Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization
Human cancer cell lines are used in research to study the biology of cancer and to test cancer treatments. Recently there are already some large panels of several hundred human cancer cell lines which are characterized with genomic and pharmacological data. The ability to predict drug responses usin...
Saved in:
Published in | BMC cancer Vol. 17; no. 1; pp. 513 - 12 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
02.08.2017
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Human cancer cell lines are used in research to study the biology of cancer and to test cancer treatments. Recently there are already some large panels of several hundred human cancer cell lines which are characterized with genomic and pharmacological data. The ability to predict drug responses using these pharmacogenomics data can facilitate the development of precision cancer medicines. Although several methods have been developed to address the drug response prediction, there are many challenges in obtaining accurate prediction.
Based on the fact that similar cell lines and similar drugs exhibit similar drug responses, we adopted a similarity-regularized matrix factorization (SRMF) method to predict anticancer drug responses of cell lines using chemical structures of drugs and baseline gene expression levels in cell lines. Specifically, chemical structural similarity of drugs and gene expression profile similarity of cell lines were considered as regularization terms, which were incorporated to the drug response matrix factorization model.
We first demonstrated the effectiveness of SRMF using a set of simulation data and compared it with two typical similarity-based methods. Furthermore, we applied it to the Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE) datasets, and performance of SRMF exceeds three state-of-the-art methods. We also applied SRMF to estimate the missing drug response values in the GDSC dataset. Even though SRMF does not specifically model mutation information, it could correctly predict drug-cancer gene associations that are consistent with existing data, and identify novel drug-cancer gene associations that are not found in existing data as well. SRMF can also aid in drug repositioning. The newly predicted drug responses of GDSC dataset suggest that mTOR inhibitor rapamycin was sensitive to non-small cell lung cancer (NSCLC), and expression of AK1RC3 and HINT1 may be adjunct markers of cell line sensitivity to rapamycin.
Our analysis showed that the proposed data integration method is able to improve the accuracy of prediction of anticancer drug responses in cell lines, and can identify consistent and novel drug-cancer gene associations compared to existing data as well as aid in drug repositioning. |
---|---|
AbstractList | Human cancer cell lines are used in research to study the biology of cancer and to test cancer treatments. Recently there are already some large panels of several hundred human cancer cell lines which are characterized with genomic and pharmacological data. The ability to predict drug responses using these pharmacogenomics data can facilitate the development of precision cancer medicines. Although several methods have been developed to address the drug response prediction, there are many challenges in obtaining accurate prediction.
Based on the fact that similar cell lines and similar drugs exhibit similar drug responses, we adopted a similarity-regularized matrix factorization (SRMF) method to predict anticancer drug responses of cell lines using chemical structures of drugs and baseline gene expression levels in cell lines. Specifically, chemical structural similarity of drugs and gene expression profile similarity of cell lines were considered as regularization terms, which were incorporated to the drug response matrix factorization model.
We first demonstrated the effectiveness of SRMF using a set of simulation data and compared it with two typical similarity-based methods. Furthermore, we applied it to the Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE) datasets, and performance of SRMF exceeds three state-of-the-art methods. We also applied SRMF to estimate the missing drug response values in the GDSC dataset. Even though SRMF does not specifically model mutation information, it could correctly predict drug-cancer gene associations that are consistent with existing data, and identify novel drug-cancer gene associations that are not found in existing data as well. SRMF can also aid in drug repositioning. The newly predicted drug responses of GDSC dataset suggest that mTOR inhibitor rapamycin was sensitive to non-small cell lung cancer (NSCLC), and expression of AK1RC3 and HINT1 may be adjunct markers of cell line sensitivity to rapamycin.
Our analysis showed that the proposed data integration method is able to improve the accuracy of prediction of anticancer drug responses in cell lines, and can identify consistent and novel drug-cancer gene associations compared to existing data as well as aid in drug repositioning. Human cancer cell lines are used in research to study the biology of cancer and to test cancer treatments. Recently there are already some large panels of several hundred human cancer cell lines which are characterized with genomic and pharmacological data. The ability to predict drug responses using these pharmacogenomics data can facilitate the development of precision cancer medicines. Although several methods have been developed to address the drug response prediction, there are many challenges in obtaining accurate prediction.BACKGROUNDHuman cancer cell lines are used in research to study the biology of cancer and to test cancer treatments. Recently there are already some large panels of several hundred human cancer cell lines which are characterized with genomic and pharmacological data. The ability to predict drug responses using these pharmacogenomics data can facilitate the development of precision cancer medicines. Although several methods have been developed to address the drug response prediction, there are many challenges in obtaining accurate prediction.Based on the fact that similar cell lines and similar drugs exhibit similar drug responses, we adopted a similarity-regularized matrix factorization (SRMF) method to predict anticancer drug responses of cell lines using chemical structures of drugs and baseline gene expression levels in cell lines. Specifically, chemical structural similarity of drugs and gene expression profile similarity of cell lines were considered as regularization terms, which were incorporated to the drug response matrix factorization model.METHODSBased on the fact that similar cell lines and similar drugs exhibit similar drug responses, we adopted a similarity-regularized matrix factorization (SRMF) method to predict anticancer drug responses of cell lines using chemical structures of drugs and baseline gene expression levels in cell lines. Specifically, chemical structural similarity of drugs and gene expression profile similarity of cell lines were considered as regularization terms, which were incorporated to the drug response matrix factorization model.We first demonstrated the effectiveness of SRMF using a set of simulation data and compared it with two typical similarity-based methods. Furthermore, we applied it to the Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE) datasets, and performance of SRMF exceeds three state-of-the-art methods. We also applied SRMF to estimate the missing drug response values in the GDSC dataset. Even though SRMF does not specifically model mutation information, it could correctly predict drug-cancer gene associations that are consistent with existing data, and identify novel drug-cancer gene associations that are not found in existing data as well. SRMF can also aid in drug repositioning. The newly predicted drug responses of GDSC dataset suggest that mTOR inhibitor rapamycin was sensitive to non-small cell lung cancer (NSCLC), and expression of AK1RC3 and HINT1 may be adjunct markers of cell line sensitivity to rapamycin.RESULTSWe first demonstrated the effectiveness of SRMF using a set of simulation data and compared it with two typical similarity-based methods. Furthermore, we applied it to the Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE) datasets, and performance of SRMF exceeds three state-of-the-art methods. We also applied SRMF to estimate the missing drug response values in the GDSC dataset. Even though SRMF does not specifically model mutation information, it could correctly predict drug-cancer gene associations that are consistent with existing data, and identify novel drug-cancer gene associations that are not found in existing data as well. SRMF can also aid in drug repositioning. The newly predicted drug responses of GDSC dataset suggest that mTOR inhibitor rapamycin was sensitive to non-small cell lung cancer (NSCLC), and expression of AK1RC3 and HINT1 may be adjunct markers of cell line sensitivity to rapamycin.Our analysis showed that the proposed data integration method is able to improve the accuracy of prediction of anticancer drug responses in cell lines, and can identify consistent and novel drug-cancer gene associations compared to existing data as well as aid in drug repositioning.CONCLUSIONSOur analysis showed that the proposed data integration method is able to improve the accuracy of prediction of anticancer drug responses in cell lines, and can identify consistent and novel drug-cancer gene associations compared to existing data as well as aid in drug repositioning. Abstract Background Human cancer cell lines are used in research to study the biology of cancer and to test cancer treatments. Recently there are already some large panels of several hundred human cancer cell lines which are characterized with genomic and pharmacological data. The ability to predict drug responses using these pharmacogenomics data can facilitate the development of precision cancer medicines. Although several methods have been developed to address the drug response prediction, there are many challenges in obtaining accurate prediction. Methods Based on the fact that similar cell lines and similar drugs exhibit similar drug responses, we adopted a similarity-regularized matrix factorization (SRMF) method to predict anticancer drug responses of cell lines using chemical structures of drugs and baseline gene expression levels in cell lines. Specifically, chemical structural similarity of drugs and gene expression profile similarity of cell lines were considered as regularization terms, which were incorporated to the drug response matrix factorization model. Results We first demonstrated the effectiveness of SRMF using a set of simulation data and compared it with two typical similarity-based methods. Furthermore, we applied it to the Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE) datasets, and performance of SRMF exceeds three state-of-the-art methods. We also applied SRMF to estimate the missing drug response values in the GDSC dataset. Even though SRMF does not specifically model mutation information, it could correctly predict drug-cancer gene associations that are consistent with existing data, and identify novel drug-cancer gene associations that are not found in existing data as well. SRMF can also aid in drug repositioning. The newly predicted drug responses of GDSC dataset suggest that mTOR inhibitor rapamycin was sensitive to non-small cell lung cancer (NSCLC), and expression of AK1RC3 and HINT1 may be adjunct markers of cell line sensitivity to rapamycin. Conclusions Our analysis showed that the proposed data integration method is able to improve the accuracy of prediction of anticancer drug responses in cell lines, and can identify consistent and novel drug-cancer gene associations compared to existing data as well as aid in drug repositioning. |
ArticleNumber | 513 |
Audience | Academic |
Author | Zhang, Louxin Wang, Lin Gao, Qiang Li, Xiaozhong |
Author_xml | – sequence: 1 givenname: Lin orcidid: 0000-0001-5025-3880 surname: Wang fullname: Wang, Lin – sequence: 2 givenname: Xiaozhong surname: Li fullname: Li, Xiaozhong – sequence: 3 givenname: Louxin surname: Zhang fullname: Zhang, Louxin – sequence: 4 givenname: Qiang surname: Gao fullname: Gao, Qiang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28768489$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kluL1DAYhousuAf9Ad5IQRC96Jovh2lyIyyLh4EFQfc-ZNKkk6VNxiRdd_31pjO7MiNKLxqS531Iv76n1ZEP3lTVS0DnAHzxPgHmnDUI2oYwhBr2pDoB2kKDKWqP9tbH1WlKN6iAHPFn1THm7YJTLk6qvBw3MdyarlY-O628NrHu4tTX0aRN8MnUm2g6p7MLvna-1mYY6sF5k-opOd_Xo8rR3dVW6Ryi-6W24E-X13VyoxtUdPm-yPppXu6On1dPrRqSefHwPquuP328vvzSXH39vLy8uGo0E21uFMMgQAmhBSGUUyDAYEE6ba2lZgF2wVacUQRYWdRhQpGwpgVAHcEYAzmrljttF9SN3EQ3qngvg3JyuxFiL1UsHz0YyYkCA9RY1TLaEqsEQ5QsCKyACy664vqwc22m1Wg6bXyOajiQHp54t5Z9uJWMUaCEFsHbB0EMPyaTshxdmoepvAlTkiAw4wJjPqOvd2ivytWct6EY9YzLCwaAseC4LdT5P6jydGZ0uhTFurJ_EHh3EChMNne5V1NKcvn92yH7Zo9dGzXkdQrDNP-9dAi-2p_Ln4E8NqwA7Q7QMaQUjZXa5W0LynXdIAHJucty12VZKirnLktWkvBX8lH-_8xvFYD00A |
CitedBy_id | crossref_primary_10_1007_s13577_022_00689_2 crossref_primary_10_1093_bib_bbae242 crossref_primary_10_1016_j_inffus_2023_102077 crossref_primary_10_1093_bib_bbac100 crossref_primary_10_1016_j_compbiolchem_2024_108175 crossref_primary_10_1109_JBHI_2020_3004663 crossref_primary_10_1186_s12859_023_05618_0 crossref_primary_10_2174_1574893617666220302123118 crossref_primary_10_1093_bioinformatics_btac383 crossref_primary_10_1038_s41525_021_00239_z crossref_primary_10_3233_JIFS_169713 crossref_primary_10_1021_acs_jcim_3c01060 crossref_primary_10_1093_bib_bbab408 crossref_primary_10_1038_s41598_020_58821_x crossref_primary_10_1007_s00500_022_07098_5 crossref_primary_10_1016_j_chemolab_2022_104562 crossref_primary_10_1038_s41598_020_71257_7 crossref_primary_10_1093_bioinformatics_btab299 crossref_primary_10_1093_bioinformatics_btae204 crossref_primary_10_1016_j_aej_2024_06_052 crossref_primary_10_1080_1062936X_2020_1818617 crossref_primary_10_3390_app14135660 crossref_primary_10_1038_s41698_020_0122_1 crossref_primary_10_2174_1574893617666220609114052 crossref_primary_10_1371_journal_pone_0250620 crossref_primary_10_1093_bioinformatics_btz158 crossref_primary_10_5808_gi_20076 crossref_primary_10_1093_bioinformatics_btab466 crossref_primary_10_1016_j_omtn_2019_05_017 crossref_primary_10_1016_j_future_2024_06_009 crossref_primary_10_1038_s41598_024_84711_7 crossref_primary_10_1016_j_ymeth_2023_11_018 crossref_primary_10_1016_j_sbi_2023_102745 crossref_primary_10_1038_s41598_023_39608_2 crossref_primary_10_3390_ijms232213919 crossref_primary_10_1021_acs_molpharmaceut_9b00520 crossref_primary_10_1016_j_biopha_2024_117070 crossref_primary_10_1109_TCBB_2021_3065535 crossref_primary_10_1186_s12859_018_2522_6 crossref_primary_10_1016_j_compbiolchem_2023_107868 crossref_primary_10_1016_j_jgg_2021_03_007 crossref_primary_10_1039_C9MO00162J crossref_primary_10_1093_bib_bbae379 crossref_primary_10_1093_bioadv_vbae038 crossref_primary_10_1038_s41598_019_50720_0 crossref_primary_10_1186_s13073_023_01256_6 crossref_primary_10_1002_1873_3468_70010 crossref_primary_10_1007_s13577_022_00710_8 crossref_primary_10_1093_bib_bbad200 crossref_primary_10_1109_TCBB_2021_3109055 crossref_primary_10_1093_bioinformatics_bty452 crossref_primary_10_3389_fbioe_2023_1156372 crossref_primary_10_1080_17460441_2021_1918096 crossref_primary_10_1093_bib_bbab378 crossref_primary_10_1016_j_ygeno_2018_07_002 crossref_primary_10_1186_s12859_024_05987_0 crossref_primary_10_1186_s12859_019_2608_9 crossref_primary_10_1007_s10994_023_06338_5 crossref_primary_10_1016_j_omtn_2018_09_011 crossref_primary_10_1049_iet_syb_2018_5094 crossref_primary_10_1093_bioinformatics_btac574 crossref_primary_10_1109_TCBB_2019_2919581 crossref_primary_10_3389_fbinf_2022_1025783 crossref_primary_10_18632_oncotarget_28234 crossref_primary_10_1007_s11831_021_09556_z crossref_primary_10_1038_s41598_021_82612_7 crossref_primary_10_1093_bib_bbab048 crossref_primary_10_1186_s12885_021_08359_6 crossref_primary_10_1007_s40998_024_00765_3 crossref_primary_10_1049_iet_syb_2018_5023 crossref_primary_10_3389_fgene_2019_00233 crossref_primary_10_1038_s41598_023_49003_6 crossref_primary_10_1371_journal_pcbi_1011382 crossref_primary_10_1093_bioinformatics_btab650 crossref_primary_10_1039_D1FO02782D crossref_primary_10_1080_17460441_2021_1883585 crossref_primary_10_1371_journal_pone_0238757 crossref_primary_10_1109_TCBB_2020_2976997 crossref_primary_10_1186_s12864_018_5273_x crossref_primary_10_1186_s13073_021_01000_y crossref_primary_10_1371_journal_pone_0248984 crossref_primary_10_1093_bib_bbz057 crossref_primary_10_1371_journal_pcbi_1012748 crossref_primary_10_1007_s11831_025_10255_2 crossref_primary_10_3389_fphar_2018_01017 crossref_primary_10_1007_s10489_022_03294_w crossref_primary_10_1007_s10911_022_09520_y crossref_primary_10_1186_s12916_022_02549_0 crossref_primary_10_1016_j_compbiolchem_2024_108071 crossref_primary_10_1093_bib_bbad256 crossref_primary_10_1016_j_compbiomed_2023_106859 crossref_primary_10_3390_genes12060844 crossref_primary_10_18632_aging_205686 crossref_primary_10_1093_bioinformatics_btaa062 crossref_primary_10_1371_journal_pcbi_1012012 crossref_primary_10_1016_j_omtn_2020_07_003 crossref_primary_10_1093_bib_bbz164 crossref_primary_10_1016_j_crmeth_2024_100773 crossref_primary_10_1093_bioinformatics_btad734 crossref_primary_10_1007_s12539_024_00668_1 crossref_primary_10_1038_s41467_022_33291_z crossref_primary_10_1109_JBHI_2021_3102186 crossref_primary_10_1109_TCBB_2024_3404262 crossref_primary_10_1109_TCBB_2019_2909908 crossref_primary_10_1093_bib_bbad522 crossref_primary_10_1093_bib_bbad003 crossref_primary_10_1038_s41698_024_00691_x crossref_primary_10_3389_fgene_2020_564792 crossref_primary_10_1093_bib_bbab457 crossref_primary_10_1002_sim_9491 crossref_primary_10_3390_diagnostics13122043 crossref_primary_10_1093_bib_bbz153 |
Cites_doi | 10.1093/nsr/nww025 10.1186/gb-2013-14-10-r110 10.1186/s12885-015-1492-6 10.1038/nature11005 10.1145/2487575.2487670 10.1158/1078-0432.CCR-13-2127 10.1016/j.cell.2016.06.017 10.1002/jcc.21707 10.1038/73432 10.1073/pnas.0707498104 10.1073/pnas.0508776103 10.1186/gb-2014-15-3-r47 10.1038/nature12831 10.1056/NEJMp1114866 10.1016/j.cell.2015.11.062 10.1371/journal.pone.0061318 10.1021/ci500152b 10.1593/neo.03490 10.1038/nature11003 10.1158/2159-8290.CD-15-0235 10.1038/nbt.2877 10.1186/1471-2164-15-S7-S2 10.1038/onc.2009.452 10.1158/0008-5472.CAN-05-1182 10.1002/cpt.318 10.18632/oncotarget.1632 10.1158/1078-0432.CCR-10-2307 10.1016/j.cell.2013.08.003 10.1158/1078-0432.CCR-0629-3 10.1186/s13059-016-1050-9 10.1093/bioinformatics/btv529 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2017 BioMed Central Ltd. The Author(s). 2017 |
Copyright_xml | – notice: COPYRIGHT 2017 BioMed Central Ltd. – notice: The Author(s). 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 5PM DOA |
DOI | 10.1186/s12885-017-3500-5 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1471-2407 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_83a1e14efa75473fa95043631b18989d PMC5541434 A511229827 28768489 10_1186_s12885_017_3500_5 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: 2016NRF-NSFC001-026 – fundername: ; grantid: 16JCYBJC18500 – fundername: ; grantid: 31370075; 61603273 – fundername: ; grantid: 2014CXLG28 – fundername: ; grantid: KFKT2017A02 |
GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 6PF 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAWTL AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACMJI ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HMCUK HYE IAO IHR IHW INH INR ISR ITC KQ8 M1P M48 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB -A0 3V. ACRMQ ADINQ C24 CGR CUY CVF ECM EIF NPM PMFND 7X8 PPXIY 5PM PJZUB PUEGO |
ID | FETCH-LOGICAL-c597t-a52191a99c9334841315163dcfff4e61f65b854012af0d23409fe7110d322213 |
IEDL.DBID | M48 |
ISSN | 1471-2407 |
IngestDate | Wed Aug 27 01:00:00 EDT 2025 Thu Aug 21 14:08:58 EDT 2025 Thu Jul 10 17:11:56 EDT 2025 Tue Jun 17 21:47:41 EDT 2025 Tue Jun 10 20:08:12 EDT 2025 Fri Jun 27 04:04:48 EDT 2025 Thu May 22 21:23:19 EDT 2025 Thu Jan 02 23:10:05 EST 2025 Thu Apr 24 22:57:45 EDT 2025 Tue Jul 01 03:06:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Drug repositioning Anticancer drug response prediction Matrix factorization Precision cancer medicines |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c597t-a52191a99c9334841315163dcfff4e61f65b854012af0d23409fe7110d322213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5025-3880 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12885-017-3500-5 |
PMID | 28768489 |
PQID | 1925892284 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_83a1e14efa75473fa95043631b18989d pubmedcentral_primary_oai_pubmedcentral_nih_gov_5541434 proquest_miscellaneous_1925892284 gale_infotracmisc_A511229827 gale_infotracacademiconefile_A511229827 gale_incontextgauss_ISR_A511229827 gale_healthsolutions_A511229827 pubmed_primary_28768489 crossref_citationtrail_10_1186_s12885_017_3500_5 crossref_primary_10_1186_s12885_017_3500_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-08-02 |
PublicationDateYYYYMMDD | 2017-08-02 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC cancer |
PublicationTitleAlternate | BMC Cancer |
PublicationYear | 2017 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | B Seashore-Ludlow (3500_CR6) 2015; 5 M Gönen (3500_CR33) 2011; 12 3500_CR20 Y Wang (3500_CR34) 2016; 3 MJ Garnett (3500_CR3) 2012; 483 P Geeleher (3500_CR11) 2016; 17 S Dupouy (3500_CR24) 2014; 5 R Mirnezami (3500_CR1) 2012; 366 B Haibe-Kains (3500_CR23) 2013; 504 JC Costello (3500_CR7) 2014; 32 M Ammad-ud-din (3500_CR16) 2014; 54 R Marcotte (3500_CR21) 2016; 164 N Zhang (3500_CR17) 2015; 11 BZ Yuan (3500_CR32) 2014; 6 P Geeleher (3500_CR12) 2014; 15 I Cortés-Ciriano (3500_CR18) 2016; 32 Z Dong (3500_CR13) 2015; 15 GE Konecny (3500_CR26) 2011; 17 U McDermott (3500_CR28) 2007; 104 DJ Boffa (3500_CR30) 2004; 10 B Chen (3500_CR8) 2016; 99 A Basu (3500_CR9) 2013; 154 DT Ross (3500_CR22) 2000; 24 MP Menden (3500_CR15) 2013; 8 J Barretina (3500_CR4) 2012; 483 GE Konecny (3500_CR25) 2006; 66 MC Liang (3500_CR29) 2010; 29 VL Miller (3500_CR31) 2012; 5 F Iorio (3500_CR5) 2016; 166 A Daemen (3500_CR14) 2013; 14 G Xiao (3500_CR2) 2014; 20 CW Yap (3500_CR19) 2011; 32 GA Smolen (3500_CR27) 2006; 103 LC Stetson (3500_CR10) 2014; 15 22670171 - Int J Clin Exp Pathol. 2012;5(4):278-89 23993102 - Cell. 2013 Aug 29;154(5):1151-61 27654937 - Genome Biol. 2016 Sep 21;17(1):190 25046554 - J Chem Inf Model. 2014 Aug 25;54(8):2347-59 10700174 - Nat Genet. 2000 Mar;24(3):227-35 25573145 - BMC Genomics. 2014;15 Suppl 7:S2 16452222 - Cancer Res. 2006 Feb 1;66(3):1630-9 19966866 - Oncogene. 2010 Mar 18;29(11):1588-97 26771497 - Cell. 2016 Jan 14;164(1-2):293-309 24176112 - Genome Biol. 2013;14(10):R110 18077425 - Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19936-41 14734482 - Clin Cancer Res. 2004 Jan 1;10(1 Pt 1):293-300 26121976 - BMC Cancer. 2015 Jun 30;15:489 16461907 - Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2316-21 26659699 - Clin Pharmacol Ther. 2016 Mar;99(3):285-97 25249538 - Oncotarget. 2014 Sep 30;5(18):8235-51 21278246 - Clin Cancer Res. 2011 Mar 15;17(6):1591-602 22256780 - N Engl J Med. 2012 Feb 9;366(6):489-91 26418249 - PLoS Comput Biol. 2015 Sep 29;11(9):e1004498 23646105 - PLoS One. 2013 Apr 30;8(4):e61318 24580837 - Genome Biol. 2014 Mar 03;15(3):R47 24880487 - Nat Biotechnol. 2014 Dec;32(12):1202-12 22460902 - Nature. 2012 Mar 28;483(7391):570-5 26351271 - Bioinformatics. 2016 Jan 1;32(1):85-95 28690910 - Natl Sci Rev. 2016 Jun;3(2):240-251 22460905 - Nature. 2012 Mar 28;483(7391):603-7 26482930 - Cancer Discov. 2015 Nov;5(11):1210-23 24323903 - Clin Cancer Res. 2014 Feb 1;20(3):531-9 27397505 - Cell. 2016 Jul 28;166(3):740-54 24284626 - Nature. 2013 Dec 19;504(7480):389-93 21425294 - J Comput Chem. 2011 May;32(7):1466-74 15256063 - Neoplasia. 2004 Jul-Aug;6(4):412-9 |
References_xml | – volume: 3 start-page: 240 year: 2016 ident: 3500_CR34 publication-title: Natl Sci Rev doi: 10.1093/nsr/nww025 – volume: 14 start-page: R110 year: 2013 ident: 3500_CR14 publication-title: Genome Biol doi: 10.1186/gb-2013-14-10-r110 – volume: 15 start-page: 489 year: 2015 ident: 3500_CR13 publication-title: BMC Cancer doi: 10.1186/s12885-015-1492-6 – volume: 483 start-page: 570 year: 2012 ident: 3500_CR3 publication-title: Nature doi: 10.1038/nature11005 – ident: 3500_CR20 doi: 10.1145/2487575.2487670 – volume: 20 start-page: 531 year: 2014 ident: 3500_CR2 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-13-2127 – volume: 166 start-page: 740 year: 2016 ident: 3500_CR5 publication-title: Cell doi: 10.1016/j.cell.2016.06.017 – volume: 11 year: 2015 ident: 3500_CR17 publication-title: PLoS Comput Biol – volume: 32 start-page: 1466 year: 2011 ident: 3500_CR19 publication-title: J Comput Chem doi: 10.1002/jcc.21707 – volume: 24 start-page: 227 year: 2000 ident: 3500_CR22 publication-title: Nat Genet doi: 10.1038/73432 – volume: 104 start-page: 19936 year: 2007 ident: 3500_CR28 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0707498104 – volume: 103 start-page: 2316 year: 2006 ident: 3500_CR27 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0508776103 – volume: 5 start-page: 278 year: 2012 ident: 3500_CR31 publication-title: Int J Clin Exp Pathol – volume: 15 start-page: R47 year: 2014 ident: 3500_CR12 publication-title: Genome Biol doi: 10.1186/gb-2014-15-3-r47 – volume: 504 start-page: 389 year: 2013 ident: 3500_CR23 publication-title: Nature doi: 10.1038/nature12831 – volume: 366 start-page: 489 year: 2012 ident: 3500_CR1 publication-title: N Engl J Med doi: 10.1056/NEJMp1114866 – volume: 164 start-page: 293 year: 2016 ident: 3500_CR21 publication-title: Cell doi: 10.1016/j.cell.2015.11.062 – volume: 8 year: 2013 ident: 3500_CR15 publication-title: PLoS One doi: 10.1371/journal.pone.0061318 – volume: 54 start-page: 2347 year: 2014 ident: 3500_CR16 publication-title: J Chem Inf Model doi: 10.1021/ci500152b – volume: 6 start-page: 412 year: 2014 ident: 3500_CR32 publication-title: Neoplasia doi: 10.1593/neo.03490 – volume: 483 start-page: 603 year: 2012 ident: 3500_CR4 publication-title: Nature doi: 10.1038/nature11003 – volume: 5 start-page: 1210 year: 2015 ident: 3500_CR6 publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-15-0235 – volume: 32 start-page: 1202 year: 2014 ident: 3500_CR7 publication-title: Nat Biotechnol doi: 10.1038/nbt.2877 – volume: 12 start-page: 2211 year: 2011 ident: 3500_CR33 publication-title: J Mach Learn Res – volume: 15 start-page: S2 year: 2014 ident: 3500_CR10 publication-title: BMC Genomics doi: 10.1186/1471-2164-15-S7-S2 – volume: 29 start-page: 1588 year: 2010 ident: 3500_CR29 publication-title: Oncogene doi: 10.1038/onc.2009.452 – volume: 66 start-page: 1630 year: 2006 ident: 3500_CR25 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-05-1182 – volume: 99 start-page: 285 year: 2016 ident: 3500_CR8 publication-title: Clin Pharmacol Ther doi: 10.1002/cpt.318 – volume: 5 start-page: 8235 year: 2014 ident: 3500_CR24 publication-title: Oncotarget doi: 10.18632/oncotarget.1632 – volume: 17 start-page: 1591 year: 2011 ident: 3500_CR26 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-10-2307 – volume: 154 start-page: 1151 year: 2013 ident: 3500_CR9 publication-title: Cell doi: 10.1016/j.cell.2013.08.003 – volume: 10 start-page: 293 year: 2004 ident: 3500_CR30 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-0629-3 – volume: 17 start-page: 190 year: 2016 ident: 3500_CR11 publication-title: Genome Biol doi: 10.1186/s13059-016-1050-9 – volume: 32 start-page: 85 year: 2016 ident: 3500_CR18 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv529 – reference: 22670171 - Int J Clin Exp Pathol. 2012;5(4):278-89 – reference: 21425294 - J Comput Chem. 2011 May;32(7):1466-74 – reference: 24284626 - Nature. 2013 Dec 19;504(7480):389-93 – reference: 27654937 - Genome Biol. 2016 Sep 21;17(1):190 – reference: 27397505 - Cell. 2016 Jul 28;166(3):740-54 – reference: 25249538 - Oncotarget. 2014 Sep 30;5(18):8235-51 – reference: 10700174 - Nat Genet. 2000 Mar;24(3):227-35 – reference: 25573145 - BMC Genomics. 2014;15 Suppl 7:S2 – reference: 28690910 - Natl Sci Rev. 2016 Jun;3(2):240-251 – reference: 15256063 - Neoplasia. 2004 Jul-Aug;6(4):412-9 – reference: 25046554 - J Chem Inf Model. 2014 Aug 25;54(8):2347-59 – reference: 24176112 - Genome Biol. 2013;14(10):R110 – reference: 26351271 - Bioinformatics. 2016 Jan 1;32(1):85-95 – reference: 23993102 - Cell. 2013 Aug 29;154(5):1151-61 – reference: 26659699 - Clin Pharmacol Ther. 2016 Mar;99(3):285-97 – reference: 16452222 - Cancer Res. 2006 Feb 1;66(3):1630-9 – reference: 22460905 - Nature. 2012 Mar 28;483(7391):603-7 – reference: 26418249 - PLoS Comput Biol. 2015 Sep 29;11(9):e1004498 – reference: 24580837 - Genome Biol. 2014 Mar 03;15(3):R47 – reference: 26771497 - Cell. 2016 Jan 14;164(1-2):293-309 – reference: 22460902 - Nature. 2012 Mar 28;483(7391):570-5 – reference: 22256780 - N Engl J Med. 2012 Feb 9;366(6):489-91 – reference: 18077425 - Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19936-41 – reference: 16461907 - Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2316-21 – reference: 19966866 - Oncogene. 2010 Mar 18;29(11):1588-97 – reference: 26121976 - BMC Cancer. 2015 Jun 30;15:489 – reference: 26482930 - Cancer Discov. 2015 Nov;5(11):1210-23 – reference: 14734482 - Clin Cancer Res. 2004 Jan 1;10(1 Pt 1):293-300 – reference: 24880487 - Nat Biotechnol. 2014 Dec;32(12):1202-12 – reference: 24323903 - Clin Cancer Res. 2014 Feb 1;20(3):531-9 – reference: 21278246 - Clin Cancer Res. 2011 Mar 15;17(6):1591-602 – reference: 23646105 - PLoS One. 2013 Apr 30;8(4):e61318 |
SSID | ssj0017808 |
Score | 2.550166 |
Snippet | Human cancer cell lines are used in research to study the biology of cancer and to test cancer treatments. Recently there are already some large panels of... Abstract Background Human cancer cell lines are used in research to study the biology of cancer and to test cancer treatments. Recently there are already some... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 513 |
SubjectTerms | Algorithms Anticancer drug response prediction Antimitotic agents Antineoplastic agents Antineoplastic Agents - pharmacology Cancer Cell Line, Tumor Computational Biology - methods Databases, Factual Dosage and administration Dose-Response Relationship, Drug Drug Repositioning Drug Resistance, Neoplasm - genetics Genetic aspects Humans Matrix factorization Pharmacogenetics Pharmacogenetics - methods Pharmacogenomic Variants Precision cancer medicines Precision Medicine - methods Reproducibility of Results |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA-yB_Eiflvd1SiCIJRtkjZNjqu4rMJ60BX2FpI0GQd2O0s7A_75-16TGaYIevHavBna9_2Sl98j5F3reStdcKVTkZe1daK0TooSPGFXgzcUyuMF5_Nv8uxn_fWyudwb9YU9YQkeODHuWAnLAqtDtC2OyY1WI-aWFMwxnHzYofeFmLctpvL5Qasqlc8wmZLHI3hhhU1qYFBNVZXNLApNYP1_uuS9mDTvl9wLQKcPyP2cOdKT9MYPyZ3QPyJ3z_PZ-GOyTvsDoaPALHRuPgy0GzYLOqQ-2EBvBqRGUdBlT3HPnmKWOVLsfl_Qa4Tr_03TCJ58P5PiRi0dl9dLKIEhY4c_w-H12-Un5OL088WnszLPVCg9lA7r0kK41sxq7TXewYUQBiFfis7HGOsgWZSNU5DFMW5j1XEB5V8MLeQIHR7JMPGUHPSrPjwn1LNQtVGEKGyECKdV54K2UB1KJyHyioJUWxYbn_HGcezFlZnqDiVNkooBqRiUimkK8mH3k5sEtvE34o8otx0h4mRPD0B7TNYe8y_tKchrlLpJl0531m5OMA_lWvG2IG8nCsTK6LEZZ2E342i-_Pg-I3qfieIKvtHbfLcBOIXwWjPKwxklGLOfLb_Zqp_BJeyA68NqMxrIxBulOdhQQZ4lddx9OlS9UtVKF6SdKeqMN_OVfvlrwhJvcAy8qF_8D2a-JPc4mhg21PBDcrAeNuEIUra1ezVZ5y3pET1Y priority: 102 providerName: Directory of Open Access Journals |
Title | Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28768489 https://www.proquest.com/docview/1925892284 https://pubmed.ncbi.nlm.nih.gov/PMC5541434 https://doaj.org/article/83a1e14efa75473fa95043631b18989d |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_6AeKL-G1qPVcRBCF6ySa7mweRnrRU4YqcLRy-LJvN7nnQ5trkDup_70ySOxssgi_3cDsJZGbna2d2fgBvpI2lyF0e5srHYWJyHppc8BAtYZGgNeTK0gXn8Yk4Pku-TtPpFqzhrToG1remdoQndVadv7---vUJFf5jo_BKfKjRxipqQUN1SYfDMN2GXXRMkgANxsmfooJUDUBdhPaYigqyK3Le-oqem2qm-f9ts284rX5D5Q0PdXQf7nWhJTto98ID2HLlQ7gz7ornj2DZHiC4giE3yfpZV7GiWs1Y1TbKOnZZETXJis1LRof6jMLQmlF7_Ixd0Dz_a9Zi9HQXOBmd5LJ6fjFHRmJIjy8jdPv18mM4PTo8_XwcdqALocXcYhka9OdZZLLMZnRJF30cxgSCF9Z7nzgReZHmCsO8KDZ-WMQc80PvJAYRBdVsIv4EdspF6Z4Bs5EbSs-d58YjyzNV5C4zmD6KXKBr5gEM1yzWthtITrgY57pJTJTQrVQ0SkWTVHQawLvNI5ftNI5_EY9IbhtCGqTd_LGoZrrTS624iVyUOG8koTB7k9FIN8GjPCJgzSKAlyR13d5K3ZgDfUCBapypWAbwuqGgYRoldevMzKqu9Zfvkx7R247IL_AbrekuPyCnaP5Wj3K_R4nabnvLr9bbT9MStciVbrGqNYbqqcpiVLIAnrbbcfPpmBYLlagsANnbqD3e9FfK-c9m2HhKOPE82fsfzj-HuzGpEnXWxPuws6xW7gXGbst8ANtyKgewOzo8-TYZNCcgg0ZL8Xcy-vEb4YRCuw |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+anticancer+drug+response+prediction+in+cell+lines+using+matrix+factorization+with+similarity+regularization&rft.jtitle=BMC+cancer&rft.au=Wang%2C+Lin&rft.au=Li%2C+Xiaozhong&rft.au=Zhang%2C+Louxin&rft.au=Gao%2C+Qiang&rft.date=2017-08-02&rft.issn=1471-2407&rft.eissn=1471-2407&rft.volume=17&rft.issue=1&rft_id=info:doi/10.1186%2Fs12885-017-3500-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12885_017_3500_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2407&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2407&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2407&client=summon |