A wearable multi-channel fNIRS system for brain imaging in freely moving subjects

Functional near infrared spectroscopy (fNIRS) is a versatile neuroimaging tool with an increasing acceptance in the neuroimaging community. While often lauded for its portability, most of the fNIRS setups employed in neuroscientific research still impose usage in a laboratory environment. We present...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 85; no. 1; pp. 64 - 71
Main Authors Piper, Sophie K., Krueger, Arne, Koch, Stefan P., Mehnert, Jan, Habermehl, Christina, Steinbrink, Jens, Obrig, Hellmuth, Schmitz, Christoph H.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.01.2014
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Functional near infrared spectroscopy (fNIRS) is a versatile neuroimaging tool with an increasing acceptance in the neuroimaging community. While often lauded for its portability, most of the fNIRS setups employed in neuroscientific research still impose usage in a laboratory environment. We present a wearable, multi-channel fNIRS imaging system for functional brain imaging in unrestrained settings. The system operates without optical fiber bundles, using eight dual wavelength light emitting diodes and eight electro-optical sensors, which can be placed freely on the subject's head for direct illumination and detection. Its performance is tested on N=8 subjects in a motor execution paradigm performed under three different exercising conditions: (i) during outdoor bicycle riding, (ii) while pedaling on a stationary training bicycle, and (iii) sitting still on the training bicycle. Following left hand gripping, we observe a significant decrease in the deoxyhemoglobin concentration over the contralateral motor cortex in all three conditions. A significant task-related ΔHbO2 increase was seen for the non-pedaling condition. Although the gross movements involved in pedaling and steering a bike induced more motion artifacts than carrying out the same task while sitting still, we found no significant differences in the shape or amplitude of the HbR time courses for outdoor or indoor cycling and sitting still. We demonstrate the general feasibility of using wearable multi-channel NIRS during strenuous exercise in natural, unrestrained settings and discuss the origins and effects of data artifacts. We provide quantitative guidelines for taking condition-dependent signal quality into account to allow the comparison of data across various levels of physical exercise. To the best of our knowledge, this is the first demonstration of functional NIRS brain imaging during an outdoor activity in a real life situation in humans. •A wearable, multi-channel fNIRS imaging system is presented and tested in 8 subjects.•This is the first demonstration of fNIRS brain imaging during an outdoor activity.•The device is well feasible for functional brain imaging in real life situations.
AbstractList Functional near infrared spectroscopy (fNIRS) is a versatile neuroimaging tool with an increasing acceptance in the neuroimaging community. While often lauded for its portability, most of the fNIRS setups employed in neuroscientific research still impose usage in a laboratory environment. We present a wearable, multi-channel fNIRS imaging system for functional brain imaging in unrestrained settings. The system operates without optical fiber bundles, using eight dual wavelength light emitting diodes and eight electro-optical sensors, which can be placed freely on the subject's head for direct illumination and detection. Its performance is tested on N=8 subjects in a motor execution paradigm performed under three different exercising conditions: (i) during outdoor bicycle riding, (ii) while pedaling on a stationary training bicycle, and (iii) sitting still on the training bicycle. Following left hand gripping, we observe a significant decrease in the deoxyhemoglobin concentration over the contralateral motor cortex in all three conditions. A significant task-related ΔHbO2 increase was seen for the non-pedaling condition. Although the gross movements involved in pedaling and steering a bike induced more motion artifacts than carrying out the same task while sitting still, we found no significant differences in the shape or amplitude of the HbR time courses for outdoor or indoor cycling and sitting still. We demonstrate the general feasibility of using wearable multi-channel NIRS during strenuous exercise in natural, unrestrained settings and discuss the origins and effects of data artifacts. We provide quantitative guidelines for taking condition-dependent signal quality into account to allow the comparison of data across various levels of physical exercise. To the best of our knowledge, this is the first demonstration of functional NIRS brain imaging during an outdoor activity in a real life situation in humans. •A wearable, multi-channel fNIRS imaging system is presented and tested in 8 subjects.•This is the first demonstration of fNIRS brain imaging during an outdoor activity.•The device is well feasible for functional brain imaging in real life situations.
Functional near infrared spectroscopy (fNIRS) is a versatile neuroimaging tool with an increasing acceptance in the neuroimaging community. While often lauded for its portability, most of the fNIRS setups employed in neuroscientific research still impose usage in a laboratory environment. We present a wearable, multi-channel fNIRS imaging system for functional brain imaging in unrestrained settings. The system operates without optical fiber bundles, using eight dual wavelength light emitting diodes and eight electro-optical sensors, which can be placed freely on the subject's head for direct illumination and detection. Its performance is tested on N=8 subjects in a motor execution paradigm performed under three different exercising conditions: (i) during outdoor bicycle riding, (ii) while pedaling on a stationary training bicycle, and (iii) sitting still on the training bicycle. Following left hand gripping, we observe a significant decrease in the deoxyhemoglobin concentration over the contralateral motor cortex in all three conditions. A significant task-related ΔHbO2 increase was seen for the non-pedaling condition. Although the gross movements involved in pedaling and steering a bike induced more motion artifacts than carrying out the same task while sitting still, we found no significant differences in the shape or amplitude of the HbR time courses for outdoor or indoor cycling and sitting still. We demonstrate the general feasibility of using wearable multi-channel NIRS during strenuous exercise in natural, unrestrained settings and discuss the origins and effects of data artifacts. We provide quantitative guidelines for taking condition-dependent signal quality into account to allow the comparison of data across various levels of physical exercise. To the best of our knowledge, this is the first demonstration of functional NIRS brain imaging during an outdoor activity in a real life situation in humans.Functional near infrared spectroscopy (fNIRS) is a versatile neuroimaging tool with an increasing acceptance in the neuroimaging community. While often lauded for its portability, most of the fNIRS setups employed in neuroscientific research still impose usage in a laboratory environment. We present a wearable, multi-channel fNIRS imaging system for functional brain imaging in unrestrained settings. The system operates without optical fiber bundles, using eight dual wavelength light emitting diodes and eight electro-optical sensors, which can be placed freely on the subject's head for direct illumination and detection. Its performance is tested on N=8 subjects in a motor execution paradigm performed under three different exercising conditions: (i) during outdoor bicycle riding, (ii) while pedaling on a stationary training bicycle, and (iii) sitting still on the training bicycle. Following left hand gripping, we observe a significant decrease in the deoxyhemoglobin concentration over the contralateral motor cortex in all three conditions. A significant task-related ΔHbO2 increase was seen for the non-pedaling condition. Although the gross movements involved in pedaling and steering a bike induced more motion artifacts than carrying out the same task while sitting still, we found no significant differences in the shape or amplitude of the HbR time courses for outdoor or indoor cycling and sitting still. We demonstrate the general feasibility of using wearable multi-channel NIRS during strenuous exercise in natural, unrestrained settings and discuss the origins and effects of data artifacts. We provide quantitative guidelines for taking condition-dependent signal quality into account to allow the comparison of data across various levels of physical exercise. To the best of our knowledge, this is the first demonstration of functional NIRS brain imaging during an outdoor activity in a real life situation in humans.
Functional near infrared spectroscopy (fNIRS) is a versatile neuroimaging tool with an increasing acceptance in the neuroimaging community. While often lauded for its portability, most of the fNIRS setups employed in neuroscientific research still impose usage in a laboratory environment. We present a wearable, multi-channel fNIRS imaging system for functional brain imaging in unrestrained settings. The system operates without optical fiber bundles, using eight dual wavelength light emitting diodes and eight electro-optical sensors, which can be placed freely on the subject's head for direct illumination and detection. Its performance is tested on N = 8 subjects in a motor execution paradigm performed under three different exercising conditions: (i) during outdoor bicycle riding, (ii) while pedaling on a stationary training bicycle, and (iii) sitting still on the training bicycle. Following left hand gripping, we observe a significant decrease in the deoxyhemoglobin concentration over the contralateral motor cortex in all three conditions. A significant task-related ΔHbO 2 increase was seen for the non-pedaling condition. Although the gross movements involved in pedaling and steering a bike induced more motion artifacts than carrying out the same task while sitting still, we found no significant differences in the shape or amplitude of the HbR time courses for outdoor or indoor cycling and sitting still. We demonstrate the general feasibility of using wearable multi-channel NIRS during strenuous exercise in natural, unrestrained settings and discuss the origins and effects of data artifacts. We provide quantitative guidelines for taking condition-dependent signal quality into account to allow the comparison of data across various levels of physical exercise. To the best of our knowledge, this is the first demonstration of functional NIRS brain imaging during an outdoor activity in a real life situation in humans.
Functional near infrared spectroscopy (fNIRS) is a versatile neuroimaging tool with an increasing acceptance in the neuroimaging community. While often lauded for its portability, most of the fNIRS setups employed in neuroscientific research still impose usage in a laboratory environment. We present a wearable, multi-channel fNIRS imaging system for functional brain imaging in unrestrained settings. The system operates without optical fiber bundles, using eight dual wavelength light emitting diodes and eight electro-optical sensors, which can be placed freely on the subject's head for direct illumination and detection. Its performance is tested on N=8 subjects in a motor execution paradigm performed under three different exercising conditions: (i) during outdoor bicycle riding, (ii) while pedaling on a stationary training bicycle, and (iii) sitting still on the training bicycle. Following left hand gripping, we observe a significant decrease in the deoxyhemoglobin concentration over the contralateral motor cortex in all three conditions. A significant task-related δHbO2increase was seen for the non-pedaling condition. Although the gross movements involved in pedaling and steering a bike induced more motion artifacts than carrying out the same task while sitting still, we found no significant differences in the shape or amplitude of the HbR time courses for outdoor or indoor cycling and sitting still. We demonstrate the general feasibility of using wearable multi-channel NIRS during strenuous exercise in natural, unrestrained settings and discuss the origins and effects of data artifacts. We provide quantitative guidelines for taking condition-dependent signal quality into account to allow the comparison of data across various levels of physical exercise. To the best of our knowledge, this is the first demonstration of functional NIRS brain imaging during an outdoor activity in a real life situation in humans.
Functional near infrared spectroscopy (fNIRS) is a versatile neuroimaging tool with an increasing acceptance in the neuroimaging community. While often lauded for its portability, most of the fNIRS setups employed in neuroscientific research still impose usage in a laboratory environment. We present a wearable, multi-channel fNIRS imaging system for functional brain imaging in unrestrained settings. The system operates without optical fiber bundles, using eight dual wavelength light emitting diodes and eight electro-optical sensors, which can be placed freely on the subject's head for direct illumination and detection. Its performance is tested on N=8 subjects in a motor execution paradigm performed under three different exercising conditions: (i) during outdoor bicycle riding, (ii) while pedaling on a stationary training bicycle, and (iii) sitting still on the training bicycle. Following left hand gripping, we observe a significant decrease in the deoxyhemoglobin concentration over the contralateral motor cortex in all three conditions. A significant task-related ΔHbO2 increase was seen for the non-pedaling condition. Although the gross movements involved in pedaling and steering a bike induced more motion artifacts than carrying out the same task while sitting still, we found no significant differences in the shape or amplitude of the HbR time courses for outdoor or indoor cycling and sitting still. We demonstrate the general feasibility of using wearable multi-channel NIRS during strenuous exercise in natural, unrestrained settings and discuss the origins and effects of data artifacts. We provide quantitative guidelines for taking condition-dependent signal quality into account to allow the comparison of data across various levels of physical exercise. To the best of our knowledge, this is the first demonstration of functional NIRS brain imaging during an outdoor activity in a real life situation in humans.
Functional near infrared spectroscopy (fNIRS) is a versatile neuroimaging tool with an increasing acceptance in the neuroimaging community. While often lauded for its portability, most of the fNIRS setups employed in neuroscientific research still impose usage in a laboratory environment. We present a wearable, multi-channel fNIRS imaging system for functional brain imaging in unrestrained settings. The system operates without optical fiber bundles, using eight dual wavelength light emitting diodes and eight electro-optical sensors, which can be placed freely on the subject's head for direct illumination and detection. Its performance is tested on N = 8 subjects in a motor execution paradigm performed under three different exercising conditions: (i) during outdoor bicycle riding, (ii) while pedaling on a stationary training bicycle, and (iii) sitting still on the training bicycle. Following left hand gripping, we observe a significant decrease in the deoxyhemoglobin concentration over the contralateral motor cortex in all three conditions. A significant task-related IHbO2 increase was seen for the non-pedaling condition. Although the gross movements involved in pedaling and steering a bike induced more motion artifacts than carrying out the same task while sitting still, we found no significant differences in the shape or amplitude of the HbR time courses for outdoor or indoor cycling and sitting still. We demonstrate the general feasibility of using wearable multi-channel NIRS during strenuous exercise in natural, unrestrained settings and discuss the origins and effects of data artifacts. We provide quantitative guidelines for taking condition-dependent signal quality into account to allow the comparison of data across various levels of physical exercise. To the best of our knowledge, this is the first demonstration of functional NIRS brain imaging during an outdoor activity in a real life situation in humans.
Author Krueger, Arne
Obrig, Hellmuth
Habermehl, Christina
Steinbrink, Jens
Koch, Stefan P.
Piper, Sophie K.
Mehnert, Jan
Schmitz, Christoph H.
AuthorAffiliation b Charité University Medicine Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117 Berlin, Germany
d Clinic for Cognitive Neurology, University Hospital Leipzig, Liebigstr. 16, 04103 Leipzig, Germany
c Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany
a Charité University Medicine Berlin, Department of Neurology, Charitéplatz 1, 10117 Berlin, Germany
e NIRx Medizintechnik GmbH, Baumbachstr. 17, 13189 Berlin, Germany
AuthorAffiliation_xml – name: b Charité University Medicine Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117 Berlin, Germany
– name: a Charité University Medicine Berlin, Department of Neurology, Charitéplatz 1, 10117 Berlin, Germany
– name: d Clinic for Cognitive Neurology, University Hospital Leipzig, Liebigstr. 16, 04103 Leipzig, Germany
– name: c Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany
– name: e NIRx Medizintechnik GmbH, Baumbachstr. 17, 13189 Berlin, Germany
Author_xml – sequence: 1
  givenname: Sophie K.
  surname: Piper
  fullname: Piper, Sophie K.
  email: Sophie.Piper@charite.de
  organization: Charité University Medicine Berlin, Department of Neurology, Charitéplatz 1, 10117 Berlin, Germany
– sequence: 2
  givenname: Arne
  surname: Krueger
  fullname: Krueger, Arne
  organization: Charité University Medicine Berlin, Department of Neurology, Charitéplatz 1, 10117 Berlin, Germany
– sequence: 3
  givenname: Stefan P.
  surname: Koch
  fullname: Koch, Stefan P.
  organization: Charité University Medicine Berlin, Department of Neurology, Charitéplatz 1, 10117 Berlin, Germany
– sequence: 4
  givenname: Jan
  surname: Mehnert
  fullname: Mehnert, Jan
  organization: Charité University Medicine Berlin, Department of Neurology, Charitéplatz 1, 10117 Berlin, Germany
– sequence: 5
  givenname: Christina
  surname: Habermehl
  fullname: Habermehl, Christina
  organization: Charité University Medicine Berlin, Department of Neurology, Charitéplatz 1, 10117 Berlin, Germany
– sequence: 6
  givenname: Jens
  surname: Steinbrink
  fullname: Steinbrink, Jens
  organization: Charité University Medicine Berlin, Department of Neurology, Charitéplatz 1, 10117 Berlin, Germany
– sequence: 7
  givenname: Hellmuth
  surname: Obrig
  fullname: Obrig, Hellmuth
  organization: Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany
– sequence: 8
  givenname: Christoph H.
  surname: Schmitz
  fullname: Schmitz, Christoph H.
  organization: Charité University Medicine Berlin, Department of Neurology, Charitéplatz 1, 10117 Berlin, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23810973$$D View this record in MEDLINE/PubMed
BookMark eNqNkltvFCEUgImpse3qXzCT-OLLrMAsA7wYa-OlSaPx9kwY5rBlZaCFmZr99zLZutW-uAkJBD6-c3LOOUVHIQZAqCJ4STBpX22WAaYU3aDXsKSYNEvclkUfoROCJasl4_RoPrOmFoTIY3Sa8wZjLMlKPEHHtBGF480J-nJW_QKddOehGiY_utpc6RDAV_bTxddvVd7mEYbKxlR1SbtQzTFdWFflaBOA31ZDvJ0v8tRtwIz5KXpstc_w7G5foB_v330__1hffv5wcX52WRsm-VhLqalcUYt7YhvR8K5fMY410e3KMEZFL4xs2s521rR9xwWnvS3vpre0QNA3C_R6572eugF6A2FM2qvrVDJMWxW1U_--BHel1vFWNYJJUUIu0Ms7QYo3E-RRDS4b8F4HiFNWhGHMBWGE_x9dtRy3gre4oC8eoJs4pVAqUYSzi2FJC_X87-T3Wf9pTAHEDjAp5pzA7hGC1TwDaqPuZ0DNM6BwWxa9L8z-q3GjHl2cy-D8IYK3OwGU9t06SCobB8FA71LpsOqjO0Ty5oHEeBec0f4nbA9T_AYoIOr5
CitedBy_id crossref_primary_10_1007_s00221_019_05646_4
crossref_primary_10_1109_TAFFC_2023_3279311
crossref_primary_10_1016_j_neuroimage_2018_04_022
crossref_primary_10_1515_bmt_2019_0291
crossref_primary_10_3390_s24217004
crossref_primary_10_1038_s42003_022_04318_4
crossref_primary_10_1177_0271678X17724138
crossref_primary_10_3389_fnins_2018_00695
crossref_primary_10_2139_ssrn_3366527
crossref_primary_10_1109_TIM_2023_3279877
crossref_primary_10_1111_jpr_12080
crossref_primary_10_1089_brain_2024_0043
crossref_primary_10_1371_journal_pone_0248533
crossref_primary_10_3390_nu15133010
crossref_primary_10_3389_fnhum_2019_00085
crossref_primary_10_1016_j_neuroimage_2019_116472
crossref_primary_10_1177_1545968317693304
crossref_primary_10_1109_TNSRE_2020_3030639
crossref_primary_10_1371_journal_pone_0129390
crossref_primary_10_1038_s41598_023_29123_9
crossref_primary_10_1016_j_neuroscience_2024_02_011
crossref_primary_10_3389_fnhum_2016_00126
crossref_primary_10_1021_acs_jpcb_4c01277
crossref_primary_10_3389_fnhum_2015_00617
crossref_primary_10_1016_j_jneumeth_2016_07_010
crossref_primary_10_3389_fnrgo_2024_1345507
crossref_primary_10_1109_TIM_2023_3315364
crossref_primary_10_3389_fneur_2022_965856
crossref_primary_10_1002_wcs_1343
crossref_primary_10_1007_s11265_021_01659_x
crossref_primary_10_1146_annurev_psych_010213_115108
crossref_primary_10_1038_s41583_023_00692_y
crossref_primary_10_1186_s12984_020_00777_0
crossref_primary_10_1109_RBME_2019_2944351
crossref_primary_10_1016_j_medntd_2021_100064
crossref_primary_10_1371_journal_pone_0101729
crossref_primary_10_1117_1_NPh_1_2_025009
crossref_primary_10_1088_1741_2552_aa91b5
crossref_primary_10_1109_ACCESS_2020_3008748
crossref_primary_10_1016_j_ajp_2019_07_035
crossref_primary_10_1026_1612_5010_a000184
crossref_primary_10_1109_TBCAS_2022_3149766
crossref_primary_10_1007_s00421_022_04891_w
crossref_primary_10_1016_j_neuroimage_2013_11_033
crossref_primary_10_1111_desc_13568
crossref_primary_10_3389_fneur_2025_1542075
crossref_primary_10_1117_1_NPh_5_1_011007
crossref_primary_10_3389_fnins_2021_705741
crossref_primary_10_1142_S0129065719500187
crossref_primary_10_1016_j_arr_2017_07_003
crossref_primary_10_1002_hbm_25566
crossref_primary_10_1002_brb3_70238
crossref_primary_10_3389_fpsyg_2014_00743
crossref_primary_10_3390_brainsci14020187
crossref_primary_10_1016_j_physrep_2021_03_002
crossref_primary_10_1016_j_neuron_2015_09_022
crossref_primary_10_3389_fnrgo_2024_1286586
crossref_primary_10_1063_5_0102811
crossref_primary_10_1016_j_jchemneu_2018_02_006
crossref_primary_10_1117_1_NPh_5_1_011012
crossref_primary_10_3724_SP_J_1042_2019_01224
crossref_primary_10_1016_j_neuroimage_2020_117672
crossref_primary_10_1097_j_pain_0000000000002293
crossref_primary_10_1038_s41598_024_74216_8
crossref_primary_10_5498_wjp_v15_i3_100112
crossref_primary_10_1111_jpr_12206
crossref_primary_10_1155_2015_248724
crossref_primary_10_3389_fnrgo_2022_838625
crossref_primary_10_1016_j_jneumeth_2019_108378
crossref_primary_10_3389_fphys_2014_00204
crossref_primary_10_1002_dev_21818
crossref_primary_10_1038_s41598_020_63596_2
crossref_primary_10_3390_brainsci11060742
crossref_primary_10_1016_j_neubiorev_2017_10_002
crossref_primary_10_1016_j_neuroimage_2024_120788
crossref_primary_10_1016_j_ifacol_2021_04_195
crossref_primary_10_1038_s41598_023_42416_3
crossref_primary_10_1117_1_JBO_21_9_091315
crossref_primary_10_3389_fphys_2022_988028
crossref_primary_10_1186_s12883_022_02683_5
crossref_primary_10_1117_1_JBO_20_5_056011
crossref_primary_10_1177_1094428116658959
crossref_primary_10_3389_fnagi_2025_1470747
crossref_primary_10_1080_17461391_2023_2238699
crossref_primary_10_1080_15412555_2020_1767561
crossref_primary_10_1364_BOE_9_000322
crossref_primary_10_1093_cercor_bhac025
crossref_primary_10_1080_21577323_2015_1067258
crossref_primary_10_3389_fnins_2022_938518
crossref_primary_10_1088_1741_2560_12_6_066004
crossref_primary_10_3390_s24030990
crossref_primary_10_1186_s40814_016_0099_2
crossref_primary_10_32604_cmc_2022_018318
crossref_primary_10_1117_1_NPh_4_3_035002
crossref_primary_10_1016_j_ijleo_2020_165116
crossref_primary_10_1117_1_NPh_4_4_041403
crossref_primary_10_3389_fnins_2020_00570
crossref_primary_10_3389_fnint_2023_1059679
crossref_primary_10_1016_j_jneumeth_2021_109262
crossref_primary_10_3389_fnhum_2017_00241
crossref_primary_10_3390_brainsci10110813
crossref_primary_10_17706_ijbbb_2019_9_1_9_19
crossref_primary_10_3389_fneur_2019_00537
crossref_primary_10_3389_fpsyg_2015_00709
crossref_primary_10_3389_fnhum_2020_584312
crossref_primary_10_3390_app10062196
crossref_primary_10_1016_j_neuroimage_2015_06_011
crossref_primary_10_2340_jrm_v56_40111
crossref_primary_10_3389_fnbeh_2018_00296
crossref_primary_10_1093_scan_nsad057
crossref_primary_10_1371_journal_pone_0253788
crossref_primary_10_1016_j_fshw_2022_04_019
crossref_primary_10_1038_s41598_021_88198_4
crossref_primary_10_1371_journal_pone_0198210
crossref_primary_10_1155_2017_6820482
crossref_primary_10_3389_fnint_2024_1488977
crossref_primary_10_1117_1_NPh_4_4_041413
crossref_primary_10_1371_journal_pone_0122862
crossref_primary_10_1109_TNSRE_2020_2970407
crossref_primary_10_1111_jsr_14033
crossref_primary_10_1117_1_NPh_10_2_023515
crossref_primary_10_3389_fnhum_2018_00362
crossref_primary_10_3389_fnhum_2017_00258
crossref_primary_10_3389_fnhum_2018_00361
crossref_primary_10_1097_NPT_0000000000000402
crossref_primary_10_34133_cbsystems_0045
crossref_primary_10_3389_fnbeh_2020_00084
crossref_primary_10_1016_j_heares_2017_05_010
crossref_primary_10_1215_17432197_9964843
crossref_primary_10_1016_j_psychsport_2018_11_002
crossref_primary_10_3389_fphys_2019_00781
crossref_primary_10_1177_0031512518789582
crossref_primary_10_3390_app12010316
crossref_primary_10_1007_s40120_021_00300_0
crossref_primary_10_3389_fnagi_2023_1177082
crossref_primary_10_1109_JSEN_2015_2450211
crossref_primary_10_1016_j_neurobiolaging_2016_10_011
crossref_primary_10_1016_j_bbr_2021_113133
crossref_primary_10_1364_BOE_7_004275
crossref_primary_10_1016_j_bbr_2024_115038
crossref_primary_10_3389_fnins_2020_00032
crossref_primary_10_1016_j_bandc_2024_106200
crossref_primary_10_1002_cta_3047
crossref_primary_10_1364_BOE_8_002018
crossref_primary_10_3389_fnins_2022_878750
crossref_primary_10_1186_s12883_023_03292_6
crossref_primary_10_3389_fnhum_2018_00398
crossref_primary_10_3390_sports10040056
crossref_primary_10_1038_s41598_019_45555_8
crossref_primary_10_31083_j_jin2103098
crossref_primary_10_1177_2055668320964109
crossref_primary_10_3389_fnins_2019_01129
crossref_primary_10_1016_j_heares_2016_07_013
crossref_primary_10_1038_s41598_019_51996_y
crossref_primary_10_1111_ejn_15241
crossref_primary_10_2147_NDT_S499134
crossref_primary_10_3389_fnhum_2019_00016
crossref_primary_10_1016_j_ijhcs_2023_103206
crossref_primary_10_1002_hbm_26107
crossref_primary_10_1117_1_JBO_19_4_047003
crossref_primary_10_1016_j_bbr_2017_06_034
crossref_primary_10_1364_AO_54_000576
crossref_primary_10_1002_adom_202401625
crossref_primary_10_1002_adom_202102656
crossref_primary_10_1016_j_neulet_2018_10_022
crossref_primary_10_1177_0309364620956866
crossref_primary_10_3390_cryst14100868
crossref_primary_10_1088_1741_2560_13_3_036002
crossref_primary_10_1016_j_gaitpost_2017_05_018
crossref_primary_10_3389_fnsys_2016_00017
crossref_primary_10_1017_pds_2021_94
crossref_primary_10_3389_fnhum_2020_00133
crossref_primary_10_1016_j_nanoen_2024_109904
crossref_primary_10_1063_5_0015512
crossref_primary_10_1249_MSS_0000000000001875
crossref_primary_10_3389_fnhum_2018_00298
crossref_primary_10_1016_j_neuroimage_2016_06_054
crossref_primary_10_1017_pds_2021_90
crossref_primary_10_1109_TNSRE_2020_3023116
crossref_primary_10_3390_s20195618
crossref_primary_10_1177_09670335211006532
crossref_primary_10_1371_journal_pone_0269654
crossref_primary_10_3389_fnins_2016_00530
crossref_primary_10_1016_j_neuroimage_2020_116735
crossref_primary_10_1063_5_0153753
crossref_primary_10_1016_j_jneumeth_2023_109810
crossref_primary_10_1109_TBCAS_2018_2876089
crossref_primary_10_3389_fnhum_2019_00278
crossref_primary_10_1007_s10548_020_00785_2
crossref_primary_10_1038_s41598_018_21716_z
crossref_primary_10_1021_acs_jafc_2c01938
crossref_primary_10_32725_jab_2019_014
crossref_primary_10_3390_brainsci10080494
crossref_primary_10_3390_s23208643
crossref_primary_10_1364_BOE_531576
crossref_primary_10_1007_s10103_021_03493_w
crossref_primary_10_1177_0309364618805260
crossref_primary_10_17340_jkna_2024_0018
crossref_primary_10_1177_13623613211004795
crossref_primary_10_1007_s10548_023_00946_z
crossref_primary_10_3389_fnagi_2024_1469620
crossref_primary_10_3389_fnhum_2016_00694
crossref_primary_10_1080_02640414_2017_1326619
crossref_primary_10_1016_j_jbusres_2018_10_052
crossref_primary_10_1002_hbm_23849
crossref_primary_10_1016_j_bbr_2023_114701
crossref_primary_10_1016_j_eswa_2024_126081
crossref_primary_10_1177_1541931213601008
crossref_primary_10_3389_fnhum_2020_00113
crossref_primary_10_1063_1_4954722
crossref_primary_10_1364_BOE_10_006296
crossref_primary_10_3389_fphys_2015_00416
crossref_primary_10_1016_j_neubiorev_2020_10_023
crossref_primary_10_1177_10597123211072613
crossref_primary_10_1109_JPROC_2015_2413993
crossref_primary_10_1002_lio2_70035
crossref_primary_10_1109_JSEN_2023_3337842
crossref_primary_10_1080_02701367_2024_2365940
crossref_primary_10_3389_fnhum_2014_00549
crossref_primary_10_1002_advs_202406631
crossref_primary_10_1155_2014_107320
crossref_primary_10_1109_TNSRE_2023_3236007
crossref_primary_10_1016_j_ccr_2018_11_003
crossref_primary_10_1016_j_heares_2016_02_005
crossref_primary_10_3389_fnhum_2022_1023246
crossref_primary_10_1117_1_JBO_22_4_046010
crossref_primary_10_3389_fnhum_2019_00057
crossref_primary_10_1016_j_jad_2024_01_044
crossref_primary_10_3389_fnhum_2018_00187
crossref_primary_10_1155_2019_1976847
crossref_primary_10_1016_j_neures_2025_02_003
crossref_primary_10_3390_brainsci10060342
crossref_primary_10_3389_fneur_2023_1232436
crossref_primary_10_1111_psyp_14425
crossref_primary_10_3389_fresc_2021_788087
crossref_primary_10_3390_app10186522
crossref_primary_10_3389_fnhum_2021_784522
crossref_primary_10_3389_fnhum_2017_00641
crossref_primary_10_3390_s20102831
crossref_primary_10_1002_pchj_56
crossref_primary_10_1016_j_neubiorev_2021_05_028
crossref_primary_10_1038_s41538_024_00308_4
crossref_primary_10_1002_brb3_3383
crossref_primary_10_1089_neu_2022_0131
crossref_primary_10_3389_fpsyg_2023_1126047
crossref_primary_10_1016_j_neuroimage_2018_11_012
crossref_primary_10_1016_j_ijchp_2024_100516
crossref_primary_10_1007_s00221_024_06798_8
crossref_primary_10_1109_TNSRE_2018_2878045
crossref_primary_10_1093_cercor_bhad091
crossref_primary_10_1016_j_neuroimage_2022_119216
crossref_primary_10_4028_www_scientific_net_AMM_573_814
crossref_primary_10_3389_fnins_2020_00746
crossref_primary_10_1016_j_tics_2014_01_008
crossref_primary_10_1016_j_neuropsychologia_2023_108779
crossref_primary_10_1016_j_biopsycho_2019_03_004
crossref_primary_10_1109_JSTQE_2018_2883890
crossref_primary_10_1038_srep46522
crossref_primary_10_1117_1_JBO_22_1_014001
crossref_primary_10_1038_s41598_022_06082_1
crossref_primary_10_3389_fnhum_2017_00419
crossref_primary_10_14348_molcells_2017_0153
crossref_primary_10_1117_1_NPh_11_1_015009
Cites_doi 10.1088/0031-9155/51/5/N02
10.1016/j.earlhumdev.2008.11.007
10.1016/j.neuroimage.2003.12.017
10.1586/17434440.3.2.235
10.1016/j.neuroimage.2007.08.044
10.1016/j.neuroimage.2012.01.124
10.1016/S1053-8119(03)00344-6
10.1016/j.neuroimage.2011.11.028
10.1117/1.3462996
10.1117/1.3625575
10.1016/j.neuroimage.2011.11.062
10.1186/1743-0003-7-57
10.1006/nimg.2002.1227
10.1016/j.neuroimage.2007.06.014
10.1016/j.bandl.2011.03.010
10.1063/1.1775314
10.1055/s-0031-1281726
10.1111/1469-8986.00057
10.1016/j.neuroimage.2013.05.014
10.1093/gerona/glr068
10.1007/978-1-4614-4989-8_25
10.1097/00004647-199609000-00006
10.1212/WNL.0b013e3182762569
10.1117/1.3505009
10.1371/journal.pone.0044676
10.1364/AO.32.000418
10.1016/j.neuroimage.2011.08.084
10.1186/1475-925X-4-29
10.1364/OE.16.010323
10.1063/1.4704456
10.1016/j.neuroimage.2004.07.002
10.1016/S0166-2236(97)01132-6
10.1364/AO.44.002140
10.1117/1.3368999
10.1016/j.neuroimage.2004.12.032
10.1038/nrn756
10.1088/1741-2560/9/4/046010
10.1117/1.1852552
10.1007/978-1-4615-5865-1_60
10.1006/nimg.2002.1177
10.1016/j.neuroimage.2005.08.065
10.1016/j.neuroimage.2012.03.049
10.1117/1.2940587
10.1063/1.1427768
10.1016/S0887-8994(02)00432-0
10.1016/j.mri.2005.12.034
10.1016/j.neuroimage.2012.02.074
10.1002/hbm.10026
10.1097/00004647-200301000-00001
10.1006/nimg.2000.0657
10.1016/j.neuroimage.2010.10.058
10.1016/S1053-8119(03)00021-1
10.1063/1.3115207
10.1364/OE.19.018636
10.1364/AO.48.00D137
10.1016/j.neuroimage.2004.07.011
10.1016/j.braindev.2012.11.006
10.1152/jn.1998.80.3.1522
10.1016/j.neuroimage.2008.12.048
10.1016/j.neuroimage.2011.07.084
ContentType Journal Article
Copyright 2013 Elsevier Inc.
2013.
Copyright Elsevier Limited Jan 15, 2014
2013 Elsevier Inc. All rights reserved 2013
Copyright_xml – notice: 2013 Elsevier Inc.
– notice: 2013.
– notice: Copyright Elsevier Limited Jan 15, 2014
– notice: 2013 Elsevier Inc. All rights reserved 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
5PM
DOI 10.1016/j.neuroimage.2013.06.062
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList

MEDLINE - Academic

ProQuest One Psychology
MEDLINE
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physical Therapy
EISSN 1095-9572
EndPage 71
ExternalDocumentID PMC3859838
3395283101
23810973
10_1016_j_neuroimage_2013_06_062
S1053811913007003
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R21 NS067278
– fundername: NINDS NIH HHS
  grantid: R21NS067278
– fundername: NINDS NIH HHS
  grantid: R44 NS049734
– fundername: NINDS NIH HHS
  grantid: R44NS049734
– fundername: NINDS NIH HHS
  grantid: R42NS050007
– fundername: NINDS NIH HHS
  grantid: R42 NS050007
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7QO
5PM
ID FETCH-LOGICAL-c597t-99a2942f0d1f3837bd4570a1a64c5528d8c936bfbfc6db7872df70acdf2a1aed3
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Thu Aug 21 17:11:24 EDT 2025
Thu Jul 10 18:18:38 EDT 2025
Fri Jul 11 16:32:04 EDT 2025
Wed Aug 13 06:46:37 EDT 2025
Thu Apr 03 07:03:17 EDT 2025
Thu Apr 24 23:03:32 EDT 2025
Tue Jul 01 02:14:51 EDT 2025
Fri Feb 23 02:36:06 EST 2024
Tue Aug 26 16:31:51 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Outdoor bicycling
Functional brain imaging
Wearable NIRS system
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
2013.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c597t-99a2942f0d1f3837bd4570a1a64c5528d8c936bfbfc6db7872df70acdf2a1aed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink http://doi.org/10.1016/j.neuroimage.2013.06.062
PMID 23810973
PQID 1551735092
PQPubID 2031077
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3859838
proquest_miscellaneous_1500781517
proquest_miscellaneous_1467068760
proquest_journals_1551735092
pubmed_primary_23810973
crossref_primary_10_1016_j_neuroimage_2013_06_062
crossref_citationtrail_10_1016_j_neuroimage_2013_06_062
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2013_06_062
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2013_06_062
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-01-15
PublicationDateYYYYMMDD 2014-01-15
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2014
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Krueger, Koch, Mehnert, Habermehl, Piper, Steinbrink, Obrig, Schmitz (bb0175) 2012
Hoshi, Chen (bb0130) 2002; 27
Gregg, White, Zeff, Berger, Culver (bb0095) 2010; 2
Habermehl, Schmitz, Koch, Mehnert, Steinbrink (bb0105) 2012
Suzuki, Miyai, Ono, Kubota (bb0300) 2008; 39
Franceschini, Fantini, Thompson, Culver, Boas (bb0080) 2003; 40
Gevins, Chan, Sam-Vargas (bb0090) 2012; 7
Wallois, Mahmoudzadeh, Patil, Grebe (bb0330) 2012; 121
Holtzer, Mahoney, Izzetoglu, Izzetoglu, Onaral, Verghese (bb0125) 2011; 66
Leff, Orihuela-Espina, Elwell, Athanasiou, Delpy, Darzi, Yang (bb0190) 2011; 54
Brett, Johnsrude, Owen (bb0030) 2002; 3
Obrig, Villringer (bb0240) 2003; 23
Schneider, Piper, Schmitz, Schreiter, Volkwein, Ludemann, Malzahn, Poellinger (bb0265) 2011; 183
Obrig, Neufang, Wenzel, Kohl, Steinbrink, Einhaupl, Villringer (bb0235) 2000; 12
Pastewski, Kleiser, Metz, Wolf (bb0245) 2012
Villringer, Chance (bb0325) 1997; 20
Steinkellner, Gruber, Wabnitz, Jelzow, Steinbrink, Fiebach, Macdonald, Obrig (bb0285) 2010; 15
Shalinsky, Kovelman, Berens, Petitto (bb0275) 2009; 29
Mehagnoul-Schipper, van der Kallen, Colier, van der Sluijs, van Erning, Thijssen, Oeseburg, Hoefnagels, Jansen (bb0195) 2002; 16
Sato, Kiguchi, Kawaguchi, Maki (bb9000) 2004; 21
Fazli, Mehnert, Steinbrink, Curio, Villringer, Muller, Blankertz (bb0070) 2012; 59
White, Culver (bb0335) 2010; 15
Yurtsever, Bozkurt, Kepics, Pourrezaei, Devaraj (bb0340) 2003
Atsumori, Kiguchi, Katura, Funane, Obata, Sato, Manaka, Iwamoto, Maki, Koizumi, Kubota (bb0005) 2010; 15
Koenraadt, Duysens, Smeenk, Keijsers (bb0170) 2012; 9
Cannestra, Pouratian, Shomer, Toga (bb0040) 1998; 80
Muehlemann, Haensse, Wolf (bb0215) 2008; 16
Atsumori, Kiguchi, Obata, Sato, Katura, Utsugi, Funane, Maki (bb0015) 2007; 2007
Dehghani, White, Zeff, Tizzard, Culver (bb0055) 2009; 48
Ferrari, Quaresima (bb0075) 2012; 63
Zhang, Strangman, Ganis (bb0345) 2009; 45
Obrig, Hirth, Junge-Hulsing, Doge, Wenzel, Wolf, Dirnagl, Villringer (bb0225) 1997; 411
Prahl, O.M.L.C. (bb0270) 2006
Boas, Dale, Franceschini (bb0020) 2004; 23
Hoge, Franceschini, Covolan, Huppert, Mandeville, Boas (bb0115) 2005; 25
Suzuki, Miyai, Ono, Oda, Konishi, Kochiyama, Kubota (bb0305) 2004; 23
Steinbrink, Villringer, Kempf, Haux, Boden, Obrig (bb0280) 2006; 24
Habermehl, Holtze, Steinbrink, Koch, Obrig, Mehnert, Schmitz (bb0100) 2012; 59
Saager, Berger (bb0250) 2008; 13
Strangman, Culver, Thompson, Boas (bb0290) 2002; 17
Cooper, Gagnon, Goldenholz, Boas, Greve (bb0050) 2012; 59
Kirilina, Jelzow, Heine, Niessing, Wabnitz, Bruhl, Ittermann, Jacobs, Tachtsidis (bb0150) 2012; 61
Chen, Leys, Esquenazi (bb0045) 2013; 80
Huppert, Hoge, Diamond, Franceschini, Boas (bb0140) 2006; 29
Vaithianathan (bb0320) 2004; 75
Toet, Lemmers (bb0315) 2009; 85
Huppert, Franceschini, Boas (bb0135) 2009
Sagara, Kido, Ozawa (bb0255) 2009; 2009
Bozkurt, Rosen, Rosen, Onaral (bb0025) 2005; 4
Kiguchi, Atsumori, Fukasaku, Kumagai, Funane, Maki, Kasai, Ninomiya (bb0145) 2012; 83
Holper, Muehlemann, Scholkmann, Eng, Kiper, Wolf (bb0120) 2010; 7
Mihara, Miyai, Hatakenaka, Kubota, Sakoda (bb0205) 2007; 37
Zhang, Brooks, Franceschini, Boas (bb0350) 2005; 10
Kocsis, Herman, Eke (bb0165) 2006; 51
Mehnert, Akhrif, Telkemeyer, Rossi, Schmitz, Steinbrink, Wartenburger, Obrig, Neufang (bb0200) 2013
Kleinschmidt, Obrig, Requardt, Merboldt, Dirnagl, Villringer, Frahm (bb0155) 1996; 16
Obrig, Israel, Kohl-Bareis, Uludag, Wenzel, Muller, Arnold, Villringer (bb0230) 2002; 17
Strangman, Franceschini, Boas (bb0295) 2003; 18
Moosmann, Ritter, Krastel, Brink, Thees, Blankenburg, Taskin, Obrig, Villringer (bb0210) 2003; 20
Schmitz, Loecker, Lasker, Hielscher, Barbour (bb0035) 2002; 73
Fujimoto, Mihara, Hattori, Hatakenaka, Kawano, Yagura, Miyai, Mochizuki (bb0085) 2013; 85
Koch, Habermehl, Mehnert, Schmitz, Holtze, Villringer, Steinbrink, Obrig (bb0160) 2012; 2
Kurz, Wilson, Arpin (bb0180) 2012; 59
Eggebrecht, White, Ferradal, Chen, Zhan, Snyder, Dehghani, Culver (bb0060) 2012; 61
Schmitz, Klemer, Hardin, Katz, Pei, Graber, Levin, Levina, Franco, Solomon, Barbour (bb0260) 2005; 44
Habermehl, Schmitz, Steinbrink (bb0110) 2012; 19
Atsumori, Kiguchi, Obata, Sato, Katura, Funane, Maki (bb0010) 2009; 80
Tobias (bb0310) 2006; 3
Essenpreis, Elwell, Cope, van der Zee, Arridge, Delpy (bb0065) 1993; 32
Muehlemann, Holper, Wenzel, Wittkowski, Wolf (bb0220) 2013; 765
Lareau, Lesage, Pouliot, Nguyen, Le Lan, Sawan (bb0185) 2011; 16
Cannestra (10.1016/j.neuroimage.2013.06.062_bb0040) 1998; 80
Leff (10.1016/j.neuroimage.2013.06.062_bb0190) 2011; 54
Cooper (10.1016/j.neuroimage.2013.06.062_bb0050) 2012; 59
Schmitz (10.1016/j.neuroimage.2013.06.062_bb0260) 2005; 44
Bozkurt (10.1016/j.neuroimage.2013.06.062_bb0025) 2005; 4
Shalinsky (10.1016/j.neuroimage.2013.06.062_bb0275) 2009; 29
Yurtsever (10.1016/j.neuroimage.2013.06.062_bb0340) 2003
Gregg (10.1016/j.neuroimage.2013.06.062_bb0095) 2010; 2
Lareau (10.1016/j.neuroimage.2013.06.062_bb0185) 2011; 16
Koenraadt (10.1016/j.neuroimage.2013.06.062_bb0170) 2012; 9
Moosmann (10.1016/j.neuroimage.2013.06.062_bb0210) 2003; 20
Toet (10.1016/j.neuroimage.2013.06.062_bb0315) 2009; 85
Mehagnoul-Schipper (10.1016/j.neuroimage.2013.06.062_bb0195) 2002; 16
Strangman (10.1016/j.neuroimage.2013.06.062_bb0290) 2002; 17
Suzuki (10.1016/j.neuroimage.2013.06.062_bb0305) 2004; 23
Habermehl (10.1016/j.neuroimage.2013.06.062_bb0110) 2012; 19
Pastewski (10.1016/j.neuroimage.2013.06.062_bb0245) 2012
White (10.1016/j.neuroimage.2013.06.062_bb0335) 2010; 15
Dehghani (10.1016/j.neuroimage.2013.06.062_bb0055) 2009; 48
Obrig (10.1016/j.neuroimage.2013.06.062_bb0225) 1997; 411
Gevins (10.1016/j.neuroimage.2013.06.062_bb0090) 2012; 7
Steinbrink (10.1016/j.neuroimage.2013.06.062_bb0280) 2006; 24
Huppert (10.1016/j.neuroimage.2013.06.062_bb0140) 2006; 29
Huppert (10.1016/j.neuroimage.2013.06.062_bb0135) 2009
Fazli (10.1016/j.neuroimage.2013.06.062_bb0070) 2012; 59
Schneider (10.1016/j.neuroimage.2013.06.062_bb0265) 2011; 183
Atsumori (10.1016/j.neuroimage.2013.06.062_bb0005) 2010; 15
Eggebrecht (10.1016/j.neuroimage.2013.06.062_bb0060) 2012; 61
Holtzer (10.1016/j.neuroimage.2013.06.062_bb0125) 2011; 66
Steinkellner (10.1016/j.neuroimage.2013.06.062_bb0285) 2010; 15
Zhang (10.1016/j.neuroimage.2013.06.062_bb0345) 2009; 45
Habermehl (10.1016/j.neuroimage.2013.06.062_bb0105) 2012
Atsumori (10.1016/j.neuroimage.2013.06.062_bb0015) 2007; 2007
Mehnert (10.1016/j.neuroimage.2013.06.062_bb0200) 2013
Vaithianathan (10.1016/j.neuroimage.2013.06.062_bb0320) 2004; 75
Villringer (10.1016/j.neuroimage.2013.06.062_bb0325) 1997; 20
Obrig (10.1016/j.neuroimage.2013.06.062_bb0240) 2003; 23
Wallois (10.1016/j.neuroimage.2013.06.062_bb0330) 2012; 121
Hoshi (10.1016/j.neuroimage.2013.06.062_bb0130) 2002; 27
Ferrari (10.1016/j.neuroimage.2013.06.062_bb0075) 2012; 63
Sato (10.1016/j.neuroimage.2013.06.062_bb9000) 2004; 21
Saager (10.1016/j.neuroimage.2013.06.062_bb0250) 2008; 13
Kleinschmidt (10.1016/j.neuroimage.2013.06.062_bb0155) 1996; 16
Fujimoto (10.1016/j.neuroimage.2013.06.062_bb0085) 2013; 85
Habermehl (10.1016/j.neuroimage.2013.06.062_bb0100) 2012; 59
Obrig (10.1016/j.neuroimage.2013.06.062_bb0235) 2000; 12
Krueger (10.1016/j.neuroimage.2013.06.062_bb0175) 2012
Sagara (10.1016/j.neuroimage.2013.06.062_bb0255) 2009; 2009
Schmitz (10.1016/j.neuroimage.2013.06.062_bb0035) 2002; 73
Brett (10.1016/j.neuroimage.2013.06.062_bb0030) 2002; 3
Koch (10.1016/j.neuroimage.2013.06.062_bb0160) 2012; 2
Chen (10.1016/j.neuroimage.2013.06.062_bb0045) 2013; 80
Kocsis (10.1016/j.neuroimage.2013.06.062_bb0165) 2006; 51
Tobias (10.1016/j.neuroimage.2013.06.062_bb0310) 2006; 3
Prahl (10.1016/j.neuroimage.2013.06.062_bb0270) 2006
Muehlemann (10.1016/j.neuroimage.2013.06.062_bb0220) 2013; 765
Essenpreis (10.1016/j.neuroimage.2013.06.062_bb0065) 1993; 32
Atsumori (10.1016/j.neuroimage.2013.06.062_bb0010) 2009; 80
Franceschini (10.1016/j.neuroimage.2013.06.062_bb0080) 2003; 40
Hoge (10.1016/j.neuroimage.2013.06.062_bb0115) 2005; 25
Kurz (10.1016/j.neuroimage.2013.06.062_bb0180) 2012; 59
Strangman (10.1016/j.neuroimage.2013.06.062_bb0295) 2003; 18
Holper (10.1016/j.neuroimage.2013.06.062_bb0120) 2010; 7
Boas (10.1016/j.neuroimage.2013.06.062_bb0020) 2004; 23
Muehlemann (10.1016/j.neuroimage.2013.06.062_bb0215) 2008; 16
Kirilina (10.1016/j.neuroimage.2013.06.062_bb0150) 2012; 61
Mihara (10.1016/j.neuroimage.2013.06.062_bb0205) 2007; 37
Kiguchi (10.1016/j.neuroimage.2013.06.062_bb0145) 2012; 83
Obrig (10.1016/j.neuroimage.2013.06.062_bb0230) 2002; 17
Suzuki (10.1016/j.neuroimage.2013.06.062_bb0300) 2008; 39
Zhang (10.1016/j.neuroimage.2013.06.062_bb0350) 2005; 10
22957099 - PLoS One. 2012;7(9):e44676
15847580 - J Biomed Opt. 2005 Jan-Feb;10(1):11014
20802707 - Appl Opt. 1993 Feb 1;32(4):418-25
20725524 - Front Neuroenergetics. 2010 Jul 14;2:null
20616883 - Front Neuroenergetics. 2010 Jun 14;2:12
21593013 - J Gerontol A Biol Sci Med Sci. 2011 Aug;66(8):879-87
15528102 - Neuroimage. 2004 Nov;23(3):1020-6
11112395 - Neuroimage. 2000 Dec;12(6):623-39
12435566 - Pediatr Neurol. 2002 Oct;27(4):275-81
22667665 - Rev Sci Instrum. 2012 May;83(5):056101
18002717 - Conf Proc IEEE Eng Med Biol Soc. 2007;2007:3362-4
17950626 - Neuroimage. 2008 Jan 15;39(2):600-7
9744956 - J Neurophysiol. 1998 Sep;80(3):1522-32
8784226 - J Cereb Blood Flow Metab. 1996 Sep;16(5):817-26
22510258 - Neuroimage. 2012 Nov 1;63(2):921-35
16303317 - Neuroimage. 2006 Jan 15;29(2):368-82
12377147 - Neuroimage. 2002 Oct;17(2):719-31
12725763 - Neuroimage. 2003 Apr;18(4):865-79
21198156 - J Biomed Opt. 2010 Nov-Dec;15(6):061708
20459251 - J Biomed Opt. 2010 Mar-Apr;15(2):026006
12500086 - J Cereb Blood Flow Metab. 2003 Jan;23(1):1-18
9269464 - Adv Exp Med Biol. 1997;411:471-80
21546072 - Brain Lang. 2012 May;121(2):110-23
21840399 - Neuroimage. 2012 Jan 2;59(1):519-29
19405663 - Rev Sci Instrum. 2009 Apr;80(4):043704
16481677 - Phys Med Biol. 2006 Mar 7;51(5):N91-8
19340101 - Appl Opt. 2009 Apr 1;48(10):D137-43
23265620 - Brain Dev. 2013 Nov;35(10):894-904
21935232 - Opt Express. 2011 Sep 12;19(19):18636-44
21029781 - Neuroimage. 2011 Feb 14;54(4):2922-36
11870923 - Hum Brain Mapp. 2002 May;16(1):14-23
15501097 - Neuroimage. 2004;23 Suppl 1:S275-88
21950928 - J Biomed Opt. 2011 Sep;16(9):096014
15835360 - Appl Opt. 2005 Apr 10;44(11):2140-53
12482064 - Neuroimage. 2002 Sep;17(1):1-18
18607442 - Opt Express. 2008 Jul 7;16(14):10323-30
17683949 - Neuroimage. 2007 Oct 1;37(4):1338-45
22155031 - Neuroimage. 2012 Feb 15;59(4):3201-11
16677956 - Magn Reson Imaging. 2006 May;24(4):495-505
19638948 - J Vis Exp. 2009;(29). pii: 1268. doi: 10.3791/1268
20799804 - J Biomed Opt. 2010 Jul-Aug;15(4):046002
16515389 - Expert Rev Med Devices. 2006 Mar;3(2):235-43
14570163 - Psychophysiology. 2003 Jul;40(4):548-60
22330315 - Neuroimage. 2012 Jul 16;61(4):1120-8
19166945 - Neuroimage. 2009 Apr 15;45(3):788-94
22426347 - Neuroimage. 2012 May 15;61(1):70-81
21972043 - Rofo. 2011 Oct;183(10):956-63
23684871 - Neuroimage. 2014 Jan 15;85 Pt 1:547-54
19963717 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:602-5
14527577 - Neuroimage. 2003 Sep;20(1):145-58
21122154 - J Neuroeng Rehabil. 2010;7:57
22763344 - J Neural Eng. 2012 Aug;9(4):046010
9347608 - Trends Neurosci. 1997 Oct;20(10):435-42
22119653 - Neuroimage. 2012 Feb 15;59(4):3128-38
15808971 - Neuroimage. 2005 Apr 15;25(3):701-7
11994756 - Nat Rev Neurosci. 2002 Mar;3(3):243-9
23319483 - Neurology. 2013 Jan 15;80(3 Suppl 2):S27-34
18601562 - J Biomed Opt. 2008 May-Jun;13(3):034017
21920441 - Neuroimage. 2012 Jan 16;59(2):1602-7
19150756 - Early Hum Dev. 2009 Feb;85(2):77-84
15862131 - Biomed Eng Online. 2005;4:29
22879031 - Adv Exp Med Biol. 2013;765:177-83
References_xml – volume: 24
  start-page: 495
  year: 2006
  end-page: 505
  ident: bb0280
  article-title: Illuminating the BOLD signal: combined fMRI–fNIRS studies
  publication-title: Magn. Reson. Imaging
– volume: 80
  start-page: S27
  year: 2013
  end-page: S34
  ident: bb0045
  article-title: The interaction between neuropsychological and motor deficits in patients after stroke
  publication-title: Neurology
– volume: 13
  start-page: 034017
  year: 2008
  ident: bb0250
  article-title: Measurement of layer-like hemodynamic trends in scalp and cortex: implications for physiological baseline suppression in functional near-infrared spectroscopy
  publication-title: J. Biomed. Opt.
– volume: 40
  start-page: 548
  year: 2003
  end-page: 560
  ident: bb0080
  article-title: Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging
  publication-title: Psychophysiology
– year: 2006
  ident: bb0270
  article-title: Tabulated Molar Extinction Coefficient for Hemoglobin in Water
– volume: 25
  start-page: 701
  year: 2005
  end-page: 707
  ident: bb0115
  article-title: Simultaneous recording of task-induced changes in blood oxygenation, volume, and flow using diffuse optical imaging and arterial spin-labeling MRI
  publication-title: Neuroimage
– volume: 12
  start-page: 623
  year: 2000
  end-page: 639
  ident: bb0235
  article-title: Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults
  publication-title: Neuroimage
– volume: 20
  start-page: 435
  year: 1997
  end-page: 442
  ident: bb0325
  article-title: Non-invasive optical spectroscopy and imaging of human brain function
  publication-title: Trends Neurosci.
– year: 2012
  ident: bb0105
  article-title: Investigating hemodynamics in scalp and brain using high-resolution diffuse optical tomography in humans
  publication-title: Biomedical Optics, OSA Technical Digest (Optical Society of America, 2012) paper BSu2A.2
– volume: 17
  start-page: 1
  year: 2002
  end-page: 18
  ident: bb0230
  article-title: Habituation of the visually evoked potential and its vascular response: implications for neurovascular coupling in the healthy adult
  publication-title: Neuroimage
– volume: 411
  start-page: 471
  year: 1997
  end-page: 480
  ident: bb0225
  article-title: Length of resting period between stimulation cycles modulates hemodynamic response to a motor stimulus
  publication-title: Adv. Exp. Med. Biol.
– volume: 21
  start-page: 1554
  year: 2004
  end-page: 1562
  ident: bb9000
  article-title: Practicality of wavelength selection to improve signal-to-noise ratio in near-infrared spectroscopy
  publication-title: Neuroimage
– volume: 4
  start-page: 29
  year: 2005
  ident: bb0025
  article-title: A portable near infrared spectroscopy system for bedside monitoring of newborn brain
  publication-title: Biomed. Eng. Online
– volume: 80
  start-page: 1522
  year: 1998
  end-page: 1532
  ident: bb0040
  article-title: Refractory periods observed by intrinsic signal and fluorescent dye imaging
  publication-title: J. Neurophysiol.
– volume: 20
  start-page: 145
  year: 2003
  end-page: 158
  ident: bb0210
  article-title: Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy
  publication-title: Neuroimage
– volume: 2
  year: 2010
  ident: bb0095
  article-title: Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography
  publication-title: Front. Neuroenerg.
– volume: 75
  start-page: 3276
  year: 2004
  end-page: 3283
  ident: bb0320
  article-title: Design of a portable near infrared system for topographic imaging of the brain in babies
  publication-title: Rev. Sci. Instrum.
– volume: 9
  start-page: 046010
  year: 2012
  ident: bb0170
  article-title: Multi-channel NIRS of the primary motor cortex to discriminate hand from foot activity
  publication-title: J. Neural Eng.
– volume: 85
  start-page: 547
  year: 2013
  end-page: 554
  ident: bb0085
  article-title: Cortical changes underlying balance recovery in patients with hemiplegic stroke
  publication-title: Neuroimage
– volume: 61
  start-page: 70
  year: 2012
  end-page: 81
  ident: bb0150
  article-title: The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy
  publication-title: Neuroimage
– volume: 59
  start-page: 1602
  year: 2012
  end-page: 1607
  ident: bb0180
  article-title: Stride-time variability and sensorimotor cortical activation during walking
  publication-title: Neuroimage
– year: 2013
  ident: bb0200
  article-title: Developmental changes in brain activation and functional connectivity during response inhibition in the early childhood brain
  publication-title: Brain Dev
– volume: 10
  start-page: 11014
  year: 2005
  ident: bb0350
  article-title: Eigenvector-based spatial filtering for reduction of physiological interference in diffuse optical imaging
  publication-title: J. Biomed. Opt.
– volume: 29
  start-page: 1268
  year: 2009
  ident: bb0275
  article-title: Exploring cognitive functions in babies, children & adults with near infrared spectroscopy
  publication-title: J. Vis. Exp.
– volume: 16
  start-page: 096014
  year: 2011
  ident: bb0185
  article-title: Multichannel wearable system dedicated for simultaneous electroencephalographynear-infrared spectroscopy real-time data acquisitions
  publication-title: J. Biomed. Opt.
– volume: 39
  start-page: 600
  year: 2008
  end-page: 607
  ident: bb0300
  article-title: Activities in the frontal cortex and gait performance are modulated by preparation. An fNIRS study
  publication-title: Neuroimage
– volume: 765
  start-page: 177
  year: 2013
  end-page: 183
  ident: bb0220
  article-title: The effect of sudden depressurization on pilots at cruising altitude
  publication-title: Adv. Exp. Med. Biol.
– volume: 23
  start-page: 1020
  year: 2004
  end-page: 1026
  ident: bb0305
  article-title: Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill: an optical imaging study
  publication-title: Neuroimage
– year: 2003
  ident: bb0340
  article-title: Pocket PC based wireless continuous wave near infrared spectroscopy system for functional imaging of human brain Engineering in Medicine and Biology Society, 2003
  publication-title: Proceedings of the 25th Annual International Conference of the IEEE
– volume: 59
  start-page: 3128
  year: 2012
  end-page: 3138
  ident: bb0050
  article-title: The utility of near-infrared spectroscopy in the regression of low-frequency physiological noise from functional magnetic resonance imaging data
  publication-title: Neuroimage
– volume: 83
  start-page: 056101
  year: 2012
  ident: bb0145
  article-title: Note: wearable near-infrared spectroscopy imager for haired region
  publication-title: Rev. Sci. Instrum.
– volume: 15
  start-page: 026006
  year: 2010
  ident: bb0335
  article-title: Quantitative evaluation of high-density diffuse optical tomography: in vivo resolution and mapping performance
  publication-title: J. Biomed. Opt.
– volume: 48
  start-page: D137
  year: 2009
  end-page: D143
  ident: bb0055
  article-title: Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography
  publication-title: Appl. Opt.
– volume: 37
  start-page: 1338
  year: 2007
  end-page: 1345
  ident: bb0205
  article-title: Sustained prefrontal activation during ataxic gait: a compensatory mechanism for ataxic stroke?
  publication-title: Neuroimage
– volume: 2007
  start-page: 3362
  year: 2007
  end-page: 3364
  ident: bb0015
  article-title: Development of a multi-channel, portable optical topography system
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc.
– volume: 19
  start-page: 18636
  year: 2012
  end-page: 18644
  ident: bb0110
  article-title: Contrast enhanced high-resolution diffuse optical tomography of the human brain using ICG
  publication-title: Opt. Express
– volume: 66
  start-page: 879
  year: 2011
  end-page: 887
  ident: bb0125
  article-title: fNIRS study of walking and walking while talking in young and old individuals
  publication-title: J. Gerontol. A Biol. Sci. Med. Sci.
– volume: 45
  start-page: 788
  year: 2009
  end-page: 794
  ident: bb0345
  article-title: Adaptive filtering to reduce global interference in non-invasive NIRS measures of brain activation: how well and when does it work?
  publication-title: Neuroimage
– volume: 61
  start-page: 1120
  year: 2012
  end-page: 1128
  ident: bb0060
  article-title: A quantitative spatial comparison of high-density diffuse optical tomography and fMRI cortical mapping
  publication-title: Neuroimage
– volume: 27
  start-page: 275
  year: 2002
  end-page: 281
  ident: bb0130
  article-title: Regional cerebral blood flow changes associated with emotions in children
  publication-title: Pediatr. Neurol.
– volume: 3
  start-page: 243
  year: 2002
  end-page: 249
  ident: bb0030
  article-title: The problem of functional localization in the human brain
  publication-title: Nat. Rev. Neurosci.
– volume: 17
  start-page: 719
  year: 2002
  end-page: 731
  ident: bb0290
  article-title: A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation
  publication-title: Neuroimage
– volume: 3
  start-page: 235
  year: 2006
  end-page: 243
  ident: bb0310
  article-title: Cerebral oxygenation monitoring: near-infrared spectroscopy
  publication-title: Expert Rev. Med. Devices
– volume: 23
  start-page: S275
  year: 2004
  end-page: S288
  ident: bb0020
  article-title: Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy
  publication-title: Neuroimage
– start-page: BM4A.3
  year: 2012
  ident: bb0175
  article-title: Imaging of Motor Activity in Freely Moving Subjects Using a Wearable NIRS Imaging System
  publication-title: Biomedical Optics, OSA Technical Digest (Optical Society of America, 2012)
– volume: 183
  start-page: 956
  year: 2011
  end-page: 963
  ident: bb0265
  article-title: Fast 3D near-infrared breast imaging using indocyanine green for detection and characterization of breast lesions
  publication-title: Rofo
– volume: 121
  start-page: 110
  year: 2012
  end-page: 123
  ident: bb0330
  article-title: Usefulness of simultaneous EEG-NIRS recording in language studies
  publication-title: Brain Lang.
– volume: 32
  start-page: 418
  year: 1993
  end-page: 425
  ident: bb0065
  article-title: Spectral dependence of temporal point spread functions in human tissues
  publication-title: Appl. Opt.
– volume: 7
  start-page: e44676
  year: 2012
  ident: bb0090
  article-title: Towards measuring brain function on groups of people in the real world
  publication-title: PLoS One
– volume: 18
  start-page: 865
  year: 2003
  end-page: 879
  ident: bb0295
  article-title: Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters
  publication-title: Neuroimage
– volume: 16
  start-page: 10323
  year: 2008
  end-page: 10330
  ident: bb0215
  article-title: Wireless miniaturized in-vivo near infrared imaging
  publication-title: Opt. Express
– volume: 23
  start-page: 1
  year: 2003
  end-page: 18
  ident: bb0240
  article-title: Beyond the visible—imaging the human brain with light
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 54
  start-page: 2922
  year: 2011
  end-page: 2936
  ident: bb0190
  article-title: Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies
  publication-title: Neuroimage
– year: 2012
  ident: bb0245
  article-title: A wireless, self-calibrating sensor for fNIRS studies in preterm infants
  publication-title: Functional Near Infrared Spectroscopy Conference Oct. 26th–28th 2012 London
– volume: 59
  start-page: 519
  year: 2012
  end-page: 529
  ident: bb0070
  article-title: Enhanced performance by a hybrid NIRS-EEG brain computer interface
  publication-title: Neuroimage
– volume: 51
  start-page: N91
  year: 2006
  end-page: N98
  ident: bb0165
  article-title: The modified Beer–Lambert law revisited
  publication-title: Phys. Med. Biol.
– volume: 16
  start-page: 14
  year: 2002
  end-page: 23
  ident: bb0195
  article-title: Simultaneous measurements of cerebral oxygenation changes during brain activation by near-infrared spectroscopy and functional magnetic resonance imaging in healthy young and elderly subjects
  publication-title: Hum. Brain Mapp.
– volume: 15
  start-page: 061708
  year: 2010
  ident: bb0285
  article-title: Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke
  publication-title: J. Biomed. Opt.
– volume: 59
  start-page: 3201
  year: 2012
  end-page: 3211
  ident: bb0100
  article-title: Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography
  publication-title: Neuroimage
– volume: 7
  start-page: 57
  year: 2010
  ident: bb0120
  article-title: Testing the potential of a virtual reality neurorehabilitation system during performance of observation, imagery and imitation of motor actions recorded by wireless functional near-infrared spectroscopy (fNIRS)
  publication-title: J. Neuroeng. Rehabil.
– volume: 44
  start-page: 2140
  year: 2005
  end-page: 2153
  ident: bb0260
  article-title: Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements
  publication-title: Appl. Opt.
– volume: 85
  start-page: 77
  year: 2009
  end-page: 84
  ident: bb0315
  article-title: Brain monitoring in neonates
  publication-title: Early Hum. Dev.
– volume: 29
  start-page: 368
  year: 2006
  end-page: 382
  ident: bb0140
  article-title: A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans
  publication-title: Neuroimage
– volume: 2
  start-page: 12
  year: 2012
  ident: bb0160
  article-title: High-resolution optical functional mapping of the human somatosensory cortex
  publication-title: Front. Neuroenerg.
– volume: 2009
  start-page: 602
  year: 2009
  end-page: 605
  ident: bb0255
  article-title: Portable single-channel NIRS-based BMI system for motor disabilities' communication tools
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc.
– volume: 80
  start-page: 043704
  year: 2009
  ident: bb0010
  article-title: Development of wearable optical topography system for mapping the prefrontal cortex activation
  publication-title: Rev. Sci. Instrum.
– volume: 15
  start-page: 046002
  year: 2010
  ident: bb0005
  article-title: Noninvasive imaging of prefrontal activation during attention-demanding tasks performed while walking using a wearable optical topography system
  publication-title: J. Biomed. Opt.
– volume: 63
  start-page: 921
  year: 2012
  end-page: 935
  ident: bb0075
  article-title: A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application
  publication-title: Neuroimage
– year: 2009
  ident: bb0135
  article-title: Noninvasive imaging of cerebral activation with diffuse optical tomography
  publication-title: In Vivo Optical Imaging of Brain Function
– volume: 16
  start-page: 817
  year: 1996
  end-page: 826
  ident: bb0155
  article-title: Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 73
  year: 2002
  ident: bb0035
  article-title: Instrumentation for fast functional optical tomography
  publication-title: Rev. Sci. Instrum.
– volume: 51
  start-page: N91
  year: 2006
  ident: 10.1016/j.neuroimage.2013.06.062_bb0165
  article-title: The modified Beer–Lambert law revisited
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/51/5/N02
– volume: 85
  start-page: 77
  year: 2009
  ident: 10.1016/j.neuroimage.2013.06.062_bb0315
  article-title: Brain monitoring in neonates
  publication-title: Early Hum. Dev.
  doi: 10.1016/j.earlhumdev.2008.11.007
– volume: 21
  start-page: 1554
  year: 2004
  ident: 10.1016/j.neuroimage.2013.06.062_bb9000
  article-title: Practicality of wavelength selection to improve signal-to-noise ratio in near-infrared spectroscopy
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2003.12.017
– volume: 3
  start-page: 235
  year: 2006
  ident: 10.1016/j.neuroimage.2013.06.062_bb0310
  article-title: Cerebral oxygenation monitoring: near-infrared spectroscopy
  publication-title: Expert Rev. Med. Devices
  doi: 10.1586/17434440.3.2.235
– volume: 39
  start-page: 600
  year: 2008
  ident: 10.1016/j.neuroimage.2013.06.062_bb0300
  article-title: Activities in the frontal cortex and gait performance are modulated by preparation. An fNIRS study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.08.044
– volume: 61
  start-page: 1120
  year: 2012
  ident: 10.1016/j.neuroimage.2013.06.062_bb0060
  article-title: A quantitative spatial comparison of high-density diffuse optical tomography and fMRI cortical mapping
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.124
– volume: 20
  start-page: 145
  year: 2003
  ident: 10.1016/j.neuroimage.2013.06.062_bb0210
  article-title: Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00344-6
– volume: 59
  start-page: 3128
  year: 2012
  ident: 10.1016/j.neuroimage.2013.06.062_bb0050
  article-title: The utility of near-infrared spectroscopy in the regression of low-frequency physiological noise from functional magnetic resonance imaging data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.11.028
– volume: 15
  start-page: 046002
  year: 2010
  ident: 10.1016/j.neuroimage.2013.06.062_bb0005
  article-title: Noninvasive imaging of prefrontal activation during attention-demanding tasks performed while walking using a wearable optical topography system
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.3462996
– volume: 16
  start-page: 096014
  year: 2011
  ident: 10.1016/j.neuroimage.2013.06.062_bb0185
  article-title: Multichannel wearable system dedicated for simultaneous electroencephalographynear-infrared spectroscopy real-time data acquisitions
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.3625575
– volume: 59
  start-page: 3201
  year: 2012
  ident: 10.1016/j.neuroimage.2013.06.062_bb0100
  article-title: Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.11.062
– volume: 7
  start-page: 57
  year: 2010
  ident: 10.1016/j.neuroimage.2013.06.062_bb0120
  article-title: Testing the potential of a virtual reality neurorehabilitation system during performance of observation, imagery and imitation of motor actions recorded by wireless functional near-infrared spectroscopy (fNIRS)
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-7-57
– volume: 17
  start-page: 719
  year: 2002
  ident: 10.1016/j.neuroimage.2013.06.062_bb0290
  article-title: A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1227
– volume: 37
  start-page: 1338
  year: 2007
  ident: 10.1016/j.neuroimage.2013.06.062_bb0205
  article-title: Sustained prefrontal activation during ataxic gait: a compensatory mechanism for ataxic stroke?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.06.014
– volume: 121
  start-page: 110
  year: 2012
  ident: 10.1016/j.neuroimage.2013.06.062_bb0330
  article-title: Usefulness of simultaneous EEG-NIRS recording in language studies
  publication-title: Brain Lang.
  doi: 10.1016/j.bandl.2011.03.010
– volume: 75
  start-page: 3276
  year: 2004
  ident: 10.1016/j.neuroimage.2013.06.062_bb0320
  article-title: Design of a portable near infrared system for topographic imaging of the brain in babies
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1775314
– volume: 183
  start-page: 956
  year: 2011
  ident: 10.1016/j.neuroimage.2013.06.062_bb0265
  article-title: Fast 3D near-infrared breast imaging using indocyanine green for detection and characterization of breast lesions
  publication-title: Rofo
  doi: 10.1055/s-0031-1281726
– volume: 40
  start-page: 548
  year: 2003
  ident: 10.1016/j.neuroimage.2013.06.062_bb0080
  article-title: Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging
  publication-title: Psychophysiology
  doi: 10.1111/1469-8986.00057
– volume: 85
  start-page: 547
  year: 2013
  ident: 10.1016/j.neuroimage.2013.06.062_bb0085
  article-title: Cortical changes underlying balance recovery in patients with hemiplegic stroke
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.014
– volume: 66
  start-page: 879
  year: 2011
  ident: 10.1016/j.neuroimage.2013.06.062_bb0125
  article-title: fNIRS study of walking and walking while talking in young and old individuals
  publication-title: J. Gerontol. A Biol. Sci. Med. Sci.
  doi: 10.1093/gerona/glr068
– volume: 765
  start-page: 177
  year: 2013
  ident: 10.1016/j.neuroimage.2013.06.062_bb0220
  article-title: The effect of sudden depressurization on pilots at cruising altitude
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-1-4614-4989-8_25
– volume: 16
  start-page: 817
  year: 1996
  ident: 10.1016/j.neuroimage.2013.06.062_bb0155
  article-title: Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1097/00004647-199609000-00006
– volume: 80
  start-page: S27
  year: 2013
  ident: 10.1016/j.neuroimage.2013.06.062_bb0045
  article-title: The interaction between neuropsychological and motor deficits in patients after stroke
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3182762569
– volume: 15
  start-page: 061708
  year: 2010
  ident: 10.1016/j.neuroimage.2013.06.062_bb0285
  article-title: Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.3505009
– volume: 7
  start-page: e44676
  year: 2012
  ident: 10.1016/j.neuroimage.2013.06.062_bb0090
  article-title: Towards measuring brain function on groups of people in the real world
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0044676
– volume: 32
  start-page: 418
  year: 1993
  ident: 10.1016/j.neuroimage.2013.06.062_bb0065
  article-title: Spectral dependence of temporal point spread functions in human tissues
  publication-title: Appl. Opt.
  doi: 10.1364/AO.32.000418
– volume: 59
  start-page: 1602
  year: 2012
  ident: 10.1016/j.neuroimage.2013.06.062_bb0180
  article-title: Stride-time variability and sensorimotor cortical activation during walking
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.08.084
– volume: 4
  start-page: 29
  year: 2005
  ident: 10.1016/j.neuroimage.2013.06.062_bb0025
  article-title: A portable near infrared spectroscopy system for bedside monitoring of newborn brain
  publication-title: Biomed. Eng. Online
  doi: 10.1186/1475-925X-4-29
– volume: 16
  start-page: 10323
  year: 2008
  ident: 10.1016/j.neuroimage.2013.06.062_bb0215
  article-title: Wireless miniaturized in-vivo near infrared imaging
  publication-title: Opt. Express
  doi: 10.1364/OE.16.010323
– volume: 83
  start-page: 056101
  year: 2012
  ident: 10.1016/j.neuroimage.2013.06.062_bb0145
  article-title: Note: wearable near-infrared spectroscopy imager for haired region
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4704456
– volume: 2007
  start-page: 3362
  year: 2007
  ident: 10.1016/j.neuroimage.2013.06.062_bb0015
  article-title: Development of a multi-channel, portable optical topography system
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc.
– year: 2009
  ident: 10.1016/j.neuroimage.2013.06.062_bb0135
  article-title: Noninvasive imaging of cerebral activation with diffuse optical tomography
– volume: 23
  start-page: 1020
  year: 2004
  ident: 10.1016/j.neuroimage.2013.06.062_bb0305
  article-title: Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill: an optical imaging study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.002
– volume: 20
  start-page: 435
  year: 1997
  ident: 10.1016/j.neuroimage.2013.06.062_bb0325
  article-title: Non-invasive optical spectroscopy and imaging of human brain function
  publication-title: Trends Neurosci.
  doi: 10.1016/S0166-2236(97)01132-6
– volume: 2009
  start-page: 602
  year: 2009
  ident: 10.1016/j.neuroimage.2013.06.062_bb0255
  article-title: Portable single-channel NIRS-based BMI system for motor disabilities' communication tools
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc.
– volume: 44
  start-page: 2140
  year: 2005
  ident: 10.1016/j.neuroimage.2013.06.062_bb0260
  article-title: Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements
  publication-title: Appl. Opt.
  doi: 10.1364/AO.44.002140
– volume: 15
  start-page: 026006
  year: 2010
  ident: 10.1016/j.neuroimage.2013.06.062_bb0335
  article-title: Quantitative evaluation of high-density diffuse optical tomography: in vivo resolution and mapping performance
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.3368999
– volume: 25
  start-page: 701
  year: 2005
  ident: 10.1016/j.neuroimage.2013.06.062_bb0115
  article-title: Simultaneous recording of task-induced changes in blood oxygenation, volume, and flow using diffuse optical imaging and arterial spin-labeling MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.12.032
– volume: 2
  start-page: 12
  year: 2012
  ident: 10.1016/j.neuroimage.2013.06.062_bb0160
  article-title: High-resolution optical functional mapping of the human somatosensory cortex
  publication-title: Front. Neuroenerg.
– year: 2012
  ident: 10.1016/j.neuroimage.2013.06.062_bb0105
  article-title: Investigating hemodynamics in scalp and brain using high-resolution diffuse optical tomography in humans
– volume: 3
  start-page: 243
  year: 2002
  ident: 10.1016/j.neuroimage.2013.06.062_bb0030
  article-title: The problem of functional localization in the human brain
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn756
– volume: 9
  start-page: 046010
  year: 2012
  ident: 10.1016/j.neuroimage.2013.06.062_bb0170
  article-title: Multi-channel NIRS of the primary motor cortex to discriminate hand from foot activity
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/9/4/046010
– volume: 10
  start-page: 11014
  year: 2005
  ident: 10.1016/j.neuroimage.2013.06.062_bb0350
  article-title: Eigenvector-based spatial filtering for reduction of physiological interference in diffuse optical imaging
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.1852552
– volume: 411
  start-page: 471
  year: 1997
  ident: 10.1016/j.neuroimage.2013.06.062_bb0225
  article-title: Length of resting period between stimulation cycles modulates hemodynamic response to a motor stimulus
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-1-4615-5865-1_60
– volume: 17
  start-page: 1
  year: 2002
  ident: 10.1016/j.neuroimage.2013.06.062_bb0230
  article-title: Habituation of the visually evoked potential and its vascular response: implications for neurovascular coupling in the healthy adult
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1177
– volume: 29
  start-page: 368
  year: 2006
  ident: 10.1016/j.neuroimage.2013.06.062_bb0140
  article-title: A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.08.065
– volume: 63
  start-page: 921
  year: 2012
  ident: 10.1016/j.neuroimage.2013.06.062_bb0075
  article-title: A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.03.049
– volume: 2
  year: 2010
  ident: 10.1016/j.neuroimage.2013.06.062_bb0095
  article-title: Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography
  publication-title: Front. Neuroenerg.
– year: 2012
  ident: 10.1016/j.neuroimage.2013.06.062_bb0245
  article-title: A wireless, self-calibrating sensor for fNIRS studies in preterm infants
– volume: 13
  start-page: 034017
  year: 2008
  ident: 10.1016/j.neuroimage.2013.06.062_bb0250
  article-title: Measurement of layer-like hemodynamic trends in scalp and cortex: implications for physiological baseline suppression in functional near-infrared spectroscopy
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.2940587
– volume: 73
  year: 2002
  ident: 10.1016/j.neuroimage.2013.06.062_bb0035
  article-title: Instrumentation for fast functional optical tomography
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1427768
– volume: 27
  start-page: 275
  year: 2002
  ident: 10.1016/j.neuroimage.2013.06.062_bb0130
  article-title: Regional cerebral blood flow changes associated with emotions in children
  publication-title: Pediatr. Neurol.
  doi: 10.1016/S0887-8994(02)00432-0
– volume: 24
  start-page: 495
  year: 2006
  ident: 10.1016/j.neuroimage.2013.06.062_bb0280
  article-title: Illuminating the BOLD signal: combined fMRI–fNIRS studies
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2005.12.034
– volume: 61
  start-page: 70
  year: 2012
  ident: 10.1016/j.neuroimage.2013.06.062_bb0150
  article-title: The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.074
– volume: 16
  start-page: 14
  year: 2002
  ident: 10.1016/j.neuroimage.2013.06.062_bb0195
  article-title: Simultaneous measurements of cerebral oxygenation changes during brain activation by near-infrared spectroscopy and functional magnetic resonance imaging in healthy young and elderly subjects
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10026
– volume: 23
  start-page: 1
  year: 2003
  ident: 10.1016/j.neuroimage.2013.06.062_bb0240
  article-title: Beyond the visible—imaging the human brain with light
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1097/00004647-200301000-00001
– year: 2006
  ident: 10.1016/j.neuroimage.2013.06.062_bb0270
– volume: 12
  start-page: 623
  year: 2000
  ident: 10.1016/j.neuroimage.2013.06.062_bb0235
  article-title: Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults
  publication-title: Neuroimage
  doi: 10.1006/nimg.2000.0657
– volume: 54
  start-page: 2922
  year: 2011
  ident: 10.1016/j.neuroimage.2013.06.062_bb0190
  article-title: Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.10.058
– volume: 18
  start-page: 865
  year: 2003
  ident: 10.1016/j.neuroimage.2013.06.062_bb0295
  article-title: Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00021-1
– volume: 80
  start-page: 043704
  year: 2009
  ident: 10.1016/j.neuroimage.2013.06.062_bb0010
  article-title: Development of wearable optical topography system for mapping the prefrontal cortex activation
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.3115207
– volume: 19
  start-page: 18636
  year: 2012
  ident: 10.1016/j.neuroimage.2013.06.062_bb0110
  article-title: Contrast enhanced high-resolution diffuse optical tomography of the human brain using ICG
  publication-title: Opt. Express
  doi: 10.1364/OE.19.018636
– start-page: BM4A.3
  year: 2012
  ident: 10.1016/j.neuroimage.2013.06.062_bb0175
  article-title: Imaging of Motor Activity in Freely Moving Subjects Using a Wearable NIRS Imaging System
– volume: 48
  start-page: D137
  year: 2009
  ident: 10.1016/j.neuroimage.2013.06.062_bb0055
  article-title: Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography
  publication-title: Appl. Opt.
  doi: 10.1364/AO.48.00D137
– volume: 29
  start-page: 1268
  year: 2009
  ident: 10.1016/j.neuroimage.2013.06.062_bb0275
  article-title: Exploring cognitive functions in babies, children & adults with near infrared spectroscopy
  publication-title: J. Vis. Exp.
– volume: 23
  start-page: S275
  issue: Suppl. 1
  year: 2004
  ident: 10.1016/j.neuroimage.2013.06.062_bb0020
  article-title: Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.011
– year: 2013
  ident: 10.1016/j.neuroimage.2013.06.062_bb0200
  article-title: Developmental changes in brain activation and functional connectivity during response inhibition in the early childhood brain
  publication-title: Brain Dev
  doi: 10.1016/j.braindev.2012.11.006
– volume: 80
  start-page: 1522
  year: 1998
  ident: 10.1016/j.neuroimage.2013.06.062_bb0040
  article-title: Refractory periods observed by intrinsic signal and fluorescent dye imaging
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1998.80.3.1522
– year: 2003
  ident: 10.1016/j.neuroimage.2013.06.062_bb0340
  article-title: Pocket PC based wireless continuous wave near infrared spectroscopy system for functional imaging of human brain Engineering in Medicine and Biology Society, 2003
– volume: 45
  start-page: 788
  year: 2009
  ident: 10.1016/j.neuroimage.2013.06.062_bb0345
  article-title: Adaptive filtering to reduce global interference in non-invasive NIRS measures of brain activation: how well and when does it work?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.12.048
– volume: 59
  start-page: 519
  year: 2012
  ident: 10.1016/j.neuroimage.2013.06.062_bb0070
  article-title: Enhanced performance by a hybrid NIRS-EEG brain computer interface
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.07.084
– reference: 22667665 - Rev Sci Instrum. 2012 May;83(5):056101
– reference: 20725524 - Front Neuroenergetics. 2010 Jul 14;2:null
– reference: 12377147 - Neuroimage. 2002 Oct;17(2):719-31
– reference: 21122154 - J Neuroeng Rehabil. 2010;7:57
– reference: 21920441 - Neuroimage. 2012 Jan 16;59(2):1602-7
– reference: 21029781 - Neuroimage. 2011 Feb 14;54(4):2922-36
– reference: 15835360 - Appl Opt. 2005 Apr 10;44(11):2140-53
– reference: 22510258 - Neuroimage. 2012 Nov 1;63(2):921-35
– reference: 14570163 - Psychophysiology. 2003 Jul;40(4):548-60
– reference: 19963717 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:602-5
– reference: 17683949 - Neuroimage. 2007 Oct 1;37(4):1338-45
– reference: 14527577 - Neuroimage. 2003 Sep;20(1):145-58
– reference: 15862131 - Biomed Eng Online. 2005;4:29
– reference: 18601562 - J Biomed Opt. 2008 May-Jun;13(3):034017
– reference: 16677956 - Magn Reson Imaging. 2006 May;24(4):495-505
– reference: 17950626 - Neuroimage. 2008 Jan 15;39(2):600-7
– reference: 12435566 - Pediatr Neurol. 2002 Oct;27(4):275-81
– reference: 21198156 - J Biomed Opt. 2010 Nov-Dec;15(6):061708
– reference: 21593013 - J Gerontol A Biol Sci Med Sci. 2011 Aug;66(8):879-87
– reference: 12482064 - Neuroimage. 2002 Sep;17(1):1-18
– reference: 22426347 - Neuroimage. 2012 May 15;61(1):70-81
– reference: 19150756 - Early Hum Dev. 2009 Feb;85(2):77-84
– reference: 11994756 - Nat Rev Neurosci. 2002 Mar;3(3):243-9
– reference: 9347608 - Trends Neurosci. 1997 Oct;20(10):435-42
– reference: 18607442 - Opt Express. 2008 Jul 7;16(14):10323-30
– reference: 18002717 - Conf Proc IEEE Eng Med Biol Soc. 2007;2007:3362-4
– reference: 21972043 - Rofo. 2011 Oct;183(10):956-63
– reference: 19638948 - J Vis Exp. 2009;(29). pii: 1268. doi: 10.3791/1268
– reference: 19166945 - Neuroimage. 2009 Apr 15;45(3):788-94
– reference: 23265620 - Brain Dev. 2013 Nov;35(10):894-904
– reference: 12725763 - Neuroimage. 2003 Apr;18(4):865-79
– reference: 11112395 - Neuroimage. 2000 Dec;12(6):623-39
– reference: 16481677 - Phys Med Biol. 2006 Mar 7;51(5):N91-8
– reference: 22330315 - Neuroimage. 2012 Jul 16;61(4):1120-8
– reference: 16303317 - Neuroimage. 2006 Jan 15;29(2):368-82
– reference: 9744956 - J Neurophysiol. 1998 Sep;80(3):1522-32
– reference: 8784226 - J Cereb Blood Flow Metab. 1996 Sep;16(5):817-26
– reference: 22763344 - J Neural Eng. 2012 Aug;9(4):046010
– reference: 15501097 - Neuroimage. 2004;23 Suppl 1:S275-88
– reference: 20459251 - J Biomed Opt. 2010 Mar-Apr;15(2):026006
– reference: 21935232 - Opt Express. 2011 Sep 12;19(19):18636-44
– reference: 22155031 - Neuroimage. 2012 Feb 15;59(4):3201-11
– reference: 19405663 - Rev Sci Instrum. 2009 Apr;80(4):043704
– reference: 19340101 - Appl Opt. 2009 Apr 1;48(10):D137-43
– reference: 22879031 - Adv Exp Med Biol. 2013;765:177-83
– reference: 23319483 - Neurology. 2013 Jan 15;80(3 Suppl 2):S27-34
– reference: 22957099 - PLoS One. 2012;7(9):e44676
– reference: 20802707 - Appl Opt. 1993 Feb 1;32(4):418-25
– reference: 20799804 - J Biomed Opt. 2010 Jul-Aug;15(4):046002
– reference: 9269464 - Adv Exp Med Biol. 1997;411:471-80
– reference: 15847580 - J Biomed Opt. 2005 Jan-Feb;10(1):11014
– reference: 22119653 - Neuroimage. 2012 Feb 15;59(4):3128-38
– reference: 16515389 - Expert Rev Med Devices. 2006 Mar;3(2):235-43
– reference: 21546072 - Brain Lang. 2012 May;121(2):110-23
– reference: 23684871 - Neuroimage. 2014 Jan 15;85 Pt 1:547-54
– reference: 21840399 - Neuroimage. 2012 Jan 2;59(1):519-29
– reference: 15528102 - Neuroimage. 2004 Nov;23(3):1020-6
– reference: 20616883 - Front Neuroenergetics. 2010 Jun 14;2:12
– reference: 11870923 - Hum Brain Mapp. 2002 May;16(1):14-23
– reference: 12500086 - J Cereb Blood Flow Metab. 2003 Jan;23(1):1-18
– reference: 21950928 - J Biomed Opt. 2011 Sep;16(9):096014
– reference: 15808971 - Neuroimage. 2005 Apr 15;25(3):701-7
SSID ssj0009148
Score 2.5823598
Snippet Functional near infrared spectroscopy (fNIRS) is a versatile neuroimaging tool with an increasing acceptance in the neuroimaging community. While often lauded...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 64
SubjectTerms Adult
Algorithms
Bicycling - physiology
Brain - anatomy & histology
Brain - physiology
Cables
Cortex (motor)
Data Interpretation, Statistical
Environment
Female
Fitness equipment
Functional brain imaging
Functional Neuroimaging - instrumentation
Functional Neuroimaging - methods
Hand Strength - physiology
Hemodynamics - physiology
Humans
Image Processing, Computer-Assisted
Light emitting diodes
Male
Medical imaging
Monitoring, Ambulatory
Optics
Outdoor activities
Outdoor bicycling
Oxygen Consumption - physiology
Physical Education and Training
Physical therapy
Rest - physiology
Signal Processing, Computer-Assisted
Spectroscopy, Near-Infrared - instrumentation
Spectroscopy, Near-Infrared - methods
Stroke
Studies
Wearable NIRS system
Young Adult
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1baxQxFA5aQXyxWm9bq0TwNTiT64Q-lCKWKrR4aWHfhskkoZXtbNvZpfjvPWcmM2sVy74tJAdmk5NzSb7zHULeu0x6q13BiqADk6GyzAlfMO_An0GEAIYTC5yPjvXhqfwyVdN04dYmWOVgEztD7ec13pF_QNduBLg3vnd5xbBrFL6uphYa98kDpC5DSJeZmhXpbi77UjglWAETEpKnx3d1fJHnF3BqEeAlOhZPzf_nnv4NP_9GUf7hlg6ekMcpnqT7vQI8JfdCs0UeHqUX8y2y-TVtBD3p-QOekW_79Ab0G2umaIcnZFj924QZjcefv_-gPbkzhWiWOmwgQfHzwcNR-BmvQ5j9ohfdPQRtlw6vcdrn5PTg08nHQ5Y6K7AaEogFs7biVvKY-Txiiuq8VCar8krLWile-KK2QrvoYq29gzPNfYTx2kcOk4IXL8hGM2_CK0K1AQOptDAyRAm5nQuuyrXDNNPWkocJMcOClnWiHcfuF7NywJf9LFdbUeJWlAi103xC8lHysqfeWEPGDntWDqWlYAxL8A9ryO6Osin86MOKNaV3BhUpkxloy5XSTsi7cRgOML7KVE2YL1vMvUymwSlld8xRGMpBcGYm5GWvdeOSYMyFnEuw0Lf0cZyABOK3R5rzs45IXBTKFqLYvvvTX5NH8D8Rq8RytUM2FtfL8AYisYV72x2336lMNTQ
  priority: 102
  providerName: ProQuest
Title A wearable multi-channel fNIRS system for brain imaging in freely moving subjects
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811913007003
https://dx.doi.org/10.1016/j.neuroimage.2013.06.062
https://www.ncbi.nlm.nih.gov/pubmed/23810973
https://www.proquest.com/docview/1551735092
https://www.proquest.com/docview/1467068760
https://www.proquest.com/docview/1500781517
https://pubmed.ncbi.nlm.nih.gov/PMC3859838
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBelhbGXse4zW1c02KsW2_qy6FMWWtJtDV26Qt6MZck0I3VLk1D60r99d7bsLhsbgb3EiaUD53y6-5199xMhH2wknFE2ZalXngmfG2a5S5mzEM8AIYDjxAbnk7EanYvPUzndIsO2FwbLKoPvb3x67a3DmX7QZv96NuufATKAcAP5BkfOmprxUwiNVv7x_qHMw8SiaYeTnOHsUM3T1HjVnJGzS1i5WOTFayZPlfwtRP0JQX-vpPwlNB09JU8CpqSD5rJ3yZavnpFHJ-Gt-XPybUBvwaCxSYrWBYQM230rP6fl-HhyRhs2ZwrwlVrcMYLitUJIo_C1vPF-fkcv6wcPdLGy-Nxm8YKcHx1-H45Y2EqBFZAxLJkxeWJEUkYuLjEntU5IHeVxrkQhZZK6tDBc2dKWhXIWFnHiShgvXJnAJO_4S7JdXVX-NaFKg0eUimvhSwHJnPU2j5XFvNIUIvE9olvtZUXgGcftLuZZW1D2I3vQe4Z6z7C2TiU9EneS1w3XxgYypr1BWdtLCt4vg4CwgexBJ7tmcxtK77X2kIV1v8gQgGoOIAyG33fDsGLxNUxe-avVApMtHSmIQtE_5kjEboDGdI-8akysUwmCLCRZAkWvGV83ARnD10eq2UXNHM5TaVKevvmvP_6WPIZfWLvEYrlHtpc3K_8OkNnS7tdLDz71VO-TncFw8vUUj8dfRmM4fjocn05-AmLRP9U
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgJe-BgfKwwwEjxaJLbjJEIIDdjUsrUao5P2lsWxIzZ16VhaTfun-Bu5y0fLQEx92Vsk21Fyd777nX0fAG-Mp2ysTcQjpx1XLo25kTbi1qA9Q4SAipMSnAdD3TtQXw-DwxX41ebCUFhlqxMrRW0nGZ2RvyPTHko0b-Lj2U9OXaPodrVtoVGLxY67vECXrfzQ_4L8fSvE9tboc483XQV4huB5yuM4FbESuWf9nNwzY1UQeqmfapUFgYhslMVSm9zkmbYG5VnYHMczmwuc5KzE996CVSXRlenA6qet4d7-osyvr-rku0DyyPfjJnaojiirKlQen6KeoJAyWdUN1eJ_BvFfwPt33OYfhnD7AdxrECzbrEXuIay4Yg1uD5o7-jW4v9ewno3qigWP4Nsmu0DSUZYWqyIYOeUbF27M8mF__zury0kzxM_MUMsKRp-PNpXhY37u3PiSnVYnH6ycGTo4Kh_DwY1Q_Ql0iknh1oHpEFVyoGWoXK7QmzTOpL425NjGmRKuC2FL0CRrCp1Tv41x0ka0nSQLViTEioSC-7Togj9feVYX-1hiTdzyLGmTWVH9JmiRllj7fr62ATw1kFly9UYrIkmjeMpksU268Ho-jCqD7oHSwk1mJXl7oafRDHrXzAkIPCIcDLvwtJa6OUkI5VGVJyT0FXmcT6CS5VdHiuMfVelyGQVxJKNn13_6K7jTGw12k93-cOc53MV_pkgp7gcb0Jmez9wLxIFT87LZfAyObnq__wZPTnTT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIlVcCpRXoICR4Gg16_V6d4UQqihRQ2lUoJVyM-u1LVqlm9JNVPWv8euY2VcoiCqX3iLZs3LG8_hszwPgtelLmyqT8MQpx6XLUm5Cm3Br0J8hQkDDSQnO-yO1eyQ_jaPxCvxqc2EorLK1iZWhttOc7si3yLXHIbo3seWbsIiDncH7s5-cOkjRS2vbTqMWkT13eYHHt_LdcAf3-o0Qg4-HH3Z502GA5wikZzxNM5FK4fs28HRUM1ZGcT8LMiXzKBKJTfI0VMYbnytrULaF9TieWy9wkrMhfvcW3MZ1BaRj8TheFPwNZJ2GF4U8CYK0iSKqY8uqWpXHp2gxKLgsrCqIKvE_1_gv9P07gvMPlzi4B-sNlmXbtfDdhxVXbMDafvNavwF3DxohYId17YIH8GWbXSDjKF-LVbGMnDKPCzdhfjT8-o3VhaUZImlmqHkFo-Wjd2X40587N7lkp9UdCCvnhq6QyodwdCM8fwSrxbRwT4CpGI1zpMJYOi_xXGmcyQJl6Iib5lK4HsQtQ3XelDynzhsT3ca2nejFVmjaCk1hfkr0IOgoz-qyH0vQpO2e6TatFQ2xRt-0BO3bjraBPjWkWZJ6sxUR3ZigUi8UpgevumE0HvQilBVuOi_p3Bf3FTrE_jVzIoKRCAzjHjyupa5jCeE9qveEjL4ij90EKl5-daQ4_lEVMQ-TKE3C5On1S38Ja6jl-vNwtPcM7uBfppApHkSbsDo7n7vnCAhn5kWleQy-37Sq_wY-kXej
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Wearable+Multi-Channel+fNIRS+System+for+Brain+Imaging+in+Freely+Moving+Subjects&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Piper%2C+Sophie+K.&rft.au=Krueger%2C+Arne&rft.au=Koch%2C+Stefan+P.&rft.au=Mehnert%2C+Jan&rft.date=2014-01-15&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=85&rft.issue=1&rft_id=info:doi/10.1016%2Fj.neuroimage.2013.06.062&rft_id=info%3Apmid%2F23810973&rft.externalDocID=PMC3859838
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon