Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization

Human cancer cell lines are used in research to study the biology of cancer and to test cancer treatments. Recently there are already some large panels of several hundred human cancer cell lines which are characterized with genomic and pharmacological data. The ability to predict drug responses usin...

Full description

Saved in:
Bibliographic Details
Published inBMC cancer Vol. 17; no. 1; pp. 513 - 12
Main Authors Wang, Lin, Li, Xiaozhong, Zhang, Louxin, Gao, Qiang
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 02.08.2017
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Human cancer cell lines are used in research to study the biology of cancer and to test cancer treatments. Recently there are already some large panels of several hundred human cancer cell lines which are characterized with genomic and pharmacological data. The ability to predict drug responses using these pharmacogenomics data can facilitate the development of precision cancer medicines. Although several methods have been developed to address the drug response prediction, there are many challenges in obtaining accurate prediction. Based on the fact that similar cell lines and similar drugs exhibit similar drug responses, we adopted a similarity-regularized matrix factorization (SRMF) method to predict anticancer drug responses of cell lines using chemical structures of drugs and baseline gene expression levels in cell lines. Specifically, chemical structural similarity of drugs and gene expression profile similarity of cell lines were considered as regularization terms, which were incorporated to the drug response matrix factorization model. We first demonstrated the effectiveness of SRMF using a set of simulation data and compared it with two typical similarity-based methods. Furthermore, we applied it to the Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE) datasets, and performance of SRMF exceeds three state-of-the-art methods. We also applied SRMF to estimate the missing drug response values in the GDSC dataset. Even though SRMF does not specifically model mutation information, it could correctly predict drug-cancer gene associations that are consistent with existing data, and identify novel drug-cancer gene associations that are not found in existing data as well. SRMF can also aid in drug repositioning. The newly predicted drug responses of GDSC dataset suggest that mTOR inhibitor rapamycin was sensitive to non-small cell lung cancer (NSCLC), and expression of AK1RC3 and HINT1 may be adjunct markers of cell line sensitivity to rapamycin. Our analysis showed that the proposed data integration method is able to improve the accuracy of prediction of anticancer drug responses in cell lines, and can identify consistent and novel drug-cancer gene associations compared to existing data as well as aid in drug repositioning.
AbstractList Human cancer cell lines are used in research to study the biology of cancer and to test cancer treatments. Recently there are already some large panels of several hundred human cancer cell lines which are characterized with genomic and pharmacological data. The ability to predict drug responses using these pharmacogenomics data can facilitate the development of precision cancer medicines. Although several methods have been developed to address the drug response prediction, there are many challenges in obtaining accurate prediction. Based on the fact that similar cell lines and similar drugs exhibit similar drug responses, we adopted a similarity-regularized matrix factorization (SRMF) method to predict anticancer drug responses of cell lines using chemical structures of drugs and baseline gene expression levels in cell lines. Specifically, chemical structural similarity of drugs and gene expression profile similarity of cell lines were considered as regularization terms, which were incorporated to the drug response matrix factorization model. We first demonstrated the effectiveness of SRMF using a set of simulation data and compared it with two typical similarity-based methods. Furthermore, we applied it to the Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE) datasets, and performance of SRMF exceeds three state-of-the-art methods. We also applied SRMF to estimate the missing drug response values in the GDSC dataset. Even though SRMF does not specifically model mutation information, it could correctly predict drug-cancer gene associations that are consistent with existing data, and identify novel drug-cancer gene associations that are not found in existing data as well. SRMF can also aid in drug repositioning. The newly predicted drug responses of GDSC dataset suggest that mTOR inhibitor rapamycin was sensitive to non-small cell lung cancer (NSCLC), and expression of AK1RC3 and HINT1 may be adjunct markers of cell line sensitivity to rapamycin. Our analysis showed that the proposed data integration method is able to improve the accuracy of prediction of anticancer drug responses in cell lines, and can identify consistent and novel drug-cancer gene associations compared to existing data as well as aid in drug repositioning.
Human cancer cell lines are used in research to study the biology of cancer and to test cancer treatments. Recently there are already some large panels of several hundred human cancer cell lines which are characterized with genomic and pharmacological data. The ability to predict drug responses using these pharmacogenomics data can facilitate the development of precision cancer medicines. Although several methods have been developed to address the drug response prediction, there are many challenges in obtaining accurate prediction.BACKGROUNDHuman cancer cell lines are used in research to study the biology of cancer and to test cancer treatments. Recently there are already some large panels of several hundred human cancer cell lines which are characterized with genomic and pharmacological data. The ability to predict drug responses using these pharmacogenomics data can facilitate the development of precision cancer medicines. Although several methods have been developed to address the drug response prediction, there are many challenges in obtaining accurate prediction.Based on the fact that similar cell lines and similar drugs exhibit similar drug responses, we adopted a similarity-regularized matrix factorization (SRMF) method to predict anticancer drug responses of cell lines using chemical structures of drugs and baseline gene expression levels in cell lines. Specifically, chemical structural similarity of drugs and gene expression profile similarity of cell lines were considered as regularization terms, which were incorporated to the drug response matrix factorization model.METHODSBased on the fact that similar cell lines and similar drugs exhibit similar drug responses, we adopted a similarity-regularized matrix factorization (SRMF) method to predict anticancer drug responses of cell lines using chemical structures of drugs and baseline gene expression levels in cell lines. Specifically, chemical structural similarity of drugs and gene expression profile similarity of cell lines were considered as regularization terms, which were incorporated to the drug response matrix factorization model.We first demonstrated the effectiveness of SRMF using a set of simulation data and compared it with two typical similarity-based methods. Furthermore, we applied it to the Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE) datasets, and performance of SRMF exceeds three state-of-the-art methods. We also applied SRMF to estimate the missing drug response values in the GDSC dataset. Even though SRMF does not specifically model mutation information, it could correctly predict drug-cancer gene associations that are consistent with existing data, and identify novel drug-cancer gene associations that are not found in existing data as well. SRMF can also aid in drug repositioning. The newly predicted drug responses of GDSC dataset suggest that mTOR inhibitor rapamycin was sensitive to non-small cell lung cancer (NSCLC), and expression of AK1RC3 and HINT1 may be adjunct markers of cell line sensitivity to rapamycin.RESULTSWe first demonstrated the effectiveness of SRMF using a set of simulation data and compared it with two typical similarity-based methods. Furthermore, we applied it to the Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE) datasets, and performance of SRMF exceeds three state-of-the-art methods. We also applied SRMF to estimate the missing drug response values in the GDSC dataset. Even though SRMF does not specifically model mutation information, it could correctly predict drug-cancer gene associations that are consistent with existing data, and identify novel drug-cancer gene associations that are not found in existing data as well. SRMF can also aid in drug repositioning. The newly predicted drug responses of GDSC dataset suggest that mTOR inhibitor rapamycin was sensitive to non-small cell lung cancer (NSCLC), and expression of AK1RC3 and HINT1 may be adjunct markers of cell line sensitivity to rapamycin.Our analysis showed that the proposed data integration method is able to improve the accuracy of prediction of anticancer drug responses in cell lines, and can identify consistent and novel drug-cancer gene associations compared to existing data as well as aid in drug repositioning.CONCLUSIONSOur analysis showed that the proposed data integration method is able to improve the accuracy of prediction of anticancer drug responses in cell lines, and can identify consistent and novel drug-cancer gene associations compared to existing data as well as aid in drug repositioning.
Abstract Background Human cancer cell lines are used in research to study the biology of cancer and to test cancer treatments. Recently there are already some large panels of several hundred human cancer cell lines which are characterized with genomic and pharmacological data. The ability to predict drug responses using these pharmacogenomics data can facilitate the development of precision cancer medicines. Although several methods have been developed to address the drug response prediction, there are many challenges in obtaining accurate prediction. Methods Based on the fact that similar cell lines and similar drugs exhibit similar drug responses, we adopted a similarity-regularized matrix factorization (SRMF) method to predict anticancer drug responses of cell lines using chemical structures of drugs and baseline gene expression levels in cell lines. Specifically, chemical structural similarity of drugs and gene expression profile similarity of cell lines were considered as regularization terms, which were incorporated to the drug response matrix factorization model. Results We first demonstrated the effectiveness of SRMF using a set of simulation data and compared it with two typical similarity-based methods. Furthermore, we applied it to the Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE) datasets, and performance of SRMF exceeds three state-of-the-art methods. We also applied SRMF to estimate the missing drug response values in the GDSC dataset. Even though SRMF does not specifically model mutation information, it could correctly predict drug-cancer gene associations that are consistent with existing data, and identify novel drug-cancer gene associations that are not found in existing data as well. SRMF can also aid in drug repositioning. The newly predicted drug responses of GDSC dataset suggest that mTOR inhibitor rapamycin was sensitive to non-small cell lung cancer (NSCLC), and expression of AK1RC3 and HINT1 may be adjunct markers of cell line sensitivity to rapamycin. Conclusions Our analysis showed that the proposed data integration method is able to improve the accuracy of prediction of anticancer drug responses in cell lines, and can identify consistent and novel drug-cancer gene associations compared to existing data as well as aid in drug repositioning.
ArticleNumber 513
Audience Academic
Author Zhang, Louxin
Wang, Lin
Gao, Qiang
Li, Xiaozhong
Author_xml – sequence: 1
  givenname: Lin
  orcidid: 0000-0001-5025-3880
  surname: Wang
  fullname: Wang, Lin
– sequence: 2
  givenname: Xiaozhong
  surname: Li
  fullname: Li, Xiaozhong
– sequence: 3
  givenname: Louxin
  surname: Zhang
  fullname: Zhang, Louxin
– sequence: 4
  givenname: Qiang
  surname: Gao
  fullname: Gao, Qiang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28768489$$D View this record in MEDLINE/PubMed
BookMark eNp1kluL1DAYhousuAf9Ad5IQRC96Jovh2lyIyyLh4EFQfc-ZNKkk6VNxiRdd_31pjO7MiNKLxqS531Iv76n1ZEP3lTVS0DnAHzxPgHmnDUI2oYwhBr2pDoB2kKDKWqP9tbH1WlKN6iAHPFn1THm7YJTLk6qvBw3MdyarlY-O628NrHu4tTX0aRN8MnUm2g6p7MLvna-1mYY6sF5k-opOd_Xo8rR3dVW6Ryi-6W24E-X13VyoxtUdPm-yPppXu6On1dPrRqSefHwPquuP328vvzSXH39vLy8uGo0E21uFMMgQAmhBSGUUyDAYEE6ba2lZgF2wVacUQRYWdRhQpGwpgVAHcEYAzmrljttF9SN3EQ3qngvg3JyuxFiL1UsHz0YyYkCA9RY1TLaEqsEQ5QsCKyACy664vqwc22m1Wg6bXyOajiQHp54t5Z9uJWMUaCEFsHbB0EMPyaTshxdmoepvAlTkiAw4wJjPqOvd2ivytWct6EY9YzLCwaAseC4LdT5P6jydGZ0uhTFurJ_EHh3EChMNne5V1NKcvn92yH7Zo9dGzXkdQrDNP-9dAi-2p_Ln4E8NqwA7Q7QMaQUjZXa5W0LynXdIAHJucty12VZKirnLktWkvBX8lH-_8xvFYD00A
CitedBy_id crossref_primary_10_1007_s13577_022_00689_2
crossref_primary_10_1093_bib_bbae242
crossref_primary_10_1016_j_inffus_2023_102077
crossref_primary_10_1093_bib_bbac100
crossref_primary_10_1016_j_compbiolchem_2024_108175
crossref_primary_10_1109_JBHI_2020_3004663
crossref_primary_10_1186_s12859_023_05618_0
crossref_primary_10_2174_1574893617666220302123118
crossref_primary_10_1093_bioinformatics_btac383
crossref_primary_10_1038_s41525_021_00239_z
crossref_primary_10_3233_JIFS_169713
crossref_primary_10_1021_acs_jcim_3c01060
crossref_primary_10_1093_bib_bbab408
crossref_primary_10_1038_s41598_020_58821_x
crossref_primary_10_1007_s00500_022_07098_5
crossref_primary_10_1016_j_chemolab_2022_104562
crossref_primary_10_1038_s41598_020_71257_7
crossref_primary_10_1093_bioinformatics_btab299
crossref_primary_10_1093_bioinformatics_btae204
crossref_primary_10_1016_j_aej_2024_06_052
crossref_primary_10_1080_1062936X_2020_1818617
crossref_primary_10_3390_app14135660
crossref_primary_10_1038_s41698_020_0122_1
crossref_primary_10_2174_1574893617666220609114052
crossref_primary_10_1371_journal_pone_0250620
crossref_primary_10_1093_bioinformatics_btz158
crossref_primary_10_5808_gi_20076
crossref_primary_10_1093_bioinformatics_btab466
crossref_primary_10_1016_j_omtn_2019_05_017
crossref_primary_10_1016_j_future_2024_06_009
crossref_primary_10_1038_s41598_024_84711_7
crossref_primary_10_1016_j_ymeth_2023_11_018
crossref_primary_10_1016_j_sbi_2023_102745
crossref_primary_10_1038_s41598_023_39608_2
crossref_primary_10_3390_ijms232213919
crossref_primary_10_1021_acs_molpharmaceut_9b00520
crossref_primary_10_1016_j_biopha_2024_117070
crossref_primary_10_1109_TCBB_2021_3065535
crossref_primary_10_1186_s12859_018_2522_6
crossref_primary_10_1016_j_compbiolchem_2023_107868
crossref_primary_10_1016_j_jgg_2021_03_007
crossref_primary_10_1039_C9MO00162J
crossref_primary_10_1093_bib_bbae379
crossref_primary_10_1093_bioadv_vbae038
crossref_primary_10_1038_s41598_019_50720_0
crossref_primary_10_1186_s13073_023_01256_6
crossref_primary_10_1002_1873_3468_70010
crossref_primary_10_1007_s13577_022_00710_8
crossref_primary_10_1093_bib_bbad200
crossref_primary_10_1109_TCBB_2021_3109055
crossref_primary_10_1093_bioinformatics_bty452
crossref_primary_10_3389_fbioe_2023_1156372
crossref_primary_10_1080_17460441_2021_1918096
crossref_primary_10_1093_bib_bbab378
crossref_primary_10_1016_j_ygeno_2018_07_002
crossref_primary_10_1186_s12859_024_05987_0
crossref_primary_10_1186_s12859_019_2608_9
crossref_primary_10_1007_s10994_023_06338_5
crossref_primary_10_1016_j_omtn_2018_09_011
crossref_primary_10_1049_iet_syb_2018_5094
crossref_primary_10_1093_bioinformatics_btac574
crossref_primary_10_1109_TCBB_2019_2919581
crossref_primary_10_3389_fbinf_2022_1025783
crossref_primary_10_18632_oncotarget_28234
crossref_primary_10_1007_s11831_021_09556_z
crossref_primary_10_1038_s41598_021_82612_7
crossref_primary_10_1093_bib_bbab048
crossref_primary_10_1186_s12885_021_08359_6
crossref_primary_10_1007_s40998_024_00765_3
crossref_primary_10_1049_iet_syb_2018_5023
crossref_primary_10_3389_fgene_2019_00233
crossref_primary_10_1038_s41598_023_49003_6
crossref_primary_10_1371_journal_pcbi_1011382
crossref_primary_10_1093_bioinformatics_btab650
crossref_primary_10_1039_D1FO02782D
crossref_primary_10_1080_17460441_2021_1883585
crossref_primary_10_1371_journal_pone_0238757
crossref_primary_10_1109_TCBB_2020_2976997
crossref_primary_10_1186_s12864_018_5273_x
crossref_primary_10_1186_s13073_021_01000_y
crossref_primary_10_1371_journal_pone_0248984
crossref_primary_10_1093_bib_bbz057
crossref_primary_10_1371_journal_pcbi_1012748
crossref_primary_10_1007_s11831_025_10255_2
crossref_primary_10_3389_fphar_2018_01017
crossref_primary_10_1007_s10489_022_03294_w
crossref_primary_10_1007_s10911_022_09520_y
crossref_primary_10_1186_s12916_022_02549_0
crossref_primary_10_1016_j_compbiolchem_2024_108071
crossref_primary_10_1093_bib_bbad256
crossref_primary_10_1016_j_compbiomed_2023_106859
crossref_primary_10_3390_genes12060844
crossref_primary_10_18632_aging_205686
crossref_primary_10_1093_bioinformatics_btaa062
crossref_primary_10_1371_journal_pcbi_1012012
crossref_primary_10_1016_j_omtn_2020_07_003
crossref_primary_10_1093_bib_bbz164
crossref_primary_10_1016_j_crmeth_2024_100773
crossref_primary_10_1093_bioinformatics_btad734
crossref_primary_10_1007_s12539_024_00668_1
crossref_primary_10_1038_s41467_022_33291_z
crossref_primary_10_1109_JBHI_2021_3102186
crossref_primary_10_1109_TCBB_2024_3404262
crossref_primary_10_1109_TCBB_2019_2909908
crossref_primary_10_1093_bib_bbad522
crossref_primary_10_1093_bib_bbad003
crossref_primary_10_1038_s41698_024_00691_x
crossref_primary_10_3389_fgene_2020_564792
crossref_primary_10_1093_bib_bbab457
crossref_primary_10_1002_sim_9491
crossref_primary_10_3390_diagnostics13122043
crossref_primary_10_1093_bib_bbz153
Cites_doi 10.1093/nsr/nww025
10.1186/gb-2013-14-10-r110
10.1186/s12885-015-1492-6
10.1038/nature11005
10.1145/2487575.2487670
10.1158/1078-0432.CCR-13-2127
10.1016/j.cell.2016.06.017
10.1002/jcc.21707
10.1038/73432
10.1073/pnas.0707498104
10.1073/pnas.0508776103
10.1186/gb-2014-15-3-r47
10.1038/nature12831
10.1056/NEJMp1114866
10.1016/j.cell.2015.11.062
10.1371/journal.pone.0061318
10.1021/ci500152b
10.1593/neo.03490
10.1038/nature11003
10.1158/2159-8290.CD-15-0235
10.1038/nbt.2877
10.1186/1471-2164-15-S7-S2
10.1038/onc.2009.452
10.1158/0008-5472.CAN-05-1182
10.1002/cpt.318
10.18632/oncotarget.1632
10.1158/1078-0432.CCR-10-2307
10.1016/j.cell.2013.08.003
10.1158/1078-0432.CCR-0629-3
10.1186/s13059-016-1050-9
10.1093/bioinformatics/btv529
ContentType Journal Article
Copyright COPYRIGHT 2017 BioMed Central Ltd.
The Author(s). 2017
Copyright_xml – notice: COPYRIGHT 2017 BioMed Central Ltd.
– notice: The Author(s). 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
5PM
DOA
DOI 10.1186/s12885-017-3500-5
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1471-2407
EndPage 12
ExternalDocumentID oai_doaj_org_article_83a1e14efa75473fa95043631b18989d
PMC5541434
A511229827
28768489
10_1186_s12885_017_3500_5
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 2016NRF-NSFC001-026
– fundername: ;
  grantid: 16JCYBJC18500
– fundername: ;
  grantid: 31370075; 61603273
– fundername: ;
  grantid: 2014CXLG28
– fundername: ;
  grantid: KFKT2017A02
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACMJI
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HMCUK
HYE
IAO
IHR
IHW
INH
INR
ISR
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
-A0
3V.
ACRMQ
ADINQ
C24
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7X8
PPXIY
5PM
PJZUB
PUEGO
ID FETCH-LOGICAL-c597t-a52191a99c9334841315163dcfff4e61f65b854012af0d23409fe7110d322213
IEDL.DBID M48
ISSN 1471-2407
IngestDate Wed Aug 27 01:00:00 EDT 2025
Thu Aug 21 14:08:58 EDT 2025
Thu Jul 10 17:11:56 EDT 2025
Tue Jun 17 21:47:41 EDT 2025
Tue Jun 10 20:08:12 EDT 2025
Fri Jun 27 04:04:48 EDT 2025
Thu May 22 21:23:19 EDT 2025
Thu Jan 02 23:10:05 EST 2025
Thu Apr 24 22:57:45 EDT 2025
Tue Jul 01 03:06:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Drug repositioning
Anticancer drug response prediction
Matrix factorization
Precision cancer medicines
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c597t-a52191a99c9334841315163dcfff4e61f65b854012af0d23409fe7110d322213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5025-3880
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12885-017-3500-5
PMID 28768489
PQID 1925892284
PQPubID 23479
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_83a1e14efa75473fa95043631b18989d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5541434
proquest_miscellaneous_1925892284
gale_infotracmisc_A511229827
gale_infotracacademiconefile_A511229827
gale_incontextgauss_ISR_A511229827
gale_healthsolutions_A511229827
pubmed_primary_28768489
crossref_citationtrail_10_1186_s12885_017_3500_5
crossref_primary_10_1186_s12885_017_3500_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-02
PublicationDateYYYYMMDD 2017-08-02
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-02
  day: 02
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC cancer
PublicationTitleAlternate BMC Cancer
PublicationYear 2017
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References B Seashore-Ludlow (3500_CR6) 2015; 5
M Gönen (3500_CR33) 2011; 12
3500_CR20
Y Wang (3500_CR34) 2016; 3
MJ Garnett (3500_CR3) 2012; 483
P Geeleher (3500_CR11) 2016; 17
S Dupouy (3500_CR24) 2014; 5
R Mirnezami (3500_CR1) 2012; 366
B Haibe-Kains (3500_CR23) 2013; 504
JC Costello (3500_CR7) 2014; 32
M Ammad-ud-din (3500_CR16) 2014; 54
R Marcotte (3500_CR21) 2016; 164
N Zhang (3500_CR17) 2015; 11
BZ Yuan (3500_CR32) 2014; 6
P Geeleher (3500_CR12) 2014; 15
I Cortés-Ciriano (3500_CR18) 2016; 32
Z Dong (3500_CR13) 2015; 15
GE Konecny (3500_CR26) 2011; 17
U McDermott (3500_CR28) 2007; 104
DJ Boffa (3500_CR30) 2004; 10
B Chen (3500_CR8) 2016; 99
A Basu (3500_CR9) 2013; 154
DT Ross (3500_CR22) 2000; 24
MP Menden (3500_CR15) 2013; 8
J Barretina (3500_CR4) 2012; 483
GE Konecny (3500_CR25) 2006; 66
MC Liang (3500_CR29) 2010; 29
VL Miller (3500_CR31) 2012; 5
F Iorio (3500_CR5) 2016; 166
A Daemen (3500_CR14) 2013; 14
G Xiao (3500_CR2) 2014; 20
CW Yap (3500_CR19) 2011; 32
GA Smolen (3500_CR27) 2006; 103
LC Stetson (3500_CR10) 2014; 15
22670171 - Int J Clin Exp Pathol. 2012;5(4):278-89
23993102 - Cell. 2013 Aug 29;154(5):1151-61
27654937 - Genome Biol. 2016 Sep 21;17(1):190
25046554 - J Chem Inf Model. 2014 Aug 25;54(8):2347-59
10700174 - Nat Genet. 2000 Mar;24(3):227-35
25573145 - BMC Genomics. 2014;15 Suppl 7:S2
16452222 - Cancer Res. 2006 Feb 1;66(3):1630-9
19966866 - Oncogene. 2010 Mar 18;29(11):1588-97
26771497 - Cell. 2016 Jan 14;164(1-2):293-309
24176112 - Genome Biol. 2013;14(10):R110
18077425 - Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19936-41
14734482 - Clin Cancer Res. 2004 Jan 1;10(1 Pt 1):293-300
26121976 - BMC Cancer. 2015 Jun 30;15:489
16461907 - Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2316-21
26659699 - Clin Pharmacol Ther. 2016 Mar;99(3):285-97
25249538 - Oncotarget. 2014 Sep 30;5(18):8235-51
21278246 - Clin Cancer Res. 2011 Mar 15;17(6):1591-602
22256780 - N Engl J Med. 2012 Feb 9;366(6):489-91
26418249 - PLoS Comput Biol. 2015 Sep 29;11(9):e1004498
23646105 - PLoS One. 2013 Apr 30;8(4):e61318
24580837 - Genome Biol. 2014 Mar 03;15(3):R47
24880487 - Nat Biotechnol. 2014 Dec;32(12):1202-12
22460902 - Nature. 2012 Mar 28;483(7391):570-5
26351271 - Bioinformatics. 2016 Jan 1;32(1):85-95
28690910 - Natl Sci Rev. 2016 Jun;3(2):240-251
22460905 - Nature. 2012 Mar 28;483(7391):603-7
26482930 - Cancer Discov. 2015 Nov;5(11):1210-23
24323903 - Clin Cancer Res. 2014 Feb 1;20(3):531-9
27397505 - Cell. 2016 Jul 28;166(3):740-54
24284626 - Nature. 2013 Dec 19;504(7480):389-93
21425294 - J Comput Chem. 2011 May;32(7):1466-74
15256063 - Neoplasia. 2004 Jul-Aug;6(4):412-9
References_xml – volume: 3
  start-page: 240
  year: 2016
  ident: 3500_CR34
  publication-title: Natl Sci Rev
  doi: 10.1093/nsr/nww025
– volume: 14
  start-page: R110
  year: 2013
  ident: 3500_CR14
  publication-title: Genome Biol
  doi: 10.1186/gb-2013-14-10-r110
– volume: 15
  start-page: 489
  year: 2015
  ident: 3500_CR13
  publication-title: BMC Cancer
  doi: 10.1186/s12885-015-1492-6
– volume: 483
  start-page: 570
  year: 2012
  ident: 3500_CR3
  publication-title: Nature
  doi: 10.1038/nature11005
– ident: 3500_CR20
  doi: 10.1145/2487575.2487670
– volume: 20
  start-page: 531
  year: 2014
  ident: 3500_CR2
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-13-2127
– volume: 166
  start-page: 740
  year: 2016
  ident: 3500_CR5
  publication-title: Cell
  doi: 10.1016/j.cell.2016.06.017
– volume: 11
  year: 2015
  ident: 3500_CR17
  publication-title: PLoS Comput Biol
– volume: 32
  start-page: 1466
  year: 2011
  ident: 3500_CR19
  publication-title: J Comput Chem
  doi: 10.1002/jcc.21707
– volume: 24
  start-page: 227
  year: 2000
  ident: 3500_CR22
  publication-title: Nat Genet
  doi: 10.1038/73432
– volume: 104
  start-page: 19936
  year: 2007
  ident: 3500_CR28
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0707498104
– volume: 103
  start-page: 2316
  year: 2006
  ident: 3500_CR27
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0508776103
– volume: 5
  start-page: 278
  year: 2012
  ident: 3500_CR31
  publication-title: Int J Clin Exp Pathol
– volume: 15
  start-page: R47
  year: 2014
  ident: 3500_CR12
  publication-title: Genome Biol
  doi: 10.1186/gb-2014-15-3-r47
– volume: 504
  start-page: 389
  year: 2013
  ident: 3500_CR23
  publication-title: Nature
  doi: 10.1038/nature12831
– volume: 366
  start-page: 489
  year: 2012
  ident: 3500_CR1
  publication-title: N Engl J Med
  doi: 10.1056/NEJMp1114866
– volume: 164
  start-page: 293
  year: 2016
  ident: 3500_CR21
  publication-title: Cell
  doi: 10.1016/j.cell.2015.11.062
– volume: 8
  year: 2013
  ident: 3500_CR15
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0061318
– volume: 54
  start-page: 2347
  year: 2014
  ident: 3500_CR16
  publication-title: J Chem Inf Model
  doi: 10.1021/ci500152b
– volume: 6
  start-page: 412
  year: 2014
  ident: 3500_CR32
  publication-title: Neoplasia
  doi: 10.1593/neo.03490
– volume: 483
  start-page: 603
  year: 2012
  ident: 3500_CR4
  publication-title: Nature
  doi: 10.1038/nature11003
– volume: 5
  start-page: 1210
  year: 2015
  ident: 3500_CR6
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-15-0235
– volume: 32
  start-page: 1202
  year: 2014
  ident: 3500_CR7
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2877
– volume: 12
  start-page: 2211
  year: 2011
  ident: 3500_CR33
  publication-title: J Mach Learn Res
– volume: 15
  start-page: S2
  year: 2014
  ident: 3500_CR10
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-S7-S2
– volume: 29
  start-page: 1588
  year: 2010
  ident: 3500_CR29
  publication-title: Oncogene
  doi: 10.1038/onc.2009.452
– volume: 66
  start-page: 1630
  year: 2006
  ident: 3500_CR25
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-05-1182
– volume: 99
  start-page: 285
  year: 2016
  ident: 3500_CR8
  publication-title: Clin Pharmacol Ther
  doi: 10.1002/cpt.318
– volume: 5
  start-page: 8235
  year: 2014
  ident: 3500_CR24
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.1632
– volume: 17
  start-page: 1591
  year: 2011
  ident: 3500_CR26
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-10-2307
– volume: 154
  start-page: 1151
  year: 2013
  ident: 3500_CR9
  publication-title: Cell
  doi: 10.1016/j.cell.2013.08.003
– volume: 10
  start-page: 293
  year: 2004
  ident: 3500_CR30
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-0629-3
– volume: 17
  start-page: 190
  year: 2016
  ident: 3500_CR11
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-1050-9
– volume: 32
  start-page: 85
  year: 2016
  ident: 3500_CR18
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv529
– reference: 22670171 - Int J Clin Exp Pathol. 2012;5(4):278-89
– reference: 21425294 - J Comput Chem. 2011 May;32(7):1466-74
– reference: 24284626 - Nature. 2013 Dec 19;504(7480):389-93
– reference: 27654937 - Genome Biol. 2016 Sep 21;17(1):190
– reference: 27397505 - Cell. 2016 Jul 28;166(3):740-54
– reference: 25249538 - Oncotarget. 2014 Sep 30;5(18):8235-51
– reference: 10700174 - Nat Genet. 2000 Mar;24(3):227-35
– reference: 25573145 - BMC Genomics. 2014;15 Suppl 7:S2
– reference: 28690910 - Natl Sci Rev. 2016 Jun;3(2):240-251
– reference: 15256063 - Neoplasia. 2004 Jul-Aug;6(4):412-9
– reference: 25046554 - J Chem Inf Model. 2014 Aug 25;54(8):2347-59
– reference: 24176112 - Genome Biol. 2013;14(10):R110
– reference: 26351271 - Bioinformatics. 2016 Jan 1;32(1):85-95
– reference: 23993102 - Cell. 2013 Aug 29;154(5):1151-61
– reference: 26659699 - Clin Pharmacol Ther. 2016 Mar;99(3):285-97
– reference: 16452222 - Cancer Res. 2006 Feb 1;66(3):1630-9
– reference: 22460905 - Nature. 2012 Mar 28;483(7391):603-7
– reference: 26418249 - PLoS Comput Biol. 2015 Sep 29;11(9):e1004498
– reference: 24580837 - Genome Biol. 2014 Mar 03;15(3):R47
– reference: 26771497 - Cell. 2016 Jan 14;164(1-2):293-309
– reference: 22460902 - Nature. 2012 Mar 28;483(7391):570-5
– reference: 22256780 - N Engl J Med. 2012 Feb 9;366(6):489-91
– reference: 18077425 - Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19936-41
– reference: 16461907 - Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2316-21
– reference: 19966866 - Oncogene. 2010 Mar 18;29(11):1588-97
– reference: 26121976 - BMC Cancer. 2015 Jun 30;15:489
– reference: 26482930 - Cancer Discov. 2015 Nov;5(11):1210-23
– reference: 14734482 - Clin Cancer Res. 2004 Jan 1;10(1 Pt 1):293-300
– reference: 24880487 - Nat Biotechnol. 2014 Dec;32(12):1202-12
– reference: 24323903 - Clin Cancer Res. 2014 Feb 1;20(3):531-9
– reference: 21278246 - Clin Cancer Res. 2011 Mar 15;17(6):1591-602
– reference: 23646105 - PLoS One. 2013 Apr 30;8(4):e61318
SSID ssj0017808
Score 2.550166
Snippet Human cancer cell lines are used in research to study the biology of cancer and to test cancer treatments. Recently there are already some large panels of...
Abstract Background Human cancer cell lines are used in research to study the biology of cancer and to test cancer treatments. Recently there are already some...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 513
SubjectTerms Algorithms
Anticancer drug response prediction
Antimitotic agents
Antineoplastic agents
Antineoplastic Agents - pharmacology
Cancer
Cell Line, Tumor
Computational Biology - methods
Databases, Factual
Dosage and administration
Dose-Response Relationship, Drug
Drug Repositioning
Drug Resistance, Neoplasm - genetics
Genetic aspects
Humans
Matrix factorization
Pharmacogenetics
Pharmacogenetics - methods
Pharmacogenomic Variants
Precision cancer medicines
Precision Medicine - methods
Reproducibility of Results
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA-yB_Eiflvd1SiCIJRtkjZNjqu4rMJ60BX2FpI0GQd2O0s7A_75-16TGaYIevHavBna9_2Sl98j5F3reStdcKVTkZe1daK0TooSPGFXgzcUyuMF5_Nv8uxn_fWyudwb9YU9YQkeODHuWAnLAqtDtC2OyY1WI-aWFMwxnHzYofeFmLctpvL5Qasqlc8wmZLHI3hhhU1qYFBNVZXNLApNYP1_uuS9mDTvl9wLQKcPyP2cOdKT9MYPyZ3QPyJ3z_PZ-GOyTvsDoaPALHRuPgy0GzYLOqQ-2EBvBqRGUdBlT3HPnmKWOVLsfl_Qa4Tr_03TCJ58P5PiRi0dl9dLKIEhY4c_w-H12-Un5OL088WnszLPVCg9lA7r0kK41sxq7TXewYUQBiFfis7HGOsgWZSNU5DFMW5j1XEB5V8MLeQIHR7JMPGUHPSrPjwn1LNQtVGEKGyECKdV54K2UB1KJyHyioJUWxYbn_HGcezFlZnqDiVNkooBqRiUimkK8mH3k5sEtvE34o8otx0h4mRPD0B7TNYe8y_tKchrlLpJl0531m5OMA_lWvG2IG8nCsTK6LEZZ2E342i-_Pg-I3qfieIKvtHbfLcBOIXwWjPKwxklGLOfLb_Zqp_BJeyA68NqMxrIxBulOdhQQZ4lddx9OlS9UtVKF6SdKeqMN_OVfvlrwhJvcAy8qF_8D2a-JPc4mhg21PBDcrAeNuEIUra1ezVZ5y3pET1Y
  priority: 102
  providerName: Directory of Open Access Journals
Title Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization
URI https://www.ncbi.nlm.nih.gov/pubmed/28768489
https://www.proquest.com/docview/1925892284
https://pubmed.ncbi.nlm.nih.gov/PMC5541434
https://doaj.org/article/83a1e14efa75473fa95043631b18989d
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_6AeKL-G1qPVcRBCF6ySa7mweRnrRU4YqcLRy-LJvN7nnQ5trkDup_70ySOxssgi_3cDsJZGbna2d2fgBvpI2lyF0e5srHYWJyHppc8BAtYZGgNeTK0gXn8Yk4Pku-TtPpFqzhrToG1remdoQndVadv7---vUJFf5jo_BKfKjRxipqQUN1SYfDMN2GXXRMkgANxsmfooJUDUBdhPaYigqyK3Le-oqem2qm-f9ts284rX5D5Q0PdXQf7nWhJTto98ID2HLlQ7gz7ornj2DZHiC4giE3yfpZV7GiWs1Y1TbKOnZZETXJis1LRof6jMLQmlF7_Ixd0Dz_a9Zi9HQXOBmd5LJ6fjFHRmJIjy8jdPv18mM4PTo8_XwcdqALocXcYhka9OdZZLLMZnRJF30cxgSCF9Z7nzgReZHmCsO8KDZ-WMQc80PvJAYRBdVsIv4EdspF6Z4Bs5EbSs-d58YjyzNV5C4zmD6KXKBr5gEM1yzWthtITrgY57pJTJTQrVQ0SkWTVHQawLvNI5ftNI5_EY9IbhtCGqTd_LGoZrrTS624iVyUOG8koTB7k9FIN8GjPCJgzSKAlyR13d5K3ZgDfUCBapypWAbwuqGgYRoldevMzKqu9Zfvkx7R247IL_AbrekuPyCnaP5Wj3K_R4nabnvLr9bbT9MStciVbrGqNYbqqcpiVLIAnrbbcfPpmBYLlagsANnbqD3e9FfK-c9m2HhKOPE82fsfzj-HuzGpEnXWxPuws6xW7gXGbst8ANtyKgewOzo8-TYZNCcgg0ZL8Xcy-vEb4YRCuw
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+anticancer+drug+response+prediction+in+cell+lines+using+matrix+factorization+with+similarity+regularization&rft.jtitle=BMC+cancer&rft.au=Wang%2C+Lin&rft.au=Li%2C+Xiaozhong&rft.au=Zhang%2C+Louxin&rft.au=Gao%2C+Qiang&rft.date=2017-08-02&rft.issn=1471-2407&rft.eissn=1471-2407&rft.volume=17&rft.issue=1&rft_id=info:doi/10.1186%2Fs12885-017-3500-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12885_017_3500_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2407&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2407&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2407&client=summon