A method for real-time visual stimulus selection in the study of cortical object perception

The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 133; pp. 529 - 548
Main Authors Leeds, Daniel D., Tarr, Michael J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.06.2016
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2016.02.071

Cover

Abstract The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic Resonance Imaging (fMRI) to establish each unit's image selectivity. This approach to imaging necessitates a search through a broad space of stimulus properties using a limited number of samples. To more quickly identify the complex visual features underlying human cortical object perception, we implemented a new functional magnetic resonance imaging protocol in which visual stimuli are selected in real-time based on BOLD responses to recently shown images. Two variations of this protocol were developed, one relying on natural object stimuli and a second based on synthetic object stimuli, both embedded in feature spaces based on the complex visual properties of the objects. During fMRI scanning, we continuously controlled stimulus selection in the context of a real-time search through these image spaces in order to maximize neural responses across pre-determined 1cm3 rain regions. Elsewhere we have reported the patterns of cortical selectivity revealed by this approach (Leeds et al., 2014). In contrast, here our objective is to present more detailed methods and explore the technical and biological factors influencing the behavior of our real-time stimulus search. We observe that: 1) Searches converged more reliably when exploring a more precisely parameterized space of synthetic objects; 2) real-time estimation of cortical responses to stimuli is reasonably consistent; 3) search behavior was acceptably robust to delays in stimulus displays and subject motion effects. Overall, our results indicate that real-time fMRI methods may provide a valuable platform for continuing study of localized neural selectivity, both for visual object representation and beyond. •We develop real-time BOLD signal processing for efficient study of cortical vision.•Adaptive search of stimuli converges on visual selectivities in some searches.•Adaptive search is robust to undesired subject motion and stimulus display errors.•Simpler visual stimuli and search spaces allow more frequent search convergence.•Assumption of single regional selectivity seems flawed, but searches still converge.
AbstractList The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic Resonance Imaging (fMRI) to establish each unit’s image selectivity. This approach to imaging necessitates a search through a broad space of stimulus properties using a limited number of samples. To more quickly identify the complex visual features underlying human cortical object perception, we implemented a new functional magnetic resonance imaging protocol in which visual stimuli are selected in real-time based on BOLD responses to recently shown images. Two variations of this protocol were developed, one relying on natural object stimuli and a second based on synthetic object stimuli, both embedded in feature spaces based on the complex visual properties of the objects. During fMRI scanning, we continuously controlled stimulus selection in the context of a real-time search through these image spaces in order to maximize neural responses across predetermined 1 cm 3 brain regions. Elsewhere we have reported the patterns of cortical selectivity revealed by this approach ( Leeds 2014 ). In contrast, here our objective is to present more detailed methods and explore the technical and biological factors influencing the behavior of our real-time stimulus search. We observe that: 1) Searches converged more reliably when exploring a more precisely parameterized space of synthetic objects; 2) Real-time estimation of cortical responses to stimuli are reasonably consistent; 3) Search behavior was acceptably robust to delays in stimulus displays and subject motion effects. Overall, our results indicate that real-time fMRI methods may provide a valuable platform for continuing study of localized neural selectivity, both for visual object representation and beyond.
The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic Resonance Imaging (fMRI) to establish each unit's image selectivity. This approach to imaging necessitates a search through a broad space of stimulus properties using a limited number of samples. To more quickly identify the complex visual features underlying human cortical object perception, we implemented a new functional magnetic resonance imaging protocol in which visual stimuli are selected in real-time based on BOLD responses to recently shown images. Two variations of this protocol were developed, one relying on natural object stimuli and a second based on synthetic object stimuli, both embedded in feature spaces based on the complex visual properties of the objects. During fMRI scanning, we continuously controlled stimulus selection in the context of a real-time search through these image spaces in order to maximize neural responses across pre-determined 1cm(3) rain regions. Elsewhere we have reported the patterns of cortical selectivity revealed by this approach (Leeds et al., 2014). In contrast, here our objective is to present more detailed methods and explore the technical and biological factors influencing the behavior of our real-time stimulus search. We observe that: 1) Searches converged more reliably when exploring a more precisely parameterized space of synthetic objects; 2) real-time estimation of cortical responses to stimuli is reasonably consistent; 3) search behavior was acceptably robust to delays in stimulus displays and subject motion effects. Overall, our results indicate that real-time fMRI methods may provide a valuable platform for continuing study of localized neural selectivity, both for visual object representation and beyond.The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic Resonance Imaging (fMRI) to establish each unit's image selectivity. This approach to imaging necessitates a search through a broad space of stimulus properties using a limited number of samples. To more quickly identify the complex visual features underlying human cortical object perception, we implemented a new functional magnetic resonance imaging protocol in which visual stimuli are selected in real-time based on BOLD responses to recently shown images. Two variations of this protocol were developed, one relying on natural object stimuli and a second based on synthetic object stimuli, both embedded in feature spaces based on the complex visual properties of the objects. During fMRI scanning, we continuously controlled stimulus selection in the context of a real-time search through these image spaces in order to maximize neural responses across pre-determined 1cm(3) rain regions. Elsewhere we have reported the patterns of cortical selectivity revealed by this approach (Leeds et al., 2014). In contrast, here our objective is to present more detailed methods and explore the technical and biological factors influencing the behavior of our real-time stimulus search. We observe that: 1) Searches converged more reliably when exploring a more precisely parameterized space of synthetic objects; 2) real-time estimation of cortical responses to stimuli is reasonably consistent; 3) search behavior was acceptably robust to delays in stimulus displays and subject motion effects. Overall, our results indicate that real-time fMRI methods may provide a valuable platform for continuing study of localized neural selectivity, both for visual object representation and beyond.
The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic Resonance Imaging (fMRI) to establish each unit's image selectivity. This approach to imaging necessitates a search through a broad space of stimulus properties using a limited number of samples. To more quickly identify the complex visual features underlying human cortical object perception, we implemented a new functional magnetic resonance imaging protocol in which visual stimuli are selected in real-time based on BOLD responses to recently shown images. Two variations of this protocol were developed, one relying on natural object stimuli and a second based on synthetic object stimuli, both embedded in feature spaces based on the complex visual properties of the objects. During fMRI scanning, we continuously controlled stimulus selection in the context of a real-time search through these image spaces in order to maximize neural responses across pre-determined 1cm(3) rain regions. Elsewhere we have reported the patterns of cortical selectivity revealed by this approach (Leeds et al., 2014). In contrast, here our objective is to present more detailed methods and explore the technical and biological factors influencing the behavior of our real-time stimulus search. We observe that: 1) Searches converged more reliably when exploring a more precisely parameterized space of synthetic objects; 2) real-time estimation of cortical responses to stimuli is reasonably consistent; 3) search behavior was acceptably robust to delays in stimulus displays and subject motion effects. Overall, our results indicate that real-time fMRI methods may provide a valuable platform for continuing study of localized neural selectivity, both for visual object representation and beyond.
The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic Resonance Imaging (fMRI) to establish each unit's image selectivity. This approach to imaging necessitates a search through a broad space of stimulus properties using a limited number of samples. To more quickly identify the complex visual features underlying human cortical object perception, we implemented a new functional magnetic resonance imaging protocol in which visual stimuli are selected in real-time based on BOLD responses to recently shown images. Two variations of this protocol were developed, one relying on natural object stimuli and a second based on synthetic object stimuli, both embedded in feature spaces based on the complex visual properties of the objects. During fMRI scanning, we continuously controlled stimulus selection in the context of a real-time search through these image spaces in order to maximize neural responses across pre-determined 1cm3 rain regions. Elsewhere we have reported the patterns of cortical selectivity revealed by this approach (Leeds et al., 2014). In contrast, here our objective is to present more detailed methods and explore the technical and biological factors influencing the behavior of our real-time stimulus search. We observe that: 1) Searches converged more reliably when exploring a more precisely parameterized space of synthetic objects; 2) real-time estimation of cortical responses to stimuli is reasonably consistent; 3) search behavior was acceptably robust to delays in stimulus displays and subject motion effects. Overall, our results indicate that real-time fMRI methods may provide a valuable platform for continuing study of localized neural selectivity, both for visual object representation and beyond. •We develop real-time BOLD signal processing for efficient study of cortical vision.•Adaptive search of stimuli converges on visual selectivities in some searches.•Adaptive search is robust to undesired subject motion and stimulus display errors.•Simpler visual stimuli and search spaces allow more frequent search convergence.•Assumption of single regional selectivity seems flawed, but searches still converge.
The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic Resonance Imaging (fMRI) to establish each unit's image selectivity. This approach to imaging necessitates a search through a broad space of stimulus properties using a limited number of samples. To more quickly identify the complex visual features underlying human cortical object perception, we implemented a new functional magnetic resonance imaging protocol in which visual stimuli are selected in real-time based on BOLD responses to recently shown images. Two variations of this protocol were developed, one relying on natural object stimuli and a second based on synthetic object stimuli, both embedded in feature spaces based on the complex visual properties of the objects. During fMRI scanning, we continuously controlled stimulus selection in the context of a real-time search through these image spaces in order to maximize neural responses across pre-determined 1cm3 rain regions. Elsewhere we have reported the patterns of cortical selectivity revealed by this approach (Leeds et al., 2014). In contrast, here our objective is to present more detailed methods and explore the technical and biological factors influencing the behavior of our real-time stimulus search. We observe that: 1) Searches converged more reliably when exploring a more precisely parameterized space of synthetic objects; 2) real-time estimation of cortical responses to stimuli is reasonably consistent; 3) search behavior was acceptably robust to delays in stimulus displays and subject motion effects. Overall, our results indicate that real-time fMRI methods may provide a valuable platform for continuing study of localized neural selectivity, both for visual object representation and beyond.
The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic Resonance Imaging (fMRI) to establish each unit's image selectivity. This approach to imaging necessitates a search through a broad space of stimulus properties using a limited number of samples. To more quickly identify the complex visual features underlying human cortical object perception, we implemented a new functional magnetic resonance imaging protocol in which visual stimuli are selected in real-time based on BOLD responses to recently shown images. Two variations of this protocol were developed, one relying on natural object stimuli and a second based on synthetic object stimuli, both embedded in feature spaces based on the complex visual properties of the objects. During fMRI scanning, we continuously controlled stimulus selection in the context of a real-time search through these image spaces in order to maximize neural responses across pre-determined 1cm3rain regions. Elsewhere we have reported the patterns of cortical selectivity revealed by this approach (Leeds et al., 2014). In contrast, here our objective is to present more detailed methods and explore the technical and biological factors influencing the behavior of our real-time stimulus search. We observe that: 1) Searches converged more reliably when exploring a more precisely parameterized space of synthetic objects; 2) real-time estimation of cortical responses to stimuli is reasonably consistent; 3) search behavior was acceptably robust to delays in stimulus displays and subject motion effects. Overall, our results indicate that real-time fMRI methods may provide a valuable platform for continuing study of localized neural selectivity, both for visual object representation and beyond.
Author Tarr, Michael J.
Leeds, Daniel D.
AuthorAffiliation a Fordham University, Computer and Information Science Department, Bronx, New York, USA
b Carnegie Mellon University, Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, USA
c Carnegie Mellon University, Psychology Department, Pittsburgh, Pennsylvania, USA
AuthorAffiliation_xml – name: a Fordham University, Computer and Information Science Department, Bronx, New York, USA
– name: c Carnegie Mellon University, Psychology Department, Pittsburgh, Pennsylvania, USA
– name: b Carnegie Mellon University, Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, USA
Author_xml – sequence: 1
  givenname: Daniel D.
  surname: Leeds
  fullname: Leeds, Daniel D.
  email: dleeds@fordham.edu
  organization: Fordham University, Computer and Information Science Department, Bronx, New York, USA
– sequence: 2
  givenname: Michael J.
  orcidid: 0000-0003-4724-1744
  surname: Tarr
  fullname: Tarr, Michael J.
  email: michaeltarr@cmu.edu
  organization: Carnegie Mellon University, Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26973168$$D View this record in MEDLINE/PubMed
BookMark eNqNUstu1DAUtVARbQd-AVliwybBzsv2BtFWvKRKbGDFwnLsm46DYw92MtL8PY7aUpjVrPy4x8f3nnMu0ZkPHhDClJSU0O7dWHpYYrCTuoOyyjclqUrC6DN0QYloC9Gy6mzdt3XBKRXn6DKlkRAiaMNfoPOqE6ymHb9AP6_wBPM2GDyEiCMoV8x2Ary3aVEOp3xY3JJwAgd6tsFj6_G8hVxZzAGHAesQZ6szNvRjhuAdRA27FfoSPR-US_DqYd2gH58-fr_5Utx--_z15uq20K1gc6GMGnSthr4fTC-6lhjVaBhqKnRfd60yQmhutKm46QS0tCZGayDMMOi4Nk29Qe_veXdLP4HR4OeonNzFrE88yKCs_L_i7Vbehb1sOBdt1miD3j4QxPB7gTTLySYNzikPYUmScsIZ6Vp6ApSJuu2YYCRD3xxBx7BEn5VYUQ1jPBuSUa__bf5v148WPU2nY0gpwiC1ndWqb57FOkmJXDMhR_mUCblmQpJK5kxkAn5E8PjHCU-v759Ctm9vIcqkLXgNxsbstTTBnkLy4YhEO-vXyPyCw2kUfwBz0fDF
CitedBy_id crossref_primary_10_1371_journal_pone_0207352
crossref_primary_10_1016_j_asoc_2017_07_055
crossref_primary_10_1038_nn_4499
Cites_doi 10.1016/j.neuron.2008.10.043
10.1016/j.neuron.2012.04.029
10.1163/156856897X00357
10.1113/jphysiol.1968.sp008455
10.1371/journal.pone.0081658
10.1152/jn.01265.2006
10.1016/j.neuron.2012.10.014
10.1038/nn.3402
10.1371/journal.pone.0008622
10.1523/JNEUROSCI.4811-09.2010
10.1111/j.1467-9868.2005.00503.x
10.1080/135062800394829
10.1038/nn.2202
10.1023/B:VISI.0000029664.99615.94
10.1126/science.1212003
10.1093/cercor/13.1.90
10.1163/156856897X00366
10.1038/nn870
10.1016/0098-1354(95)00221-9
10.1016/j.neuroimage.2011.11.003
10.1167/13.13.25
10.1038/14819
10.1093/cercor/1.1.1
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright © 2016 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Jun 1, 2016
Copyright_xml – notice: 2016 Elsevier Inc.
– notice: Copyright © 2016 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Jun 1, 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
5PM
DOI 10.1016/j.neuroimage.2016.02.071
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Engineering Research Database
ProQuest One Psychology

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 548
ExternalDocumentID PMC4889505
4082156571
26973168
10_1016_j_neuroimage_2016_02_071
S1053811916001877
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDA NIH HHS
  grantid: T90 DA022762
– fundername: NIMH NIH HHS
  grantid: R01 MH084195
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
3V.
6I.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
LCYCR
NCXOZ
RIG
ZA5
AAYXX
AGRNS
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7QO
5PM
ID FETCH-LOGICAL-c597t-adafc3afbbfdb9650da4cef319cb365ad99c8dcd28d69e5130dcce07d7e68cd43
IEDL.DBID AIKHN
ISSN 1053-8119
1095-9572
IngestDate Thu Aug 21 18:24:26 EDT 2025
Fri Sep 05 09:53:41 EDT 2025
Fri Sep 05 05:43:45 EDT 2025
Wed Aug 13 07:22:48 EDT 2025
Mon Jul 21 06:04:41 EDT 2025
Thu Apr 24 22:57:57 EDT 2025
Tue Jul 01 03:01:46 EDT 2025
Fri Feb 23 02:25:04 EST 2024
Tue Aug 26 20:08:36 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Functional magnetic resonance imaging
Real-time stimulus selection
Real-time signal processing
Computational modeling
Object recognition
Language English
License Copyright © 2016 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c597t-adafc3afbbfdb9650da4cef319cb365ad99c8dcd28d69e5130dcce07d7e68cd43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4724-1744
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4889505
PMID 26973168
PQID 1794778000
PQPubID 2031077
PageCount 20
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4889505
proquest_miscellaneous_1808706515
proquest_miscellaneous_1793567970
proquest_journals_1794778000
pubmed_primary_26973168
crossref_citationtrail_10_1016_j_neuroimage_2016_02_071
crossref_primary_10_1016_j_neuroimage_2016_02_071
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2016_02_071
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2016_02_071
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-06-01
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2016
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Pelli (bb0100) 1997; 10
Ward, Janik, Mazaheri, Ma, DeYoe (bb0150) 2011; 59
(bb0095) 2012
Lowe (bb0085) 2004; 60
Brainard (bb0005) 1997; 10
Pittman (bb0105) 2011
Freeman, Ziemba, Jeeger, Simoncelli, Movshon (bb0035) 2013; 16
Donckels (bb0020) 2012
Hung, Carlson, Connor (bb0050) 2012; 74
Zou, Hastie (bb0170) 2005; 67
Wennerberg M. version 2.9.5. Norrkross Software, 2009. The software is available from
Cardoso, Salcedo, de Azevedo (bb0015) 1996; 20
Huth, Nishimoto, Vu, Gallant (bb0055) 2012; 76
Mahalanobis (bb0090) 1936; 2
Yamane, Carlson, Bowman, Wang, Connor (bb0165) 2008; 11
Felleman, Essen (bb0030) 1991; 1
Shibata, Watanabe, Sasaki, Kawato (bb0125) 2011; 334
Leeds, Seibert, Pyles, Tarr (bb0075) 2013; 13
Leeds, Pyles, Tarr (bb0080) 2014; 8
Williams, Simons (bb0160) 2000; 7
Swisher, Gatenby, Gore, Wolfe, C.H., S.G., F. (bb0130) 2010; 30
Riesenhuber, Poggio (bb0110) 1999; 2
.
Edelman, Shahbazi (bb0025) 2012; 6
Tarr (bb0140) 2013
Ullman, Vidal-Naquet, Sali (bb0145) 2002; 5
Just, Cherkassky, Aryal, Mitchell (bb0060) 2010; 5
Seber (bb0120) 1984
Leeds (bb0070) 2013
Tanaka (bb0135) 2003; 13
Cadieu, Kouh, Pasupathy, Connor, Riesenhuber, Poggio (bb0010) 2007; 98
Kriegeskorte, Murr, Ruff, Kiani, Bodurka, Esteky, Tanaka, Bandettini (bb0065) 2008; 60
Hubel, Wiesel (bb0045) 1968; 195
Sato, Basilio, Paiva, Garrido, Bramati, Bado, Tovar-Moll, Zahn, Moll (bb0115) 2013; 8
Hemera Technologies I. (bb0040) 2000-2003
Cadieu (10.1016/j.neuroimage.2016.02.071_bb0010) 2007; 98
Leeds (10.1016/j.neuroimage.2016.02.071_bb0080) 2014; 8
Felleman (10.1016/j.neuroimage.2016.02.071_bb0030) 1991; 1
Cardoso (10.1016/j.neuroimage.2016.02.071_bb0015) 1996; 20
Brainard (10.1016/j.neuroimage.2016.02.071_bb0005) 1997; 10
Ullman (10.1016/j.neuroimage.2016.02.071_bb0145) 2002; 5
Ward (10.1016/j.neuroimage.2016.02.071_bb0150) 2011; 59
Yamane (10.1016/j.neuroimage.2016.02.071_bb0165) 2008; 11
Shibata (10.1016/j.neuroimage.2016.02.071_bb0125) 2011; 334
Hubel (10.1016/j.neuroimage.2016.02.071_bb0045) 1968; 195
Freeman (10.1016/j.neuroimage.2016.02.071_bb0035) 2013; 16
Huth (10.1016/j.neuroimage.2016.02.071_bb0055) 2012; 76
Williams (10.1016/j.neuroimage.2016.02.071_bb0160) 2000; 7
Edelman (10.1016/j.neuroimage.2016.02.071_bb0025) 2012; 6
Swisher (10.1016/j.neuroimage.2016.02.071_bb0130) 2010; 30
Just (10.1016/j.neuroimage.2016.02.071_bb0060) 2010; 5
Riesenhuber (10.1016/j.neuroimage.2016.02.071_bb0110) 1999; 2
Pelli (10.1016/j.neuroimage.2016.02.071_bb0100) 1997; 10
Sato (10.1016/j.neuroimage.2016.02.071_bb0115) 2013; 8
Kriegeskorte (10.1016/j.neuroimage.2016.02.071_bb0065) 2008; 60
Seber (10.1016/j.neuroimage.2016.02.071_bb0120) 1984
10.1016/j.neuroimage.2016.02.071_bb0155
Hemera Technologies I. (10.1016/j.neuroimage.2016.02.071_bb0040) 2000
Tanaka (10.1016/j.neuroimage.2016.02.071_bb0135) 2003; 13
Tarr (10.1016/j.neuroimage.2016.02.071_bb0140) 2013
(10.1016/j.neuroimage.2016.02.071_bb0095) 2012
Leeds (10.1016/j.neuroimage.2016.02.071_bb0075) 2013; 13
Lowe (10.1016/j.neuroimage.2016.02.071_bb0085) 2004; 60
Zou (10.1016/j.neuroimage.2016.02.071_bb0170) 2005; 67
Leeds (10.1016/j.neuroimage.2016.02.071_bb0070) 2013
Hung (10.1016/j.neuroimage.2016.02.071_bb0050) 2012; 74
Mahalanobis (10.1016/j.neuroimage.2016.02.071_bb0090) 1936; 2
Donckels (10.1016/j.neuroimage.2016.02.071_bb0020) 2012
Pittman (10.1016/j.neuroimage.2016.02.071_bb0105) 2011
References_xml – volume: 195
  start-page: 215
  year: 1968
  end-page: 243
  ident: bb0045
  article-title: Receptive fields and functional architecture of monkey striate cortex
  publication-title: J. Physiol.
– volume: 10
  start-page: 437
  year: 1997
  end-page: 442
  ident: bb0100
  article-title: The videotoolbox software for visual psychophysics: transforming numbers into movies
  publication-title: Spat. Vis.
– volume: 10
  start-page: 443
  year: 1997
  end-page: 446
  ident: bb0005
  article-title: The psychophysics toolbox
  publication-title: Spat. Vis.
– volume: 76
  start-page: 1210
  year: 2012
  end-page: 1224
  ident: bb0055
  article-title: A continuous semantic space describes the representation of thousands of object and action categories across the human brain
  publication-title: Neuron
– volume: 8
  year: 2014
  ident: bb0080
  article-title: Exploration of complex visual feature spaces for object perception
  publication-title: Front. Comput. Neurosci.
– volume: 59
  start-page: 3533
  year: 2011
  end-page: 3547
  ident: bb0150
  article-title: Adaptive kalman filtering for real-time mapping of the visual field
  publication-title: NeuroImage
– year: 1984
  ident: bb0120
  article-title: Multivariate Observations
– year: 2012
  ident: bb0020
  article-title: Global Optimization Algorithms for Matlab
– volume: 334
  start-page: 1413
  year: 2011
  end-page: 1415
  ident: bb0125
  article-title: Perceptual learning incepted by decoded fmri neurofeedback without stimulus presentation
  publication-title: Science
– volume: 13
  start-page: 90
  year: 2003
  end-page: 99
  ident: bb0135
  article-title: Columns for complex visual object features in the inferotemporal cortex: clustering of cells with similar but slightly different stimulus selectivities
  publication-title: Cereb. Cortex
– volume: 13
  year: 2013
  ident: bb0075
  article-title: Comparing visual representations across human fmri and computational vision
  publication-title: J. Vis.
– year: 2011
  ident: bb0105
  article-title: Afni main page — afni and nifti server for nimh/nih/phs/dhhs/usa/earth
– volume: 2
  start-page: 49
  year: 1936
  end-page: 55
  ident: bb0090
  article-title: On the generalised distance in statistics
  publication-title: Proc. Natl. Inst. Sci. India
– volume: 11
  start-page: 1352
  year: 2008
  end-page: 1360
  ident: bb0165
  article-title: A neural code for three-dimensional object shape in macaque inferotemporal cortex
  publication-title: Nat. Neurosci.
– volume: 60
  start-page: 1126
  year: 2008
  end-page: 1141
  ident: bb0065
  article-title: Matching categorical object representations in inferior temporal cortex of man and monkey
  publication-title: Neuron
– volume: 2
  start-page: 1019
  year: 1999
  end-page: 1025
  ident: bb0110
  article-title: Hierarchical models of object recognition in cortex
  publication-title: Nat. Neurosci.
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  ident: bb0170
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. Ser. B
– year: 2013
  ident: bb0140
  article-title: Novel Object – The cnbc Wiki
– volume: 5
  start-page: 682
  year: 2002
  end-page: 687
  ident: bb0145
  article-title: Visual features of intermediate complexity and their use in classification
  publication-title: Nat. Neurosci.
– volume: 7
  start-page: 297
  year: 2000
  end-page: 322
  ident: bb0160
  article-title: Detecting changes in novel, complex three-dimensional objects
  publication-title: Vis. Cogn.
– volume: 60
  start-page: 91
  year: 2004
  end-page: 110
  ident: bb0085
  article-title: Distinctive image features from scale-invariant keypoints
  publication-title: Int. J. Comput. Vis.
– volume: 1
  start-page: 1
  year: 1991
  end-page: 47
  ident: bb0030
  article-title: Distributed hierarchical processing in the primate cerebral cortex
  publication-title: Cereb. Cortex
– year: 2013
  ident: bb0070
  article-title: Searching for the Visual Components of Object Perception
– volume: 20
  start-page: 1065
  year: 1996
  end-page: 1080
  ident: bb0015
  article-title: The simplex-simulated annealing approach to continuous non-linear optimization
  publication-title: Comput. Chem. Eng.
– volume: 74
  start-page: 1099
  year: 2012
  end-page: 1113
  ident: bb0050
  article-title: Medial axis shape coding in macaque inferotemporal cortex
  publication-title: Neuron
– year: 2000-2003
  ident: bb0040
  article-title: Hemera Photo Objects Volumes i, ii, and iii
– volume: 5
  year: 2010
  ident: bb0060
  article-title: A neurosemantic theory of concrete noun representation based on the underlying brain codes
  publication-title: PLoS One
– volume: 8
  year: 2013
  ident: bb0115
  article-title: Real-time fmri pattern decoding and neurofeedback using friend: an fsl-integrated bci toolbox
  publication-title: PLoS One
– reference: .
– volume: 98
  start-page: 1733
  year: 2007
  end-page: 1750
  ident: bb0010
  article-title: A model of v4 shape selectivity and invariance
  publication-title: J. Neurophysiol.
– reference: Wennerberg M. version 2.9.5. Norrkross Software, 2009. The software is available from
– volume: 6
  start-page: 1
  year: 2012
  end-page: 19
  ident: bb0025
  article-title: Renewing the respect for similarity
  publication-title: Front. Comput. Neurosci.
– volume: 30
  start-page: 325
  year: 2010
  end-page: 330
  ident: bb0130
  article-title: Multiscale pattern analysis of orientation-selective activity in the primary visual cortex
  publication-title: J. Neurosci.
– year: 2012
  ident: bb0095
  article-title: MATLAB. version 8.0.0.783 (R2012b)
– volume: 16
  start-page: 974
  year: 2013
  end-page: 981
  ident: bb0035
  article-title: A functional and perceptual signature of the second visual area in primates
  publication-title: Nat. Neurosci.
– volume: 60
  start-page: 1126
  issue: 6
  year: 2008
  ident: 10.1016/j.neuroimage.2016.02.071_bb0065
  article-title: Matching categorical object representations in inferior temporal cortex of man and monkey
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.10.043
– ident: 10.1016/j.neuroimage.2016.02.071_bb0155
– volume: 74
  start-page: 1099
  issue: 6
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.071_bb0050
  article-title: Medial axis shape coding in macaque inferotemporal cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.04.029
– volume: 10
  start-page: 443
  year: 1997
  ident: 10.1016/j.neuroimage.2016.02.071_bb0005
  article-title: The psychophysics toolbox
  publication-title: Spat. Vis.
  doi: 10.1163/156856897X00357
– year: 2013
  ident: 10.1016/j.neuroimage.2016.02.071_bb0070
– volume: 195
  start-page: 215
  year: 1968
  ident: 10.1016/j.neuroimage.2016.02.071_bb0045
  article-title: Receptive fields and functional architecture of monkey striate cortex
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1968.sp008455
– volume: 8
  issue: 12
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.071_bb0115
  article-title: Real-time fmri pattern decoding and neurofeedback using friend: an fsl-integrated bci toolbox
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0081658
– volume: 98
  start-page: 1733
  issue: 3
  year: 2007
  ident: 10.1016/j.neuroimage.2016.02.071_bb0010
  article-title: A model of v4 shape selectivity and invariance
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.01265.2006
– year: 2011
  ident: 10.1016/j.neuroimage.2016.02.071_bb0105
– volume: 6
  start-page: 1
  issue: 45
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.071_bb0025
  article-title: Renewing the respect for similarity
  publication-title: Front. Comput. Neurosci.
– volume: 76
  start-page: 1210
  issue: 6
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.071_bb0055
  article-title: A continuous semantic space describes the representation of thousands of object and action categories across the human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.10.014
– volume: 8
  issue: 106
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.071_bb0080
  article-title: Exploration of complex visual feature spaces for object perception
  publication-title: Front. Comput. Neurosci.
– volume: 2
  start-page: 49
  issue: 1
  year: 1936
  ident: 10.1016/j.neuroimage.2016.02.071_bb0090
  article-title: On the generalised distance in statistics
  publication-title: Proc. Natl. Inst. Sci. India
– year: 2012
  ident: 10.1016/j.neuroimage.2016.02.071_bb0095
– volume: 16
  start-page: 974
  issue: 7
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.071_bb0035
  article-title: A functional and perceptual signature of the second visual area in primates
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3402
– volume: 5
  issue: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2016.02.071_bb0060
  article-title: A neurosemantic theory of concrete noun representation based on the underlying brain codes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0008622
– volume: 30
  start-page: 325
  issue: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2016.02.071_bb0130
  article-title: Multiscale pattern analysis of orientation-selective activity in the primary visual cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4811-09.2010
– volume: 67
  start-page: 301
  year: 2005
  ident: 10.1016/j.neuroimage.2016.02.071_bb0170
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.1467-9868.2005.00503.x
– year: 2000
  ident: 10.1016/j.neuroimage.2016.02.071_bb0040
– volume: 7
  start-page: 297
  year: 2000
  ident: 10.1016/j.neuroimage.2016.02.071_bb0160
  article-title: Detecting changes in novel, complex three-dimensional objects
  publication-title: Vis. Cogn.
  doi: 10.1080/135062800394829
– volume: 11
  start-page: 1352
  issue: 11
  year: 2008
  ident: 10.1016/j.neuroimage.2016.02.071_bb0165
  article-title: A neural code for three-dimensional object shape in macaque inferotemporal cortex
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2202
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  ident: 10.1016/j.neuroimage.2016.02.071_bb0085
  article-title: Distinctive image features from scale-invariant keypoints
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 334
  start-page: 1413
  issue: 6061
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.071_bb0125
  article-title: Perceptual learning incepted by decoded fmri neurofeedback without stimulus presentation
  publication-title: Science
  doi: 10.1126/science.1212003
– volume: 13
  start-page: 90
  issue: 1
  year: 2003
  ident: 10.1016/j.neuroimage.2016.02.071_bb0135
  article-title: Columns for complex visual object features in the inferotemporal cortex: clustering of cells with similar but slightly different stimulus selectivities
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/13.1.90
– volume: 10
  start-page: 437
  year: 1997
  ident: 10.1016/j.neuroimage.2016.02.071_bb0100
  article-title: The videotoolbox software for visual psychophysics: transforming numbers into movies
  publication-title: Spat. Vis.
  doi: 10.1163/156856897X00366
– year: 1984
  ident: 10.1016/j.neuroimage.2016.02.071_bb0120
– volume: 5
  start-page: 682
  year: 2002
  ident: 10.1016/j.neuroimage.2016.02.071_bb0145
  article-title: Visual features of intermediate complexity and their use in classification
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn870
– year: 2012
  ident: 10.1016/j.neuroimage.2016.02.071_bb0020
– volume: 20
  start-page: 1065
  issue: 9
  year: 1996
  ident: 10.1016/j.neuroimage.2016.02.071_bb0015
  article-title: The simplex-simulated annealing approach to continuous non-linear optimization
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(95)00221-9
– volume: 59
  start-page: 3533
  issue: 4
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.071_bb0150
  article-title: Adaptive kalman filtering for real-time mapping of the visual field
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.11.003
– volume: 13
  issue: 13
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.071_bb0075
  article-title: Comparing visual representations across human fmri and computational vision
  publication-title: J. Vis.
  doi: 10.1167/13.13.25
– volume: 2
  start-page: 1019
  issue: 11
  year: 1999
  ident: 10.1016/j.neuroimage.2016.02.071_bb0110
  article-title: Hierarchical models of object recognition in cortex
  publication-title: Nat. Neurosci.
  doi: 10.1038/14819
– volume: 1
  start-page: 1
  year: 1991
  ident: 10.1016/j.neuroimage.2016.02.071_bb0030
  article-title: Distributed hierarchical processing in the primate cerebral cortex
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/1.1.1
– year: 2013
  ident: 10.1016/j.neuroimage.2016.02.071_bb0140
SSID ssj0009148
Score 2.2059119
Snippet The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 529
SubjectTerms Biofeedback, Psychology - methods
Biofeedback, Psychology - physiology
Brain Mapping - methods
Computational modeling
Computer Systems
Female
Functional magnetic resonance imaging
Humans
Magnetic Resonance Imaging - methods
Male
Medical imaging
Methods
Neurons
Object recognition
Pattern Recognition, Visual - physiology
Photic Stimulation - methods
Real-time signal processing
Real-time stimulus selection
Reproducibility of Results
Sensitivity and Specificity
Studies
User-Computer Interface
Visual Cortex - physiology
Young Adult
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZaxsxEB5yQMhL6ZHDaVpU6OuSvbWilJKWhFCoCaGBQB6EriUO9q4be_v7Ozp23aQ0-Hk1YGuuT5rRNwAfc5nEytiqbizwgCJiGQmGB9dc5TKWiqWVdGyf4_LiOv9-U9xswLh_C2PbKvuY6AK1bpW9Iz-xhkMpwpv4y_xXZKdG2epqP0JDhNEK-rOjGNuEbQzJFdr99tez8eXVioY3yf3juCKLqiRhobfHd3w5BsnJDP3YtnyVjsuTJv9LWP8C0qd9lX8lqvOX8CIgTHLqTeIVbJjmNez8CDX0N3B7SvzYaIJ4lSBmnEZ2wDz5PVl0KIcuP-um3YIs3IQcVBuZNARhInFMtKStCR5Y3Q04aaW9xSHzoTlmD67Pz35-u4jCiIVI4UliGQktapWJWspaS4ZoTYtcmRr9UsmsLIRmTFVa6bTSJTMFJjytlImppqa0Y4-yfdhq2sYcAlEq1YYaxqiu8kwJTHOpLowU6OKZpPkIaL-PXAX-cTsGY8r7RrN7vtIAtxrgccpRAyNIBsm55-BYQ4b1quL9G1OMihwTxRqynwbZgEM8vlhT-ri3DB7iwYKvrHcEH4bP6Mm2PCMa03ZuTVaUlNHn1lSxK0wnxQgOvLENW5KWfgwZbvQjMxwWWCbxx1-ayZ1jFMcozhAKHz3_09_Crv2fvlHuGLaWD515h5BsKd8HP_sDy787Wg
  priority: 102
  providerName: ProQuest
Title A method for real-time visual stimulus selection in the study of cortical object perception
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811916001877
https://dx.doi.org/10.1016/j.neuroimage.2016.02.071
https://www.ncbi.nlm.nih.gov/pubmed/26973168
https://www.proquest.com/docview/1794778000
https://www.proquest.com/docview/1793567970
https://www.proquest.com/docview/1808706515
https://pubmed.ncbi.nlm.nih.gov/PMC4889505
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB4SB0ovpe86Tc0WelWt92rpyTUJ7suEtAFDD8u-RFQc2dRWjv3tnV2tlLqlxdCLhKQdkGZ2Zr7Rzs4AvEplFCpjV3VDgQGKCGUgGAauqUplKBWLC-mqfc7z2WX6fpEtDmDa7YWxaZXe9rc23Vlrf2fsuTleV9X4MyIDdDcYb-Susxw9hKM4YXk2gKPJuw-z-W3t3Shtd8RlSWAJfEJPm-blykZW16i8Ns8rdwU8afQ3L_UnCv09mfIX73R2H-55WEkm7Zs_gANTP4Q7n_zC-SP4OiFtr2iCIJUgUFwGtqs8uak2DdKhnl83y2ZDNq4tDsqKVDVBbEhc-VmyKglGqe63N1lJ--uGrPuMmMdweXb6ZToLfF-FQGH4sA2EFqVKRCllqSUyLNQiVaZEZVQyyTOhGVOFVjoudM5Mhl5OK2VCqqnJba-j5AkM6lVtngFRKtaGGsaoLtJECfRtsc6MFKjXiaTpEGjHR6580XHb-2LJu-yyb_xWAtxKgIcxRwkMIeop123hjT1oWCcq3m0sRVPI0TvsQfump92ZgHtSn3Qzg3sjsOHW1lGKiDwcwsv-MaqvXZMRtVk1bkyS5ZTRf40pQrcaHWVDeNpOtp4lcd72HkNG70zDfoAtH777pK6uXBlxNN0M8e_xf334c7hrr9rkuRMYbL835gXCtK0cweHrHxEe6YKOUCWnFx_PR1418fz2dH5-8RNeLkaT
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcEG8WChgJjhF5OxaqUIFWW9quEGqlShxcvyK22iZbdgPiz_HbGDtOloKo9tJzPFHiGY8_ex4fwMtURqEyNqobCjygiFAGguHBNVWpDKVicSFdt89xPjpKPx5nx2vwq6uFsWmVnU90jlrXyt6Rv7aGQynCm_Dt7DywrFE2utpRaAhPraA3XYsxX9ixZ37-wCPcfHP3A-r7VRzvbB--HwWeZSBQCKYXgdCiVIkopSy1ZAhYtEiVKdE0lUzyTGjGVKGVjgudM5Ohz9dKmZBqanLL_JPge6_BemorXAew_m57_Onzsu1vlLbFeFkSFFHEfC5Rm2HmOlZOztBv2BSz3PUOpdH_Nsh_AfDfeZx_bIw7t-GWR7RkqzXBO7Bmqrtw_cDH7O_Bly3S0lQTxMcEMeo0sIT25Ptk3qAcupizZtrMydwx8qCZkElFEJYS1_mW1CXBA7K7cSe1tLdGZNYn49yHoyuZ7AcwqOrKPAKiVKwNNYxRXaSJEritxjozUqBLSSRNh0C7eeTK9zu3tBtT3iW2nfKlBrjVAA9jjhoYQtRLztqeHyvIsE5VvKtpRS_McWNaQfZNL-txT4tnVpTe6CyDe_8z58vVMoQX_WP0HDYcJCpTN25MkuWU0cvGFKELhEfZEB62xtZPSZy3tGc40RfMsB9gO5dffFJNvroO5rhrMITejy__9OdwY3R4sM_3d8d7T-Cm_ec2SW8DBotvjXmKcHAhn_k1R-Dkqpf5b8FVfEs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrVRxQby7UMBIcIyat2OhChXaVUthVSEqVeJg_IpYtE223Q2Iv8ivYuw4WQqi2kvP8USJZzzz2TP-BuBFKqNQGZvVDQVuUEQoA8Fw45qqVIZSsbiQju1znB-cpO9Os9M1-NXdhbFllZ1PdI5a18qekW9bw6EU4U24XfqyiOO90evZeWA7SNlMa9dOQ_g2C3rH0Y35Sx5H5ucP3M7Ndw73UPcv43i0_-ntQeA7DgQKgfUiEFqUKhGllKWWDMGLFqkyJZqpkkmeCc2YKrTScaFzZjL0_1opE1JNTW67ACX43huwTjFKpgNYf7M_Pv64pACO0vZiXpYERRQxX1fUVps59srJGfoQW26WOx5RGv0vWP4Lhv-u6fwjSI5uwy2Pbslua453YM1Ud2Hjg8_f34PPu6RtWU0QKxPEq9PANrcn3yfzBuXQ3Zw102ZO5q47D5oMmVQEISpxLLikLglult3pO6mlPUEis74w5z6cXMtkP4BBVVdmE4hSsTbUMEZ1kSZKYIiNdWakQPeSSJoOgXbzyJXnPrctOKa8K3L7xpca4FYDPIw5amAIUS85a_k_VpBhnap4d78VPTLHILWC7Kte1mOgFtusKL3VWQb3vmjOlytnCM_7x-hFbGpIVKZu3JgkyymjV40pQpcUj7IhPGyNrZ-SOG9boOFEXzLDfoBlMb_8pJp8dWzmGEEYwvBHV3_6M9jA5c7fH46PHsNN-8ttvd4WDBYXjXmCyHAhn_olR-DLda_y3-3RgHc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+method+for+real-time+visual+stimulus+selection+in+the+study+of+cortical+object+perception&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Leeds%2C+Daniel+D.&rft.au=Tarr%2C+Michael+J.&rft.date=2016-06-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=133&rft.spage=529&rft.epage=548&rft_id=info:doi/10.1016%2Fj.neuroimage.2016.02.071&rft.externalDocID=S1053811916001877
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon