Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors

After the first report of induced pluripotent stem cells (iPSCs), considerable efforts have been made to develop more efficient methods for generating iPSCs without foreign gene insertions. Here we show that Sendai virus vector, an RNA virus vector that carries no risk of integrating into the host g...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 108; no. 34; pp. 14234 - 14239
Main Authors Ban, Hiroshi, Nishishita, Naoki, Fusaki, Noemi, Tabata, Toshiaki, Saeki, Koichi, Shikamura, Masayuki, Takada, Nozomi, Inoue, Makoto, Hasegawa, Mamoru, Kawamata, Shin, Nishikawa, Shin-Ichi
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 23.08.2011
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract After the first report of induced pluripotent stem cells (iPSCs), considerable efforts have been made to develop more efficient methods for generating iPSCs without foreign gene insertions. Here we show that Sendai virus vector, an RNA virus vector that carries no risk of integrating into the host genome, is a practical solution for the efficient generation of safer iPSCs. We improved the Sendai virus vectors by introducing temperature-sensitive mutations so that the vectors could be easily removed at nonpermissive temperatures. Using these vectors enabled the efficient production of viral/factor-free iPSCs from both human fibroblasts and CD34+ cord blood cells. Temperature-shift treatment was more effective in eliminating remaining viral vector-related genes. The resulting iPSCs expressed human embryonic stem cell markers and exhibited pluripotency. We suggest that generation of transgene-free iPSCs from cord blood cells should be an important step in providing allogeneic iPSC-derived therapy in the future.
AbstractList After the first report of induced pluripotent stem cells (iPSCs), considerable efforts have been made to develop more efficient methods for generating iPSCs without foreign gene insertions. Here we show that Sendai virus vector, an RNA virus vector that carries no risk of integrating into the host genome, is a practical solution for the efficient generation of safer iPSCs. We improved the Sendai virus vectors by introducing temperature-sensitive mutations so that the vectors could be easily removed at nonpermissive temperatures. Using these vectors enabled the efficient production of viral/factor-free iPSCs from both human fibroblasts and CD34 + cord blood cells. Temperature-shift treatment was more effective in eliminating remaining viral vector-related genes. The resulting iPSCs expressed human embryonic stem cell markers and exhibited pluripotency. We suggest that generation of transgene-free iPSCs from cord blood cells should be an important step in providing allogeneic iPSC-derived therapy in the future.
After the first report of induced pluripotent stem cells (iPSCs), considerable efforts have been made to develop more efficient methods for generating iPSCs without foreign gene insertions. Here we show that Sendai virus vector, an RNA virus vector that carries no risk of integrating into the host genome, is a practical solution for the efficient generation of safer iPSCs. We improved the Sendai virus vectors by introducing temperature-sensitive mutations so that the vectors could be easily removed at nonpermissive temperatures. Using these vectors enabled the efficient production of viral/factor-free iPSCs from both human fibroblasts and CD34(+) cord blood cells. Temperature-shift treatment was more effective in eliminating remaining viral vector-related genes. The resulting iPSCs expressed human embryonic stem cell markers and exhibited pluripotency. We suggest that generation of transgene-free iPSCs from cord blood cells should be an important step in providing allogeneic iPSC-derived therapy in the future.After the first report of induced pluripotent stem cells (iPSCs), considerable efforts have been made to develop more efficient methods for generating iPSCs without foreign gene insertions. Here we show that Sendai virus vector, an RNA virus vector that carries no risk of integrating into the host genome, is a practical solution for the efficient generation of safer iPSCs. We improved the Sendai virus vectors by introducing temperature-sensitive mutations so that the vectors could be easily removed at nonpermissive temperatures. Using these vectors enabled the efficient production of viral/factor-free iPSCs from both human fibroblasts and CD34(+) cord blood cells. Temperature-shift treatment was more effective in eliminating remaining viral vector-related genes. The resulting iPSCs expressed human embryonic stem cell markers and exhibited pluripotency. We suggest that generation of transgene-free iPSCs from cord blood cells should be an important step in providing allogeneic iPSC-derived therapy in the future.
After the first report of induced pluripotent stem cells (iPSCs), considerable efforts have been made to develop more efficient methods for generating iPSCs without foreign gene insertions. Here we show that Sendai virus vector, an RNA virus vector that carries no risk of integrating into the host genome, is a practical solution for the efficient generation of safer iPSCs. We improved the Sendai virus vectors by introducing temperature-sensitive mutations so that the vectors could be easily removed at nonpermissive temperatures. Using these vectors enabled the efficient production of viral/factor-free iPSCs from both human fibroblasts and CD34+ cord blood cells. Temperature-shift treatment was more effective in eliminating remaining viral vector-related genes. The resulting iPSCs expressed human embryonic stem cell markers and exhibited pluripotency. We suggest that generation of transgene-free iPSCs from cord blood cells should be an important step in providing allogeneic iPSC-derived therapy in the future. [PUBLICATION ABSTRACT]
After the first report of induced pluripotent stem cells (iPSCs), considerable efforts have been made to develop more efficient methods for generating iPSCs without foreign gene insertions. Here we show that Sendai virus vector, an RNA virus vector that carries no risk of integrating into the host genome, is a practical solution for the efficient generation of safer iPSCs. We improved the Sendai virus vectors by introducing temperature-sensitive mutations so that the vectors could be easily removed at nonpermissive temperatures. Using these vectors enabled the efficient production of viral/factor-free iPSCs from both human fibroblasts and CD34 + cord blood cells. Temperature-shift treatment was more effective in eliminating remaining viral vector-related genes. The resulting iPSCs expressed human embryonic stem cell markers and exhibited pluripotency. We suggest that generation of transgene-free iPSCs from cord blood cells should be an important step in providing allogeneic iPSC-derived therapy in the future.
Author Ban, Hiroshi
Nishishita, Naoki
Inoue, Makoto
Saeki, Koichi
Hasegawa, Mamoru
Fusaki, Noemi
Takada, Nozomi
Tabata, Toshiaki
Nishikawa, Shin-Ichi
Kawamata, Shin
Shikamura, Masayuki
Author_xml – sequence: 1
  givenname: Hiroshi
  surname: Ban
  fullname: Ban, Hiroshi
– sequence: 2
  givenname: Naoki
  surname: Nishishita
  fullname: Nishishita, Naoki
– sequence: 3
  givenname: Noemi
  surname: Fusaki
  fullname: Fusaki, Noemi
– sequence: 4
  givenname: Toshiaki
  surname: Tabata
  fullname: Tabata, Toshiaki
– sequence: 5
  givenname: Koichi
  surname: Saeki
  fullname: Saeki, Koichi
– sequence: 6
  givenname: Masayuki
  surname: Shikamura
  fullname: Shikamura, Masayuki
– sequence: 7
  givenname: Nozomi
  surname: Takada
  fullname: Takada, Nozomi
– sequence: 8
  givenname: Makoto
  surname: Inoue
  fullname: Inoue, Makoto
– sequence: 9
  givenname: Mamoru
  surname: Hasegawa
  fullname: Hasegawa, Mamoru
– sequence: 10
  givenname: Shin
  surname: Kawamata
  fullname: Kawamata, Shin
– sequence: 11
  givenname: Shin-Ichi
  surname: Nishikawa
  fullname: Nishikawa, Shin-Ichi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21821793$$D View this record in MEDLINE/PubMed
BookMark eNqFks1v1DAQxS1URLcLZ04giwvlkNaOncS-VEKr8iFVAqlwthxn0nqVtYOdrNQj_zk2u2WhEnCy5fnN0zzPO0FHzjtA6DklZ5Q07Hx0Op5RSlhFJCXiEVrQdClqLskRWhBSNoXgJT9GJzGuCSGyEuQJOi6pKGkj2QJ9v-x7ayy4Cd-Ag6An6x32PZ6CdjE_FX0AwLfzRjtsXTcb6PA4zMGOfsptcYINNjAMEZ_az9er-Aa3dzg9jlltDlBEcNFOdgv4GlynLd7aMEe8BTP5EJ-ix70eIjzbn0v09d3ll9WH4urT-4-rt1eFqWQzFbojgjZG0pbUvaw6QypactpC23aNLgWjmjedMHUDwFjTsroiWoPUnWzbHiq2RBc73XFuN9CZNHvQgxqD3ehwp7y26s-Ks7fqxm8VozWtGE0Cr_cCwX-bIU5qY2M2rh34OSpJOBecMPFfUohKEiFE1jz9J0k5r8u6zhteolcP0LWfg0tflvVYVZZlhl7-bvKXu_uFJ6DaASb4GAP0ytjp59KTZzsoSlQOlsrBUodgpb7zB3330n_vwPtRcuFAC8V48lUynpAXO2QdUxIOwzaykSnB7AcZB-bT
CitedBy_id crossref_primary_10_1111_bpa_12517
crossref_primary_10_1016_j_scr_2017_01_004
crossref_primary_10_1002_stem_1221
crossref_primary_10_1016_j_neuroscience_2012_09_076
crossref_primary_10_1007_s00401_023_02568_y
crossref_primary_10_3390_jcm4010037
crossref_primary_10_52547_shefa_10_3_98
crossref_primary_10_1186_scrt134
crossref_primary_10_5966_sctm_2013_0006
crossref_primary_10_3390_cells10061470
crossref_primary_10_1016_j_jconrel_2016_02_002
crossref_primary_10_1038_nprot_2013_019
crossref_primary_10_1016_j_celrep_2017_03_047
crossref_primary_10_1038_s41598_018_35506_0
crossref_primary_10_1002_stem_2795
crossref_primary_10_1002_stem_2797
crossref_primary_10_1002_1873_3468_13659
crossref_primary_10_1016_j_tcb_2017_09_006
crossref_primary_10_1016_j_scr_2019_101459
crossref_primary_10_1038_srep00657
crossref_primary_10_1007_s12035_013_8409_7
crossref_primary_10_1016_j_jbior_2018_10_001
crossref_primary_10_1016_j_stemcr_2019_01_001
crossref_primary_10_1007_s42242_024_00285_3
crossref_primary_10_1089_ten_tec_2013_0026
crossref_primary_10_1155_2014_768391
crossref_primary_10_1016_j_it_2014_02_003
crossref_primary_10_1002_sctm_18_0259
crossref_primary_10_1002_ana_23596
crossref_primary_10_1002_sctm_18_0134
crossref_primary_10_1038_s41398_018_0319_z
crossref_primary_10_1016_j_scr_2021_102172
crossref_primary_10_3390_cells12040618
crossref_primary_10_1016_j_scr_2021_102173
crossref_primary_10_1042_BJ20141078
crossref_primary_10_1016_j_medj_2022_10_003
crossref_primary_10_1016_j_scr_2022_102659
crossref_primary_10_1016_j_neuron_2019_08_008
crossref_primary_10_1016_j_scr_2020_101808
crossref_primary_10_1016_j_acthis_2022_151927
crossref_primary_10_1016_j_heliyon_2018_e00918
crossref_primary_10_1038_s41536_023_00317_z
crossref_primary_10_1186_s13036_019_0144_9
crossref_primary_10_4103_1673_5374_332123
crossref_primary_10_3390_ph16101385
crossref_primary_10_1007_s13577_021_00592_2
crossref_primary_10_1111_j_1349_7006_2011_02184_x
crossref_primary_10_1016_j_biopsych_2013_10_025
crossref_primary_10_1002_stem_1782
crossref_primary_10_1016_j_scr_2018_101369
crossref_primary_10_1016_j_ymthe_2019_08_011
crossref_primary_10_1016_j_scr_2015_12_014
crossref_primary_10_1016_j_bpj_2022_02_011
crossref_primary_10_1016_j_jare_2017_02_004
crossref_primary_10_1002_biot_201700066
crossref_primary_10_1242_bio_022111
crossref_primary_10_1007_s12041_018_0960_6
crossref_primary_10_1016_j_scr_2020_101702
crossref_primary_10_1016_j_scr_2018_10_014
crossref_primary_10_4236_jbm_2015_311002
crossref_primary_10_1101_cshperspect_a040808
crossref_primary_10_1002_bies_201100071
crossref_primary_10_3390_ijms17040594
crossref_primary_10_1038_nm_3267
crossref_primary_10_3390_jcm8030288
crossref_primary_10_1089_cell_2012_0039
crossref_primary_10_2217_rme_13_37
crossref_primary_10_1038_s41598_024_77508_1
crossref_primary_10_1038_s41598_022_07305_1
crossref_primary_10_1016_j_jdermsci_2016_08_002
crossref_primary_10_1371_journal_pone_0041007
crossref_primary_10_15252_embr_202154027
crossref_primary_10_1186_scrt99
crossref_primary_10_1016_j_scr_2022_102869
crossref_primary_10_1152_physrev_00036_2015
crossref_primary_10_1016_j_scr_2022_102866
crossref_primary_10_1038_onc_2012_285
crossref_primary_10_1111_cpr_12162
crossref_primary_10_1160_TH14_06_0503
crossref_primary_10_1016_j_scr_2019_101626
crossref_primary_10_1089_cell_2019_0035
crossref_primary_10_1371_journal_pone_0059908
crossref_primary_10_1371_journal_pone_0190275
crossref_primary_10_3390_ijms21186764
crossref_primary_10_3390_cells12040538
crossref_primary_10_1002_adma_202410908
crossref_primary_10_1016_j_ynpai_2020_100055
crossref_primary_10_1016_j_bcmd_2012_02_007
crossref_primary_10_1016_j_biomaterials_2020_120201
crossref_primary_10_1111_aej_12256
crossref_primary_10_1186_s41241_017_0015_y
crossref_primary_10_1002_cpsc_103
crossref_primary_10_1016_j_gene_2018_11_069
crossref_primary_10_1016_j_ejphar_2020_173202
crossref_primary_10_1007_s00441_016_2369_y
crossref_primary_10_1089_hum_2012_251
crossref_primary_10_1371_journal_pone_0064496
crossref_primary_10_1186_scrt163
crossref_primary_10_1038_ncomms7626
crossref_primary_10_1097_01_EHX_0000407659_43685_92
crossref_primary_10_1016_j_scr_2020_101711
crossref_primary_10_1016_j_yjmcc_2023_04_006
crossref_primary_10_1038_s41434_019_0058_7
crossref_primary_10_1111_jnc_13986
crossref_primary_10_1007_s00018_017_2546_5
crossref_primary_10_1016_j_stem_2020_12_015
crossref_primary_10_1016_j_neuron_2013_06_002
crossref_primary_10_1111_febs_16143
crossref_primary_10_1016_j_preteyeres_2014_10_002
crossref_primary_10_1016_j_scr_2018_01_005
crossref_primary_10_1016_j_celrep_2019_06_096
crossref_primary_10_1007_s00018_015_2084_y
crossref_primary_10_1016_j_scr_2021_102314
crossref_primary_10_1002_0471140856_tx1413s67
crossref_primary_10_1016_j_scr_2014_01_004
crossref_primary_10_1155_2013_430290
crossref_primary_10_1002_jbt_21470
crossref_primary_10_1371_journal_pone_0115392
crossref_primary_10_7603_s40730_015_0008_y
crossref_primary_10_1089_scd_2013_0621
crossref_primary_10_1089_scd_2013_0620
crossref_primary_10_3389_fvets_2021_806785
crossref_primary_10_1089_cell_2018_0048
crossref_primary_10_1038_s41598_020_77274_w
crossref_primary_10_1089_scd_2018_0122
crossref_primary_10_1016_j_crmeth_2022_100317
crossref_primary_10_3389_fnagi_2016_00117
crossref_primary_10_1002_cpz1_88
crossref_primary_10_3390_ijms22094334
crossref_primary_10_1016_j_scr_2015_11_005
crossref_primary_10_1002_jnr_23924
crossref_primary_10_1016_j_scr_2015_11_006
crossref_primary_10_1186_s13287_015_0035_z
crossref_primary_10_1371_journal_pone_0118424
crossref_primary_10_1093_dnares_dsv016
crossref_primary_10_1002_stem_1734
crossref_primary_10_1016_j_jviromet_2017_08_010
crossref_primary_10_1186_s13045_014_0050_z
crossref_primary_10_1002_stem_1732
crossref_primary_10_1016_j_bios_2022_114681
crossref_primary_10_15252_emmm_201504395
crossref_primary_10_1016_j_bbamcr_2017_04_017
crossref_primary_10_1016_j_bone_2023_116760
crossref_primary_10_1161_CIRCRESAHA_122_321951
crossref_primary_10_1089_scd_2016_0268
crossref_primary_10_1002_btpr_3152
crossref_primary_10_1016_j_scr_2018_09_020
crossref_primary_10_1128_jvi_00832_24
crossref_primary_10_1155_2012_564612
crossref_primary_10_1111_cpr_13041
crossref_primary_10_1515_tnsci_2020_0004
crossref_primary_10_3389_fncel_2018_00413
crossref_primary_10_2217_rme_15_79
crossref_primary_10_1016_j_stemcr_2017_03_003
crossref_primary_10_1016_j_rpor_2018_04_005
crossref_primary_10_1016_j_chembiol_2013_09_016
crossref_primary_10_1002_cpz1_345
crossref_primary_10_1371_journal_pone_0081720
crossref_primary_10_1007_s40291_022_00599_x
crossref_primary_10_1253_circj_CJ_17_0400
crossref_primary_10_1517_14712598_2014_876986
crossref_primary_10_1517_14712598_2016_1094457
crossref_primary_10_1016_j_xpro_2025_103700
crossref_primary_10_1016_j_scr_2016_12_014
crossref_primary_10_1038_nature10648
crossref_primary_10_1016_j_scr_2016_12_013
crossref_primary_10_1016_j_scr_2016_12_011
crossref_primary_10_15252_embj_201490685
crossref_primary_10_1371_journal_pone_0113052
crossref_primary_10_1016_j_scr_2016_12_010
crossref_primary_10_1002_jcb_24183
crossref_primary_10_1186_s13195_018_0400_0
crossref_primary_10_3390_genes9010039
crossref_primary_10_3390_ph14060565
crossref_primary_10_1016_j_scr_2016_12_025
crossref_primary_10_1016_j_scr_2016_12_024
crossref_primary_10_1016_j_scr_2016_12_023
crossref_primary_10_1016_j_celrep_2022_111264
crossref_primary_10_1016_j_scr_2016_12_022
crossref_primary_10_3390_cells10113250
crossref_primary_10_1002_term_2021
crossref_primary_10_1155_2015_382530
crossref_primary_10_1016_j_critrevonc_2015_08_022
crossref_primary_10_1126_science_aat6720
crossref_primary_10_1007_s13238_012_2804_0
crossref_primary_10_1111_jcmm_16899
crossref_primary_10_3390_ijms25105177
crossref_primary_10_1002_cpsc_25
crossref_primary_10_1161_CIRCRESAHA_111_256149
crossref_primary_10_3904_kjim_2014_29_5_547
crossref_primary_10_3389_ebm_2024_10266
crossref_primary_10_1016_j_stem_2013_06_001
crossref_primary_10_1016_j_pneurobio_2016_11_003
crossref_primary_10_1155_2019_2181437
crossref_primary_10_1016_j_crmeth_2022_100349
crossref_primary_10_1369_0022155416673969
crossref_primary_10_1016_j_ejphar_2021_174568
crossref_primary_10_15421_10_15421_022366
crossref_primary_10_1002_cpsc_12
crossref_primary_10_1002_stem_1968
crossref_primary_10_1016_j_gpb_2013_09_001
crossref_primary_10_1007_s11095_021_03067_z
crossref_primary_10_1016_j_scr_2017_08_008
crossref_primary_10_1016_j_joca_2016_11_015
crossref_primary_10_1038_srep36845
crossref_primary_10_1007_s12015_015_9622_8
crossref_primary_10_1038_mt_2011_258
crossref_primary_10_1039_C6TB03130G
crossref_primary_10_1016_j_scr_2016_06_006
crossref_primary_10_1007_s00381_013_2304_4
crossref_primary_10_1016_j_scr_2024_103526
crossref_primary_10_1089_scd_2012_0173
crossref_primary_10_1007_s12015_020_10091_w
crossref_primary_10_1371_journal_pone_0309566
crossref_primary_10_1016_j_yexcr_2014_02_006
crossref_primary_10_3390_pharmaceutics14020317
crossref_primary_10_1016_j_ijrobp_2018_11_016
crossref_primary_10_1111_j_1749_6632_2012_06629_x
crossref_primary_10_1016_j_hoc_2017_06_007
crossref_primary_10_1021_acssynbio_1c00214
crossref_primary_10_1517_13543776_2016_1118058
crossref_primary_10_31857_S0869587323090062
crossref_primary_10_1016_j_isci_2022_105052
crossref_primary_10_3233_JHD_160199
crossref_primary_10_1016_j_theriogenology_2014_04_001
crossref_primary_10_1371_journal_pone_0137211
crossref_primary_10_1371_journal_pone_0217110
crossref_primary_10_1016_j_scr_2018_07_018
crossref_primary_10_1016_j_jconrel_2016_06_007
crossref_primary_10_1016_j_stem_2014_12_013
crossref_primary_10_3390_cells10123483
crossref_primary_10_1016_j_jconrel_2017_08_021
crossref_primary_10_1016_j_jacbts_2016_06_010
crossref_primary_10_3389_fimmu_2023_1325209
crossref_primary_10_1159_000430916
crossref_primary_10_1002_cpz1_979
crossref_primary_10_1093_procel_pwae047
crossref_primary_10_1155_2016_8394960
crossref_primary_10_3390_ijms21155467
crossref_primary_10_7717_peerj_4370
crossref_primary_10_1016_j_yjmcc_2020_03_016
crossref_primary_10_3390_ijms22158148
crossref_primary_10_1161_CIRCRESAHA_114_300556
crossref_primary_10_1186_s13287_018_1048_1
crossref_primary_10_1007_s12015_014_9577_1
crossref_primary_10_1016_j_scr_2021_102501
crossref_primary_10_1016_j_scr_2024_103534
crossref_primary_10_3389_fcell_2024_1491282
crossref_primary_10_1002_biot_201400010
crossref_primary_10_1371_journal_pone_0103485
crossref_primary_10_1089_apb_2022_0037
crossref_primary_10_1007_s12265_016_9723_z
crossref_primary_10_1080_14712598_2017_1308481
crossref_primary_10_1111_gtc_12992
crossref_primary_10_1111_cas_12746
crossref_primary_10_1002_stem_1917
crossref_primary_10_1016_j_jcyt_2015_01_003
crossref_primary_10_1038_embor_2012_134
crossref_primary_10_1186_2051_5960_2_4
crossref_primary_10_1038_s41536_024_00387_7
crossref_primary_10_2217_epi_2020_0409
crossref_primary_10_1089_scd_2014_0309
crossref_primary_10_1016_j_stemcr_2014_10_008
crossref_primary_10_1016_j_ijcard_2016_03_040
crossref_primary_10_1111_cts_12674
crossref_primary_10_1517_14712598_2012_684875
crossref_primary_10_1007_s10522_013_9455_2
crossref_primary_10_4137_BMI_S20066
crossref_primary_10_1016_j_neuron_2018_02_015
crossref_primary_10_3390_cells12070977
crossref_primary_10_1016_j_stem_2017_11_010
crossref_primary_10_3390_cells8050403
crossref_primary_10_5966_sctm_2011_0044
crossref_primary_10_1517_14712598_2012_691161
crossref_primary_10_1016_j_scr_2018_08_020
crossref_primary_10_1038_s41598_021_90316_1
crossref_primary_10_1007_s00109_020_02031_5
crossref_primary_10_1007_s10545_018_0225_9
crossref_primary_10_1016_j_regen_2022_100064
crossref_primary_10_1038_mtm_2016_57
crossref_primary_10_1155_2012_439219
crossref_primary_10_3390_jcm4040567
crossref_primary_10_3390_cells12070988
crossref_primary_10_1016_j_scr_2021_102645
crossref_primary_10_1038_s41588_019_0499_3
crossref_primary_10_3390_cells7120253
crossref_primary_10_1002_cpmb_58
crossref_primary_10_1007_s12015_018_9861_6
crossref_primary_10_1089_cell_2013_0037
crossref_primary_10_1007_s10565_017_9384_y
crossref_primary_10_1016_j_expneurol_2020_113573
crossref_primary_10_1177_2211068214537258
crossref_primary_10_1517_14712598_2014_866086
crossref_primary_10_1038_s41467_021_22770_4
crossref_primary_10_1016_j_bcmd_2019_01_003
crossref_primary_10_1080_09537104_2021_1981850
crossref_primary_10_1089_scd_2019_0234
crossref_primary_10_1186_s13287_020_02047_1
crossref_primary_10_1038_nrcardio_2016_36
crossref_primary_10_3389_fncel_2020_604171
crossref_primary_10_1186_s13287_018_0908_z
crossref_primary_10_1177_1074248414523676
crossref_primary_10_3390_jcm4040548
crossref_primary_10_3390_life13020569
crossref_primary_10_3390_ijms22158196
crossref_primary_10_1056_EVIDoa2400252
crossref_primary_10_3389_fcell_2016_00152
crossref_primary_10_1093_schbul_sbs127
crossref_primary_10_15252_embr_202154234
crossref_primary_10_1016_j_scr_2023_103091
crossref_primary_10_1016_j_scr_2017_03_008
crossref_primary_10_5966_sctm_2012_0005
crossref_primary_10_1016_j_scr_2022_102837
crossref_primary_10_1002_stem_3353
crossref_primary_10_1186_scrt308
crossref_primary_10_1016_j_scr_2023_103097
crossref_primary_10_1038_s41598_024_74757_y
crossref_primary_10_1016_j_preteyeres_2020_100918
crossref_primary_10_1186_s13041_015_0146_6
crossref_primary_10_1016_j_stem_2014_02_004
crossref_primary_10_3390_biomedicines9121836
crossref_primary_10_1007_s00005_016_0385_y
crossref_primary_10_1038_s41598_023_50510_9
crossref_primary_10_1002_sctm_20_0242
crossref_primary_10_1128_JVI_03147_12
crossref_primary_10_1002_sctm_17_0205
crossref_primary_10_1016_j_scr_2019_101391
crossref_primary_10_1155_2018_8642989
crossref_primary_10_1007_s12265_013_9494_8
crossref_primary_10_3390_cells9112465
crossref_primary_10_25259_GJMPBU_42_2024
crossref_primary_10_5483_BMBRep_2015_48_5_100
crossref_primary_10_1089_scd_2012_0461
crossref_primary_10_1016_j_tiv_2024_105826
crossref_primary_10_3390_ijms22168599
crossref_primary_10_1038_s41398_024_02780_8
crossref_primary_10_1089_scd_2015_0061
crossref_primary_10_3389_fmolb_2023_1051494
crossref_primary_10_1007_s11515_016_1396_0
crossref_primary_10_1016_j_celrep_2013_04_004
crossref_primary_10_1007_s12268_020_1432_0
crossref_primary_10_1016_j_bbrc_2017_12_007
crossref_primary_10_1093_rb_rbac060
crossref_primary_10_1097_QAD_0000000000002535
crossref_primary_10_1111_nan_12334
crossref_primary_10_1038_mt_2015_100
crossref_primary_10_1016_j_stemcr_2015_10_002
crossref_primary_10_1038_nprot_2012_015
crossref_primary_10_2478_aite_2025_0001
crossref_primary_10_1016_j_expneurol_2017_04_001
crossref_primary_10_1038_mt_2016_143
crossref_primary_10_1016_j_ddmod_2012_02_004
crossref_primary_10_1038_s41467_019_08940_5
crossref_primary_10_1016_j_scr_2016_02_017
crossref_primary_10_3390_cells10092335
crossref_primary_10_1038_s41598_018_23120_z
crossref_primary_10_1371_journal_pone_0215490
crossref_primary_10_1007_s12015_020_10042_5
crossref_primary_10_1155_2019_5171032
crossref_primary_10_1515_revneuro_2015_0054
crossref_primary_10_3389_fvets_2023_1176772
crossref_primary_10_18699_VJ18_445
crossref_primary_10_1177_0963689717737074
crossref_primary_10_1016_j_scr_2019_101495
crossref_primary_10_1074_jbc_R113_529156
crossref_primary_10_3389_fnins_2020_562292
crossref_primary_10_1016_j_pneurobio_2018_04_005
crossref_primary_10_1177_0963689718798564
crossref_primary_10_3727_096368912X655208
crossref_primary_10_1016_j_scr_2017_10_006
crossref_primary_10_1016_j_procir_2013_01_001
crossref_primary_10_4161_cc_22575
crossref_primary_10_1016_j_scr_2019_101467
crossref_primary_10_1097_FJC_0b013e318247f642
crossref_primary_10_1016_j_expneurol_2012_12_017
crossref_primary_10_1038_s41380_023_02237_2
crossref_primary_10_1002_jcp_24155
crossref_primary_10_3892_ijmm_2024_5438
crossref_primary_10_3233_JAD_180833
crossref_primary_10_1242_bio_016402
crossref_primary_10_1007_s12265_012_9391_6
crossref_primary_10_1002_med_21265
crossref_primary_10_1158_2326_6066_CIR_14_0117
crossref_primary_10_1007_s12015_023_10672_5
crossref_primary_10_1016_j_gene_2014_11_061
crossref_primary_10_1016_j_scr_2020_101792
crossref_primary_10_1016_j_scr_2023_103151
crossref_primary_10_1016_j_scr_2018_11_008
crossref_primary_10_1371_journal_pone_0038389
crossref_primary_10_1089_ten_teb_2023_0005
crossref_primary_10_1098_rsos_211510
crossref_primary_10_1016_j_scr_2017_10_026
crossref_primary_10_1038_srep04361
Cites_doi 10.1038/cr.2011.12
10.1161/CIRCULATIONAHA.105.583039
10.1006/viro.2000.0535
10.1128/JVI.77.5.3238-3246.2003
10.1182/blood-2010-07-298331
10.1016/S0896-6273(00)00083-0
10.1038/nbt1163
10.1016/j.cell.2007.11.019
10.1126/science.1164270
10.1016/j.stem.2009.09.008
10.1016/j.stem.2009.04.005
10.1016/j.stem.2009.05.005
10.1128/JVI.74.14.6564-6569.2000
10.1038/nature07864
10.1016/j.stem.2010.08.012
10.1016/j.exphem.2009.11.003
10.1016/j.stem.2007.10.001
10.1371/journal.pone.0017557
10.1126/science.1162494
10.1634/stemcells.2008-1075
10.1126/science.1172482
10.1038/nature07863
10.1128/JVI.73.8.6474-6483.1999
10.1038/sj.gt.3301877
10.1016/j.cell.2009.02.013
10.1126/science.1151526
10.2183/pjab.85.348
10.1016/j.stem.2010.06.003
10.1038/nmeth.1426
ContentType Journal Article
Copyright copyright © 1993–2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Aug 23, 2011
Copyright_xml – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Aug 23, 2011
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.1103509108
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts


MEDLINE
AGRICOLA
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 14239
ExternalDocumentID PMC3161531
2435894771
21821793
10_1073_pnas_1103509108
108_34_14234
27979490
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c597t-ad0817c91b06f95dc051241bebbd7a2831a47d8c67ee337b3650aae9ad9bbfe53
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:11:03 EDT 2025
Thu Jul 10 18:55:08 EDT 2025
Thu Jul 10 22:36:29 EDT 2025
Fri Jul 11 05:00:18 EDT 2025
Mon Jun 30 08:25:50 EDT 2025
Thu Apr 03 06:56:03 EDT 2025
Tue Jul 01 00:47:14 EDT 2025
Thu Apr 24 22:51:44 EDT 2025
Wed Nov 11 00:29:39 EST 2020
Thu May 29 08:40:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 34
Language English
License Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c597t-ad0817c91b06f95dc051241bebbd7a2831a47d8c67ee337b3650aae9ad9bbfe53
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
Author contributions: N.N., N.F., S.K., and S.-I.N. designed research; H.B., N.N., N.F., M.S., N.T., and S.K. performed research; N.F., T.T., K.S., M.I., M.H., S.K., and S.-I.N. analyzed data; and N.F. and S.K. wrote the paper.
1H.B. and N.N. contributed equally to this work.
Edited by Yuet Wai Kan, University of California San Francisco School of Medicine, San Francisco, CA, and approved July 7, 2011 (received for review March 21, 2011)
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3161531
PMID 21821793
PQID 885352220
PQPubID 42026
PageCount 6
ParticipantIDs proquest_miscellaneous_1446266110
pubmed_primary_21821793
proquest_miscellaneous_904484038
pnas_primary_108_34_14234
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3161531
crossref_primary_10_1073_pnas_1103509108
proquest_miscellaneous_885908881
proquest_journals_885352220
crossref_citationtrail_10_1073_pnas_1103509108
jstor_primary_27979490
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-08-23
PublicationDateYYYYMMDD 2011-08-23
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-08-23
  day: 23
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2011
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Giorgetti A (e_1_3_4_20_2) 2009; 5
Woltjen K (e_1_3_4_8_2) 2009; 458
Sommer CA (e_1_3_4_6_2) 2009; 27
Zhou H (e_1_3_4_11_2) 2009; 4
Seki T (e_1_3_4_18_2) 2010; 7
Kaji K (e_1_3_4_9_2) 2009; 458
Jia F (e_1_3_4_10_2) 2010; 7
Okita K (e_1_3_4_3_2) 2008; 322
Stadtfeld M (e_1_3_4_7_2) 2008; 322
Yu J (e_1_3_4_4_2) 2009; 324
Warren L (e_1_3_4_13_2) 2010; 7
Majeti R (e_1_3_4_28_2) 2007; 1
Takahashi K (e_1_3_4_1_2) 2007; 131
Jin CH (e_1_3_4_19_2) 2003; 10
D'Amour KA (e_1_3_4_26_2) 2005; 23
Chou BK (e_1_3_4_29_2) 2011; 21
Soldner F (e_1_3_4_5_2) 2009; 136
Takenaka C (e_1_3_4_21_2) 2010; 38
Bowman MC (e_1_3_4_22_2) 1999; 73
Fusaki N (e_1_3_4_17_2) 2009; 85
Li HO (e_1_3_4_15_2) 2000; 74
Yu J (e_1_3_4_2_2) 2007; 318
Feller JA (e_1_3_4_23_2) 2000; 276
Kim D (e_1_3_4_12_2) 2009; 4
Inoue M (e_1_3_4_24_2) 2003; 77
Kawasaki H (e_1_3_4_27_2) 2000; 28
Yu J (e_1_3_4_31_2) 2011; 6
e_1_3_4_16_2
e_1_3_4_14_2
Hu K (e_1_3_4_30_2) 2011; 117
Guo XM (e_1_3_4_25_2) 2006; 113
21243013 - Cell Res. 2011 Mar;21(3):518-29
18845712 - Science. 2008 Nov 7;322(5903):949-53
21296996 - Blood. 2011 Apr 7;117(14):e109-19
11086981 - Neuron. 2000 Oct;28(1):31-40
20139967 - Nat Methods. 2010 Mar;7(3):197-9
18035408 - Cell. 2007 Nov 30;131(5):861-72
19252477 - Nature. 2009 Apr 9;458(7239):771-5
11022007 - Virology. 2000 Oct 10;276(1):190-201
16258519 - Nat Biotechnol. 2005 Dec;23(12):1534-41
18371405 - Cell Stem Cell. 2007 Dec 13;1(6):635-45
19838014 - Proc Jpn Acad Ser B Phys Biol Sci. 2009;85(8):348-62
19796614 - Cell Stem Cell. 2009 Oct 2;5(4):353-7
19269371 - Cell. 2009 Mar 6;136(5):964-77
20888316 - Cell Stem Cell. 2010 Nov 5;7(5):618-30
10864670 - J Virol. 2000 Jul;74(14):6564-9
19252478 - Nature. 2009 Apr 9;458(7239):766-70
18818365 - Science. 2008 Nov 7;322(5903):945-9
12584347 - J Virol. 2003 Mar;77(5):3238-46
19096035 - Stem Cells. 2009 Mar;27(3):543-9
12571635 - Gene Ther. 2003 Feb;10(3):272-7
19481515 - Cell Stem Cell. 2009 Jun 5;4(6):472-6
10400742 - J Virol. 1999 Aug;73(8):6474-83
20621043 - Cell Stem Cell. 2010 Jul 2;7(1):11-4
19325077 - Science. 2009 May 8;324(5928):797-801
16651472 - Circulation. 2006 May 9;113(18):2229-37
19922768 - Exp Hematol. 2010 Feb;38(2):154-62
18029452 - Science. 2007 Dec 21;318(5858):1917-20
21390254 - PLoS One. 2011;6(3):e17557
19398399 - Cell Stem Cell. 2009 May 8;4(5):381-4
References_xml – volume: 21
  start-page: 518
  year: 2011
  ident: e_1_3_4_29_2
  article-title: Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures
  publication-title: Cell Res
  doi: 10.1038/cr.2011.12
– volume: 113
  start-page: 2229
  year: 2006
  ident: e_1_3_4_25_2
  article-title: Creation of engineered cardiac tissue in vitro from mouse embryonic stem cells
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.105.583039
– volume: 276
  start-page: 190
  year: 2000
  ident: e_1_3_4_23_2
  article-title: Comparison of identical temperature-sensitive mutations in the L polymerase proteins of Sendai and parainfluenza3 viruses
  publication-title: Virology
  doi: 10.1006/viro.2000.0535
– volume: 77
  start-page: 3238
  year: 2003
  ident: e_1_3_4_24_2
  article-title: Nontransmissible virus-like particle formation by F-deficient Sendai virus is temperature-sensitive and reduced by mutations in M and HN proteins
  publication-title: J Virol
  doi: 10.1128/JVI.77.5.3238-3246.2003
– volume: 117
  start-page: e109
  year: 2011
  ident: e_1_3_4_30_2
  article-title: Efficient generation of transgene-free induced pluripotent stem cells from normal and neoplastic bone marrow and cord blood mononuclear cells
  publication-title: Blood
  doi: 10.1182/blood-2010-07-298331
– volume: 28
  start-page: 31
  year: 2000
  ident: e_1_3_4_27_2
  article-title: Induction of midbrain dopaminergic neurons from ES cells by stromal cell–derived inducing activity
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)00083-0
– volume: 23
  start-page: 1534
  year: 2005
  ident: e_1_3_4_26_2
  article-title: Efficient differentiation of human embryonic stem cells to definitive endoderm
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1163
– ident: e_1_3_4_14_2
– volume: 131
  start-page: 861
  year: 2007
  ident: e_1_3_4_1_2
  article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors
  publication-title: Cell
  doi: 10.1016/j.cell.2007.11.019
– volume: 322
  start-page: 949
  year: 2008
  ident: e_1_3_4_3_2
  article-title: Generation of mouse-induced pluripotent stem cells without viral vectors
  publication-title: Science
  doi: 10.1126/science.1164270
– volume: 5
  start-page: 353
  year: 2009
  ident: e_1_3_4_20_2
  article-title: Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.09.008
– volume: 4
  start-page: 381
  year: 2009
  ident: e_1_3_4_11_2
  article-title: Generation of induced pluripotent stem cells using recombinant proteins
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.04.005
– volume: 4
  start-page: 472
  year: 2009
  ident: e_1_3_4_12_2
  article-title: Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.05.005
– volume: 74
  start-page: 6564
  year: 2000
  ident: e_1_3_4_15_2
  article-title: A cytoplasmic RNA vector derived from nontransmissible Sendai virus with efficient gene transfer and expression
  publication-title: J Virol
  doi: 10.1128/JVI.74.14.6564-6569.2000
– volume: 458
  start-page: 771
  year: 2009
  ident: e_1_3_4_9_2
  article-title: Virus-free induction of pluripotency and subsequent excision of reprogramming factors
  publication-title: Nature
  doi: 10.1038/nature07864
– volume: 7
  start-page: 618
  year: 2010
  ident: e_1_3_4_13_2
  article-title: Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.08.012
– volume: 38
  start-page: 154
  year: 2010
  ident: e_1_3_4_21_2
  article-title: Effective generation of iPS cells from CD34+ cord blood cells by inhibition of p53
  publication-title: Exp Hematol
  doi: 10.1016/j.exphem.2009.11.003
– volume: 1
  start-page: 635
  year: 2007
  ident: e_1_3_4_28_2
  article-title: Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2007.10.001
– ident: e_1_3_4_16_2
– volume: 6
  start-page: e17557
  year: 2011
  ident: e_1_3_4_31_2
  article-title: Efficient feeder-free episomal reprogramming with small molecules
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0017557
– volume: 322
  start-page: 945
  year: 2008
  ident: e_1_3_4_7_2
  article-title: Induced pluripotent stem cells generated without viral integration
  publication-title: Science
  doi: 10.1126/science.1162494
– volume: 27
  start-page: 543
  year: 2009
  ident: e_1_3_4_6_2
  article-title: Induced pluripotent stem cell generation using a single lentiviral stem cell cassette
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2008-1075
– volume: 324
  start-page: 797
  year: 2009
  ident: e_1_3_4_4_2
  article-title: Human induced pluripotent stem cells free of vector and transgene sequences
  publication-title: Science
  doi: 10.1126/science.1172482
– volume: 458
  start-page: 766
  year: 2009
  ident: e_1_3_4_8_2
  article-title: piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells
  publication-title: Nature
  doi: 10.1038/nature07863
– volume: 73
  start-page: 6474
  year: 1999
  ident: e_1_3_4_22_2
  article-title: Dissection of individual functions of the Sendai virus phosphoprotein in transcription
  publication-title: J Virol
  doi: 10.1128/JVI.73.8.6474-6483.1999
– volume: 10
  start-page: 272
  year: 2003
  ident: e_1_3_4_19_2
  article-title: Recombinant Sendai virus provides a highly efficient gene transfer into human cord blood–derived hematopoietic stem cells
  publication-title: Gene Ther
  doi: 10.1038/sj.gt.3301877
– volume: 136
  start-page: 964
  year: 2009
  ident: e_1_3_4_5_2
  article-title: Parkinson's disease patient–derived induced pluripotent stem cells free of viral reprogramming factors
  publication-title: Cell
  doi: 10.1016/j.cell.2009.02.013
– volume: 318
  start-page: 1917
  year: 2007
  ident: e_1_3_4_2_2
  article-title: Induced pluripotent stem cell lines derived from human somatic cells
  publication-title: Science
  doi: 10.1126/science.1151526
– volume: 85
  start-page: 348
  year: 2009
  ident: e_1_3_4_17_2
  article-title: Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome
  publication-title: Proc Jpn Acad, Ser B, Phys Biol Sci
  doi: 10.2183/pjab.85.348
– volume: 7
  start-page: 11
  year: 2010
  ident: e_1_3_4_18_2
  article-title: Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.06.003
– volume: 7
  start-page: 197
  year: 2010
  ident: e_1_3_4_10_2
  article-title: A nonviral minicircle vector for deriving human iPS cells
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1426
– reference: 20621043 - Cell Stem Cell. 2010 Jul 2;7(1):11-4
– reference: 19252478 - Nature. 2009 Apr 9;458(7239):766-70
– reference: 19838014 - Proc Jpn Acad Ser B Phys Biol Sci. 2009;85(8):348-62
– reference: 19269371 - Cell. 2009 Mar 6;136(5):964-77
– reference: 21296996 - Blood. 2011 Apr 7;117(14):e109-19
– reference: 19252477 - Nature. 2009 Apr 9;458(7239):771-5
– reference: 20888316 - Cell Stem Cell. 2010 Nov 5;7(5):618-30
– reference: 12584347 - J Virol. 2003 Mar;77(5):3238-46
– reference: 16258519 - Nat Biotechnol. 2005 Dec;23(12):1534-41
– reference: 19481515 - Cell Stem Cell. 2009 Jun 5;4(6):472-6
– reference: 12571635 - Gene Ther. 2003 Feb;10(3):272-7
– reference: 18818365 - Science. 2008 Nov 7;322(5903):945-9
– reference: 20139967 - Nat Methods. 2010 Mar;7(3):197-9
– reference: 19922768 - Exp Hematol. 2010 Feb;38(2):154-62
– reference: 10400742 - J Virol. 1999 Aug;73(8):6474-83
– reference: 21243013 - Cell Res. 2011 Mar;21(3):518-29
– reference: 11022007 - Virology. 2000 Oct 10;276(1):190-201
– reference: 18371405 - Cell Stem Cell. 2007 Dec 13;1(6):635-45
– reference: 19096035 - Stem Cells. 2009 Mar;27(3):543-9
– reference: 10864670 - J Virol. 2000 Jul;74(14):6564-9
– reference: 18845712 - Science. 2008 Nov 7;322(5903):949-53
– reference: 19398399 - Cell Stem Cell. 2009 May 8;4(5):381-4
– reference: 21390254 - PLoS One. 2011;6(3):e17557
– reference: 16651472 - Circulation. 2006 May 9;113(18):2229-37
– reference: 18035408 - Cell. 2007 Nov 30;131(5):861-72
– reference: 11086981 - Neuron. 2000 Oct;28(1):31-40
– reference: 19325077 - Science. 2009 May 8;324(5928):797-801
– reference: 18029452 - Science. 2007 Dec 21;318(5858):1917-20
– reference: 19796614 - Cell Stem Cell. 2009 Oct 2;5(4):353-7
SSID ssj0009580
Score 2.5544047
Snippet After the first report of induced pluripotent stem cells (iPSCs), considerable efforts have been made to develop more efficient methods for generating iPSCs...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14234
SubjectTerms Animals
Biological Sciences
Biomarkers - metabolism
Blood cells
CD34 antigen
Cell Differentiation
Cord blood
Embryo cells
Embryonic Stem Cells - cytology
Embryonic Stem Cells - metabolism
Epigenesis, Genetic
Feeder cells
Fetal Blood - cytology
Fibroblasts
Fibroblasts - metabolism
genes
Genetic vectors
Genetic Vectors - genetics
Genomes
Germ Layers - cytology
Germ Layers - metabolism
Hematopoietic stem cells
Humans
Induced pluripotent stem cells
Induced Pluripotent Stem Cells - cytology
Induced Pluripotent Stem Cells - metabolism
Inhibitory postsynaptic potentials
Insertion
Mice
Murine respirovirus
Mutation
Pluripotent stem cells
Ribonucleic acid
risk
RNA
RNA viruses
Sendai virus
Sendai virus - genetics
Stem cells
Temperature
Temperature effects
Transgenes - genetics
Vectors
Viruses
Title Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors
URI https://www.jstor.org/stable/27979490
http://www.pnas.org/content/108/34/14234.abstract
https://www.ncbi.nlm.nih.gov/pubmed/21821793
https://www.proquest.com/docview/885352220
https://www.proquest.com/docview/1446266110
https://www.proquest.com/docview/885908881
https://www.proquest.com/docview/904484038
https://pubmed.ncbi.nlm.nih.gov/PMC3161531
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VcuGCKFAwBbRIHFJZDn5svOtjqVpFHKJITaXeLK-9oRatHcV2Jbjxj_kJzD78SJQgQIosez1rrz1f5uXZWYQ-hiHhzBfUSVk4cQiDvQjMBselNItcP-KRzraYhdNr8uVmcnNw8GuQtdTUfJz-2Dmv5H-4Cm3AVzlL9h84210UGmAf-Atb4DBs_4rHF6r-g_ya_1VVj26tv1oqINnkLNdCmHX4wPlu5Mf-1V0DgqKsZTdZxdmWsXsVe83nV-eVDBNIk1SAPa3rLTuVTHJXKUZXAjz43H7I101lP6iAfzU0b-edOqza5INZG2086-euGIFS2Y49n_UrIU9zUNm3uf25R-wsKb_lAFdohl_d6ZBZKe5z-7KpwADuA-VAAsf2IuGJIc2GAVo95XhYDlyPqhvPUIT7oFaJnng9Flpqg9HjhESvO9qJdZcN8GsiplpKe2BDkp36AwSeXPS4SCo5PyJQ1hQbUgIAVvcKTrL0vZRuvSJtkwe29GuX9QiXigMSq7s_Qo99cGxUKup0WCaa6UlT5iHbYlQ0-LQ1KFXFWo9gw6TSWbWyVC_Q73KbtrN_B-bU4hl6avwgfKZBfYQORPEcHbWMwCNTDv30BfrZoRz3KMflEm-iHCuUY4NyPEA5lijHCuV4pDB-ivl3vBPhWCMcK4Rjg_CX6PryYnE-dczCIU4K_nHtJBkYujSNPO6Gy2iSpaB5wFLlgvOMJmBQewmhGUtDKkQQUB6Am5IkIkqyiPOlmATH6LAoC_EaYT8UmUfDiPBgQmCfBSGDI99NXZIlLLXQuH33cWqq6svFXe5ild1Bg1jyIe75ZqFR12GlC8rsJz1WzOzofBqB-oxcC1mKtO_fA8tCJy3LYyOqqpgxWcXJ96Hnh-4s6BH56pNClA3clpBQGuse0OA9NHAZmRbJvP0kkUsII24Ag3-lYdaP3sDVQnQDgB2BrHS_eabIb1XF-0D5pd6bPzz3CXrSS5O36LBeN-Id-As1f6_-Yr8BI7cYIw
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+generation+of+transgene-free+human+induced+pluripotent+stem+cells+%28iPSCs%29+by+temperature-sensitive+Sendai+virus+vectors&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Hiroshi+Ban&rft.au=Naoki+Nishishita&rft.au=Noemi+Fusaki&rft.au=Toshiaki+Tabata&rft.date=2011-08-23&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=108&rft.issue=34&rft.spage=14234&rft_id=info:doi/10.1073%2Fpnas.1103509108&rft_id=info%3Apmid%2F21821793&rft.externalDBID=n%2Fa&rft.externalDocID=108_34_14234
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F34.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F34.cover.gif