuroimage_2018_01_016 crossref_primary_10_3389_fninf_2022_803934 crossref_primary_10_1007_s00429_018_1735_9 crossref_primary_10_1038_s42003_023_04843_w crossref_primary_10_7554_eLife_20178 crossref_primary_10_1017_S0954579421000377 crossref_primary_10_1371_journal_pbio_3002266 crossref_primary_10_1016_j_dental_2019_07_023 crossref_primary_10_1016_j_media_2016_06_008 crossref_primary_10_1016_j_neuroimage_2020_116847 crossref_primary_10_1016_j_neuroimage_2021_118758 crossref_primary_10_3389_fnins_2020_596109 crossref_primary_10_1038_s41398_021_01321_x crossref_primary_10_1126_science_aad8127 crossref_primary_10_1111_ejn_15393 crossref_primary_10_1007_s00429_023_02751_7 crossref_primary_10_1016_j_neuron_2018_10_010 crossref_primary_10_1016_j_neuroimage_2020_117141 crossref_primary_10_1017_S0954579418000342 crossref_primary_10_1038_s42003_024_06780_8 crossref_primary_10_1186_s13195_023_01349_9 crossref_primary_10_1093_cercor_bhac537 crossref_primary_10_1162_imag_a_00444 crossref_primary_10_1016_j_neuroimage_2021_118196 crossref_primary_10_1038_s42003_022_03196_0 crossref_primary_10_1016_j_neuroimage_2023_120044 crossref_primary_10_3389_fnana_2016_00112 crossref_primary_10_1002_hbm_26435 crossref_primary_10_1162_netn_a_00239 crossref_primary_10_1038_nn_4361 crossref_primary_10_3390_brainsci13071086 crossref_primary_10_1371_journal_pone_0218089 crossref_primary_10_1093_bjps_axz027 crossref_primary_10_1038_s41593_023_01299_3 crossref_primary_10_1016_j_neuroimage_2018_06_082 crossref_primary_10_1016_j_neuroimage_2020_116962 crossref_primary_10_1016_j_neuroimage_2021_118648 crossref_primary_10_7554_eLife_40224 crossref_primary_10_1016_j_neuroimage_2019_04_078 crossref_primary_10_1089_brain_2020_0970 crossref_primary_10_1073_pnas_2117234119 crossref_primary_10_1016_j_neuroimage_2020_116960 crossref_primary_10_1016_j_brain_2022_100045 crossref_primary_10_1038_s41598_023_32521_8 crossref_primary_10_3389_fpsyt_2021_678709 crossref_primary_10_1016_j_neuroimage_2021_118170 crossref_primary_10_1016_j_neuron_2024_10_005 crossref_primary_10_1093_cercor_bhae057 crossref_primary_10_1002_hbm_24960 crossref_primary_10_1002_hbm_25379 crossref_primary_10_1016_j_neuroimage_2023_120059 crossref_primary_10_1002_hbm_25256 crossref_primary_10_1016_j_neuroimage_2022_119589 crossref_primary_10_1038_s41586_023_05964_2 crossref_primary_10_3389_fninf_2024_1080173 crossref_primary_10_1016_j_imed_2022_06_002 crossref_primary_10_1038_s41593_024_01868_0 crossref_primary_10_1523_JNEUROSCI_2362_20_2021 crossref_primary_10_1016_j_neuroimage_2017_10_034 crossref_primary_10_1038_s42003_024_05766_w crossref_primary_10_1093_cercor_bhx308 crossref_primary_10_1016_j_exger_2024_112513 crossref_primary_10_1016_j_neuroimage_2019_06_015 crossref_primary_10_1073_pnas_1808121115 crossref_primary_10_1016_j_neuroimage_2017_10_037 crossref_primary_10_1016_j_neuroscience_2020_03_010 crossref_primary_10_1093_cercor_bhaa254 crossref_primary_10_1093_cercor_bhab101 crossref_primary_10_7554_eLife_90182_3 crossref_primary_10_1016_j_media_2024_103122 crossref_primary_10_1002_hbm_26453 crossref_primary_10_1017_S0033291720004560 crossref_primary_10_1093_cercor_bhaa260 crossref_primary_10_1002_hbm_24275 crossref_primary_10_1002_hbm_25242 crossref_primary_10_1016_j_neuroimage_2022_119211 crossref_primary_10_1016_j_neuroimage_2022_119575 crossref_primary_10_1038_s41596_023_00806_x crossref_primary_10_1038_s41562_019_0811_3 crossref_primary_10_1016_j_neuroimage_2017_04_053 crossref_primary_10_1109_TBME_2016_2571221 crossref_primary_10_1016_j_neuroimage_2015_09_030 crossref_primary_10_1038_s42003_024_07224_z crossref_primary_10_1093_gigascience_giaf010 crossref_primary_10_1093_cercor_bhv239 crossref_primary_10_3389_fnins_2024_1237245 crossref_primary_10_1098_rsos_180857 crossref_primary_10_1016_j_neuroimage_2015_10_001 crossref_primary_10_1016_j_neuroimage_2020_117232 crossref_primary_10_1002_hbm_25116 crossref_primary_10_1093_cercor_bhad537 crossref_primary_10_1093_cercor_bhaa023 crossref_primary_10_1038_s41598_019_48671_7 |
Cites_doi | 10.1016/j.neuroimage.2008.10.055 10.1109/MSP.2002.1028355 10.1016/j.neuroimage.2012.01.021 10.1137/S0895479801383877 10.1109/TMI.2003.822821 10.1016/j.neuroimage.2013.05.009 10.1016/j.neuroimage.2013.04.127 10.1109/TPAMI.2007.1061 10.1016/j.cviu.2008.06.007 10.1109/TPAMI.2006.200 10.1016/j.cviu.2008.06.006 10.1016/j.media.2010.07.002 10.1007/s10851-009-0161-2 10.1109/TMI.2009.2030797 10.1016/j.neuroimage.2013.05.039 10.1016/j.neuron.2011.08.026 10.1016/j.neuroimage.2004.07.051 10.1016/j.neuroimage.2013.05.041 10.1109/TMI.2013.2265603 10.1109/34.24792 10.1016/j.tics.2013.09.016 10.1016/j.biosystems.2006.02.008 10.1109/34.969114 10.1016/j.neuroimage.2007.02.037 10.1016/j.cviu.2013.07.004 10.1109/18.782114 10.1006/nimg.1998.0396 10.1523/JNEUROSCI.2180-11.2011 10.1016/j.neuroimage.2014.06.042 10.1016/j.media.2008.03.006 10.1146/annurev-bioeng-071910-124649 10.1016/j.neuroimage.2010.05.075 10.1002/mrm.22361 10.1093/cercor/bhr291 10.1016/j.neuroimage.2005.06.058 10.1109/TMI.2009.2016560 10.1093/cercor/bhm225 10.1016/j.neuroimage.2011.10.077 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4 10.1109/42.796284 10.1109/TMI.2013.2241651 10.1016/j.neuroimage.2013.05.033 10.1016/j.neuroimage.2011.09.015 10.1093/cercor/bhp085 10.1023/B:VISI.0000022288.19776.77 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Inc. Copyright © 2014 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Oct 15, 2014 |
Copyright_xml | – notice: 2014 Elsevier Inc. – notice: Copyright © 2014 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Oct 15, 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO 5PM |
DOI | 10.1016/j.neuroimage.2014.05.069 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | Engineering Research Database ProQuest One Psychology MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 426 |
ExternalDocumentID | PMC4190319 3403671121 24939340 10_1016_j_neuroimage_2014_05_069 S1053811914004546 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: F30 MH097312 – fundername: NIMH NIH HHS grantid: U54 MH091657 – fundername: NIMH NIH HHS grantid: F30-MH097312 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/C519938/1 – fundername: NIMH NIH HHS grantid: 1U54MH091657 – fundername: Wellcome Trust grantid: 098369 – fundername: Medical Research Council grantid: MR/L009013/1 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO 5PM |
ID | FETCH-LOGICAL-c597t-af4a62d94f228cf06572fc39520de6a3cd433164819efffda01be845169ff5d83 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Aug 21 14:11:20 EDT 2025 Thu Jul 10 18:31:02 EDT 2025 Fri Jul 11 03:39:24 EDT 2025 Wed Aug 13 02:46:26 EDT 2025 Mon Jul 21 06:05:53 EDT 2025 Tue Jul 01 02:14:54 EDT 2025 Thu Apr 24 22:49:23 EDT 2025 Fri Feb 23 02:36:03 EST 2024 Tue Aug 26 16:31:41 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Functional alignment Multimodal Discrete optimisation Surface-based cortical registration |
Language | English |
License | Copyright © 2014 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c597t-af4a62d94f228cf06572fc39520de6a3cd433164819efffda01be845169ff5d83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally |
OpenAccessLink | http://doi.org/10.1016/j.neuroimage.2014.05.069 |
PMID | 24939340 |
PQID | 1553418709 |
PQPubID | 2031077 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4190319 proquest_miscellaneous_1560110687 proquest_miscellaneous_1554475136 proquest_journals_1553418709 pubmed_primary_24939340 crossref_primary_10_1016_j_neuroimage_2014_05_069 crossref_citationtrail_10_1016_j_neuroimage_2014_05_069 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2014_05_069 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2014_05_069 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-10-15 |
PublicationDateYYYYMMDD | 2014-10-15 |
PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2014 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni (bb0085) 2013; 80 Hero, Michel (bb0115) 1999; 45 Smith, Beckmann, Andersson, Auerbach, Bijsterbosch, Douaud, Duff, Feinberg, Griffanti, Harms (bb0205) 2013; 80 Auzias, Lefevre, Le Troter, Fisher, Perrot, Régis, Coulon (bb0020) 2013; 35 Komodakis, Tziritas (bb0140) 2007; 29 Komodakis, Tziritas, Paragios (bb0145) 2008; 112 Moeller, Yacoub, Olman, Auerbach, Strupp, Harel, Uğurbil (bb0160) 2010; 63 Van Essen (bb0230) 2005; 28 Moakher (bb0155) 2002; 24 Wang, Komodakis, Paragios (bb0260) 2013; 117 Veksler (bb0250) 2005; vol. 2 Glocker, Komodakis, Tziritas, Navab, Paragios (bb0090) 2008; 12 Wainwright, Jaakkola, Willsky (bb0255) 2002; vol. 40 Van Essen (bb0235) 2012; 62 Glocker, Komodakis, Paragios, Navab (bb0095) 2009 Abdollahi, Kolster, Glasser, Robinson, Coalson, Dierker, Jenkinson, Van Essen, Orban (bb0005) 2014; 99 Neemuchwala (bb0165) 2005 Kwon, Lee, Yun, Lee (bb0150) 2011 Jenkinson, Beckmann, Behrens, Woolrich, Smith (bb0130) 2012; 62 Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (bb0245) 2013; 80 Fischl, Sereno, Tootell, Dale (bb0065) 1999; 8 Kolmogorov (bb0135) 2006; 28 Rueckert, Sonoda, Hayes, Hill, Leach, Hawkes (bb0180) 1999; 18 Ghosh, Kakunoori, Augustinack, Nieto-Castanon, Kovelman, Gaab, Christodoulou, Triantafyllou, Gabrieli, Fischl (bb0075) 2010; 53 Huynh (bb0125) 2009; 35 Sporns (bb0220) 2006; 85 Staring, van der Heide, Klein, Viergever, Pluim (bb0225) 2009; 28 Andersson, Jenkinson, Smith (bb0015) 2007 Barch, Burgess, Harms, Petersen, Schlaggar, Corbetta, Glasser, Curtiss, Dixit, Feldt (bb0025) 2013; 80 Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-Berg, Bannister, De Luca, Drobnjak, Flitney (bb0200) 2004; 23 Glasser, Van Essen (bb0080) 2011; 31 Beckmann, Smith (bb0030) 2004; 23 Glocker, Sotiras, Komodakis, Paragios (bb0100) 2011; 13 Hero, Ma, Michel, Gorman (bb0120) 2002; 19 Fischl, Rajendran, Busa, Augustinack, Hinds, Yeo, Mohlberg, Amunts, Zilles (bb0070) 2008; 18 Smith, Vidaurre, Beckmann, Glasser, Jenkinson, Miller, Nichols, Robinson, Salimi-Khorshidi, Woolrich (bb0210) 2013; 17 Fischl, Sereno, Dale (bb0060) 1999; 9 Sabuncu, Singer, Conroy, Bryan, Ramadge, Haxby (bb0190) 2010; 20 Woolrich, Jbabdi, Patenaude, Chappell, Makni, Behrens, Beckmann, Jenkinson, Smith (bb0265) 2009; 45 Robinson, Jbabdi, Andersson, Smith, Glasser, Van Essen, Burgess, Harms, Barch, Jenkinson (bb0175) 2013 Boykov, Veksler, Zabih (bb0040) 2001; 23 Ou, Sotiras, Paragios, Davatzikos (bb0170) 2011; 15 Conroy, Singer, Guntupalli, Ramadge, Haxby (bb0045) 2013; 81 Yeo, Sabuncu, Vercauteren, Ayache, Fischl, Golland (bb0270) 2010; 29 Rueckert, Aljabar, Heckemann, Hajnal, Hammers (bb0185) 2006 Heinrich, Jenkinson, Brady, Schnabel (bb0110) 2012 Fischl (bb0055) 2012; 62 Van Essen, Glasser, Dierker, Harwell, Coalson (bb0240) 2012; 22 Shekhovtsov, Kovtun, Hlaváč (bb0195) 2008; 112 Amunts, Schleicher, Zilles (bb0010) 2007; 37 Bookstein (bb0035) 1989; 11 Haxby, Guntupalli, Connolly, Halchenko, Conroy, Gobbini, Hanke, Ramadge (bb0105) 2011; 72 Sotiras, Davatzikos, Paragios (bb0215) 2013; 32 Felzenszwalb, Huttenlocher (bb0050) 2004; 59 Kwon (10.1016/j.neuroimage.2014.05.069_bb0150) 2011 Andersson (10.1016/j.neuroimage.2014.05.069_bb0015) 2007 Glasser (10.1016/j.neuroimage.2014.05.069_bb0085) 2013; 80 Rueckert (10.1016/j.neuroimage.2014.05.069_bb0180) 1999; 18 Glocker (10.1016/j.neuroimage.2014.05.069_bb0095) 2009 Huynh (10.1016/j.neuroimage.2014.05.069_bb0125) 2009; 35 Shekhovtsov (10.1016/j.neuroimage.2014.05.069_bb0195) 2008; 112 Wang (10.1016/j.neuroimage.2014.05.069_bb0260) 2013; 117 Yeo (10.1016/j.neuroimage.2014.05.069_bb0270) 2010; 29 Fischl (10.1016/j.neuroimage.2014.05.069_bb0055) 2012; 62 Fischl (10.1016/j.neuroimage.2014.05.069_bb0060) 1999; 9 Conroy (10.1016/j.neuroimage.2014.05.069_bb0045) 2013; 81 Fischl (10.1016/j.neuroimage.2014.05.069_bb0065) 1999; 8 Haxby (10.1016/j.neuroimage.2014.05.069_bb0105) 2011; 72 Wainwright (10.1016/j.neuroimage.2014.05.069_bb0255) 2002; vol. 40 Sabuncu (10.1016/j.neuroimage.2014.05.069_bb0190) 2010; 20 Abdollahi (10.1016/j.neuroimage.2014.05.069_bb0005) 2014; 99 Beckmann (10.1016/j.neuroimage.2014.05.069_bb0030) 2004; 23 Bookstein (10.1016/j.neuroimage.2014.05.069_bb0035) 1989; 11 Van Essen (10.1016/j.neuroimage.2014.05.069_bb0240) 2012; 22 Felzenszwalb (10.1016/j.neuroimage.2014.05.069_bb0050) 2004; 59 Komodakis (10.1016/j.neuroimage.2014.05.069_bb0145) 2008; 112 Robinson (10.1016/j.neuroimage.2014.05.069_bb0175) 2013 Kolmogorov (10.1016/j.neuroimage.2014.05.069_bb0135) 2006; 28 Glocker (10.1016/j.neuroimage.2014.05.069_bb0100) 2011; 13 Ghosh (10.1016/j.neuroimage.2014.05.069_bb0075) 2010; 53 Fischl (10.1016/j.neuroimage.2014.05.069_bb0070) 2008; 18 Moakher (10.1016/j.neuroimage.2014.05.069_bb0155) 2002; 24 Komodakis (10.1016/j.neuroimage.2014.05.069_bb0140) 2007; 29 Sporns (10.1016/j.neuroimage.2014.05.069_bb0220) 2006; 85 Boykov (10.1016/j.neuroimage.2014.05.069_bb0040) 2001; 23 Hero (10.1016/j.neuroimage.2014.05.069_bb0115) 1999; 45 Hero (10.1016/j.neuroimage.2014.05.069_bb0120) 2002; 19 Neemuchwala (10.1016/j.neuroimage.2014.05.069_bb0165) 2005 Auzias (10.1016/j.neuroimage.2014.05.069_bb0020) 2013; 35 Van Essen (10.1016/j.neuroimage.2014.05.069_bb0245) 2013; 80 Ou (10.1016/j.neuroimage.2014.05.069_bb0170) 2011; 15 Smith (10.1016/j.neuroimage.2014.05.069_bb0200) 2004; 23 Woolrich (10.1016/j.neuroimage.2014.05.069_bb0265) 2009; 45 Veksler (10.1016/j.neuroimage.2014.05.069_bb0250) 2005; vol. 2 Barch (10.1016/j.neuroimage.2014.05.069_bb0025) 2013; 80 Smith (10.1016/j.neuroimage.2014.05.069_bb0210) 2013; 17 Moeller (10.1016/j.neuroimage.2014.05.069_bb0160) 2010; 63 Smith (10.1016/j.neuroimage.2014.05.069_bb0205) 2013; 80 Van Essen (10.1016/j.neuroimage.2014.05.069_bb0230) 2005; 28 Rueckert (10.1016/j.neuroimage.2014.05.069_bb0185) 2006 Amunts (10.1016/j.neuroimage.2014.05.069_bb0010) 2007; 37 Glocker (10.1016/j.neuroimage.2014.05.069_bb0090) 2008; 12 Sotiras (10.1016/j.neuroimage.2014.05.069_bb0215) 2013; 32 Van Essen (10.1016/j.neuroimage.2014.05.069_bb0235) 2012; 62 Glasser (10.1016/j.neuroimage.2014.05.069_bb0080) 2011; 31 Jenkinson (10.1016/j.neuroimage.2014.05.069_bb0130) 2012; 62 Heinrich (10.1016/j.neuroimage.2014.05.069_bb0110) 2012 Staring (10.1016/j.neuroimage.2014.05.069_bb0225) 2009; 28 |
References_xml | – volume: 17 start-page: 666 year: 2013 end-page: 682 ident: bb0210 article-title: Functional connectomics from resting-state fMRI publication-title: Trends Cogn. Sci. – volume: 45 start-page: S173 year: 2009 end-page: S186 ident: bb0265 article-title: Bayesian analysis of neuroimaging data in FSL publication-title: NeuroImage – volume: 23 start-page: S208 year: 2004 end-page: S219 ident: bb0200 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: NeuroImage – volume: 28 start-page: 635 year: 2005 end-page: 662 ident: bb0230 article-title: A population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex publication-title: NeuroImage – volume: 29 start-page: 1436 year: 2007 end-page: 1453 ident: bb0140 article-title: Approximate labeling via graph cuts based on linear programming publication-title: Pattern Anal. Mach. Intell. IEEE Trans. – start-page: 1101 year: 2009 end-page: 1109 ident: bb0095 article-title: Approximated curvature penalty in non-rigid registration using pairwise MRFs publication-title: Advances in Visual Computing – volume: 80 start-page: 62 year: 2013 end-page: 79 ident: bb0245 article-title: The WU-Minn human connectome project: an overview publication-title: NeuroImage – volume: 35 start-page: 873 year: 2013 end-page: 887 ident: bb0020 article-title: Model-driven harmonic parameterization of the cortical surface: HIP–HOP publication-title: IEEE Trans. Med. Imaging – volume: 80 start-page: 144 year: 2013 end-page: 168 ident: bb0205 article-title: Resting-state fMRI in the Human Connectome Project publication-title: NeuroImage – volume: 28 start-page: 1568 year: 2006 end-page: 1583 ident: bb0135 article-title: Convergent tree-reweighted message passing for energy minimization publication-title: Pattern Anal. Mach. Intell. IEEE Trans. – volume: 28 start-page: 1412 year: 2009 end-page: 1421 ident: bb0225 article-title: Registration of cervical MRI using multifeature mutual information publication-title: IEEE Trans. Med. Imaging – volume: 62 start-page: 782 year: 2012 end-page: 790 ident: bb0130 article-title: Fsl publication-title: NeuroImage – volume: vol. 40 start-page: 1565 year: 2002 end-page: 1575 ident: bb0255 article-title: MAP estimation via agreement on (hyper) trees: message-passing and linear programming approaches publication-title: Proceedings of the Annual Allerton Conference on Communication Control and Computing – volume: 62 start-page: 774 year: 2012 end-page: 781 ident: bb0055 article-title: FreeSurfer publication-title: NeuroImage – volume: 45 start-page: 1921 year: 1999 end-page: 1938 ident: bb0115 article-title: Asymptotic theory of greedy approximations to minimal k-point random graphs publication-title: IEEE Trans. Inf. Theory – year: 2007 ident: bb0015 article-title: Non-linear registration aka spatial normalisation publication-title: Technical Rep. FMRIB – volume: 20 start-page: 130 year: 2010 end-page: 140 ident: bb0190 article-title: Function-based intersubject alignment of human cortical anatomy publication-title: Cereb. Cortex – volume: 112 start-page: 91 year: 2008 end-page: 99 ident: bb0195 article-title: Efficient MRF deformation model for non-rigid image matching publication-title: Comput. Vis. Image Underst. – volume: 81 start-page: 400 year: 2013 end-page: 411 ident: bb0045 article-title: Inter-subject alignment of human cortical anatomy using functional connectivity publication-title: NeuroImage – year: 2005 ident: bb0165 article-title: Entropic Graphs for Image Registration – volume: 8 start-page: 272 year: 1999 end-page: 284 ident: bb0065 article-title: High-resolution intersubject averaging and a coordinate system for the cortical surface publication-title: Hum. Brain Mapp. – volume: 63 start-page: 1144 year: 2010 end-page: 1153 ident: bb0160 article-title: Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI publication-title: Magn. Reson. Med. – volume: 23 start-page: 137 year: 2004 end-page: 152 ident: bb0030 article-title: Probabilistic independent component analysis for functional magnetic resonance imaging publication-title: IEEE Trans. Med. Imaging – volume: 18 start-page: 1973 year: 2008 end-page: 1980 ident: bb0070 article-title: Cortical folding patterns and predicting cytoarchitecture publication-title: Cereb. Cortex – start-page: 115 year: 2012 end-page: 122 ident: bb0110 article-title: Globally optimal deformable registration on a minimum spanning tree using dense displacement sampling publication-title: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2012 – volume: 15 start-page: 622 year: 2011 end-page: 639 ident: bb0170 article-title: DRAMMS: deformable registration via attribute matching and mutual-saliency weighting publication-title: Med. Image Anal. – year: 2011 ident: bb0150 article-title: Nonrigid image registration using higher-order MRF model with dense local descriptor publication-title: Computer Vision and Pattern Recognition Workshop – volume: 117 start-page: 1610 year: 2013 end-page: 1627 ident: bb0260 article-title: Markov Random Field modeling, inference & learning in computer vision & image understanding: a survey publication-title: Comput. Vis. Image Underst. – volume: vol. 2 start-page: 384 year: 2005 end-page: 390 ident: bb0250 article-title: Stereo correspondence by dynamic programming on a tree publication-title: Computer Vision and Pattern Recognition, 2005. CVPR 2005 – volume: 37 start-page: 1061 year: 2007 end-page: 1065 ident: bb0010 article-title: Cytoarchitecture of the cerebral cortex — more than localization publication-title: NeuroImage – volume: 62 start-page: 757 year: 2012 end-page: 764 ident: bb0235 article-title: Cortical cartography and caret software publication-title: NeuroImage – volume: 11 start-page: 567 year: 1989 end-page: 585 ident: bb0035 article-title: Principal warps: thin-plate splines and the decomposition of deformations publication-title: Pattern Anal. Mach. Intell. IEEE Trans. – volume: 59 start-page: 167 year: 2004 end-page: 181 ident: bb0050 article-title: Efficient graph-based image segmentation publication-title: Int. J. Comput. Vis. – volume: 35 start-page: 155 year: 2009 end-page: 164 ident: bb0125 article-title: Metrics for 3D rotations: comparison and analysis publication-title: J. Math. Imaging Vis. – volume: 29 start-page: 650 year: 2010 end-page: 668 ident: bb0270 article-title: Spherical demons: fast diffeomorphic landmark-free surface registration publication-title: IEEE Trans. Med. Imaging – volume: 9 start-page: 195 year: 1999 end-page: 207 ident: bb0060 article-title: Cortical surface-based analysis II: inflation, flattening, and a surface-based coordinate system publication-title: NeuroImage – volume: 12 start-page: 731 year: 2008 end-page: 741 ident: bb0090 article-title: Dense image registration through MRFs and efficient linear programming publication-title: Med. Image Anal. – volume: 24 start-page: 1 year: 2002 end-page: 16 ident: bb0155 article-title: Means and averaging in the group of rotations publication-title: SIAM J. Matrix Anal. Appl. – volume: 19 start-page: 85 year: 2002 end-page: 95 ident: bb0120 article-title: Applications of entropic spanning graphs publication-title: IEEE Signal Proc. Mag. – start-page: 702 year: 2006 end-page: 709 ident: bb0185 article-title: Diffeomorphic registration using B-splines publication-title: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2006 – volume: 85 start-page: 55 year: 2006 end-page: 64 ident: bb0220 article-title: Small-world connectivity, motif composition, and complexity of fractal neuronal connections publication-title: Biosystems – start-page: 475 year: 2013 end-page: 486 ident: bb0175 article-title: Multimodal surface matching: fast and generalisable cortical registration using discrete optimisation publication-title: Information Processing in Medical Imaging – volume: 31 start-page: 11597 year: 2011 end-page: 11616 ident: bb0080 article-title: Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI publication-title: J. Neurosci. – volume: 112 start-page: 14 year: 2008 end-page: 29 ident: bb0145 article-title: Performance vs computational efficiency for optimizing single and dynamic MRFs: setting the state of the art with primal–dual strategies publication-title: Comput. Vis. Image Underst. – volume: 22 start-page: 2241 year: 2012 end-page: 2262 ident: bb0240 article-title: Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases publication-title: Cereb. Cortex – volume: 99 start-page: 509 year: 2014 end-page: 524 ident: bb0005 article-title: Correspondences between retinotopic areas and myelin maps in human visual cortex publication-title: NeuroImage – volume: 23 start-page: 1222 year: 2001 end-page: 1239 ident: bb0040 article-title: Fast approximate energy minimization via graph cuts publication-title: Pattern Anal. Mach. Intell. IEEE Trans. – volume: 53 start-page: 85 year: 2010 end-page: 93 ident: bb0075 article-title: Evaluating the validity of volume-based and surface-based brain image registration for developmental cognitive neuroscience studies in children 4 to 11 publication-title: NeuroImage – volume: 80 start-page: 169 year: 2013 end-page: 189 ident: bb0025 article-title: Function in the human connectome: task-fMRI and individual differences in behavior publication-title: NeuroImage – volume: 80 start-page: 105 year: 2013 end-page: 124 ident: bb0085 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: NeuroImage – volume: 13 start-page: 219 year: 2011 end-page: 244 ident: bb0100 article-title: Deformable medical image registration: setting the state of the art with discrete methods* publication-title: Annu. Rev. Biomed. Eng. – volume: 18 start-page: 712 year: 1999 end-page: 721 ident: bb0180 article-title: Nonrigid registration using free-form deformations: application to breast MR images publication-title: IEEE Trans. Med. Imaging – volume: 32 start-page: 1153 year: 2013 end-page: 1190 ident: bb0215 article-title: Deformable medical image registration: a survey publication-title: IEEE Trans. Med. Imaging – volume: 72 start-page: 404 year: 2011 end-page: 416 ident: bb0105 article-title: A common, high-dimensional model of the representational space in human ventral temporal cortex publication-title: Neuron – volume: 45 start-page: S173 issue: 1 year: 2009 ident: 10.1016/j.neuroimage.2014.05.069_bb0265 article-title: Bayesian analysis of neuroimaging data in FSL publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.10.055 – volume: 19 start-page: 85 issue: 5 year: 2002 ident: 10.1016/j.neuroimage.2014.05.069_bb0120 article-title: Applications of entropic spanning graphs publication-title: IEEE Signal Proc. Mag. doi: 10.1109/MSP.2002.1028355 – volume: 62 start-page: 774 issue: 2 year: 2012 ident: 10.1016/j.neuroimage.2014.05.069_bb0055 article-title: FreeSurfer publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.01.021 – start-page: 475 year: 2013 ident: 10.1016/j.neuroimage.2014.05.069_bb0175 article-title: Multimodal surface matching: fast and generalisable cortical registration using discrete optimisation – volume: 24 start-page: 1 issue: 1 year: 2002 ident: 10.1016/j.neuroimage.2014.05.069_bb0155 article-title: Means and averaging in the group of rotations publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479801383877 – volume: 23 start-page: 137 issue: 2 year: 2004 ident: 10.1016/j.neuroimage.2014.05.069_bb0030 article-title: Probabilistic independent component analysis for functional magnetic resonance imaging publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2003.822821 – volume: 81 start-page: 400 year: 2013 ident: 10.1016/j.neuroimage.2014.05.069_bb0045 article-title: Inter-subject alignment of human cortical anatomy using functional connectivity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.009 – volume: 80 start-page: 105 issue: 15 year: 2013 ident: 10.1016/j.neuroimage.2014.05.069_bb0085 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.04.127 – volume: 29 start-page: 1436 issue: 8 year: 2007 ident: 10.1016/j.neuroimage.2014.05.069_bb0140 article-title: Approximate labeling via graph cuts based on linear programming publication-title: Pattern Anal. Mach. Intell. IEEE Trans. doi: 10.1109/TPAMI.2007.1061 – volume: 112 start-page: 14 issue: 1 year: 2008 ident: 10.1016/j.neuroimage.2014.05.069_bb0145 article-title: Performance vs computational efficiency for optimizing single and dynamic MRFs: setting the state of the art with primal–dual strategies publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2008.06.007 – volume: 28 start-page: 1568 issue: 10 year: 2006 ident: 10.1016/j.neuroimage.2014.05.069_bb0135 article-title: Convergent tree-reweighted message passing for energy minimization publication-title: Pattern Anal. Mach. Intell. IEEE Trans. doi: 10.1109/TPAMI.2006.200 – volume: 112 start-page: 91 issue: 1 year: 2008 ident: 10.1016/j.neuroimage.2014.05.069_bb0195 article-title: Efficient MRF deformation model for non-rigid image matching publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2008.06.006 – volume: 15 start-page: 622 issue: 4 year: 2011 ident: 10.1016/j.neuroimage.2014.05.069_bb0170 article-title: DRAMMS: deformable registration via attribute matching and mutual-saliency weighting publication-title: Med. Image Anal. doi: 10.1016/j.media.2010.07.002 – year: 2011 ident: 10.1016/j.neuroimage.2014.05.069_bb0150 article-title: Nonrigid image registration using higher-order MRF model with dense local descriptor – volume: 35 start-page: 155 issue: 2 year: 2009 ident: 10.1016/j.neuroimage.2014.05.069_bb0125 article-title: Metrics for 3D rotations: comparison and analysis publication-title: J. Math. Imaging Vis. doi: 10.1007/s10851-009-0161-2 – volume: 29 start-page: 650 issue: 3 year: 2010 ident: 10.1016/j.neuroimage.2014.05.069_bb0270 article-title: Spherical demons: fast diffeomorphic landmark-free surface registration publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2030797 – volume: 80 start-page: 144 year: 2013 ident: 10.1016/j.neuroimage.2014.05.069_bb0205 article-title: Resting-state fMRI in the Human Connectome Project publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.039 – volume: 72 start-page: 404 issue: 2 year: 2011 ident: 10.1016/j.neuroimage.2014.05.069_bb0105 article-title: A common, high-dimensional model of the representational space in human ventral temporal cortex publication-title: Neuron doi: 10.1016/j.neuron.2011.08.026 – volume: 23 start-page: S208 year: 2004 ident: 10.1016/j.neuroimage.2014.05.069_bb0200 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.07.051 – volume: 80 start-page: 62 year: 2013 ident: 10.1016/j.neuroimage.2014.05.069_bb0245 article-title: The WU-Minn human connectome project: an overview publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.041 – volume: 32 start-page: 1153 issue: 7 year: 2013 ident: 10.1016/j.neuroimage.2014.05.069_bb0215 article-title: Deformable medical image registration: a survey publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2013.2265603 – volume: 11 start-page: 567 issue: 6 year: 1989 ident: 10.1016/j.neuroimage.2014.05.069_bb0035 article-title: Principal warps: thin-plate splines and the decomposition of deformations publication-title: Pattern Anal. Mach. Intell. IEEE Trans. doi: 10.1109/34.24792 – start-page: 115 year: 2012 ident: 10.1016/j.neuroimage.2014.05.069_bb0110 article-title: Globally optimal deformable registration on a minimum spanning tree using dense displacement sampling – volume: 17 start-page: 666 issue: 12 year: 2013 ident: 10.1016/j.neuroimage.2014.05.069_bb0210 article-title: Functional connectomics from resting-state fMRI publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2013.09.016 – volume: 85 start-page: 55 issue: 1 year: 2006 ident: 10.1016/j.neuroimage.2014.05.069_bb0220 article-title: Small-world connectivity, motif composition, and complexity of fractal neuronal connections publication-title: Biosystems doi: 10.1016/j.biosystems.2006.02.008 – year: 2005 ident: 10.1016/j.neuroimage.2014.05.069_bb0165 – volume: 23 start-page: 1222 issue: 11 year: 2001 ident: 10.1016/j.neuroimage.2014.05.069_bb0040 article-title: Fast approximate energy minimization via graph cuts publication-title: Pattern Anal. Mach. Intell. IEEE Trans. doi: 10.1109/34.969114 – volume: 37 start-page: 1061 issue: 4 year: 2007 ident: 10.1016/j.neuroimage.2014.05.069_bb0010 article-title: Cytoarchitecture of the cerebral cortex — more than localization publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.02.037 – volume: vol. 2 start-page: 384 year: 2005 ident: 10.1016/j.neuroimage.2014.05.069_bb0250 article-title: Stereo correspondence by dynamic programming on a tree – volume: 117 start-page: 1610 issue: 11 year: 2013 ident: 10.1016/j.neuroimage.2014.05.069_bb0260 article-title: Markov Random Field modeling, inference & learning in computer vision & image understanding: a survey publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2013.07.004 – volume: 45 start-page: 1921 issue: 6 year: 1999 ident: 10.1016/j.neuroimage.2014.05.069_bb0115 article-title: Asymptotic theory of greedy approximations to minimal k-point random graphs publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.782114 – start-page: 702 year: 2006 ident: 10.1016/j.neuroimage.2014.05.069_bb0185 article-title: Diffeomorphic registration using B-splines – volume: 9 start-page: 195 issue: 2 year: 1999 ident: 10.1016/j.neuroimage.2014.05.069_bb0060 article-title: Cortical surface-based analysis II: inflation, flattening, and a surface-based coordinate system publication-title: NeuroImage doi: 10.1006/nimg.1998.0396 – volume: 31 start-page: 11597 issue: 32 year: 2011 ident: 10.1016/j.neuroimage.2014.05.069_bb0080 article-title: Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2180-11.2011 – volume: 99 start-page: 509 year: 2014 ident: 10.1016/j.neuroimage.2014.05.069_bb0005 article-title: Correspondences between retinotopic areas and myelin maps in human visual cortex publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.06.042 – volume: 12 start-page: 731 issue: 6 year: 2008 ident: 10.1016/j.neuroimage.2014.05.069_bb0090 article-title: Dense image registration through MRFs and efficient linear programming publication-title: Med. Image Anal. doi: 10.1016/j.media.2008.03.006 – volume: 13 start-page: 219 year: 2011 ident: 10.1016/j.neuroimage.2014.05.069_bb0100 article-title: Deformable medical image registration: setting the state of the art with discrete methods* publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-071910-124649 – volume: 53 start-page: 85 issue: 1 year: 2010 ident: 10.1016/j.neuroimage.2014.05.069_bb0075 article-title: Evaluating the validity of volume-based and surface-based brain image registration for developmental cognitive neuroscience studies in children 4 to 11years of age publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.05.075 – volume: 63 start-page: 1144 issue: 5 year: 2010 ident: 10.1016/j.neuroimage.2014.05.069_bb0160 article-title: Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22361 – volume: 22 start-page: 2241 issue: 10 year: 2012 ident: 10.1016/j.neuroimage.2014.05.069_bb0240 article-title: Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases publication-title: Cereb. Cortex doi: 10.1093/cercor/bhr291 – volume: 28 start-page: 635 issue: 3 year: 2005 ident: 10.1016/j.neuroimage.2014.05.069_bb0230 article-title: A population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.06.058 – volume: 28 start-page: 1412 issue: 9 year: 2009 ident: 10.1016/j.neuroimage.2014.05.069_bb0225 article-title: Registration of cervical MRI using multifeature mutual information publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2016560 – volume: 18 start-page: 1973 issue: 8 year: 2008 ident: 10.1016/j.neuroimage.2014.05.069_bb0070 article-title: Cortical folding patterns and predicting cytoarchitecture publication-title: Cereb. Cortex doi: 10.1093/cercor/bhm225 – volume: 62 start-page: 757 issue: 2 year: 2012 ident: 10.1016/j.neuroimage.2014.05.069_bb0235 article-title: Cortical cartography and caret software publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.10.077 – volume: 8 start-page: 272 issue: 4 year: 1999 ident: 10.1016/j.neuroimage.2014.05.069_bb0065 article-title: High-resolution intersubject averaging and a coordinate system for the cortical surface publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4 – start-page: 1101 year: 2009 ident: 10.1016/j.neuroimage.2014.05.069_bb0095 article-title: Approximated curvature penalty in non-rigid registration using pairwise MRFs – volume: vol. 40 start-page: 1565 year: 2002 ident: 10.1016/j.neuroimage.2014.05.069_bb0255 article-title: MAP estimation via agreement on (hyper) trees: message-passing and linear programming approaches – volume: 18 start-page: 712 issue: 8 year: 1999 ident: 10.1016/j.neuroimage.2014.05.069_bb0180 article-title: Nonrigid registration using free-form deformations: application to breast MR images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.796284 – volume: 35 start-page: 873 issue: 5 year: 2013 ident: 10.1016/j.neuroimage.2014.05.069_bb0020 article-title: Model-driven harmonic parameterization of the cortical surface: HIP–HOP publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2013.2241651 – volume: 80 start-page: 169 year: 2013 ident: 10.1016/j.neuroimage.2014.05.069_bb0025 article-title: Function in the human connectome: task-fMRI and individual differences in behavior publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.033 – year: 2007 ident: 10.1016/j.neuroimage.2014.05.069_bb0015 article-title: Non-linear registration aka spatial normalisation – volume: 62 start-page: 782 issue: 2 year: 2012 ident: 10.1016/j.neuroimage.2014.05.069_bb0130 article-title: Fsl publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.09.015 – volume: 20 start-page: 130 issue: 1 year: 2010 ident: 10.1016/j.neuroimage.2014.05.069_bb0190 article-title: Function-based intersubject alignment of human cortical anatomy publication-title: Cereb. Cortex doi: 10.1093/cercor/bhp085 – volume: 59 start-page: 167 issue: 2 year: 2004 ident: 10.1016/j.neuroimage.2014.05.069_bb0050 article-title: Efficient graph-based image segmentation publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000022288.19776.77 |
SSID | ssj0009148 |
Score | 2.6218264 |
Snippet | Surface-based cortical registration methods that are driven by geometrical features, such as folding, provide sub-optimal alignment of many functional areas... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 414 |
SubjectTerms | Adult Algorithms Brain Brain Mapping - instrumentation Brain Mapping - methods Cerebral Cortex - anatomy & histology Data Interpretation, Statistical Discrete optimisation Functional alignment Humans Image Processing, Computer-Assisted - instrumentation Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging - methods Multimodal Neurosciences Surface-based cortical registration Young Adult |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFLYQh4nLBNvYCmwy0q6hSfwjCWiHqhpCk8KlVOrNchxbK4IUQXvlb-c9xwkU0FRpx8Z-Ufvi9_y5-d73CPmZ5sJanVaRMDaDA0qio4oLgyzzWJqYZZlvNlFeyosp_zMTsy0y7mphkFYZcn-b0322DleGwZvDu_l8OAFkANsN6pN5HTmU3eY8w1V-8vhM84DhthxOsAhnBzZPy_HympHzW4hcJHlxr-GJ1Of3t6i3EPQ1k_LF1nS-Sz4GTElH7dfeI1u2-UQ-lOGt-Wfyq5yUp3REAUFThwKY1Y2lrmNlUYCt1Nfh3i5quM1kde-0sbSEJI1_T30h0_PfV-OLKLRNiAycDpaRdlzLtC64S9PcOMAYWeoMK0Qa11ZqZmqskpIcsIB1ztU6TiqbY8PewjlR52yfbDeLxn4jlDFruMllVUkN50atEwhwXtRCFjoDZDkgWecpZYKmOLa2uFEdeexaPftYoY9VLBT4eECS3vKu1dXYwKboHobq6kYh0ylI_hvYnvW2a-trQ-uj7tmrEOMPCjsu8QTyHQwf98MQnfjKRTd2sfJzUFExYfJfcySCMJlnA_K1XU69S-BwzArGY3D02kLrJ6A6-PpIM__rVcI5QD3Irwf_9cMPyQ5-ws06EUdke3m_st8BhS2rHz7MngA1hjE_ priority: 102 providerName: Elsevier |
Title | MSM: A new flexible framework for Multimodal Surface Matching |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811914004546 https://dx.doi.org/10.1016/j.neuroimage.2014.05.069 https://www.ncbi.nlm.nih.gov/pubmed/24939340 https://www.proquest.com/docview/1553418709 https://www.proquest.com/docview/1554475136 https://www.proquest.com/docview/1560110687 https://pubmed.ncbi.nlm.nih.gov/PMC4190319 |
Volume | 100 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbYJiFeEONnYauMxGsgjn8lTAgVtKmAUiHGpL5ZjmOLoS0dW_vK3767xEkZoKlPfYivai9358_25-8IeZXl0nubVYl0XsMChdmkEtIhyzxVLuVat80mypmanojPczmPG25XkVbZ18S2UNcLh3vkb7C_jWAQXcX7i18Jdo3C09XYQmOL7KB0GUa1nuu16C4T3VU4yZMcBkQmT8fvavUiT88ha5HgJVr9TqQ9_396-hd-_s2i_GNaOnpA7kc8SSddAOySO755SO6W8cT8EXlXHpdv6YQCeqYBxS-rM09Dz8iiAFlpewf3fFHD1xyvLoN1npZQoHFr6jE5OTr8_nGaxJYJiYOVwTKxQViV1YUIWZa7APhCZ8HxQmZp7ZXlrsYbUkoADvAhhNqmrPI5NustQpB1zp-Q7WbR-GeEcu6dcLmqKmVhzWgtg-QWRS1VYTWgyhHRvaeMi3ri2NbizPTEsZ9m7WODPjapNODjEWGD5UWnqbGBTdG_DNPfGYUqZ6Dwb2B7MNhGXNHhhQ2t9_p3b2J-X5l1NI7Iy-ExZCYet9jGL1btGFRTZFzdNkYhAFO5HpGnXTgNLoGFMS-4SMHRNwJtGIDK4DefNKc_WoVwATAPauvz23_6C3IP_yfOxEzuke3l5crvA8RaVmOy9fo3G7fZNCY7k09fpjP4_HA4-_rtGqbQKgU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLZKkaAXxJuFAoMEx4hM5pEEVKEKqLa06aWttLdhMpkRRW22j10h_hS_ETuvpYCqvfSccZR4HPtz5rMN8DrJlPc2KSPlfIoJCrdRKZUjlnmsXSzStBk2Uezp8aH8MlGTFfjV18IQrbL3iY2jrqaO_pG_pfk2kqN15R9OzyKaGkWnq_0IjdYsdvzPH5iyXWxsf8L9fZMkW58PPo6jbqpA5BA8zyIbpNVJlcuQJJkLGILTJDiRqySuvLbCVVREpCWGSh9CqGzMS5_RPNs8BFVlAu97A25i4I0p2Usn6aLJL5dt6Z0SUcZ53jGHWj5Z05_y6AS9BBHKZNMvlGjW_w-H_8Ldv1mbf4TBrbtwp8OvbLM1uHuw4uv7cKvoTugfwEaxX7xjmwzROgvUbLM89iz0DDCGEJk1Nb8n0wpvsz8_D9Z5VmBAoF9hD-HwWpT5CFbrae2fABPCO-kyXZbaYo5qLUdnIvNK6dymiGJHkPaaMq7rX05jNI5NT1T7bhY6NqRjEyuDOh4BHyRP2x4eS8jk_WaYvkYVvarBQLOE7PtBtsMxLT5ZUnq933vT-ZMLs7D-EbwaLqMnoOMdW_vpvFlD3Ru50Fet0QT4dJaO4HFrToNKMBEXuZAxKvqSoQ0LqBP55Sv10bemI7lEWIm-_OnVj_4Sbo8Pil2zu7238wzW6J0JBXC1Dquz87l_jvBuVr5ovikGX6_7I_4N8KhjDA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ_gkRBfjN8eoq6JPjZ0u9ttqyEGhQuIvRCRhLd1u92NEOgh3MX4r_nXOdOvEzXkXnjuTnM3Ozvzm-5vZgBeRWnsnImKILYuwQSFm6CQsSWWeahsKJKkHjaRj9XOofx4FB8twa-uFoZolZ1PrB11ObH0jXyd5ttIjtaVrfuWFrG_NXp3_j2gCVJ009qN02hMZM_9_IHp2-XG7hbu9esoGm1_-bATtBMGAotAehoYL42Kykz6KEqtx3CcRN6KLI7C0ikjbEkFRUpi2HTe-9KEvHApzbbNvI_LVOB7b8FyQlnRAJbfb4_3P89b_nLZFOLFIkg5z1oeUcMuq7tVHp-hzyB6may7hxLp-v_B8V_w-zeH84-gOLoLd1o0yzYb87sHS666Dyt5e1__ADbyg_wN22SI3Zmn1pvFqWO-44MxBMysrgA-m5T4moPZhTfWsRzDA30YewiHN6LORzCoJpV7AkwIZ6VNVVEogxmrMRxdi8zKWGUmQUw7hKTTlLZtN3MaqnGqO9raiZ7rWJOOdRhr1PEQeC953nT0WEAm6zZDdxWr6GM1hp0FZN_2si2qadDKgtJr3d7r1rtc6vlZGMLL_jH6BbrsMZWbzOo11MuRC3XdGkXwT6XJEB435tSrBNNykQkZoqKvGFq_gPqSX31SHX-r-5NLBJno2Vev_-kvYAUPsP60O957CrfpLxMk4PEaDKYXM_cMsd60eN4eKgZfb_oc_wZ8xGin |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MSM%3A+A+new+flexible+framework+for+Multimodal+Surface+Matching&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Robinson%2C+Emma+C&rft.au=Jbabdi%2C+Saad&rft.au=Glasser%2C+Matthew+F&rft.au=Andersson%2C+Jesper&rft.date=2014-10-15&rft.issn=1053-8119&rft.volume=100&rft.spage=414&rft.epage=426&rft_id=info:doi/10.1016%2Fj.neuroimage.2014.05.069&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |