Additional effects of simultaneous treatment with C14-Cblin and celastrol on the clinorotation-induced rat L6 myotube atrophy

Two novel reagents, N-myristoylated Cbl-b inhibitory peptide (C14-Cblin) and celastrol, a quinone methide triterpene, are reported to be effective in preventing myotube atrophy. The combined effects of C14-Cblin and celastrol on rat L6 myotubes atrophy induced by 3D-clinorotation, a simulated microg...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of Medical Investigation Vol. 69; no. 1.2; pp. 127 - 134
Main Authors Kitahata, Kanako, Uchida, Takayuki, Taniguchi, Runa, Kato, Ayano, Sugiura, Kosuke, Sakakibara, Iori, Oarada, Motoko, Fukawa, Tomoya, Junsoo, Park, Inho, Choi, Nikawa, Takeshi
Format Journal Article
LanguageEnglish
Published Japan The University of Tokushima Faculty of Medicine 2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Two novel reagents, N-myristoylated Cbl-b inhibitory peptide (C14-Cblin) and celastrol, a quinone methide triterpene, are reported to be effective in preventing myotube atrophy. The combined effects of C14-Cblin and celastrol on rat L6 myotubes atrophy induced by 3D-clinorotation, a simulated microgravity model, was investigated in the present study. We first examined their effects on expression in atrogenes. Increase in MAFbx1/atrogin-1 and MuRF-1 by 3D-clinorotation was significantly suppressed by treatment with C14-Cblin or celastrol, but there was no additive effect of simultaneous treatment. However, celastrol significantly suppressed the upregulation of Cbl-b and HSP70 by 3D-clinorotation. Whereas 3D-clinorotation decreased the protein level of IRS-1 in L6 myotubes, C14-Cblin and celastrol inhibited the degradation of IRS-1. C14-Cblin and celastrol promoted the phosphorylation of FOXO3a even in microgravity condition. Simultaneous administration of C14-Cblin and celastrol had shown little additive effect in reversing the impairment of IGF-1 signaling by 3D-clinorotation. While 3D-clinorotation-induced marked oxidative stress in L6 myotubes, celastrol suppressed 3D-clinorotation-induced ROS production. Finally, the C14-Cblin and celastrol-treated groups were inhibited decrease in L6 myotube diameter and increased the protein content of slow-twitch MyHC cultured under 3D-clinorotation. The simultaneous treatment of C14-Cblin and celastrol additively prevented 3D-clinorotation-induced myotube atrophy than single treatment. J. Med. Invest. 69 : 127-134, February, 2022
ISSN:1343-1420
1349-6867
DOI:10.2152/jmi.69.127