A method for real-time visual stimulus selection in the study of cortical object perception
The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 133; pp. 529 - 548 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.06.2016
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2016.02.071 |
Cover
Abstract | The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic Resonance Imaging (fMRI) to establish each unit's image selectivity. This approach to imaging necessitates a search through a broad space of stimulus properties using a limited number of samples. To more quickly identify the complex visual features underlying human cortical object perception, we implemented a new functional magnetic resonance imaging protocol in which visual stimuli are selected in real-time based on BOLD responses to recently shown images. Two variations of this protocol were developed, one relying on natural object stimuli and a second based on synthetic object stimuli, both embedded in feature spaces based on the complex visual properties of the objects. During fMRI scanning, we continuously controlled stimulus selection in the context of a real-time search through these image spaces in order to maximize neural responses across pre-determined 1cm3 rain regions. Elsewhere we have reported the patterns of cortical selectivity revealed by this approach (Leeds et al., 2014). In contrast, here our objective is to present more detailed methods and explore the technical and biological factors influencing the behavior of our real-time stimulus search. We observe that: 1) Searches converged more reliably when exploring a more precisely parameterized space of synthetic objects; 2) real-time estimation of cortical responses to stimuli is reasonably consistent; 3) search behavior was acceptably robust to delays in stimulus displays and subject motion effects. Overall, our results indicate that real-time fMRI methods may provide a valuable platform for continuing study of localized neural selectivity, both for visual object representation and beyond.
•We develop real-time BOLD signal processing for efficient study of cortical vision.•Adaptive search of stimuli converges on visual selectivities in some searches.•Adaptive search is robust to undesired subject motion and stimulus display errors.•Simpler visual stimuli and search spaces allow more frequent search convergence.•Assumption of single regional selectivity seems flawed, but searches still converge. |
---|---|
AbstractList | The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic Resonance Imaging (fMRI) to establish each unit’s image selectivity. This approach to imaging necessitates a search through a broad space of stimulus properties using a limited number of samples. To more quickly identify the complex visual features underlying human cortical object perception, we implemented a new functional magnetic resonance imaging protocol in which visual stimuli are selected in real-time based on BOLD responses to recently shown images. Two variations of this protocol were developed, one relying on natural object stimuli and a second based on synthetic object stimuli, both embedded in feature spaces based on the complex visual properties of the objects. During fMRI scanning, we continuously controlled stimulus selection in the context of a real-time search through these image spaces in order to maximize neural responses across predetermined 1
cm
3
brain regions. Elsewhere we have reported the patterns of cortical selectivity revealed by this approach (
Leeds 2014
). In contrast, here our objective is to present more detailed methods and explore the technical and biological factors influencing the behavior of our real-time stimulus search. We observe that: 1) Searches converged more reliably when exploring a more precisely parameterized space of synthetic objects; 2) Real-time estimation of cortical responses to stimuli are reasonably consistent; 3) Search behavior was acceptably robust to delays in stimulus displays and subject motion effects. Overall, our results indicate that real-time fMRI methods may provide a valuable platform for continuing study of localized neural selectivity, both for visual object representation and beyond. The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic Resonance Imaging (fMRI) to establish each unit's image selectivity. This approach to imaging necessitates a search through a broad space of stimulus properties using a limited number of samples. To more quickly identify the complex visual features underlying human cortical object perception, we implemented a new functional magnetic resonance imaging protocol in which visual stimuli are selected in real-time based on BOLD responses to recently shown images. Two variations of this protocol were developed, one relying on natural object stimuli and a second based on synthetic object stimuli, both embedded in feature spaces based on the complex visual properties of the objects. During fMRI scanning, we continuously controlled stimulus selection in the context of a real-time search through these image spaces in order to maximize neural responses across pre-determined 1cm(3) rain regions. Elsewhere we have reported the patterns of cortical selectivity revealed by this approach (Leeds et al., 2014). In contrast, here our objective is to present more detailed methods and explore the technical and biological factors influencing the behavior of our real-time stimulus search. We observe that: 1) Searches converged more reliably when exploring a more precisely parameterized space of synthetic objects; 2) real-time estimation of cortical responses to stimuli is reasonably consistent; 3) search behavior was acceptably robust to delays in stimulus displays and subject motion effects. Overall, our results indicate that real-time fMRI methods may provide a valuable platform for continuing study of localized neural selectivity, both for visual object representation and beyond.The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic Resonance Imaging (fMRI) to establish each unit's image selectivity. This approach to imaging necessitates a search through a broad space of stimulus properties using a limited number of samples. To more quickly identify the complex visual features underlying human cortical object perception, we implemented a new functional magnetic resonance imaging protocol in which visual stimuli are selected in real-time based on BOLD responses to recently shown images. Two variations of this protocol were developed, one relying on natural object stimuli and a second based on synthetic object stimuli, both embedded in feature spaces based on the complex visual properties of the objects. During fMRI scanning, we continuously controlled stimulus selection in the context of a real-time search through these image spaces in order to maximize neural responses across pre-determined 1cm(3) rain regions. Elsewhere we have reported the patterns of cortical selectivity revealed by this approach (Leeds et al., 2014). In contrast, here our objective is to present more detailed methods and explore the technical and biological factors influencing the behavior of our real-time stimulus search. We observe that: 1) Searches converged more reliably when exploring a more precisely parameterized space of synthetic objects; 2) real-time estimation of cortical responses to stimuli is reasonably consistent; 3) search behavior was acceptably robust to delays in stimulus displays and subject motion effects. Overall, our results indicate that real-time fMRI methods may provide a valuable platform for continuing study of localized neural selectivity, both for visual object representation and beyond. The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic Resonance Imaging (fMRI) to establish each unit's image selectivity. This approach to imaging necessitates a search through a broad space of stimulus properties using a limited number of samples. To more quickly identify the complex visual features underlying human cortical object perception, we implemented a new functional magnetic resonance imaging protocol in which visual stimuli are selected in real-time based on BOLD responses to recently shown images. Two variations of this protocol were developed, one relying on natural object stimuli and a second based on synthetic object stimuli, both embedded in feature spaces based on the complex visual properties of the objects. During fMRI scanning, we continuously controlled stimulus selection in the context of a real-time search through these image spaces in order to maximize neural responses across pre-determined 1cm(3) rain regions. Elsewhere we have reported the patterns of cortical selectivity revealed by this approach (Leeds et al., 2014). In contrast, here our objective is to present more detailed methods and explore the technical and biological factors influencing the behavior of our real-time stimulus search. We observe that: 1) Searches converged more reliably when exploring a more precisely parameterized space of synthetic objects; 2) real-time estimation of cortical responses to stimuli is reasonably consistent; 3) search behavior was acceptably robust to delays in stimulus displays and subject motion effects. Overall, our results indicate that real-time fMRI methods may provide a valuable platform for continuing study of localized neural selectivity, both for visual object representation and beyond. The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic Resonance Imaging (fMRI) to establish each unit's image selectivity. This approach to imaging necessitates a search through a broad space of stimulus properties using a limited number of samples. To more quickly identify the complex visual features underlying human cortical object perception, we implemented a new functional magnetic resonance imaging protocol in which visual stimuli are selected in real-time based on BOLD responses to recently shown images. Two variations of this protocol were developed, one relying on natural object stimuli and a second based on synthetic object stimuli, both embedded in feature spaces based on the complex visual properties of the objects. During fMRI scanning, we continuously controlled stimulus selection in the context of a real-time search through these image spaces in order to maximize neural responses across pre-determined 1cm3 rain regions. Elsewhere we have reported the patterns of cortical selectivity revealed by this approach (Leeds et al., 2014). In contrast, here our objective is to present more detailed methods and explore the technical and biological factors influencing the behavior of our real-time stimulus search. We observe that: 1) Searches converged more reliably when exploring a more precisely parameterized space of synthetic objects; 2) real-time estimation of cortical responses to stimuli is reasonably consistent; 3) search behavior was acceptably robust to delays in stimulus displays and subject motion effects. Overall, our results indicate that real-time fMRI methods may provide a valuable platform for continuing study of localized neural selectivity, both for visual object representation and beyond. •We develop real-time BOLD signal processing for efficient study of cortical vision.•Adaptive search of stimuli converges on visual selectivities in some searches.•Adaptive search is robust to undesired subject motion and stimulus display errors.•Simpler visual stimuli and search spaces allow more frequent search convergence.•Assumption of single regional selectivity seems flawed, but searches still converge. The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic Resonance Imaging (fMRI) to establish each unit's image selectivity. This approach to imaging necessitates a search through a broad space of stimulus properties using a limited number of samples. To more quickly identify the complex visual features underlying human cortical object perception, we implemented a new functional magnetic resonance imaging protocol in which visual stimuli are selected in real-time based on BOLD responses to recently shown images. Two variations of this protocol were developed, one relying on natural object stimuli and a second based on synthetic object stimuli, both embedded in feature spaces based on the complex visual properties of the objects. During fMRI scanning, we continuously controlled stimulus selection in the context of a real-time search through these image spaces in order to maximize neural responses across pre-determined 1cm3 rain regions. Elsewhere we have reported the patterns of cortical selectivity revealed by this approach (Leeds et al., 2014). In contrast, here our objective is to present more detailed methods and explore the technical and biological factors influencing the behavior of our real-time stimulus search. We observe that: 1) Searches converged more reliably when exploring a more precisely parameterized space of synthetic objects; 2) real-time estimation of cortical responses to stimuli is reasonably consistent; 3) search behavior was acceptably robust to delays in stimulus displays and subject motion effects. Overall, our results indicate that real-time fMRI methods may provide a valuable platform for continuing study of localized neural selectivity, both for visual object representation and beyond. The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic Resonance Imaging (fMRI) to establish each unit's image selectivity. This approach to imaging necessitates a search through a broad space of stimulus properties using a limited number of samples. To more quickly identify the complex visual features underlying human cortical object perception, we implemented a new functional magnetic resonance imaging protocol in which visual stimuli are selected in real-time based on BOLD responses to recently shown images. Two variations of this protocol were developed, one relying on natural object stimuli and a second based on synthetic object stimuli, both embedded in feature spaces based on the complex visual properties of the objects. During fMRI scanning, we continuously controlled stimulus selection in the context of a real-time search through these image spaces in order to maximize neural responses across pre-determined 1cm3rain regions. Elsewhere we have reported the patterns of cortical selectivity revealed by this approach (Leeds et al., 2014). In contrast, here our objective is to present more detailed methods and explore the technical and biological factors influencing the behavior of our real-time stimulus search. We observe that: 1) Searches converged more reliably when exploring a more precisely parameterized space of synthetic objects; 2) real-time estimation of cortical responses to stimuli is reasonably consistent; 3) search behavior was acceptably robust to delays in stimulus displays and subject motion effects. Overall, our results indicate that real-time fMRI methods may provide a valuable platform for continuing study of localized neural selectivity, both for visual object representation and beyond. |
Author | Tarr, Michael J. Leeds, Daniel D. |
AuthorAffiliation | a Fordham University, Computer and Information Science Department, Bronx, New York, USA b Carnegie Mellon University, Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, USA c Carnegie Mellon University, Psychology Department, Pittsburgh, Pennsylvania, USA |
AuthorAffiliation_xml | – name: a Fordham University, Computer and Information Science Department, Bronx, New York, USA – name: c Carnegie Mellon University, Psychology Department, Pittsburgh, Pennsylvania, USA – name: b Carnegie Mellon University, Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, USA |
Author_xml | – sequence: 1 givenname: Daniel D. surname: Leeds fullname: Leeds, Daniel D. email: dleeds@fordham.edu organization: Fordham University, Computer and Information Science Department, Bronx, New York, USA – sequence: 2 givenname: Michael J. orcidid: 0000-0003-4724-1744 surname: Tarr fullname: Tarr, Michael J. email: michaeltarr@cmu.edu organization: Carnegie Mellon University, Center for the Neural Basis of Cognition, Pittsburgh, PA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26973168$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUstu1DAUtVARbQd-AVliwybBzsv2BtFWvKRKbGDFwnLsm46DYw92MtL8PY7aUpjVrPy4x8f3nnMu0ZkPHhDClJSU0O7dWHpYYrCTuoOyyjclqUrC6DN0QYloC9Gy6mzdt3XBKRXn6DKlkRAiaMNfoPOqE6ymHb9AP6_wBPM2GDyEiCMoV8x2Ary3aVEOp3xY3JJwAgd6tsFj6_G8hVxZzAGHAesQZ6szNvRjhuAdRA27FfoSPR-US_DqYd2gH58-fr_5Utx--_z15uq20K1gc6GMGnSthr4fTC-6lhjVaBhqKnRfd60yQmhutKm46QS0tCZGayDMMOi4Nk29Qe_veXdLP4HR4OeonNzFrE88yKCs_L_i7Vbehb1sOBdt1miD3j4QxPB7gTTLySYNzikPYUmScsIZ6Vp6ApSJuu2YYCRD3xxBx7BEn5VYUQ1jPBuSUa__bf5v148WPU2nY0gpwiC1ndWqb57FOkmJXDMhR_mUCblmQpJK5kxkAn5E8PjHCU-v759Ctm9vIcqkLXgNxsbstTTBnkLy4YhEO-vXyPyCw2kUfwBz0fDF |
CitedBy_id | crossref_primary_10_1371_journal_pone_0207352 crossref_primary_10_1016_j_asoc_2017_07_055 crossref_primary_10_1038_nn_4499 |
Cites_doi | 10.1016/j.neuron.2008.10.043 10.1016/j.neuron.2012.04.029 10.1163/156856897X00357 10.1113/jphysiol.1968.sp008455 10.1371/journal.pone.0081658 10.1152/jn.01265.2006 10.1016/j.neuron.2012.10.014 10.1038/nn.3402 10.1371/journal.pone.0008622 10.1523/JNEUROSCI.4811-09.2010 10.1111/j.1467-9868.2005.00503.x 10.1080/135062800394829 10.1038/nn.2202 10.1023/B:VISI.0000029664.99615.94 10.1126/science.1212003 10.1093/cercor/13.1.90 10.1163/156856897X00366 10.1038/nn870 10.1016/0098-1354(95)00221-9 10.1016/j.neuroimage.2011.11.003 10.1167/13.13.25 10.1038/14819 10.1093/cercor/1.1.1 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Inc. Copyright © 2016 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Jun 1, 2016 |
Copyright_xml | – notice: 2016 Elsevier Inc. – notice: Copyright © 2016 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Jun 1, 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO 5PM |
DOI | 10.1016/j.neuroimage.2016.02.071 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | MEDLINE - Academic MEDLINE Engineering Research Database ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 548 |
ExternalDocumentID | PMC4889505 4082156571 26973168 10_1016_j_neuroimage_2016_02_071 S1053811916001877 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDA NIH HHS grantid: T90 DA022762 – fundername: NIMH NIH HHS grantid: R01 MH084195 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- 3V. 6I. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG LCYCR NCXOZ RIG ZA5 AAYXX AGRNS ALIPV CITATION CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO 5PM |
ID | FETCH-LOGICAL-c597t-adafc3afbbfdb9650da4cef319cb365ad99c8dcd28d69e5130dcce07d7e68cd43 |
IEDL.DBID | AIKHN |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Aug 21 18:24:26 EDT 2025 Fri Sep 05 09:53:41 EDT 2025 Fri Sep 05 05:43:45 EDT 2025 Wed Aug 13 07:22:48 EDT 2025 Mon Jul 21 06:04:41 EDT 2025 Thu Apr 24 22:57:57 EDT 2025 Tue Jul 01 03:01:46 EDT 2025 Fri Feb 23 02:25:04 EST 2024 Tue Aug 26 20:08:36 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Functional magnetic resonance imaging Real-time stimulus selection Real-time signal processing Computational modeling Object recognition |
Language | English |
License | Copyright © 2016 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c597t-adafc3afbbfdb9650da4cef319cb365ad99c8dcd28d69e5130dcce07d7e68cd43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4724-1744 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4889505 |
PMID | 26973168 |
PQID | 1794778000 |
PQPubID | 2031077 |
PageCount | 20 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4889505 proquest_miscellaneous_1808706515 proquest_miscellaneous_1793567970 proquest_journals_1794778000 pubmed_primary_26973168 crossref_citationtrail_10_1016_j_neuroimage_2016_02_071 crossref_primary_10_1016_j_neuroimage_2016_02_071 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2016_02_071 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2016_02_071 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-06-01 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2016 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Pelli (bb0100) 1997; 10 Ward, Janik, Mazaheri, Ma, DeYoe (bb0150) 2011; 59 (bb0095) 2012 Lowe (bb0085) 2004; 60 Brainard (bb0005) 1997; 10 Pittman (bb0105) 2011 Freeman, Ziemba, Jeeger, Simoncelli, Movshon (bb0035) 2013; 16 Donckels (bb0020) 2012 Hung, Carlson, Connor (bb0050) 2012; 74 Zou, Hastie (bb0170) 2005; 67 Wennerberg M. version 2.9.5. Norrkross Software, 2009. The software is available from Cardoso, Salcedo, de Azevedo (bb0015) 1996; 20 Huth, Nishimoto, Vu, Gallant (bb0055) 2012; 76 Mahalanobis (bb0090) 1936; 2 Yamane, Carlson, Bowman, Wang, Connor (bb0165) 2008; 11 Felleman, Essen (bb0030) 1991; 1 Shibata, Watanabe, Sasaki, Kawato (bb0125) 2011; 334 Leeds, Seibert, Pyles, Tarr (bb0075) 2013; 13 Leeds, Pyles, Tarr (bb0080) 2014; 8 Williams, Simons (bb0160) 2000; 7 Swisher, Gatenby, Gore, Wolfe, C.H., S.G., F. (bb0130) 2010; 30 Riesenhuber, Poggio (bb0110) 1999; 2 . Edelman, Shahbazi (bb0025) 2012; 6 Tarr (bb0140) 2013 Ullman, Vidal-Naquet, Sali (bb0145) 2002; 5 Just, Cherkassky, Aryal, Mitchell (bb0060) 2010; 5 Seber (bb0120) 1984 Leeds (bb0070) 2013 Tanaka (bb0135) 2003; 13 Cadieu, Kouh, Pasupathy, Connor, Riesenhuber, Poggio (bb0010) 2007; 98 Kriegeskorte, Murr, Ruff, Kiani, Bodurka, Esteky, Tanaka, Bandettini (bb0065) 2008; 60 Hubel, Wiesel (bb0045) 1968; 195 Sato, Basilio, Paiva, Garrido, Bramati, Bado, Tovar-Moll, Zahn, Moll (bb0115) 2013; 8 Hemera Technologies I. (bb0040) 2000-2003 Cadieu (10.1016/j.neuroimage.2016.02.071_bb0010) 2007; 98 Leeds (10.1016/j.neuroimage.2016.02.071_bb0080) 2014; 8 Felleman (10.1016/j.neuroimage.2016.02.071_bb0030) 1991; 1 Cardoso (10.1016/j.neuroimage.2016.02.071_bb0015) 1996; 20 Brainard (10.1016/j.neuroimage.2016.02.071_bb0005) 1997; 10 Ullman (10.1016/j.neuroimage.2016.02.071_bb0145) 2002; 5 Ward (10.1016/j.neuroimage.2016.02.071_bb0150) 2011; 59 Yamane (10.1016/j.neuroimage.2016.02.071_bb0165) 2008; 11 Shibata (10.1016/j.neuroimage.2016.02.071_bb0125) 2011; 334 Hubel (10.1016/j.neuroimage.2016.02.071_bb0045) 1968; 195 Freeman (10.1016/j.neuroimage.2016.02.071_bb0035) 2013; 16 Huth (10.1016/j.neuroimage.2016.02.071_bb0055) 2012; 76 Williams (10.1016/j.neuroimage.2016.02.071_bb0160) 2000; 7 Edelman (10.1016/j.neuroimage.2016.02.071_bb0025) 2012; 6 Swisher (10.1016/j.neuroimage.2016.02.071_bb0130) 2010; 30 Just (10.1016/j.neuroimage.2016.02.071_bb0060) 2010; 5 Riesenhuber (10.1016/j.neuroimage.2016.02.071_bb0110) 1999; 2 Pelli (10.1016/j.neuroimage.2016.02.071_bb0100) 1997; 10 Sato (10.1016/j.neuroimage.2016.02.071_bb0115) 2013; 8 Kriegeskorte (10.1016/j.neuroimage.2016.02.071_bb0065) 2008; 60 Seber (10.1016/j.neuroimage.2016.02.071_bb0120) 1984 10.1016/j.neuroimage.2016.02.071_bb0155 Hemera Technologies I. (10.1016/j.neuroimage.2016.02.071_bb0040) 2000 Tanaka (10.1016/j.neuroimage.2016.02.071_bb0135) 2003; 13 Tarr (10.1016/j.neuroimage.2016.02.071_bb0140) 2013 (10.1016/j.neuroimage.2016.02.071_bb0095) 2012 Leeds (10.1016/j.neuroimage.2016.02.071_bb0075) 2013; 13 Lowe (10.1016/j.neuroimage.2016.02.071_bb0085) 2004; 60 Zou (10.1016/j.neuroimage.2016.02.071_bb0170) 2005; 67 Leeds (10.1016/j.neuroimage.2016.02.071_bb0070) 2013 Hung (10.1016/j.neuroimage.2016.02.071_bb0050) 2012; 74 Mahalanobis (10.1016/j.neuroimage.2016.02.071_bb0090) 1936; 2 Donckels (10.1016/j.neuroimage.2016.02.071_bb0020) 2012 Pittman (10.1016/j.neuroimage.2016.02.071_bb0105) 2011 |
References_xml | – volume: 195 start-page: 215 year: 1968 end-page: 243 ident: bb0045 article-title: Receptive fields and functional architecture of monkey striate cortex publication-title: J. Physiol. – volume: 10 start-page: 437 year: 1997 end-page: 442 ident: bb0100 article-title: The videotoolbox software for visual psychophysics: transforming numbers into movies publication-title: Spat. Vis. – volume: 10 start-page: 443 year: 1997 end-page: 446 ident: bb0005 article-title: The psychophysics toolbox publication-title: Spat. Vis. – volume: 76 start-page: 1210 year: 2012 end-page: 1224 ident: bb0055 article-title: A continuous semantic space describes the representation of thousands of object and action categories across the human brain publication-title: Neuron – volume: 8 year: 2014 ident: bb0080 article-title: Exploration of complex visual feature spaces for object perception publication-title: Front. Comput. Neurosci. – volume: 59 start-page: 3533 year: 2011 end-page: 3547 ident: bb0150 article-title: Adaptive kalman filtering for real-time mapping of the visual field publication-title: NeuroImage – year: 1984 ident: bb0120 article-title: Multivariate Observations – year: 2012 ident: bb0020 article-title: Global Optimization Algorithms for Matlab – volume: 334 start-page: 1413 year: 2011 end-page: 1415 ident: bb0125 article-title: Perceptual learning incepted by decoded fmri neurofeedback without stimulus presentation publication-title: Science – volume: 13 start-page: 90 year: 2003 end-page: 99 ident: bb0135 article-title: Columns for complex visual object features in the inferotemporal cortex: clustering of cells with similar but slightly different stimulus selectivities publication-title: Cereb. Cortex – volume: 13 year: 2013 ident: bb0075 article-title: Comparing visual representations across human fmri and computational vision publication-title: J. Vis. – year: 2011 ident: bb0105 article-title: Afni main page — afni and nifti server for nimh/nih/phs/dhhs/usa/earth – volume: 2 start-page: 49 year: 1936 end-page: 55 ident: bb0090 article-title: On the generalised distance in statistics publication-title: Proc. Natl. Inst. Sci. India – volume: 11 start-page: 1352 year: 2008 end-page: 1360 ident: bb0165 article-title: A neural code for three-dimensional object shape in macaque inferotemporal cortex publication-title: Nat. Neurosci. – volume: 60 start-page: 1126 year: 2008 end-page: 1141 ident: bb0065 article-title: Matching categorical object representations in inferior temporal cortex of man and monkey publication-title: Neuron – volume: 2 start-page: 1019 year: 1999 end-page: 1025 ident: bb0110 article-title: Hierarchical models of object recognition in cortex publication-title: Nat. Neurosci. – volume: 67 start-page: 301 year: 2005 end-page: 320 ident: bb0170 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc. Ser. B – year: 2013 ident: bb0140 article-title: Novel Object – The cnbc Wiki – volume: 5 start-page: 682 year: 2002 end-page: 687 ident: bb0145 article-title: Visual features of intermediate complexity and their use in classification publication-title: Nat. Neurosci. – volume: 7 start-page: 297 year: 2000 end-page: 322 ident: bb0160 article-title: Detecting changes in novel, complex three-dimensional objects publication-title: Vis. Cogn. – volume: 60 start-page: 91 year: 2004 end-page: 110 ident: bb0085 article-title: Distinctive image features from scale-invariant keypoints publication-title: Int. J. Comput. Vis. – volume: 1 start-page: 1 year: 1991 end-page: 47 ident: bb0030 article-title: Distributed hierarchical processing in the primate cerebral cortex publication-title: Cereb. Cortex – year: 2013 ident: bb0070 article-title: Searching for the Visual Components of Object Perception – volume: 20 start-page: 1065 year: 1996 end-page: 1080 ident: bb0015 article-title: The simplex-simulated annealing approach to continuous non-linear optimization publication-title: Comput. Chem. Eng. – volume: 74 start-page: 1099 year: 2012 end-page: 1113 ident: bb0050 article-title: Medial axis shape coding in macaque inferotemporal cortex publication-title: Neuron – year: 2000-2003 ident: bb0040 article-title: Hemera Photo Objects Volumes i, ii, and iii – volume: 5 year: 2010 ident: bb0060 article-title: A neurosemantic theory of concrete noun representation based on the underlying brain codes publication-title: PLoS One – volume: 8 year: 2013 ident: bb0115 article-title: Real-time fmri pattern decoding and neurofeedback using friend: an fsl-integrated bci toolbox publication-title: PLoS One – reference: . – volume: 98 start-page: 1733 year: 2007 end-page: 1750 ident: bb0010 article-title: A model of v4 shape selectivity and invariance publication-title: J. Neurophysiol. – reference: Wennerberg M. version 2.9.5. Norrkross Software, 2009. The software is available from – volume: 6 start-page: 1 year: 2012 end-page: 19 ident: bb0025 article-title: Renewing the respect for similarity publication-title: Front. Comput. Neurosci. – volume: 30 start-page: 325 year: 2010 end-page: 330 ident: bb0130 article-title: Multiscale pattern analysis of orientation-selective activity in the primary visual cortex publication-title: J. Neurosci. – year: 2012 ident: bb0095 article-title: MATLAB. version 8.0.0.783 (R2012b) – volume: 16 start-page: 974 year: 2013 end-page: 981 ident: bb0035 article-title: A functional and perceptual signature of the second visual area in primates publication-title: Nat. Neurosci. – volume: 60 start-page: 1126 issue: 6 year: 2008 ident: 10.1016/j.neuroimage.2016.02.071_bb0065 article-title: Matching categorical object representations in inferior temporal cortex of man and monkey publication-title: Neuron doi: 10.1016/j.neuron.2008.10.043 – ident: 10.1016/j.neuroimage.2016.02.071_bb0155 – volume: 74 start-page: 1099 issue: 6 year: 2012 ident: 10.1016/j.neuroimage.2016.02.071_bb0050 article-title: Medial axis shape coding in macaque inferotemporal cortex publication-title: Neuron doi: 10.1016/j.neuron.2012.04.029 – volume: 10 start-page: 443 year: 1997 ident: 10.1016/j.neuroimage.2016.02.071_bb0005 article-title: The psychophysics toolbox publication-title: Spat. Vis. doi: 10.1163/156856897X00357 – year: 2013 ident: 10.1016/j.neuroimage.2016.02.071_bb0070 – volume: 195 start-page: 215 year: 1968 ident: 10.1016/j.neuroimage.2016.02.071_bb0045 article-title: Receptive fields and functional architecture of monkey striate cortex publication-title: J. Physiol. doi: 10.1113/jphysiol.1968.sp008455 – volume: 8 issue: 12 year: 2013 ident: 10.1016/j.neuroimage.2016.02.071_bb0115 article-title: Real-time fmri pattern decoding and neurofeedback using friend: an fsl-integrated bci toolbox publication-title: PLoS One doi: 10.1371/journal.pone.0081658 – volume: 98 start-page: 1733 issue: 3 year: 2007 ident: 10.1016/j.neuroimage.2016.02.071_bb0010 article-title: A model of v4 shape selectivity and invariance publication-title: J. Neurophysiol. doi: 10.1152/jn.01265.2006 – year: 2011 ident: 10.1016/j.neuroimage.2016.02.071_bb0105 – volume: 6 start-page: 1 issue: 45 year: 2012 ident: 10.1016/j.neuroimage.2016.02.071_bb0025 article-title: Renewing the respect for similarity publication-title: Front. Comput. Neurosci. – volume: 76 start-page: 1210 issue: 6 year: 2012 ident: 10.1016/j.neuroimage.2016.02.071_bb0055 article-title: A continuous semantic space describes the representation of thousands of object and action categories across the human brain publication-title: Neuron doi: 10.1016/j.neuron.2012.10.014 – volume: 8 issue: 106 year: 2014 ident: 10.1016/j.neuroimage.2016.02.071_bb0080 article-title: Exploration of complex visual feature spaces for object perception publication-title: Front. Comput. Neurosci. – volume: 2 start-page: 49 issue: 1 year: 1936 ident: 10.1016/j.neuroimage.2016.02.071_bb0090 article-title: On the generalised distance in statistics publication-title: Proc. Natl. Inst. Sci. India – year: 2012 ident: 10.1016/j.neuroimage.2016.02.071_bb0095 – volume: 16 start-page: 974 issue: 7 year: 2013 ident: 10.1016/j.neuroimage.2016.02.071_bb0035 article-title: A functional and perceptual signature of the second visual area in primates publication-title: Nat. Neurosci. doi: 10.1038/nn.3402 – volume: 5 issue: 1 year: 2010 ident: 10.1016/j.neuroimage.2016.02.071_bb0060 article-title: A neurosemantic theory of concrete noun representation based on the underlying brain codes publication-title: PLoS One doi: 10.1371/journal.pone.0008622 – volume: 30 start-page: 325 issue: 1 year: 2010 ident: 10.1016/j.neuroimage.2016.02.071_bb0130 article-title: Multiscale pattern analysis of orientation-selective activity in the primary visual cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4811-09.2010 – volume: 67 start-page: 301 year: 2005 ident: 10.1016/j.neuroimage.2016.02.071_bb0170 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.1467-9868.2005.00503.x – year: 2000 ident: 10.1016/j.neuroimage.2016.02.071_bb0040 – volume: 7 start-page: 297 year: 2000 ident: 10.1016/j.neuroimage.2016.02.071_bb0160 article-title: Detecting changes in novel, complex three-dimensional objects publication-title: Vis. Cogn. doi: 10.1080/135062800394829 – volume: 11 start-page: 1352 issue: 11 year: 2008 ident: 10.1016/j.neuroimage.2016.02.071_bb0165 article-title: A neural code for three-dimensional object shape in macaque inferotemporal cortex publication-title: Nat. Neurosci. doi: 10.1038/nn.2202 – volume: 60 start-page: 91 issue: 2 year: 2004 ident: 10.1016/j.neuroimage.2016.02.071_bb0085 article-title: Distinctive image features from scale-invariant keypoints publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000029664.99615.94 – volume: 334 start-page: 1413 issue: 6061 year: 2011 ident: 10.1016/j.neuroimage.2016.02.071_bb0125 article-title: Perceptual learning incepted by decoded fmri neurofeedback without stimulus presentation publication-title: Science doi: 10.1126/science.1212003 – volume: 13 start-page: 90 issue: 1 year: 2003 ident: 10.1016/j.neuroimage.2016.02.071_bb0135 article-title: Columns for complex visual object features in the inferotemporal cortex: clustering of cells with similar but slightly different stimulus selectivities publication-title: Cereb. Cortex doi: 10.1093/cercor/13.1.90 – volume: 10 start-page: 437 year: 1997 ident: 10.1016/j.neuroimage.2016.02.071_bb0100 article-title: The videotoolbox software for visual psychophysics: transforming numbers into movies publication-title: Spat. Vis. doi: 10.1163/156856897X00366 – year: 1984 ident: 10.1016/j.neuroimage.2016.02.071_bb0120 – volume: 5 start-page: 682 year: 2002 ident: 10.1016/j.neuroimage.2016.02.071_bb0145 article-title: Visual features of intermediate complexity and their use in classification publication-title: Nat. Neurosci. doi: 10.1038/nn870 – year: 2012 ident: 10.1016/j.neuroimage.2016.02.071_bb0020 – volume: 20 start-page: 1065 issue: 9 year: 1996 ident: 10.1016/j.neuroimage.2016.02.071_bb0015 article-title: The simplex-simulated annealing approach to continuous non-linear optimization publication-title: Comput. Chem. Eng. doi: 10.1016/0098-1354(95)00221-9 – volume: 59 start-page: 3533 issue: 4 year: 2011 ident: 10.1016/j.neuroimage.2016.02.071_bb0150 article-title: Adaptive kalman filtering for real-time mapping of the visual field publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.11.003 – volume: 13 issue: 13 year: 2013 ident: 10.1016/j.neuroimage.2016.02.071_bb0075 article-title: Comparing visual representations across human fmri and computational vision publication-title: J. Vis. doi: 10.1167/13.13.25 – volume: 2 start-page: 1019 issue: 11 year: 1999 ident: 10.1016/j.neuroimage.2016.02.071_bb0110 article-title: Hierarchical models of object recognition in cortex publication-title: Nat. Neurosci. doi: 10.1038/14819 – volume: 1 start-page: 1 year: 1991 ident: 10.1016/j.neuroimage.2016.02.071_bb0030 article-title: Distributed hierarchical processing in the primate cerebral cortex publication-title: Cereb. Cortex doi: 10.1093/cercor/1.1.1 – year: 2013 ident: 10.1016/j.neuroimage.2016.02.071_bb0140 |
SSID | ssj0009148 |
Score | 2.2059119 |
Snippet | The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 529 |
SubjectTerms | Biofeedback, Psychology - methods Biofeedback, Psychology - physiology Brain Mapping - methods Computational modeling Computer Systems Female Functional magnetic resonance imaging Humans Magnetic Resonance Imaging - methods Male Medical imaging Methods Neurons Object recognition Pattern Recognition, Visual - physiology Photic Stimulation - methods Real-time signal processing Real-time stimulus selection Reproducibility of Results Sensitivity and Specificity Studies User-Computer Interface Visual Cortex - physiology Young Adult |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZaxsxEB5yQMhL6ZHDaVpU6OuSvbWilJKWhFCoCaGBQB6EriUO9q4be_v7Ozp23aQ0-Hk1YGuuT5rRNwAfc5nEytiqbizwgCJiGQmGB9dc5TKWiqWVdGyf4_LiOv9-U9xswLh_C2PbKvuY6AK1bpW9Iz-xhkMpwpv4y_xXZKdG2epqP0JDhNEK-rOjGNuEbQzJFdr99tez8eXVioY3yf3juCKLqiRhobfHd3w5BsnJDP3YtnyVjsuTJv9LWP8C0qd9lX8lqvOX8CIgTHLqTeIVbJjmNez8CDX0N3B7SvzYaIJ4lSBmnEZ2wDz5PVl0KIcuP-um3YIs3IQcVBuZNARhInFMtKStCR5Y3Q04aaW9xSHzoTlmD67Pz35-u4jCiIVI4UliGQktapWJWspaS4ZoTYtcmRr9UsmsLIRmTFVa6bTSJTMFJjytlImppqa0Y4-yfdhq2sYcAlEq1YYaxqiu8kwJTHOpLowU6OKZpPkIaL-PXAX-cTsGY8r7RrN7vtIAtxrgccpRAyNIBsm55-BYQ4b1quL9G1OMihwTxRqynwbZgEM8vlhT-ri3DB7iwYKvrHcEH4bP6Mm2PCMa03ZuTVaUlNHn1lSxK0wnxQgOvLENW5KWfgwZbvQjMxwWWCbxx1-ayZ1jFMcozhAKHz3_09_Crv2fvlHuGLaWD515h5BsKd8HP_sDy787Wg priority: 102 providerName: ProQuest |
Title | A method for real-time visual stimulus selection in the study of cortical object perception |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811916001877 https://dx.doi.org/10.1016/j.neuroimage.2016.02.071 https://www.ncbi.nlm.nih.gov/pubmed/26973168 https://www.proquest.com/docview/1794778000 https://www.proquest.com/docview/1793567970 https://www.proquest.com/docview/1808706515 https://pubmed.ncbi.nlm.nih.gov/PMC4889505 |
Volume | 133 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB4SB0ovpe86Tc0WelWt92rpyTUJ7suEtAFDD8u-RFQc2dRWjv3tnV2tlLqlxdCLhKQdkGZ2Zr7Rzs4AvEplFCpjV3VDgQGKCGUgGAauqUplKBWLC-mqfc7z2WX6fpEtDmDa7YWxaZXe9rc23Vlrf2fsuTleV9X4MyIDdDcYb-Susxw9hKM4YXk2gKPJuw-z-W3t3Shtd8RlSWAJfEJPm-blykZW16i8Ns8rdwU8afQ3L_UnCv09mfIX73R2H-55WEkm7Zs_gANTP4Q7n_zC-SP4OiFtr2iCIJUgUFwGtqs8uak2DdKhnl83y2ZDNq4tDsqKVDVBbEhc-VmyKglGqe63N1lJ--uGrPuMmMdweXb6ZToLfF-FQGH4sA2EFqVKRCllqSUyLNQiVaZEZVQyyTOhGVOFVjoudM5Mhl5OK2VCqqnJba-j5AkM6lVtngFRKtaGGsaoLtJECfRtsc6MFKjXiaTpEGjHR6580XHb-2LJu-yyb_xWAtxKgIcxRwkMIeop123hjT1oWCcq3m0sRVPI0TvsQfump92ZgHtSn3Qzg3sjsOHW1lGKiDwcwsv-MaqvXZMRtVk1bkyS5ZTRf40pQrcaHWVDeNpOtp4lcd72HkNG70zDfoAtH777pK6uXBlxNN0M8e_xf334c7hrr9rkuRMYbL835gXCtK0cweHrHxEe6YKOUCWnFx_PR1418fz2dH5-8RNeLkaT |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcEG8WChgJjhF5OxaqUIFWW9quEGqlShxcvyK22iZbdgPiz_HbGDtOloKo9tJzPFHiGY8_ex4fwMtURqEyNqobCjygiFAGguHBNVWpDKVicSFdt89xPjpKPx5nx2vwq6uFsWmVnU90jlrXyt6Rv7aGQynCm_Dt7DywrFE2utpRaAhPraA3XYsxX9ixZ37-wCPcfHP3A-r7VRzvbB--HwWeZSBQCKYXgdCiVIkopSy1ZAhYtEiVKdE0lUzyTGjGVKGVjgudM5Ohz9dKmZBqanLL_JPge6_BemorXAew_m57_Onzsu1vlLbFeFkSFFHEfC5Rm2HmOlZOztBv2BSz3PUOpdH_Nsh_AfDfeZx_bIw7t-GWR7RkqzXBO7Bmqrtw_cDH7O_Bly3S0lQTxMcEMeo0sIT25Ptk3qAcupizZtrMydwx8qCZkElFEJYS1_mW1CXBA7K7cSe1tLdGZNYn49yHoyuZ7AcwqOrKPAKiVKwNNYxRXaSJEritxjozUqBLSSRNh0C7eeTK9zu3tBtT3iW2nfKlBrjVAA9jjhoYQtRLztqeHyvIsE5VvKtpRS_McWNaQfZNL-txT4tnVpTe6CyDe_8z58vVMoQX_WP0HDYcJCpTN25MkuWU0cvGFKELhEfZEB62xtZPSZy3tGc40RfMsB9gO5dffFJNvroO5rhrMITejy__9OdwY3R4sM_3d8d7T-Cm_ec2SW8DBotvjXmKcHAhn_k1R-Dkqpf5b8FVfEs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrVRxQby7UMBIcIyat2OhChXaVUthVSEqVeJg_IpYtE223Q2Iv8ivYuw4WQqi2kvP8USJZzzz2TP-BuBFKqNQGZvVDQVuUEQoA8Fw45qqVIZSsbiQju1znB-cpO9Os9M1-NXdhbFllZ1PdI5a18qekW9bw6EU4U24XfqyiOO90evZeWA7SNlMa9dOQ_g2C3rH0Y35Sx5H5ucP3M7Ndw73UPcv43i0_-ntQeA7DgQKgfUiEFqUKhGllKWWDMGLFqkyJZqpkkmeCc2YKrTScaFzZjL0_1opE1JNTW67ACX43huwTjFKpgNYf7M_Pv64pACO0vZiXpYERRQxX1fUVps59srJGfoQW26WOx5RGv0vWP4Lhv-u6fwjSI5uwy2Pbslua453YM1Ud2Hjg8_f34PPu6RtWU0QKxPEq9PANrcn3yfzBuXQ3Zw102ZO5q47D5oMmVQEISpxLLikLglult3pO6mlPUEis74w5z6cXMtkP4BBVVdmE4hSsTbUMEZ1kSZKYIiNdWakQPeSSJoOgXbzyJXnPrctOKa8K3L7xpca4FYDPIw5amAIUS85a_k_VpBhnap4d78VPTLHILWC7Kte1mOgFtusKL3VWQb3vmjOlytnCM_7x-hFbGpIVKZu3JgkyymjV40pQpcUj7IhPGyNrZ-SOG9boOFEXzLDfoBlMb_8pJp8dWzmGEEYwvBHV3_6M9jA5c7fH46PHsNN-8ttvd4WDBYXjXmCyHAhn_olR-DLda_y3-3RgHc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+method+for+real-time+visual+stimulus+selection+in+the+study+of+cortical+object+perception&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Leeds%2C+Daniel+D.&rft.au=Tarr%2C+Michael+J.&rft.date=2016-06-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=133&rft.spage=529&rft.epage=548&rft_id=info:doi/10.1016%2Fj.neuroimage.2016.02.071&rft.externalDocID=S1053811916001877 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |