Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors
After the first report of induced pluripotent stem cells (iPSCs), considerable efforts have been made to develop more efficient methods for generating iPSCs without foreign gene insertions. Here we show that Sendai virus vector, an RNA virus vector that carries no risk of integrating into the host g...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 108; no. 34; pp. 14234 - 14239 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
23.08.2011
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | After the first report of induced pluripotent stem cells (iPSCs), considerable efforts have been made to develop more efficient methods for generating iPSCs without foreign gene insertions. Here we show that Sendai virus vector, an RNA virus vector that carries no risk of integrating into the host genome, is a practical solution for the efficient generation of safer iPSCs. We improved the Sendai virus vectors by introducing temperature-sensitive mutations so that the vectors could be easily removed at nonpermissive temperatures. Using these vectors enabled the efficient production of viral/factor-free iPSCs from both human fibroblasts and CD34+ cord blood cells. Temperature-shift treatment was more effective in eliminating remaining viral vector-related genes. The resulting iPSCs expressed human embryonic stem cell markers and exhibited pluripotency. We suggest that generation of transgene-free iPSCs from cord blood cells should be an important step in providing allogeneic iPSC-derived therapy in the future. |
---|---|
AbstractList | After the first report of induced pluripotent stem cells (iPSCs), considerable efforts have been made to develop more efficient methods for generating iPSCs without foreign gene insertions. Here we show that Sendai virus vector, an RNA virus vector that carries no risk of integrating into the host genome, is a practical solution for the efficient generation of safer iPSCs. We improved the Sendai virus vectors by introducing temperature-sensitive mutations so that the vectors could be easily removed at nonpermissive temperatures. Using these vectors enabled the efficient production of viral/factor-free iPSCs from both human fibroblasts and CD34 + cord blood cells. Temperature-shift treatment was more effective in eliminating remaining viral vector-related genes. The resulting iPSCs expressed human embryonic stem cell markers and exhibited pluripotency. We suggest that generation of transgene-free iPSCs from cord blood cells should be an important step in providing allogeneic iPSC-derived therapy in the future. After the first report of induced pluripotent stem cells (iPSCs), considerable efforts have been made to develop more efficient methods for generating iPSCs without foreign gene insertions. Here we show that Sendai virus vector, an RNA virus vector that carries no risk of integrating into the host genome, is a practical solution for the efficient generation of safer iPSCs. We improved the Sendai virus vectors by introducing temperature-sensitive mutations so that the vectors could be easily removed at nonpermissive temperatures. Using these vectors enabled the efficient production of viral/factor-free iPSCs from both human fibroblasts and CD34(+) cord blood cells. Temperature-shift treatment was more effective in eliminating remaining viral vector-related genes. The resulting iPSCs expressed human embryonic stem cell markers and exhibited pluripotency. We suggest that generation of transgene-free iPSCs from cord blood cells should be an important step in providing allogeneic iPSC-derived therapy in the future.After the first report of induced pluripotent stem cells (iPSCs), considerable efforts have been made to develop more efficient methods for generating iPSCs without foreign gene insertions. Here we show that Sendai virus vector, an RNA virus vector that carries no risk of integrating into the host genome, is a practical solution for the efficient generation of safer iPSCs. We improved the Sendai virus vectors by introducing temperature-sensitive mutations so that the vectors could be easily removed at nonpermissive temperatures. Using these vectors enabled the efficient production of viral/factor-free iPSCs from both human fibroblasts and CD34(+) cord blood cells. Temperature-shift treatment was more effective in eliminating remaining viral vector-related genes. The resulting iPSCs expressed human embryonic stem cell markers and exhibited pluripotency. We suggest that generation of transgene-free iPSCs from cord blood cells should be an important step in providing allogeneic iPSC-derived therapy in the future. After the first report of induced pluripotent stem cells (iPSCs), considerable efforts have been made to develop more efficient methods for generating iPSCs without foreign gene insertions. Here we show that Sendai virus vector, an RNA virus vector that carries no risk of integrating into the host genome, is a practical solution for the efficient generation of safer iPSCs. We improved the Sendai virus vectors by introducing temperature-sensitive mutations so that the vectors could be easily removed at nonpermissive temperatures. Using these vectors enabled the efficient production of viral/factor-free iPSCs from both human fibroblasts and CD34+ cord blood cells. Temperature-shift treatment was more effective in eliminating remaining viral vector-related genes. The resulting iPSCs expressed human embryonic stem cell markers and exhibited pluripotency. We suggest that generation of transgene-free iPSCs from cord blood cells should be an important step in providing allogeneic iPSC-derived therapy in the future. [PUBLICATION ABSTRACT] After the first report of induced pluripotent stem cells (iPSCs), considerable efforts have been made to develop more efficient methods for generating iPSCs without foreign gene insertions. Here we show that Sendai virus vector, an RNA virus vector that carries no risk of integrating into the host genome, is a practical solution for the efficient generation of safer iPSCs. We improved the Sendai virus vectors by introducing temperature-sensitive mutations so that the vectors could be easily removed at nonpermissive temperatures. Using these vectors enabled the efficient production of viral/factor-free iPSCs from both human fibroblasts and CD34 + cord blood cells. Temperature-shift treatment was more effective in eliminating remaining viral vector-related genes. The resulting iPSCs expressed human embryonic stem cell markers and exhibited pluripotency. We suggest that generation of transgene-free iPSCs from cord blood cells should be an important step in providing allogeneic iPSC-derived therapy in the future. |
Author | Ban, Hiroshi Nishishita, Naoki Inoue, Makoto Saeki, Koichi Hasegawa, Mamoru Fusaki, Noemi Takada, Nozomi Tabata, Toshiaki Nishikawa, Shin-Ichi Kawamata, Shin Shikamura, Masayuki |
Author_xml | – sequence: 1 givenname: Hiroshi surname: Ban fullname: Ban, Hiroshi – sequence: 2 givenname: Naoki surname: Nishishita fullname: Nishishita, Naoki – sequence: 3 givenname: Noemi surname: Fusaki fullname: Fusaki, Noemi – sequence: 4 givenname: Toshiaki surname: Tabata fullname: Tabata, Toshiaki – sequence: 5 givenname: Koichi surname: Saeki fullname: Saeki, Koichi – sequence: 6 givenname: Masayuki surname: Shikamura fullname: Shikamura, Masayuki – sequence: 7 givenname: Nozomi surname: Takada fullname: Takada, Nozomi – sequence: 8 givenname: Makoto surname: Inoue fullname: Inoue, Makoto – sequence: 9 givenname: Mamoru surname: Hasegawa fullname: Hasegawa, Mamoru – sequence: 10 givenname: Shin surname: Kawamata fullname: Kawamata, Shin – sequence: 11 givenname: Shin-Ichi surname: Nishikawa fullname: Nishikawa, Shin-Ichi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21821793$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1v1DAQxS1URLcLZ04giwvlkNaOncS-VEKr8iFVAqlwthxn0nqVtYOdrNQj_zk2u2WhEnCy5fnN0zzPO0FHzjtA6DklZ5Q07Hx0Op5RSlhFJCXiEVrQdClqLskRWhBSNoXgJT9GJzGuCSGyEuQJOi6pKGkj2QJ9v-x7ayy4Cd-Ag6An6x32PZ6CdjE_FX0AwLfzRjtsXTcb6PA4zMGOfsptcYINNjAMEZ_az9er-Aa3dzg9jlltDlBEcNFOdgv4GlynLd7aMEe8BTP5EJ-ix70eIjzbn0v09d3ll9WH4urT-4-rt1eFqWQzFbojgjZG0pbUvaw6QypactpC23aNLgWjmjedMHUDwFjTsroiWoPUnWzbHiq2RBc73XFuN9CZNHvQgxqD3ehwp7y26s-Ks7fqxm8VozWtGE0Cr_cCwX-bIU5qY2M2rh34OSpJOBecMPFfUohKEiFE1jz9J0k5r8u6zhteolcP0LWfg0tflvVYVZZlhl7-bvKXu_uFJ6DaASb4GAP0ytjp59KTZzsoSlQOlsrBUodgpb7zB3330n_vwPtRcuFAC8V48lUynpAXO2QdUxIOwzaykSnB7AcZB-bT |
CitedBy_id | crossref_primary_10_1111_bpa_12517 crossref_primary_10_1016_j_scr_2017_01_004 crossref_primary_10_1002_stem_1221 crossref_primary_10_1016_j_neuroscience_2012_09_076 crossref_primary_10_1007_s00401_023_02568_y crossref_primary_10_3390_jcm4010037 crossref_primary_10_52547_shefa_10_3_98 crossref_primary_10_1186_scrt134 crossref_primary_10_5966_sctm_2013_0006 crossref_primary_10_3390_cells10061470 crossref_primary_10_1016_j_jconrel_2016_02_002 crossref_primary_10_1038_nprot_2013_019 crossref_primary_10_1016_j_celrep_2017_03_047 crossref_primary_10_1038_s41598_018_35506_0 crossref_primary_10_1002_stem_2795 crossref_primary_10_1002_stem_2797 crossref_primary_10_1002_1873_3468_13659 crossref_primary_10_1016_j_tcb_2017_09_006 crossref_primary_10_1016_j_scr_2019_101459 crossref_primary_10_1038_srep00657 crossref_primary_10_1007_s12035_013_8409_7 crossref_primary_10_1016_j_jbior_2018_10_001 crossref_primary_10_1016_j_stemcr_2019_01_001 crossref_primary_10_1007_s42242_024_00285_3 crossref_primary_10_1089_ten_tec_2013_0026 crossref_primary_10_1155_2014_768391 crossref_primary_10_1016_j_it_2014_02_003 crossref_primary_10_1002_sctm_18_0259 crossref_primary_10_1002_ana_23596 crossref_primary_10_1002_sctm_18_0134 crossref_primary_10_1038_s41398_018_0319_z crossref_primary_10_1016_j_scr_2021_102172 crossref_primary_10_3390_cells12040618 crossref_primary_10_1016_j_scr_2021_102173 crossref_primary_10_1042_BJ20141078 crossref_primary_10_1016_j_medj_2022_10_003 crossref_primary_10_1016_j_scr_2022_102659 crossref_primary_10_1016_j_neuron_2019_08_008 crossref_primary_10_1016_j_scr_2020_101808 crossref_primary_10_1016_j_acthis_2022_151927 crossref_primary_10_1016_j_heliyon_2018_e00918 crossref_primary_10_1038_s41536_023_00317_z crossref_primary_10_1186_s13036_019_0144_9 crossref_primary_10_4103_1673_5374_332123 crossref_primary_10_3390_ph16101385 crossref_primary_10_1007_s13577_021_00592_2 crossref_primary_10_1111_j_1349_7006_2011_02184_x crossref_primary_10_1016_j_biopsych_2013_10_025 crossref_primary_10_1002_stem_1782 crossref_primary_10_1016_j_scr_2018_101369 crossref_primary_10_1016_j_ymthe_2019_08_011 crossref_primary_10_1016_j_scr_2015_12_014 crossref_primary_10_1016_j_bpj_2022_02_011 crossref_primary_10_1016_j_jare_2017_02_004 crossref_primary_10_1002_biot_201700066 crossref_primary_10_1242_bio_022111 crossref_primary_10_1007_s12041_018_0960_6 crossref_primary_10_1016_j_scr_2020_101702 crossref_primary_10_1016_j_scr_2018_10_014 crossref_primary_10_4236_jbm_2015_311002 crossref_primary_10_1101_cshperspect_a040808 crossref_primary_10_1002_bies_201100071 crossref_primary_10_3390_ijms17040594 crossref_primary_10_1038_nm_3267 crossref_primary_10_3390_jcm8030288 crossref_primary_10_1089_cell_2012_0039 crossref_primary_10_2217_rme_13_37 crossref_primary_10_1038_s41598_024_77508_1 crossref_primary_10_1038_s41598_022_07305_1 crossref_primary_10_1016_j_jdermsci_2016_08_002 crossref_primary_10_1371_journal_pone_0041007 crossref_primary_10_15252_embr_202154027 crossref_primary_10_1186_scrt99 crossref_primary_10_1016_j_scr_2022_102869 crossref_primary_10_1152_physrev_00036_2015 crossref_primary_10_1016_j_scr_2022_102866 crossref_primary_10_1038_onc_2012_285 crossref_primary_10_1111_cpr_12162 crossref_primary_10_1160_TH14_06_0503 crossref_primary_10_1016_j_scr_2019_101626 crossref_primary_10_1089_cell_2019_0035 crossref_primary_10_1371_journal_pone_0059908 crossref_primary_10_1371_journal_pone_0190275 crossref_primary_10_3390_ijms21186764 crossref_primary_10_3390_cells12040538 crossref_primary_10_1002_adma_202410908 crossref_primary_10_1016_j_ynpai_2020_100055 crossref_primary_10_1016_j_bcmd_2012_02_007 crossref_primary_10_1016_j_biomaterials_2020_120201 crossref_primary_10_1111_aej_12256 crossref_primary_10_1186_s41241_017_0015_y crossref_primary_10_1002_cpsc_103 crossref_primary_10_1016_j_gene_2018_11_069 crossref_primary_10_1016_j_ejphar_2020_173202 crossref_primary_10_1007_s00441_016_2369_y crossref_primary_10_1089_hum_2012_251 crossref_primary_10_1371_journal_pone_0064496 crossref_primary_10_1186_scrt163 crossref_primary_10_1038_ncomms7626 crossref_primary_10_1097_01_EHX_0000407659_43685_92 crossref_primary_10_1016_j_scr_2020_101711 crossref_primary_10_1016_j_yjmcc_2023_04_006 crossref_primary_10_1038_s41434_019_0058_7 crossref_primary_10_1111_jnc_13986 crossref_primary_10_1007_s00018_017_2546_5 crossref_primary_10_1016_j_stem_2020_12_015 crossref_primary_10_1016_j_neuron_2013_06_002 crossref_primary_10_1111_febs_16143 crossref_primary_10_1016_j_preteyeres_2014_10_002 crossref_primary_10_1016_j_scr_2018_01_005 crossref_primary_10_1016_j_celrep_2019_06_096 crossref_primary_10_1007_s00018_015_2084_y crossref_primary_10_1016_j_scr_2021_102314 crossref_primary_10_1002_0471140856_tx1413s67 crossref_primary_10_1016_j_scr_2014_01_004 crossref_primary_10_1155_2013_430290 crossref_primary_10_1002_jbt_21470 crossref_primary_10_1371_journal_pone_0115392 crossref_primary_10_7603_s40730_015_0008_y crossref_primary_10_1089_scd_2013_0621 crossref_primary_10_1089_scd_2013_0620 crossref_primary_10_3389_fvets_2021_806785 crossref_primary_10_1089_cell_2018_0048 crossref_primary_10_1038_s41598_020_77274_w crossref_primary_10_1089_scd_2018_0122 crossref_primary_10_1016_j_crmeth_2022_100317 crossref_primary_10_3389_fnagi_2016_00117 crossref_primary_10_1002_cpz1_88 crossref_primary_10_3390_ijms22094334 crossref_primary_10_1016_j_scr_2015_11_005 crossref_primary_10_1002_jnr_23924 crossref_primary_10_1016_j_scr_2015_11_006 crossref_primary_10_1186_s13287_015_0035_z crossref_primary_10_1371_journal_pone_0118424 crossref_primary_10_1093_dnares_dsv016 crossref_primary_10_1002_stem_1734 crossref_primary_10_1016_j_jviromet_2017_08_010 crossref_primary_10_1186_s13045_014_0050_z crossref_primary_10_1002_stem_1732 crossref_primary_10_1016_j_bios_2022_114681 crossref_primary_10_15252_emmm_201504395 crossref_primary_10_1016_j_bbamcr_2017_04_017 crossref_primary_10_1016_j_bone_2023_116760 crossref_primary_10_1161_CIRCRESAHA_122_321951 crossref_primary_10_1089_scd_2016_0268 crossref_primary_10_1002_btpr_3152 crossref_primary_10_1016_j_scr_2018_09_020 crossref_primary_10_1128_jvi_00832_24 crossref_primary_10_1155_2012_564612 crossref_primary_10_1111_cpr_13041 crossref_primary_10_1515_tnsci_2020_0004 crossref_primary_10_3389_fncel_2018_00413 crossref_primary_10_2217_rme_15_79 crossref_primary_10_1016_j_stemcr_2017_03_003 crossref_primary_10_1016_j_rpor_2018_04_005 crossref_primary_10_1016_j_chembiol_2013_09_016 crossref_primary_10_1002_cpz1_345 crossref_primary_10_1371_journal_pone_0081720 crossref_primary_10_1007_s40291_022_00599_x crossref_primary_10_1253_circj_CJ_17_0400 crossref_primary_10_1517_14712598_2014_876986 crossref_primary_10_1517_14712598_2016_1094457 crossref_primary_10_1016_j_xpro_2025_103700 crossref_primary_10_1016_j_scr_2016_12_014 crossref_primary_10_1038_nature10648 crossref_primary_10_1016_j_scr_2016_12_013 crossref_primary_10_1016_j_scr_2016_12_011 crossref_primary_10_15252_embj_201490685 crossref_primary_10_1371_journal_pone_0113052 crossref_primary_10_1016_j_scr_2016_12_010 crossref_primary_10_1002_jcb_24183 crossref_primary_10_1186_s13195_018_0400_0 crossref_primary_10_3390_genes9010039 crossref_primary_10_3390_ph14060565 crossref_primary_10_1016_j_scr_2016_12_025 crossref_primary_10_1016_j_scr_2016_12_024 crossref_primary_10_1016_j_scr_2016_12_023 crossref_primary_10_1016_j_celrep_2022_111264 crossref_primary_10_1016_j_scr_2016_12_022 crossref_primary_10_3390_cells10113250 crossref_primary_10_1002_term_2021 crossref_primary_10_1155_2015_382530 crossref_primary_10_1016_j_critrevonc_2015_08_022 crossref_primary_10_1126_science_aat6720 crossref_primary_10_1007_s13238_012_2804_0 crossref_primary_10_1111_jcmm_16899 crossref_primary_10_3390_ijms25105177 crossref_primary_10_1002_cpsc_25 crossref_primary_10_1161_CIRCRESAHA_111_256149 crossref_primary_10_3904_kjim_2014_29_5_547 crossref_primary_10_3389_ebm_2024_10266 crossref_primary_10_1016_j_stem_2013_06_001 crossref_primary_10_1016_j_pneurobio_2016_11_003 crossref_primary_10_1155_2019_2181437 crossref_primary_10_1016_j_crmeth_2022_100349 crossref_primary_10_1369_0022155416673969 crossref_primary_10_1016_j_ejphar_2021_174568 crossref_primary_10_15421_10_15421_022366 crossref_primary_10_1002_cpsc_12 crossref_primary_10_1002_stem_1968 crossref_primary_10_1016_j_gpb_2013_09_001 crossref_primary_10_1007_s11095_021_03067_z crossref_primary_10_1016_j_scr_2017_08_008 crossref_primary_10_1016_j_joca_2016_11_015 crossref_primary_10_1038_srep36845 crossref_primary_10_1007_s12015_015_9622_8 crossref_primary_10_1038_mt_2011_258 crossref_primary_10_1039_C6TB03130G crossref_primary_10_1016_j_scr_2016_06_006 crossref_primary_10_1007_s00381_013_2304_4 crossref_primary_10_1016_j_scr_2024_103526 crossref_primary_10_1089_scd_2012_0173 crossref_primary_10_1007_s12015_020_10091_w crossref_primary_10_1371_journal_pone_0309566 crossref_primary_10_1016_j_yexcr_2014_02_006 crossref_primary_10_3390_pharmaceutics14020317 crossref_primary_10_1016_j_ijrobp_2018_11_016 crossref_primary_10_1111_j_1749_6632_2012_06629_x crossref_primary_10_1016_j_hoc_2017_06_007 crossref_primary_10_1021_acssynbio_1c00214 crossref_primary_10_1517_13543776_2016_1118058 crossref_primary_10_31857_S0869587323090062 crossref_primary_10_1016_j_isci_2022_105052 crossref_primary_10_3233_JHD_160199 crossref_primary_10_1016_j_theriogenology_2014_04_001 crossref_primary_10_1371_journal_pone_0137211 crossref_primary_10_1371_journal_pone_0217110 crossref_primary_10_1016_j_scr_2018_07_018 crossref_primary_10_1016_j_jconrel_2016_06_007 crossref_primary_10_1016_j_stem_2014_12_013 crossref_primary_10_3390_cells10123483 crossref_primary_10_1016_j_jconrel_2017_08_021 crossref_primary_10_1016_j_jacbts_2016_06_010 crossref_primary_10_3389_fimmu_2023_1325209 crossref_primary_10_1159_000430916 crossref_primary_10_1002_cpz1_979 crossref_primary_10_1093_procel_pwae047 crossref_primary_10_1155_2016_8394960 crossref_primary_10_3390_ijms21155467 crossref_primary_10_7717_peerj_4370 crossref_primary_10_1016_j_yjmcc_2020_03_016 crossref_primary_10_3390_ijms22158148 crossref_primary_10_1161_CIRCRESAHA_114_300556 crossref_primary_10_1186_s13287_018_1048_1 crossref_primary_10_1007_s12015_014_9577_1 crossref_primary_10_1016_j_scr_2021_102501 crossref_primary_10_1016_j_scr_2024_103534 crossref_primary_10_3389_fcell_2024_1491282 crossref_primary_10_1002_biot_201400010 crossref_primary_10_1371_journal_pone_0103485 crossref_primary_10_1089_apb_2022_0037 crossref_primary_10_1007_s12265_016_9723_z crossref_primary_10_1080_14712598_2017_1308481 crossref_primary_10_1111_gtc_12992 crossref_primary_10_1111_cas_12746 crossref_primary_10_1002_stem_1917 crossref_primary_10_1016_j_jcyt_2015_01_003 crossref_primary_10_1038_embor_2012_134 crossref_primary_10_1186_2051_5960_2_4 crossref_primary_10_1038_s41536_024_00387_7 crossref_primary_10_2217_epi_2020_0409 crossref_primary_10_1089_scd_2014_0309 crossref_primary_10_1016_j_stemcr_2014_10_008 crossref_primary_10_1016_j_ijcard_2016_03_040 crossref_primary_10_1111_cts_12674 crossref_primary_10_1517_14712598_2012_684875 crossref_primary_10_1007_s10522_013_9455_2 crossref_primary_10_4137_BMI_S20066 crossref_primary_10_1016_j_neuron_2018_02_015 crossref_primary_10_3390_cells12070977 crossref_primary_10_1016_j_stem_2017_11_010 crossref_primary_10_3390_cells8050403 crossref_primary_10_5966_sctm_2011_0044 crossref_primary_10_1517_14712598_2012_691161 crossref_primary_10_1016_j_scr_2018_08_020 crossref_primary_10_1038_s41598_021_90316_1 crossref_primary_10_1007_s00109_020_02031_5 crossref_primary_10_1007_s10545_018_0225_9 crossref_primary_10_1016_j_regen_2022_100064 crossref_primary_10_1038_mtm_2016_57 crossref_primary_10_1155_2012_439219 crossref_primary_10_3390_jcm4040567 crossref_primary_10_3390_cells12070988 crossref_primary_10_1016_j_scr_2021_102645 crossref_primary_10_1038_s41588_019_0499_3 crossref_primary_10_3390_cells7120253 crossref_primary_10_1002_cpmb_58 crossref_primary_10_1007_s12015_018_9861_6 crossref_primary_10_1089_cell_2013_0037 crossref_primary_10_1007_s10565_017_9384_y crossref_primary_10_1016_j_expneurol_2020_113573 crossref_primary_10_1177_2211068214537258 crossref_primary_10_1517_14712598_2014_866086 crossref_primary_10_1038_s41467_021_22770_4 crossref_primary_10_1016_j_bcmd_2019_01_003 crossref_primary_10_1080_09537104_2021_1981850 crossref_primary_10_1089_scd_2019_0234 crossref_primary_10_1186_s13287_020_02047_1 crossref_primary_10_1038_nrcardio_2016_36 crossref_primary_10_3389_fncel_2020_604171 crossref_primary_10_1186_s13287_018_0908_z crossref_primary_10_1177_1074248414523676 crossref_primary_10_3390_jcm4040548 crossref_primary_10_3390_life13020569 crossref_primary_10_3390_ijms22158196 crossref_primary_10_1056_EVIDoa2400252 crossref_primary_10_3389_fcell_2016_00152 crossref_primary_10_1093_schbul_sbs127 crossref_primary_10_15252_embr_202154234 crossref_primary_10_1016_j_scr_2023_103091 crossref_primary_10_1016_j_scr_2017_03_008 crossref_primary_10_5966_sctm_2012_0005 crossref_primary_10_1016_j_scr_2022_102837 crossref_primary_10_1002_stem_3353 crossref_primary_10_1186_scrt308 crossref_primary_10_1016_j_scr_2023_103097 crossref_primary_10_1038_s41598_024_74757_y crossref_primary_10_1016_j_preteyeres_2020_100918 crossref_primary_10_1186_s13041_015_0146_6 crossref_primary_10_1016_j_stem_2014_02_004 crossref_primary_10_3390_biomedicines9121836 crossref_primary_10_1007_s00005_016_0385_y crossref_primary_10_1038_s41598_023_50510_9 crossref_primary_10_1002_sctm_20_0242 crossref_primary_10_1128_JVI_03147_12 crossref_primary_10_1002_sctm_17_0205 crossref_primary_10_1016_j_scr_2019_101391 crossref_primary_10_1155_2018_8642989 crossref_primary_10_1007_s12265_013_9494_8 crossref_primary_10_3390_cells9112465 crossref_primary_10_25259_GJMPBU_42_2024 crossref_primary_10_5483_BMBRep_2015_48_5_100 crossref_primary_10_1089_scd_2012_0461 crossref_primary_10_1016_j_tiv_2024_105826 crossref_primary_10_3390_ijms22168599 crossref_primary_10_1038_s41398_024_02780_8 crossref_primary_10_1089_scd_2015_0061 crossref_primary_10_3389_fmolb_2023_1051494 crossref_primary_10_1007_s11515_016_1396_0 crossref_primary_10_1016_j_celrep_2013_04_004 crossref_primary_10_1007_s12268_020_1432_0 crossref_primary_10_1016_j_bbrc_2017_12_007 crossref_primary_10_1093_rb_rbac060 crossref_primary_10_1097_QAD_0000000000002535 crossref_primary_10_1111_nan_12334 crossref_primary_10_1038_mt_2015_100 crossref_primary_10_1016_j_stemcr_2015_10_002 crossref_primary_10_1038_nprot_2012_015 crossref_primary_10_2478_aite_2025_0001 crossref_primary_10_1016_j_expneurol_2017_04_001 crossref_primary_10_1038_mt_2016_143 crossref_primary_10_1016_j_ddmod_2012_02_004 crossref_primary_10_1038_s41467_019_08940_5 crossref_primary_10_1016_j_scr_2016_02_017 crossref_primary_10_3390_cells10092335 crossref_primary_10_1038_s41598_018_23120_z crossref_primary_10_1371_journal_pone_0215490 crossref_primary_10_1007_s12015_020_10042_5 crossref_primary_10_1155_2019_5171032 crossref_primary_10_1515_revneuro_2015_0054 crossref_primary_10_3389_fvets_2023_1176772 crossref_primary_10_18699_VJ18_445 crossref_primary_10_1177_0963689717737074 crossref_primary_10_1016_j_scr_2019_101495 crossref_primary_10_1074_jbc_R113_529156 crossref_primary_10_3389_fnins_2020_562292 crossref_primary_10_1016_j_pneurobio_2018_04_005 crossref_primary_10_1177_0963689718798564 crossref_primary_10_3727_096368912X655208 crossref_primary_10_1016_j_scr_2017_10_006 crossref_primary_10_1016_j_procir_2013_01_001 crossref_primary_10_4161_cc_22575 crossref_primary_10_1016_j_scr_2019_101467 crossref_primary_10_1097_FJC_0b013e318247f642 crossref_primary_10_1016_j_expneurol_2012_12_017 crossref_primary_10_1038_s41380_023_02237_2 crossref_primary_10_1002_jcp_24155 crossref_primary_10_3892_ijmm_2024_5438 crossref_primary_10_3233_JAD_180833 crossref_primary_10_1242_bio_016402 crossref_primary_10_1007_s12265_012_9391_6 crossref_primary_10_1002_med_21265 crossref_primary_10_1158_2326_6066_CIR_14_0117 crossref_primary_10_1007_s12015_023_10672_5 crossref_primary_10_1016_j_gene_2014_11_061 crossref_primary_10_1016_j_scr_2020_101792 crossref_primary_10_1016_j_scr_2023_103151 crossref_primary_10_1016_j_scr_2018_11_008 crossref_primary_10_1371_journal_pone_0038389 crossref_primary_10_1089_ten_teb_2023_0005 crossref_primary_10_1098_rsos_211510 crossref_primary_10_1016_j_scr_2017_10_026 crossref_primary_10_1038_srep04361 |
Cites_doi | 10.1038/cr.2011.12 10.1161/CIRCULATIONAHA.105.583039 10.1006/viro.2000.0535 10.1128/JVI.77.5.3238-3246.2003 10.1182/blood-2010-07-298331 10.1016/S0896-6273(00)00083-0 10.1038/nbt1163 10.1016/j.cell.2007.11.019 10.1126/science.1164270 10.1016/j.stem.2009.09.008 10.1016/j.stem.2009.04.005 10.1016/j.stem.2009.05.005 10.1128/JVI.74.14.6564-6569.2000 10.1038/nature07864 10.1016/j.stem.2010.08.012 10.1016/j.exphem.2009.11.003 10.1016/j.stem.2007.10.001 10.1371/journal.pone.0017557 10.1126/science.1162494 10.1634/stemcells.2008-1075 10.1126/science.1172482 10.1038/nature07863 10.1128/JVI.73.8.6474-6483.1999 10.1038/sj.gt.3301877 10.1016/j.cell.2009.02.013 10.1126/science.1151526 10.2183/pjab.85.348 10.1016/j.stem.2010.06.003 10.1038/nmeth.1426 |
ContentType | Journal Article |
Copyright | copyright © 1993–2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Aug 23, 2011 |
Copyright_xml | – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Aug 23, 2011 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.1103509108 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts AIDS and Cancer Research Abstracts MEDLINE AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 14239 |
ExternalDocumentID | PMC3161531 2435894771 21821793 10_1073_pnas_1103509108 108_34_14234 27979490 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c597t-ad0817c91b06f95dc051241bebbd7a2831a47d8c67ee337b3650aae9ad9bbfe53 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:11:03 EDT 2025 Thu Jul 10 18:55:08 EDT 2025 Thu Jul 10 22:36:29 EDT 2025 Fri Jul 11 05:00:18 EDT 2025 Mon Jun 30 08:25:50 EDT 2025 Thu Apr 03 06:56:03 EDT 2025 Tue Jul 01 00:47:14 EDT 2025 Thu Apr 24 22:51:44 EDT 2025 Wed Nov 11 00:29:39 EST 2020 Thu May 29 08:40:44 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c597t-ad0817c91b06f95dc051241bebbd7a2831a47d8c67ee337b3650aae9ad9bbfe53 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 Author contributions: N.N., N.F., S.K., and S.-I.N. designed research; H.B., N.N., N.F., M.S., N.T., and S.K. performed research; N.F., T.T., K.S., M.I., M.H., S.K., and S.-I.N. analyzed data; and N.F. and S.K. wrote the paper. 1H.B. and N.N. contributed equally to this work. Edited by Yuet Wai Kan, University of California San Francisco School of Medicine, San Francisco, CA, and approved July 7, 2011 (received for review March 21, 2011) |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3161531 |
PMID | 21821793 |
PQID | 885352220 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1446266110 pubmed_primary_21821793 proquest_miscellaneous_904484038 pnas_primary_108_34_14234 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3161531 crossref_primary_10_1073_pnas_1103509108 proquest_miscellaneous_885908881 proquest_journals_885352220 crossref_citationtrail_10_1073_pnas_1103509108 jstor_primary_27979490 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-08-23 |
PublicationDateYYYYMMDD | 2011-08-23 |
PublicationDate_xml | – month: 08 year: 2011 text: 2011-08-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2011 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Giorgetti A (e_1_3_4_20_2) 2009; 5 Woltjen K (e_1_3_4_8_2) 2009; 458 Sommer CA (e_1_3_4_6_2) 2009; 27 Zhou H (e_1_3_4_11_2) 2009; 4 Seki T (e_1_3_4_18_2) 2010; 7 Kaji K (e_1_3_4_9_2) 2009; 458 Jia F (e_1_3_4_10_2) 2010; 7 Okita K (e_1_3_4_3_2) 2008; 322 Stadtfeld M (e_1_3_4_7_2) 2008; 322 Yu J (e_1_3_4_4_2) 2009; 324 Warren L (e_1_3_4_13_2) 2010; 7 Majeti R (e_1_3_4_28_2) 2007; 1 Takahashi K (e_1_3_4_1_2) 2007; 131 Jin CH (e_1_3_4_19_2) 2003; 10 D'Amour KA (e_1_3_4_26_2) 2005; 23 Chou BK (e_1_3_4_29_2) 2011; 21 Soldner F (e_1_3_4_5_2) 2009; 136 Takenaka C (e_1_3_4_21_2) 2010; 38 Bowman MC (e_1_3_4_22_2) 1999; 73 Fusaki N (e_1_3_4_17_2) 2009; 85 Li HO (e_1_3_4_15_2) 2000; 74 Yu J (e_1_3_4_2_2) 2007; 318 Feller JA (e_1_3_4_23_2) 2000; 276 Kim D (e_1_3_4_12_2) 2009; 4 Inoue M (e_1_3_4_24_2) 2003; 77 Kawasaki H (e_1_3_4_27_2) 2000; 28 Yu J (e_1_3_4_31_2) 2011; 6 e_1_3_4_16_2 e_1_3_4_14_2 Hu K (e_1_3_4_30_2) 2011; 117 Guo XM (e_1_3_4_25_2) 2006; 113 21243013 - Cell Res. 2011 Mar;21(3):518-29 18845712 - Science. 2008 Nov 7;322(5903):949-53 21296996 - Blood. 2011 Apr 7;117(14):e109-19 11086981 - Neuron. 2000 Oct;28(1):31-40 20139967 - Nat Methods. 2010 Mar;7(3):197-9 18035408 - Cell. 2007 Nov 30;131(5):861-72 19252477 - Nature. 2009 Apr 9;458(7239):771-5 11022007 - Virology. 2000 Oct 10;276(1):190-201 16258519 - Nat Biotechnol. 2005 Dec;23(12):1534-41 18371405 - Cell Stem Cell. 2007 Dec 13;1(6):635-45 19838014 - Proc Jpn Acad Ser B Phys Biol Sci. 2009;85(8):348-62 19796614 - Cell Stem Cell. 2009 Oct 2;5(4):353-7 19269371 - Cell. 2009 Mar 6;136(5):964-77 20888316 - Cell Stem Cell. 2010 Nov 5;7(5):618-30 10864670 - J Virol. 2000 Jul;74(14):6564-9 19252478 - Nature. 2009 Apr 9;458(7239):766-70 18818365 - Science. 2008 Nov 7;322(5903):945-9 12584347 - J Virol. 2003 Mar;77(5):3238-46 19096035 - Stem Cells. 2009 Mar;27(3):543-9 12571635 - Gene Ther. 2003 Feb;10(3):272-7 19481515 - Cell Stem Cell. 2009 Jun 5;4(6):472-6 10400742 - J Virol. 1999 Aug;73(8):6474-83 20621043 - Cell Stem Cell. 2010 Jul 2;7(1):11-4 19325077 - Science. 2009 May 8;324(5928):797-801 16651472 - Circulation. 2006 May 9;113(18):2229-37 19922768 - Exp Hematol. 2010 Feb;38(2):154-62 18029452 - Science. 2007 Dec 21;318(5858):1917-20 21390254 - PLoS One. 2011;6(3):e17557 19398399 - Cell Stem Cell. 2009 May 8;4(5):381-4 |
References_xml | – volume: 21 start-page: 518 year: 2011 ident: e_1_3_4_29_2 article-title: Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures publication-title: Cell Res doi: 10.1038/cr.2011.12 – volume: 113 start-page: 2229 year: 2006 ident: e_1_3_4_25_2 article-title: Creation of engineered cardiac tissue in vitro from mouse embryonic stem cells publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.105.583039 – volume: 276 start-page: 190 year: 2000 ident: e_1_3_4_23_2 article-title: Comparison of identical temperature-sensitive mutations in the L polymerase proteins of Sendai and parainfluenza3 viruses publication-title: Virology doi: 10.1006/viro.2000.0535 – volume: 77 start-page: 3238 year: 2003 ident: e_1_3_4_24_2 article-title: Nontransmissible virus-like particle formation by F-deficient Sendai virus is temperature-sensitive and reduced by mutations in M and HN proteins publication-title: J Virol doi: 10.1128/JVI.77.5.3238-3246.2003 – volume: 117 start-page: e109 year: 2011 ident: e_1_3_4_30_2 article-title: Efficient generation of transgene-free induced pluripotent stem cells from normal and neoplastic bone marrow and cord blood mononuclear cells publication-title: Blood doi: 10.1182/blood-2010-07-298331 – volume: 28 start-page: 31 year: 2000 ident: e_1_3_4_27_2 article-title: Induction of midbrain dopaminergic neurons from ES cells by stromal cell–derived inducing activity publication-title: Neuron doi: 10.1016/S0896-6273(00)00083-0 – volume: 23 start-page: 1534 year: 2005 ident: e_1_3_4_26_2 article-title: Efficient differentiation of human embryonic stem cells to definitive endoderm publication-title: Nat Biotechnol doi: 10.1038/nbt1163 – ident: e_1_3_4_14_2 – volume: 131 start-page: 861 year: 2007 ident: e_1_3_4_1_2 article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors publication-title: Cell doi: 10.1016/j.cell.2007.11.019 – volume: 322 start-page: 949 year: 2008 ident: e_1_3_4_3_2 article-title: Generation of mouse-induced pluripotent stem cells without viral vectors publication-title: Science doi: 10.1126/science.1164270 – volume: 5 start-page: 353 year: 2009 ident: e_1_3_4_20_2 article-title: Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.09.008 – volume: 4 start-page: 381 year: 2009 ident: e_1_3_4_11_2 article-title: Generation of induced pluripotent stem cells using recombinant proteins publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.04.005 – volume: 4 start-page: 472 year: 2009 ident: e_1_3_4_12_2 article-title: Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.05.005 – volume: 74 start-page: 6564 year: 2000 ident: e_1_3_4_15_2 article-title: A cytoplasmic RNA vector derived from nontransmissible Sendai virus with efficient gene transfer and expression publication-title: J Virol doi: 10.1128/JVI.74.14.6564-6569.2000 – volume: 458 start-page: 771 year: 2009 ident: e_1_3_4_9_2 article-title: Virus-free induction of pluripotency and subsequent excision of reprogramming factors publication-title: Nature doi: 10.1038/nature07864 – volume: 7 start-page: 618 year: 2010 ident: e_1_3_4_13_2 article-title: Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.08.012 – volume: 38 start-page: 154 year: 2010 ident: e_1_3_4_21_2 article-title: Effective generation of iPS cells from CD34+ cord blood cells by inhibition of p53 publication-title: Exp Hematol doi: 10.1016/j.exphem.2009.11.003 – volume: 1 start-page: 635 year: 2007 ident: e_1_3_4_28_2 article-title: Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood publication-title: Cell Stem Cell doi: 10.1016/j.stem.2007.10.001 – ident: e_1_3_4_16_2 – volume: 6 start-page: e17557 year: 2011 ident: e_1_3_4_31_2 article-title: Efficient feeder-free episomal reprogramming with small molecules publication-title: PLoS ONE doi: 10.1371/journal.pone.0017557 – volume: 322 start-page: 945 year: 2008 ident: e_1_3_4_7_2 article-title: Induced pluripotent stem cells generated without viral integration publication-title: Science doi: 10.1126/science.1162494 – volume: 27 start-page: 543 year: 2009 ident: e_1_3_4_6_2 article-title: Induced pluripotent stem cell generation using a single lentiviral stem cell cassette publication-title: Stem Cells doi: 10.1634/stemcells.2008-1075 – volume: 324 start-page: 797 year: 2009 ident: e_1_3_4_4_2 article-title: Human induced pluripotent stem cells free of vector and transgene sequences publication-title: Science doi: 10.1126/science.1172482 – volume: 458 start-page: 766 year: 2009 ident: e_1_3_4_8_2 article-title: piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells publication-title: Nature doi: 10.1038/nature07863 – volume: 73 start-page: 6474 year: 1999 ident: e_1_3_4_22_2 article-title: Dissection of individual functions of the Sendai virus phosphoprotein in transcription publication-title: J Virol doi: 10.1128/JVI.73.8.6474-6483.1999 – volume: 10 start-page: 272 year: 2003 ident: e_1_3_4_19_2 article-title: Recombinant Sendai virus provides a highly efficient gene transfer into human cord blood–derived hematopoietic stem cells publication-title: Gene Ther doi: 10.1038/sj.gt.3301877 – volume: 136 start-page: 964 year: 2009 ident: e_1_3_4_5_2 article-title: Parkinson's disease patient–derived induced pluripotent stem cells free of viral reprogramming factors publication-title: Cell doi: 10.1016/j.cell.2009.02.013 – volume: 318 start-page: 1917 year: 2007 ident: e_1_3_4_2_2 article-title: Induced pluripotent stem cell lines derived from human somatic cells publication-title: Science doi: 10.1126/science.1151526 – volume: 85 start-page: 348 year: 2009 ident: e_1_3_4_17_2 article-title: Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome publication-title: Proc Jpn Acad, Ser B, Phys Biol Sci doi: 10.2183/pjab.85.348 – volume: 7 start-page: 11 year: 2010 ident: e_1_3_4_18_2 article-title: Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.06.003 – volume: 7 start-page: 197 year: 2010 ident: e_1_3_4_10_2 article-title: A nonviral minicircle vector for deriving human iPS cells publication-title: Nat Methods doi: 10.1038/nmeth.1426 – reference: 20621043 - Cell Stem Cell. 2010 Jul 2;7(1):11-4 – reference: 19252478 - Nature. 2009 Apr 9;458(7239):766-70 – reference: 19838014 - Proc Jpn Acad Ser B Phys Biol Sci. 2009;85(8):348-62 – reference: 19269371 - Cell. 2009 Mar 6;136(5):964-77 – reference: 21296996 - Blood. 2011 Apr 7;117(14):e109-19 – reference: 19252477 - Nature. 2009 Apr 9;458(7239):771-5 – reference: 20888316 - Cell Stem Cell. 2010 Nov 5;7(5):618-30 – reference: 12584347 - J Virol. 2003 Mar;77(5):3238-46 – reference: 16258519 - Nat Biotechnol. 2005 Dec;23(12):1534-41 – reference: 19481515 - Cell Stem Cell. 2009 Jun 5;4(6):472-6 – reference: 12571635 - Gene Ther. 2003 Feb;10(3):272-7 – reference: 18818365 - Science. 2008 Nov 7;322(5903):945-9 – reference: 20139967 - Nat Methods. 2010 Mar;7(3):197-9 – reference: 19922768 - Exp Hematol. 2010 Feb;38(2):154-62 – reference: 10400742 - J Virol. 1999 Aug;73(8):6474-83 – reference: 21243013 - Cell Res. 2011 Mar;21(3):518-29 – reference: 11022007 - Virology. 2000 Oct 10;276(1):190-201 – reference: 18371405 - Cell Stem Cell. 2007 Dec 13;1(6):635-45 – reference: 19096035 - Stem Cells. 2009 Mar;27(3):543-9 – reference: 10864670 - J Virol. 2000 Jul;74(14):6564-9 – reference: 18845712 - Science. 2008 Nov 7;322(5903):949-53 – reference: 19398399 - Cell Stem Cell. 2009 May 8;4(5):381-4 – reference: 21390254 - PLoS One. 2011;6(3):e17557 – reference: 16651472 - Circulation. 2006 May 9;113(18):2229-37 – reference: 18035408 - Cell. 2007 Nov 30;131(5):861-72 – reference: 11086981 - Neuron. 2000 Oct;28(1):31-40 – reference: 19325077 - Science. 2009 May 8;324(5928):797-801 – reference: 18029452 - Science. 2007 Dec 21;318(5858):1917-20 – reference: 19796614 - Cell Stem Cell. 2009 Oct 2;5(4):353-7 |
SSID | ssj0009580 |
Score | 2.5544047 |
Snippet | After the first report of induced pluripotent stem cells (iPSCs), considerable efforts have been made to develop more efficient methods for generating iPSCs... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14234 |
SubjectTerms | Animals Biological Sciences Biomarkers - metabolism Blood cells CD34 antigen Cell Differentiation Cord blood Embryo cells Embryonic Stem Cells - cytology Embryonic Stem Cells - metabolism Epigenesis, Genetic Feeder cells Fetal Blood - cytology Fibroblasts Fibroblasts - metabolism genes Genetic vectors Genetic Vectors - genetics Genomes Germ Layers - cytology Germ Layers - metabolism Hematopoietic stem cells Humans Induced pluripotent stem cells Induced Pluripotent Stem Cells - cytology Induced Pluripotent Stem Cells - metabolism Inhibitory postsynaptic potentials Insertion Mice Murine respirovirus Mutation Pluripotent stem cells Ribonucleic acid risk RNA RNA viruses Sendai virus Sendai virus - genetics Stem cells Temperature Temperature effects Transgenes - genetics Vectors Viruses |
Title | Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors |
URI | https://www.jstor.org/stable/27979490 http://www.pnas.org/content/108/34/14234.abstract https://www.ncbi.nlm.nih.gov/pubmed/21821793 https://www.proquest.com/docview/885352220 https://www.proquest.com/docview/1446266110 https://www.proquest.com/docview/885908881 https://www.proquest.com/docview/904484038 https://pubmed.ncbi.nlm.nih.gov/PMC3161531 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VcuGCKFAwBbRIHFJZDn5svOtjqVpFHKJITaXeLK-9oRatHcV2Jbjxj_kJzD78SJQgQIosez1rrz1f5uXZWYQ-hiHhzBfUSVk4cQiDvQjMBselNItcP-KRzraYhdNr8uVmcnNw8GuQtdTUfJz-2Dmv5H-4Cm3AVzlL9h84210UGmAf-Atb4DBs_4rHF6r-g_ya_1VVj26tv1oqINnkLNdCmHX4wPlu5Mf-1V0DgqKsZTdZxdmWsXsVe83nV-eVDBNIk1SAPa3rLTuVTHJXKUZXAjz43H7I101lP6iAfzU0b-edOqza5INZG2086-euGIFS2Y49n_UrIU9zUNm3uf25R-wsKb_lAFdohl_d6ZBZKe5z-7KpwADuA-VAAsf2IuGJIc2GAVo95XhYDlyPqhvPUIT7oFaJnng9Flpqg9HjhESvO9qJdZcN8GsiplpKe2BDkp36AwSeXPS4SCo5PyJQ1hQbUgIAVvcKTrL0vZRuvSJtkwe29GuX9QiXigMSq7s_Qo99cGxUKup0WCaa6UlT5iHbYlQ0-LQ1KFXFWo9gw6TSWbWyVC_Q73KbtrN_B-bU4hl6avwgfKZBfYQORPEcHbWMwCNTDv30BfrZoRz3KMflEm-iHCuUY4NyPEA5lijHCuV4pDB-ivl3vBPhWCMcK4Rjg_CX6PryYnE-dczCIU4K_nHtJBkYujSNPO6Gy2iSpaB5wFLlgvOMJmBQewmhGUtDKkQQUB6Am5IkIkqyiPOlmATH6LAoC_EaYT8UmUfDiPBgQmCfBSGDI99NXZIlLLXQuH33cWqq6svFXe5ild1Bg1jyIe75ZqFR12GlC8rsJz1WzOzofBqB-oxcC1mKtO_fA8tCJy3LYyOqqpgxWcXJ96Hnh-4s6BH56pNClA3clpBQGuse0OA9NHAZmRbJvP0kkUsII24Ag3-lYdaP3sDVQnQDgB2BrHS_eabIb1XF-0D5pd6bPzz3CXrSS5O36LBeN-Id-As1f6_-Yr8BI7cYIw |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+generation+of+transgene-free+human+induced+pluripotent+stem+cells+%28iPSCs%29+by+temperature-sensitive+Sendai+virus+vectors&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Hiroshi+Ban&rft.au=Naoki+Nishishita&rft.au=Noemi+Fusaki&rft.au=Toshiaki+Tabata&rft.date=2011-08-23&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=108&rft.issue=34&rft.spage=14234&rft_id=info:doi/10.1073%2Fpnas.1103509108&rft_id=info%3Apmid%2F21821793&rft.externalDBID=n%2Fa&rft.externalDocID=108_34_14234 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F34.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F34.cover.gif |