A wearable multi-channel fNIRS system for brain imaging in freely moving subjects
Functional near infrared spectroscopy (fNIRS) is a versatile neuroimaging tool with an increasing acceptance in the neuroimaging community. While often lauded for its portability, most of the fNIRS setups employed in neuroscientific research still impose usage in a laboratory environment. We present...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 85; no. 1; pp. 64 - 71 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.01.2014
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Functional near infrared spectroscopy (fNIRS) is a versatile neuroimaging tool with an increasing acceptance in the neuroimaging community. While often lauded for its portability, most of the fNIRS setups employed in neuroscientific research still impose usage in a laboratory environment. We present a wearable, multi-channel fNIRS imaging system for functional brain imaging in unrestrained settings. The system operates without optical fiber bundles, using eight dual wavelength light emitting diodes and eight electro-optical sensors, which can be placed freely on the subject's head for direct illumination and detection. Its performance is tested on N=8 subjects in a motor execution paradigm performed under three different exercising conditions: (i) during outdoor bicycle riding, (ii) while pedaling on a stationary training bicycle, and (iii) sitting still on the training bicycle. Following left hand gripping, we observe a significant decrease in the deoxyhemoglobin concentration over the contralateral motor cortex in all three conditions. A significant task-related ΔHbO2 increase was seen for the non-pedaling condition. Although the gross movements involved in pedaling and steering a bike induced more motion artifacts than carrying out the same task while sitting still, we found no significant differences in the shape or amplitude of the HbR time courses for outdoor or indoor cycling and sitting still. We demonstrate the general feasibility of using wearable multi-channel NIRS during strenuous exercise in natural, unrestrained settings and discuss the origins and effects of data artifacts. We provide quantitative guidelines for taking condition-dependent signal quality into account to allow the comparison of data across various levels of physical exercise. To the best of our knowledge, this is the first demonstration of functional NIRS brain imaging during an outdoor activity in a real life situation in humans.
•A wearable, multi-channel fNIRS imaging system is presented and tested in 8 subjects.•This is the first demonstration of fNIRS brain imaging during an outdoor activity.•The device is well feasible for functional brain imaging in real life situations. |
---|---|
AbstractList | Functional near infrared spectroscopy (fNIRS) is a versatile neuroimaging tool with an increasing acceptance in the neuroimaging community. While often lauded for its portability, most of the fNIRS setups employed in neuroscientific research still impose usage in a laboratory environment. We present a wearable, multi-channel fNIRS imaging system for functional brain imaging in unrestrained settings. The system operates without optical fiber bundles, using eight dual wavelength light emitting diodes and eight electro-optical sensors, which can be placed freely on the subject's head for direct illumination and detection. Its performance is tested on N=8 subjects in a motor execution paradigm performed under three different exercising conditions: (i) during outdoor bicycle riding, (ii) while pedaling on a stationary training bicycle, and (iii) sitting still on the training bicycle. Following left hand gripping, we observe a significant decrease in the deoxyhemoglobin concentration over the contralateral motor cortex in all three conditions. A significant task-related ΔHbO2 increase was seen for the non-pedaling condition. Although the gross movements involved in pedaling and steering a bike induced more motion artifacts than carrying out the same task while sitting still, we found no significant differences in the shape or amplitude of the HbR time courses for outdoor or indoor cycling and sitting still. We demonstrate the general feasibility of using wearable multi-channel NIRS during strenuous exercise in natural, unrestrained settings and discuss the origins and effects of data artifacts. We provide quantitative guidelines for taking condition-dependent signal quality into account to allow the comparison of data across various levels of physical exercise. To the best of our knowledge, this is the first demonstration of functional NIRS brain imaging during an outdoor activity in a real life situation in humans.
•A wearable, multi-channel fNIRS imaging system is presented and tested in 8 subjects.•This is the first demonstration of fNIRS brain imaging during an outdoor activity.•The device is well feasible for functional brain imaging in real life situations. Functional near infrared spectroscopy (fNIRS) is a versatile neuroimaging tool with an increasing acceptance in the neuroimaging community. While often lauded for its portability, most of the fNIRS setups employed in neuroscientific research still impose usage in a laboratory environment. We present a wearable, multi-channel fNIRS imaging system for functional brain imaging in unrestrained settings. The system operates without optical fiber bundles, using eight dual wavelength light emitting diodes and eight electro-optical sensors, which can be placed freely on the subject's head for direct illumination and detection. Its performance is tested on N=8 subjects in a motor execution paradigm performed under three different exercising conditions: (i) during outdoor bicycle riding, (ii) while pedaling on a stationary training bicycle, and (iii) sitting still on the training bicycle. Following left hand gripping, we observe a significant decrease in the deoxyhemoglobin concentration over the contralateral motor cortex in all three conditions. A significant task-related ΔHbO2 increase was seen for the non-pedaling condition. Although the gross movements involved in pedaling and steering a bike induced more motion artifacts than carrying out the same task while sitting still, we found no significant differences in the shape or amplitude of the HbR time courses for outdoor or indoor cycling and sitting still. We demonstrate the general feasibility of using wearable multi-channel NIRS during strenuous exercise in natural, unrestrained settings and discuss the origins and effects of data artifacts. We provide quantitative guidelines for taking condition-dependent signal quality into account to allow the comparison of data across various levels of physical exercise. To the best of our knowledge, this is the first demonstration of functional NIRS brain imaging during an outdoor activity in a real life situation in humans.Functional near infrared spectroscopy (fNIRS) is a versatile neuroimaging tool with an increasing acceptance in the neuroimaging community. While often lauded for its portability, most of the fNIRS setups employed in neuroscientific research still impose usage in a laboratory environment. We present a wearable, multi-channel fNIRS imaging system for functional brain imaging in unrestrained settings. The system operates without optical fiber bundles, using eight dual wavelength light emitting diodes and eight electro-optical sensors, which can be placed freely on the subject's head for direct illumination and detection. Its performance is tested on N=8 subjects in a motor execution paradigm performed under three different exercising conditions: (i) during outdoor bicycle riding, (ii) while pedaling on a stationary training bicycle, and (iii) sitting still on the training bicycle. Following left hand gripping, we observe a significant decrease in the deoxyhemoglobin concentration over the contralateral motor cortex in all three conditions. A significant task-related ΔHbO2 increase was seen for the non-pedaling condition. Although the gross movements involved in pedaling and steering a bike induced more motion artifacts than carrying out the same task while sitting still, we found no significant differences in the shape or amplitude of the HbR time courses for outdoor or indoor cycling and sitting still. We demonstrate the general feasibility of using wearable multi-channel NIRS during strenuous exercise in natural, unrestrained settings and discuss the origins and effects of data artifacts. We provide quantitative guidelines for taking condition-dependent signal quality into account to allow the comparison of data across various levels of physical exercise. To the best of our knowledge, this is the first demonstration of functional NIRS brain imaging during an outdoor activity in a real life situation in humans. Functional near infrared spectroscopy (fNIRS) is a versatile neuroimaging tool with an increasing acceptance in the neuroimaging community. While often lauded for its portability, most of the fNIRS setups employed in neuroscientific research still impose usage in a laboratory environment. We present a wearable, multi-channel fNIRS imaging system for functional brain imaging in unrestrained settings. The system operates without optical fiber bundles, using eight dual wavelength light emitting diodes and eight electro-optical sensors, which can be placed freely on the subject's head for direct illumination and detection. Its performance is tested on N = 8 subjects in a motor execution paradigm performed under three different exercising conditions: (i) during outdoor bicycle riding, (ii) while pedaling on a stationary training bicycle, and (iii) sitting still on the training bicycle. Following left hand gripping, we observe a significant decrease in the deoxyhemoglobin concentration over the contralateral motor cortex in all three conditions. A significant task-related ΔHbO 2 increase was seen for the non-pedaling condition. Although the gross movements involved in pedaling and steering a bike induced more motion artifacts than carrying out the same task while sitting still, we found no significant differences in the shape or amplitude of the HbR time courses for outdoor or indoor cycling and sitting still. We demonstrate the general feasibility of using wearable multi-channel NIRS during strenuous exercise in natural, unrestrained settings and discuss the origins and effects of data artifacts. We provide quantitative guidelines for taking condition-dependent signal quality into account to allow the comparison of data across various levels of physical exercise. To the best of our knowledge, this is the first demonstration of functional NIRS brain imaging during an outdoor activity in a real life situation in humans. Functional near infrared spectroscopy (fNIRS) is a versatile neuroimaging tool with an increasing acceptance in the neuroimaging community. While often lauded for its portability, most of the fNIRS setups employed in neuroscientific research still impose usage in a laboratory environment. We present a wearable, multi-channel fNIRS imaging system for functional brain imaging in unrestrained settings. The system operates without optical fiber bundles, using eight dual wavelength light emitting diodes and eight electro-optical sensors, which can be placed freely on the subject's head for direct illumination and detection. Its performance is tested on N=8 subjects in a motor execution paradigm performed under three different exercising conditions: (i) during outdoor bicycle riding, (ii) while pedaling on a stationary training bicycle, and (iii) sitting still on the training bicycle. Following left hand gripping, we observe a significant decrease in the deoxyhemoglobin concentration over the contralateral motor cortex in all three conditions. A significant task-related δHbO2increase was seen for the non-pedaling condition. Although the gross movements involved in pedaling and steering a bike induced more motion artifacts than carrying out the same task while sitting still, we found no significant differences in the shape or amplitude of the HbR time courses for outdoor or indoor cycling and sitting still. We demonstrate the general feasibility of using wearable multi-channel NIRS during strenuous exercise in natural, unrestrained settings and discuss the origins and effects of data artifacts. We provide quantitative guidelines for taking condition-dependent signal quality into account to allow the comparison of data across various levels of physical exercise. To the best of our knowledge, this is the first demonstration of functional NIRS brain imaging during an outdoor activity in a real life situation in humans. Functional near infrared spectroscopy (fNIRS) is a versatile neuroimaging tool with an increasing acceptance in the neuroimaging community. While often lauded for its portability, most of the fNIRS setups employed in neuroscientific research still impose usage in a laboratory environment. We present a wearable, multi-channel fNIRS imaging system for functional brain imaging in unrestrained settings. The system operates without optical fiber bundles, using eight dual wavelength light emitting diodes and eight electro-optical sensors, which can be placed freely on the subject's head for direct illumination and detection. Its performance is tested on N=8 subjects in a motor execution paradigm performed under three different exercising conditions: (i) during outdoor bicycle riding, (ii) while pedaling on a stationary training bicycle, and (iii) sitting still on the training bicycle. Following left hand gripping, we observe a significant decrease in the deoxyhemoglobin concentration over the contralateral motor cortex in all three conditions. A significant task-related ΔHbO2 increase was seen for the non-pedaling condition. Although the gross movements involved in pedaling and steering a bike induced more motion artifacts than carrying out the same task while sitting still, we found no significant differences in the shape or amplitude of the HbR time courses for outdoor or indoor cycling and sitting still. We demonstrate the general feasibility of using wearable multi-channel NIRS during strenuous exercise in natural, unrestrained settings and discuss the origins and effects of data artifacts. We provide quantitative guidelines for taking condition-dependent signal quality into account to allow the comparison of data across various levels of physical exercise. To the best of our knowledge, this is the first demonstration of functional NIRS brain imaging during an outdoor activity in a real life situation in humans. Functional near infrared spectroscopy (fNIRS) is a versatile neuroimaging tool with an increasing acceptance in the neuroimaging community. While often lauded for its portability, most of the fNIRS setups employed in neuroscientific research still impose usage in a laboratory environment. We present a wearable, multi-channel fNIRS imaging system for functional brain imaging in unrestrained settings. The system operates without optical fiber bundles, using eight dual wavelength light emitting diodes and eight electro-optical sensors, which can be placed freely on the subject's head for direct illumination and detection. Its performance is tested on N = 8 subjects in a motor execution paradigm performed under three different exercising conditions: (i) during outdoor bicycle riding, (ii) while pedaling on a stationary training bicycle, and (iii) sitting still on the training bicycle. Following left hand gripping, we observe a significant decrease in the deoxyhemoglobin concentration over the contralateral motor cortex in all three conditions. A significant task-related IHbO2 increase was seen for the non-pedaling condition. Although the gross movements involved in pedaling and steering a bike induced more motion artifacts than carrying out the same task while sitting still, we found no significant differences in the shape or amplitude of the HbR time courses for outdoor or indoor cycling and sitting still. We demonstrate the general feasibility of using wearable multi-channel NIRS during strenuous exercise in natural, unrestrained settings and discuss the origins and effects of data artifacts. We provide quantitative guidelines for taking condition-dependent signal quality into account to allow the comparison of data across various levels of physical exercise. To the best of our knowledge, this is the first demonstration of functional NIRS brain imaging during an outdoor activity in a real life situation in humans. |
Author | Krueger, Arne Obrig, Hellmuth Habermehl, Christina Steinbrink, Jens Koch, Stefan P. Piper, Sophie K. Mehnert, Jan Schmitz, Christoph H. |
AuthorAffiliation | b Charité University Medicine Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117 Berlin, Germany d Clinic for Cognitive Neurology, University Hospital Leipzig, Liebigstr. 16, 04103 Leipzig, Germany c Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany a Charité University Medicine Berlin, Department of Neurology, Charitéplatz 1, 10117 Berlin, Germany e NIRx Medizintechnik GmbH, Baumbachstr. 17, 13189 Berlin, Germany |
AuthorAffiliation_xml | – name: b Charité University Medicine Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117 Berlin, Germany – name: a Charité University Medicine Berlin, Department of Neurology, Charitéplatz 1, 10117 Berlin, Germany – name: d Clinic for Cognitive Neurology, University Hospital Leipzig, Liebigstr. 16, 04103 Leipzig, Germany – name: c Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany – name: e NIRx Medizintechnik GmbH, Baumbachstr. 17, 13189 Berlin, Germany |
Author_xml | – sequence: 1 givenname: Sophie K. surname: Piper fullname: Piper, Sophie K. email: Sophie.Piper@charite.de organization: Charité University Medicine Berlin, Department of Neurology, Charitéplatz 1, 10117 Berlin, Germany – sequence: 2 givenname: Arne surname: Krueger fullname: Krueger, Arne organization: Charité University Medicine Berlin, Department of Neurology, Charitéplatz 1, 10117 Berlin, Germany – sequence: 3 givenname: Stefan P. surname: Koch fullname: Koch, Stefan P. organization: Charité University Medicine Berlin, Department of Neurology, Charitéplatz 1, 10117 Berlin, Germany – sequence: 4 givenname: Jan surname: Mehnert fullname: Mehnert, Jan organization: Charité University Medicine Berlin, Department of Neurology, Charitéplatz 1, 10117 Berlin, Germany – sequence: 5 givenname: Christina surname: Habermehl fullname: Habermehl, Christina organization: Charité University Medicine Berlin, Department of Neurology, Charitéplatz 1, 10117 Berlin, Germany – sequence: 6 givenname: Jens surname: Steinbrink fullname: Steinbrink, Jens organization: Charité University Medicine Berlin, Department of Neurology, Charitéplatz 1, 10117 Berlin, Germany – sequence: 7 givenname: Hellmuth surname: Obrig fullname: Obrig, Hellmuth organization: Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany – sequence: 8 givenname: Christoph H. surname: Schmitz fullname: Schmitz, Christoph H. organization: Charité University Medicine Berlin, Department of Neurology, Charitéplatz 1, 10117 Berlin, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23810973$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkltvFCEUgImpse3qXzCT-OLLrMAsA7wYa-OlSaPx9kwY5rBlZaCFmZr99zLZutW-uAkJBD6-c3LOOUVHIQZAqCJ4STBpX22WAaYU3aDXsKSYNEvclkUfoROCJasl4_RoPrOmFoTIY3Sa8wZjLMlKPEHHtBGF480J-nJW_QKddOehGiY_utpc6RDAV_bTxddvVd7mEYbKxlR1SbtQzTFdWFflaBOA31ZDvJ0v8tRtwIz5KXpstc_w7G5foB_v330__1hffv5wcX52WRsm-VhLqalcUYt7YhvR8K5fMY410e3KMEZFL4xs2s521rR9xwWnvS3vpre0QNA3C_R6572eugF6A2FM2qvrVDJMWxW1U_--BHel1vFWNYJJUUIu0Ms7QYo3E-RRDS4b8F4HiFNWhGHMBWGE_x9dtRy3gre4oC8eoJs4pVAqUYSzi2FJC_X87-T3Wf9pTAHEDjAp5pzA7hGC1TwDaqPuZ0DNM6BwWxa9L8z-q3GjHl2cy-D8IYK3OwGU9t06SCobB8FA71LpsOqjO0Ty5oHEeBec0f4nbA9T_AYoIOr5 |
CitedBy_id | crossref_primary_10_1007_s00221_019_05646_4 crossref_primary_10_1109_TAFFC_2023_3279311 crossref_primary_10_1016_j_neuroimage_2018_04_022 crossref_primary_10_1515_bmt_2019_0291 crossref_primary_10_3390_s24217004 crossref_primary_10_1038_s42003_022_04318_4 crossref_primary_10_1177_0271678X17724138 crossref_primary_10_3389_fnins_2018_00695 crossref_primary_10_2139_ssrn_3366527 crossref_primary_10_1109_TIM_2023_3279877 crossref_primary_10_1111_jpr_12080 crossref_primary_10_1089_brain_2024_0043 crossref_primary_10_1371_journal_pone_0248533 crossref_primary_10_3390_nu15133010 crossref_primary_10_3389_fnhum_2019_00085 crossref_primary_10_1016_j_neuroimage_2019_116472 crossref_primary_10_1177_1545968317693304 crossref_primary_10_1109_TNSRE_2020_3030639 crossref_primary_10_1371_journal_pone_0129390 crossref_primary_10_1038_s41598_023_29123_9 crossref_primary_10_1016_j_neuroscience_2024_02_011 crossref_primary_10_3389_fnhum_2016_00126 crossref_primary_10_1021_acs_jpcb_4c01277 crossref_primary_10_3389_fnhum_2015_00617 crossref_primary_10_1016_j_jneumeth_2016_07_010 crossref_primary_10_3389_fnrgo_2024_1345507 crossref_primary_10_1109_TIM_2023_3315364 crossref_primary_10_3389_fneur_2022_965856 crossref_primary_10_1002_wcs_1343 crossref_primary_10_1007_s11265_021_01659_x crossref_primary_10_1146_annurev_psych_010213_115108 crossref_primary_10_1038_s41583_023_00692_y crossref_primary_10_1186_s12984_020_00777_0 crossref_primary_10_1109_RBME_2019_2944351 crossref_primary_10_1016_j_medntd_2021_100064 crossref_primary_10_1371_journal_pone_0101729 crossref_primary_10_1117_1_NPh_1_2_025009 crossref_primary_10_1088_1741_2552_aa91b5 crossref_primary_10_1109_ACCESS_2020_3008748 crossref_primary_10_1016_j_ajp_2019_07_035 crossref_primary_10_1026_1612_5010_a000184 crossref_primary_10_1109_TBCAS_2022_3149766 crossref_primary_10_1007_s00421_022_04891_w crossref_primary_10_1016_j_neuroimage_2013_11_033 crossref_primary_10_1111_desc_13568 crossref_primary_10_3389_fneur_2025_1542075 crossref_primary_10_1117_1_NPh_5_1_011007 crossref_primary_10_3389_fnins_2021_705741 crossref_primary_10_1142_S0129065719500187 crossref_primary_10_1016_j_arr_2017_07_003 crossref_primary_10_1002_hbm_25566 crossref_primary_10_1002_brb3_70238 crossref_primary_10_3389_fpsyg_2014_00743 crossref_primary_10_3390_brainsci14020187 crossref_primary_10_1016_j_physrep_2021_03_002 crossref_primary_10_1016_j_neuron_2015_09_022 crossref_primary_10_3389_fnrgo_2024_1286586 crossref_primary_10_1063_5_0102811 crossref_primary_10_1016_j_jchemneu_2018_02_006 crossref_primary_10_1117_1_NPh_5_1_011012 crossref_primary_10_3724_SP_J_1042_2019_01224 crossref_primary_10_1016_j_neuroimage_2020_117672 crossref_primary_10_1097_j_pain_0000000000002293 crossref_primary_10_1038_s41598_024_74216_8 crossref_primary_10_5498_wjp_v15_i3_100112 crossref_primary_10_1111_jpr_12206 crossref_primary_10_1155_2015_248724 crossref_primary_10_3389_fnrgo_2022_838625 crossref_primary_10_1016_j_jneumeth_2019_108378 crossref_primary_10_3389_fphys_2014_00204 crossref_primary_10_1002_dev_21818 crossref_primary_10_1038_s41598_020_63596_2 crossref_primary_10_3390_brainsci11060742 crossref_primary_10_1016_j_neubiorev_2017_10_002 crossref_primary_10_1016_j_neuroimage_2024_120788 crossref_primary_10_1016_j_ifacol_2021_04_195 crossref_primary_10_1038_s41598_023_42416_3 crossref_primary_10_1117_1_JBO_21_9_091315 crossref_primary_10_3389_fphys_2022_988028 crossref_primary_10_1186_s12883_022_02683_5 crossref_primary_10_1117_1_JBO_20_5_056011 crossref_primary_10_1177_1094428116658959 crossref_primary_10_3389_fnagi_2025_1470747 crossref_primary_10_1080_17461391_2023_2238699 crossref_primary_10_1080_15412555_2020_1767561 crossref_primary_10_1364_BOE_9_000322 crossref_primary_10_1093_cercor_bhac025 crossref_primary_10_1080_21577323_2015_1067258 crossref_primary_10_3389_fnins_2022_938518 crossref_primary_10_1088_1741_2560_12_6_066004 crossref_primary_10_3390_s24030990 crossref_primary_10_1186_s40814_016_0099_2 crossref_primary_10_32604_cmc_2022_018318 crossref_primary_10_1117_1_NPh_4_3_035002 crossref_primary_10_1016_j_ijleo_2020_165116 crossref_primary_10_1117_1_NPh_4_4_041403 crossref_primary_10_3389_fnins_2020_00570 crossref_primary_10_3389_fnint_2023_1059679 crossref_primary_10_1016_j_jneumeth_2021_109262 crossref_primary_10_3389_fnhum_2017_00241 crossref_primary_10_3390_brainsci10110813 crossref_primary_10_17706_ijbbb_2019_9_1_9_19 crossref_primary_10_3389_fneur_2019_00537 crossref_primary_10_3389_fpsyg_2015_00709 crossref_primary_10_3389_fnhum_2020_584312 crossref_primary_10_3390_app10062196 crossref_primary_10_1016_j_neuroimage_2015_06_011 crossref_primary_10_2340_jrm_v56_40111 crossref_primary_10_3389_fnbeh_2018_00296 crossref_primary_10_1093_scan_nsad057 crossref_primary_10_1371_journal_pone_0253788 crossref_primary_10_1016_j_fshw_2022_04_019 crossref_primary_10_1038_s41598_021_88198_4 crossref_primary_10_1371_journal_pone_0198210 crossref_primary_10_1155_2017_6820482 crossref_primary_10_3389_fnint_2024_1488977 crossref_primary_10_1117_1_NPh_4_4_041413 crossref_primary_10_1371_journal_pone_0122862 crossref_primary_10_1109_TNSRE_2020_2970407 crossref_primary_10_1111_jsr_14033 crossref_primary_10_1117_1_NPh_10_2_023515 crossref_primary_10_3389_fnhum_2018_00362 crossref_primary_10_3389_fnhum_2017_00258 crossref_primary_10_3389_fnhum_2018_00361 crossref_primary_10_1097_NPT_0000000000000402 crossref_primary_10_34133_cbsystems_0045 crossref_primary_10_3389_fnbeh_2020_00084 crossref_primary_10_1016_j_heares_2017_05_010 crossref_primary_10_1215_17432197_9964843 crossref_primary_10_1016_j_psychsport_2018_11_002 crossref_primary_10_3389_fphys_2019_00781 crossref_primary_10_1177_0031512518789582 crossref_primary_10_3390_app12010316 crossref_primary_10_1007_s40120_021_00300_0 crossref_primary_10_3389_fnagi_2023_1177082 crossref_primary_10_1109_JSEN_2015_2450211 crossref_primary_10_1016_j_neurobiolaging_2016_10_011 crossref_primary_10_1016_j_bbr_2021_113133 crossref_primary_10_1364_BOE_7_004275 crossref_primary_10_1016_j_bbr_2024_115038 crossref_primary_10_3389_fnins_2020_00032 crossref_primary_10_1016_j_bandc_2024_106200 crossref_primary_10_1002_cta_3047 crossref_primary_10_1364_BOE_8_002018 crossref_primary_10_3389_fnins_2022_878750 crossref_primary_10_1186_s12883_023_03292_6 crossref_primary_10_3389_fnhum_2018_00398 crossref_primary_10_3390_sports10040056 crossref_primary_10_1038_s41598_019_45555_8 crossref_primary_10_31083_j_jin2103098 crossref_primary_10_1177_2055668320964109 crossref_primary_10_3389_fnins_2019_01129 crossref_primary_10_1016_j_heares_2016_07_013 crossref_primary_10_1038_s41598_019_51996_y crossref_primary_10_1111_ejn_15241 crossref_primary_10_2147_NDT_S499134 crossref_primary_10_3389_fnhum_2019_00016 crossref_primary_10_1016_j_ijhcs_2023_103206 crossref_primary_10_1002_hbm_26107 crossref_primary_10_1117_1_JBO_19_4_047003 crossref_primary_10_1016_j_bbr_2017_06_034 crossref_primary_10_1364_AO_54_000576 crossref_primary_10_1002_adom_202401625 crossref_primary_10_1002_adom_202102656 crossref_primary_10_1016_j_neulet_2018_10_022 crossref_primary_10_1177_0309364620956866 crossref_primary_10_3390_cryst14100868 crossref_primary_10_1088_1741_2560_13_3_036002 crossref_primary_10_1016_j_gaitpost_2017_05_018 crossref_primary_10_3389_fnsys_2016_00017 crossref_primary_10_1017_pds_2021_94 crossref_primary_10_3389_fnhum_2020_00133 crossref_primary_10_1016_j_nanoen_2024_109904 crossref_primary_10_1063_5_0015512 crossref_primary_10_1249_MSS_0000000000001875 crossref_primary_10_3389_fnhum_2018_00298 crossref_primary_10_1016_j_neuroimage_2016_06_054 crossref_primary_10_1017_pds_2021_90 crossref_primary_10_1109_TNSRE_2020_3023116 crossref_primary_10_3390_s20195618 crossref_primary_10_1177_09670335211006532 crossref_primary_10_1371_journal_pone_0269654 crossref_primary_10_3389_fnins_2016_00530 crossref_primary_10_1016_j_neuroimage_2020_116735 crossref_primary_10_1063_5_0153753 crossref_primary_10_1016_j_jneumeth_2023_109810 crossref_primary_10_1109_TBCAS_2018_2876089 crossref_primary_10_3389_fnhum_2019_00278 crossref_primary_10_1007_s10548_020_00785_2 crossref_primary_10_1038_s41598_018_21716_z crossref_primary_10_1021_acs_jafc_2c01938 crossref_primary_10_32725_jab_2019_014 crossref_primary_10_3390_brainsci10080494 crossref_primary_10_3390_s23208643 crossref_primary_10_1364_BOE_531576 crossref_primary_10_1007_s10103_021_03493_w crossref_primary_10_1177_0309364618805260 crossref_primary_10_17340_jkna_2024_0018 crossref_primary_10_1177_13623613211004795 crossref_primary_10_1007_s10548_023_00946_z crossref_primary_10_3389_fnagi_2024_1469620 crossref_primary_10_3389_fnhum_2016_00694 crossref_primary_10_1080_02640414_2017_1326619 crossref_primary_10_1016_j_jbusres_2018_10_052 crossref_primary_10_1002_hbm_23849 crossref_primary_10_1016_j_bbr_2023_114701 crossref_primary_10_1016_j_eswa_2024_126081 crossref_primary_10_1177_1541931213601008 crossref_primary_10_3389_fnhum_2020_00113 crossref_primary_10_1063_1_4954722 crossref_primary_10_1364_BOE_10_006296 crossref_primary_10_3389_fphys_2015_00416 crossref_primary_10_1016_j_neubiorev_2020_10_023 crossref_primary_10_1177_10597123211072613 crossref_primary_10_1109_JPROC_2015_2413993 crossref_primary_10_1002_lio2_70035 crossref_primary_10_1109_JSEN_2023_3337842 crossref_primary_10_1080_02701367_2024_2365940 crossref_primary_10_3389_fnhum_2014_00549 crossref_primary_10_1002_advs_202406631 crossref_primary_10_1155_2014_107320 crossref_primary_10_1109_TNSRE_2023_3236007 crossref_primary_10_1016_j_ccr_2018_11_003 crossref_primary_10_1016_j_heares_2016_02_005 crossref_primary_10_3389_fnhum_2022_1023246 crossref_primary_10_1117_1_JBO_22_4_046010 crossref_primary_10_3389_fnhum_2019_00057 crossref_primary_10_1016_j_jad_2024_01_044 crossref_primary_10_3389_fnhum_2018_00187 crossref_primary_10_1155_2019_1976847 crossref_primary_10_1016_j_neures_2025_02_003 crossref_primary_10_3390_brainsci10060342 crossref_primary_10_3389_fneur_2023_1232436 crossref_primary_10_1111_psyp_14425 crossref_primary_10_3389_fresc_2021_788087 crossref_primary_10_3390_app10186522 crossref_primary_10_3389_fnhum_2021_784522 crossref_primary_10_3389_fnhum_2017_00641 crossref_primary_10_3390_s20102831 crossref_primary_10_1002_pchj_56 crossref_primary_10_1016_j_neubiorev_2021_05_028 crossref_primary_10_1038_s41538_024_00308_4 crossref_primary_10_1002_brb3_3383 crossref_primary_10_1089_neu_2022_0131 crossref_primary_10_3389_fpsyg_2023_1126047 crossref_primary_10_1016_j_neuroimage_2018_11_012 crossref_primary_10_1016_j_ijchp_2024_100516 crossref_primary_10_1007_s00221_024_06798_8 crossref_primary_10_1109_TNSRE_2018_2878045 crossref_primary_10_1093_cercor_bhad091 crossref_primary_10_1016_j_neuroimage_2022_119216 crossref_primary_10_4028_www_scientific_net_AMM_573_814 crossref_primary_10_3389_fnins_2020_00746 crossref_primary_10_1016_j_tics_2014_01_008 crossref_primary_10_1016_j_neuropsychologia_2023_108779 crossref_primary_10_1016_j_biopsycho_2019_03_004 crossref_primary_10_1109_JSTQE_2018_2883890 crossref_primary_10_1038_srep46522 crossref_primary_10_1117_1_JBO_22_1_014001 crossref_primary_10_1038_s41598_022_06082_1 crossref_primary_10_3389_fnhum_2017_00419 crossref_primary_10_14348_molcells_2017_0153 crossref_primary_10_1117_1_NPh_11_1_015009 |
Cites_doi | 10.1088/0031-9155/51/5/N02 10.1016/j.earlhumdev.2008.11.007 10.1016/j.neuroimage.2003.12.017 10.1586/17434440.3.2.235 10.1016/j.neuroimage.2007.08.044 10.1016/j.neuroimage.2012.01.124 10.1016/S1053-8119(03)00344-6 10.1016/j.neuroimage.2011.11.028 10.1117/1.3462996 10.1117/1.3625575 10.1016/j.neuroimage.2011.11.062 10.1186/1743-0003-7-57 10.1006/nimg.2002.1227 10.1016/j.neuroimage.2007.06.014 10.1016/j.bandl.2011.03.010 10.1063/1.1775314 10.1055/s-0031-1281726 10.1111/1469-8986.00057 10.1016/j.neuroimage.2013.05.014 10.1093/gerona/glr068 10.1007/978-1-4614-4989-8_25 10.1097/00004647-199609000-00006 10.1212/WNL.0b013e3182762569 10.1117/1.3505009 10.1371/journal.pone.0044676 10.1364/AO.32.000418 10.1016/j.neuroimage.2011.08.084 10.1186/1475-925X-4-29 10.1364/OE.16.010323 10.1063/1.4704456 10.1016/j.neuroimage.2004.07.002 10.1016/S0166-2236(97)01132-6 10.1364/AO.44.002140 10.1117/1.3368999 10.1016/j.neuroimage.2004.12.032 10.1038/nrn756 10.1088/1741-2560/9/4/046010 10.1117/1.1852552 10.1007/978-1-4615-5865-1_60 10.1006/nimg.2002.1177 10.1016/j.neuroimage.2005.08.065 10.1016/j.neuroimage.2012.03.049 10.1117/1.2940587 10.1063/1.1427768 10.1016/S0887-8994(02)00432-0 10.1016/j.mri.2005.12.034 10.1016/j.neuroimage.2012.02.074 10.1002/hbm.10026 10.1097/00004647-200301000-00001 10.1006/nimg.2000.0657 10.1016/j.neuroimage.2010.10.058 10.1016/S1053-8119(03)00021-1 10.1063/1.3115207 10.1364/OE.19.018636 10.1364/AO.48.00D137 10.1016/j.neuroimage.2004.07.011 10.1016/j.braindev.2012.11.006 10.1152/jn.1998.80.3.1522 10.1016/j.neuroimage.2008.12.048 10.1016/j.neuroimage.2011.07.084 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Inc. 2013. Copyright Elsevier Limited Jan 15, 2014 2013 Elsevier Inc. All rights reserved 2013 |
Copyright_xml | – notice: 2013 Elsevier Inc. – notice: 2013. – notice: Copyright Elsevier Limited Jan 15, 2014 – notice: 2013 Elsevier Inc. All rights reserved 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO 5PM |
DOI | 10.1016/j.neuroimage.2013.06.062 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | MEDLINE - Academic ProQuest One Psychology MEDLINE Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physical Therapy |
EISSN | 1095-9572 |
EndPage | 71 |
ExternalDocumentID | PMC3859838 3395283101 23810973 10_1016_j_neuroimage_2013_06_062 S1053811913007003 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R21 NS067278 – fundername: NINDS NIH HHS grantid: R21NS067278 – fundername: NINDS NIH HHS grantid: R44 NS049734 – fundername: NINDS NIH HHS grantid: R44NS049734 – fundername: NINDS NIH HHS grantid: R42NS050007 – fundername: NINDS NIH HHS grantid: R42 NS050007 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO 5PM |
ID | FETCH-LOGICAL-c597t-99a2942f0d1f3837bd4570a1a64c5528d8c936bfbfc6db7872df70acdf2a1aed3 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Aug 21 17:11:24 EDT 2025 Thu Jul 10 18:18:38 EDT 2025 Fri Jul 11 16:32:04 EDT 2025 Wed Aug 13 06:46:37 EDT 2025 Thu Apr 03 07:03:17 EDT 2025 Thu Apr 24 23:03:32 EDT 2025 Tue Jul 01 02:14:51 EDT 2025 Fri Feb 23 02:36:06 EST 2024 Tue Aug 26 16:31:51 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Outdoor bicycling Functional brain imaging Wearable NIRS system |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 2013. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c597t-99a2942f0d1f3837bd4570a1a64c5528d8c936bfbfc6db7872df70acdf2a1aed3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | http://doi.org/10.1016/j.neuroimage.2013.06.062 |
PMID | 23810973 |
PQID | 1551735092 |
PQPubID | 2031077 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3859838 proquest_miscellaneous_1500781517 proquest_miscellaneous_1467068760 proquest_journals_1551735092 pubmed_primary_23810973 crossref_primary_10_1016_j_neuroimage_2013_06_062 crossref_citationtrail_10_1016_j_neuroimage_2013_06_062 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2013_06_062 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2013_06_062 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-01-15 |
PublicationDateYYYYMMDD | 2014-01-15 |
PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2014 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Krueger, Koch, Mehnert, Habermehl, Piper, Steinbrink, Obrig, Schmitz (bb0175) 2012 Hoshi, Chen (bb0130) 2002; 27 Gregg, White, Zeff, Berger, Culver (bb0095) 2010; 2 Habermehl, Schmitz, Koch, Mehnert, Steinbrink (bb0105) 2012 Suzuki, Miyai, Ono, Kubota (bb0300) 2008; 39 Franceschini, Fantini, Thompson, Culver, Boas (bb0080) 2003; 40 Gevins, Chan, Sam-Vargas (bb0090) 2012; 7 Wallois, Mahmoudzadeh, Patil, Grebe (bb0330) 2012; 121 Holtzer, Mahoney, Izzetoglu, Izzetoglu, Onaral, Verghese (bb0125) 2011; 66 Leff, Orihuela-Espina, Elwell, Athanasiou, Delpy, Darzi, Yang (bb0190) 2011; 54 Brett, Johnsrude, Owen (bb0030) 2002; 3 Obrig, Villringer (bb0240) 2003; 23 Schneider, Piper, Schmitz, Schreiter, Volkwein, Ludemann, Malzahn, Poellinger (bb0265) 2011; 183 Obrig, Neufang, Wenzel, Kohl, Steinbrink, Einhaupl, Villringer (bb0235) 2000; 12 Pastewski, Kleiser, Metz, Wolf (bb0245) 2012 Villringer, Chance (bb0325) 1997; 20 Steinkellner, Gruber, Wabnitz, Jelzow, Steinbrink, Fiebach, Macdonald, Obrig (bb0285) 2010; 15 Shalinsky, Kovelman, Berens, Petitto (bb0275) 2009; 29 Mehagnoul-Schipper, van der Kallen, Colier, van der Sluijs, van Erning, Thijssen, Oeseburg, Hoefnagels, Jansen (bb0195) 2002; 16 Sato, Kiguchi, Kawaguchi, Maki (bb9000) 2004; 21 Fazli, Mehnert, Steinbrink, Curio, Villringer, Muller, Blankertz (bb0070) 2012; 59 White, Culver (bb0335) 2010; 15 Yurtsever, Bozkurt, Kepics, Pourrezaei, Devaraj (bb0340) 2003 Atsumori, Kiguchi, Katura, Funane, Obata, Sato, Manaka, Iwamoto, Maki, Koizumi, Kubota (bb0005) 2010; 15 Koenraadt, Duysens, Smeenk, Keijsers (bb0170) 2012; 9 Cannestra, Pouratian, Shomer, Toga (bb0040) 1998; 80 Muehlemann, Haensse, Wolf (bb0215) 2008; 16 Atsumori, Kiguchi, Obata, Sato, Katura, Utsugi, Funane, Maki (bb0015) 2007; 2007 Dehghani, White, Zeff, Tizzard, Culver (bb0055) 2009; 48 Ferrari, Quaresima (bb0075) 2012; 63 Zhang, Strangman, Ganis (bb0345) 2009; 45 Obrig, Hirth, Junge-Hulsing, Doge, Wenzel, Wolf, Dirnagl, Villringer (bb0225) 1997; 411 Prahl, O.M.L.C. (bb0270) 2006 Boas, Dale, Franceschini (bb0020) 2004; 23 Hoge, Franceschini, Covolan, Huppert, Mandeville, Boas (bb0115) 2005; 25 Suzuki, Miyai, Ono, Oda, Konishi, Kochiyama, Kubota (bb0305) 2004; 23 Steinbrink, Villringer, Kempf, Haux, Boden, Obrig (bb0280) 2006; 24 Habermehl, Holtze, Steinbrink, Koch, Obrig, Mehnert, Schmitz (bb0100) 2012; 59 Saager, Berger (bb0250) 2008; 13 Strangman, Culver, Thompson, Boas (bb0290) 2002; 17 Cooper, Gagnon, Goldenholz, Boas, Greve (bb0050) 2012; 59 Kirilina, Jelzow, Heine, Niessing, Wabnitz, Bruhl, Ittermann, Jacobs, Tachtsidis (bb0150) 2012; 61 Chen, Leys, Esquenazi (bb0045) 2013; 80 Huppert, Hoge, Diamond, Franceschini, Boas (bb0140) 2006; 29 Vaithianathan (bb0320) 2004; 75 Toet, Lemmers (bb0315) 2009; 85 Huppert, Franceschini, Boas (bb0135) 2009 Sagara, Kido, Ozawa (bb0255) 2009; 2009 Bozkurt, Rosen, Rosen, Onaral (bb0025) 2005; 4 Kiguchi, Atsumori, Fukasaku, Kumagai, Funane, Maki, Kasai, Ninomiya (bb0145) 2012; 83 Holper, Muehlemann, Scholkmann, Eng, Kiper, Wolf (bb0120) 2010; 7 Mihara, Miyai, Hatakenaka, Kubota, Sakoda (bb0205) 2007; 37 Zhang, Brooks, Franceschini, Boas (bb0350) 2005; 10 Kocsis, Herman, Eke (bb0165) 2006; 51 Mehnert, Akhrif, Telkemeyer, Rossi, Schmitz, Steinbrink, Wartenburger, Obrig, Neufang (bb0200) 2013 Kleinschmidt, Obrig, Requardt, Merboldt, Dirnagl, Villringer, Frahm (bb0155) 1996; 16 Obrig, Israel, Kohl-Bareis, Uludag, Wenzel, Muller, Arnold, Villringer (bb0230) 2002; 17 Strangman, Franceschini, Boas (bb0295) 2003; 18 Moosmann, Ritter, Krastel, Brink, Thees, Blankenburg, Taskin, Obrig, Villringer (bb0210) 2003; 20 Schmitz, Loecker, Lasker, Hielscher, Barbour (bb0035) 2002; 73 Fujimoto, Mihara, Hattori, Hatakenaka, Kawano, Yagura, Miyai, Mochizuki (bb0085) 2013; 85 Koch, Habermehl, Mehnert, Schmitz, Holtze, Villringer, Steinbrink, Obrig (bb0160) 2012; 2 Kurz, Wilson, Arpin (bb0180) 2012; 59 Eggebrecht, White, Ferradal, Chen, Zhan, Snyder, Dehghani, Culver (bb0060) 2012; 61 Schmitz, Klemer, Hardin, Katz, Pei, Graber, Levin, Levina, Franco, Solomon, Barbour (bb0260) 2005; 44 Habermehl, Schmitz, Steinbrink (bb0110) 2012; 19 Atsumori, Kiguchi, Obata, Sato, Katura, Funane, Maki (bb0010) 2009; 80 Tobias (bb0310) 2006; 3 Essenpreis, Elwell, Cope, van der Zee, Arridge, Delpy (bb0065) 1993; 32 Muehlemann, Holper, Wenzel, Wittkowski, Wolf (bb0220) 2013; 765 Lareau, Lesage, Pouliot, Nguyen, Le Lan, Sawan (bb0185) 2011; 16 Cannestra (10.1016/j.neuroimage.2013.06.062_bb0040) 1998; 80 Leff (10.1016/j.neuroimage.2013.06.062_bb0190) 2011; 54 Cooper (10.1016/j.neuroimage.2013.06.062_bb0050) 2012; 59 Schmitz (10.1016/j.neuroimage.2013.06.062_bb0260) 2005; 44 Bozkurt (10.1016/j.neuroimage.2013.06.062_bb0025) 2005; 4 Shalinsky (10.1016/j.neuroimage.2013.06.062_bb0275) 2009; 29 Yurtsever (10.1016/j.neuroimage.2013.06.062_bb0340) 2003 Gregg (10.1016/j.neuroimage.2013.06.062_bb0095) 2010; 2 Lareau (10.1016/j.neuroimage.2013.06.062_bb0185) 2011; 16 Koenraadt (10.1016/j.neuroimage.2013.06.062_bb0170) 2012; 9 Moosmann (10.1016/j.neuroimage.2013.06.062_bb0210) 2003; 20 Toet (10.1016/j.neuroimage.2013.06.062_bb0315) 2009; 85 Mehagnoul-Schipper (10.1016/j.neuroimage.2013.06.062_bb0195) 2002; 16 Strangman (10.1016/j.neuroimage.2013.06.062_bb0290) 2002; 17 Suzuki (10.1016/j.neuroimage.2013.06.062_bb0305) 2004; 23 Habermehl (10.1016/j.neuroimage.2013.06.062_bb0110) 2012; 19 Pastewski (10.1016/j.neuroimage.2013.06.062_bb0245) 2012 White (10.1016/j.neuroimage.2013.06.062_bb0335) 2010; 15 Dehghani (10.1016/j.neuroimage.2013.06.062_bb0055) 2009; 48 Obrig (10.1016/j.neuroimage.2013.06.062_bb0225) 1997; 411 Gevins (10.1016/j.neuroimage.2013.06.062_bb0090) 2012; 7 Steinbrink (10.1016/j.neuroimage.2013.06.062_bb0280) 2006; 24 Huppert (10.1016/j.neuroimage.2013.06.062_bb0140) 2006; 29 Huppert (10.1016/j.neuroimage.2013.06.062_bb0135) 2009 Fazli (10.1016/j.neuroimage.2013.06.062_bb0070) 2012; 59 Schneider (10.1016/j.neuroimage.2013.06.062_bb0265) 2011; 183 Atsumori (10.1016/j.neuroimage.2013.06.062_bb0005) 2010; 15 Eggebrecht (10.1016/j.neuroimage.2013.06.062_bb0060) 2012; 61 Holtzer (10.1016/j.neuroimage.2013.06.062_bb0125) 2011; 66 Steinkellner (10.1016/j.neuroimage.2013.06.062_bb0285) 2010; 15 Zhang (10.1016/j.neuroimage.2013.06.062_bb0345) 2009; 45 Habermehl (10.1016/j.neuroimage.2013.06.062_bb0105) 2012 Atsumori (10.1016/j.neuroimage.2013.06.062_bb0015) 2007; 2007 Mehnert (10.1016/j.neuroimage.2013.06.062_bb0200) 2013 Vaithianathan (10.1016/j.neuroimage.2013.06.062_bb0320) 2004; 75 Villringer (10.1016/j.neuroimage.2013.06.062_bb0325) 1997; 20 Obrig (10.1016/j.neuroimage.2013.06.062_bb0240) 2003; 23 Wallois (10.1016/j.neuroimage.2013.06.062_bb0330) 2012; 121 Hoshi (10.1016/j.neuroimage.2013.06.062_bb0130) 2002; 27 Ferrari (10.1016/j.neuroimage.2013.06.062_bb0075) 2012; 63 Sato (10.1016/j.neuroimage.2013.06.062_bb9000) 2004; 21 Saager (10.1016/j.neuroimage.2013.06.062_bb0250) 2008; 13 Kleinschmidt (10.1016/j.neuroimage.2013.06.062_bb0155) 1996; 16 Fujimoto (10.1016/j.neuroimage.2013.06.062_bb0085) 2013; 85 Habermehl (10.1016/j.neuroimage.2013.06.062_bb0100) 2012; 59 Obrig (10.1016/j.neuroimage.2013.06.062_bb0235) 2000; 12 Krueger (10.1016/j.neuroimage.2013.06.062_bb0175) 2012 Sagara (10.1016/j.neuroimage.2013.06.062_bb0255) 2009; 2009 Schmitz (10.1016/j.neuroimage.2013.06.062_bb0035) 2002; 73 Brett (10.1016/j.neuroimage.2013.06.062_bb0030) 2002; 3 Koch (10.1016/j.neuroimage.2013.06.062_bb0160) 2012; 2 Chen (10.1016/j.neuroimage.2013.06.062_bb0045) 2013; 80 Kocsis (10.1016/j.neuroimage.2013.06.062_bb0165) 2006; 51 Tobias (10.1016/j.neuroimage.2013.06.062_bb0310) 2006; 3 Prahl (10.1016/j.neuroimage.2013.06.062_bb0270) 2006 Muehlemann (10.1016/j.neuroimage.2013.06.062_bb0220) 2013; 765 Essenpreis (10.1016/j.neuroimage.2013.06.062_bb0065) 1993; 32 Atsumori (10.1016/j.neuroimage.2013.06.062_bb0010) 2009; 80 Franceschini (10.1016/j.neuroimage.2013.06.062_bb0080) 2003; 40 Hoge (10.1016/j.neuroimage.2013.06.062_bb0115) 2005; 25 Kurz (10.1016/j.neuroimage.2013.06.062_bb0180) 2012; 59 Strangman (10.1016/j.neuroimage.2013.06.062_bb0295) 2003; 18 Holper (10.1016/j.neuroimage.2013.06.062_bb0120) 2010; 7 Boas (10.1016/j.neuroimage.2013.06.062_bb0020) 2004; 23 Muehlemann (10.1016/j.neuroimage.2013.06.062_bb0215) 2008; 16 Kirilina (10.1016/j.neuroimage.2013.06.062_bb0150) 2012; 61 Mihara (10.1016/j.neuroimage.2013.06.062_bb0205) 2007; 37 Kiguchi (10.1016/j.neuroimage.2013.06.062_bb0145) 2012; 83 Obrig (10.1016/j.neuroimage.2013.06.062_bb0230) 2002; 17 Suzuki (10.1016/j.neuroimage.2013.06.062_bb0300) 2008; 39 Zhang (10.1016/j.neuroimage.2013.06.062_bb0350) 2005; 10 22957099 - PLoS One. 2012;7(9):e44676 15847580 - J Biomed Opt. 2005 Jan-Feb;10(1):11014 20802707 - Appl Opt. 1993 Feb 1;32(4):418-25 20725524 - Front Neuroenergetics. 2010 Jul 14;2:null 20616883 - Front Neuroenergetics. 2010 Jun 14;2:12 21593013 - J Gerontol A Biol Sci Med Sci. 2011 Aug;66(8):879-87 15528102 - Neuroimage. 2004 Nov;23(3):1020-6 11112395 - Neuroimage. 2000 Dec;12(6):623-39 12435566 - Pediatr Neurol. 2002 Oct;27(4):275-81 22667665 - Rev Sci Instrum. 2012 May;83(5):056101 18002717 - Conf Proc IEEE Eng Med Biol Soc. 2007;2007:3362-4 17950626 - Neuroimage. 2008 Jan 15;39(2):600-7 9744956 - J Neurophysiol. 1998 Sep;80(3):1522-32 8784226 - J Cereb Blood Flow Metab. 1996 Sep;16(5):817-26 22510258 - Neuroimage. 2012 Nov 1;63(2):921-35 16303317 - Neuroimage. 2006 Jan 15;29(2):368-82 12377147 - Neuroimage. 2002 Oct;17(2):719-31 12725763 - Neuroimage. 2003 Apr;18(4):865-79 21198156 - J Biomed Opt. 2010 Nov-Dec;15(6):061708 20459251 - J Biomed Opt. 2010 Mar-Apr;15(2):026006 12500086 - J Cereb Blood Flow Metab. 2003 Jan;23(1):1-18 9269464 - Adv Exp Med Biol. 1997;411:471-80 21546072 - Brain Lang. 2012 May;121(2):110-23 21840399 - Neuroimage. 2012 Jan 2;59(1):519-29 19405663 - Rev Sci Instrum. 2009 Apr;80(4):043704 16481677 - Phys Med Biol. 2006 Mar 7;51(5):N91-8 19340101 - Appl Opt. 2009 Apr 1;48(10):D137-43 23265620 - Brain Dev. 2013 Nov;35(10):894-904 21935232 - Opt Express. 2011 Sep 12;19(19):18636-44 21029781 - Neuroimage. 2011 Feb 14;54(4):2922-36 11870923 - Hum Brain Mapp. 2002 May;16(1):14-23 15501097 - Neuroimage. 2004;23 Suppl 1:S275-88 21950928 - J Biomed Opt. 2011 Sep;16(9):096014 15835360 - Appl Opt. 2005 Apr 10;44(11):2140-53 12482064 - Neuroimage. 2002 Sep;17(1):1-18 18607442 - Opt Express. 2008 Jul 7;16(14):10323-30 17683949 - Neuroimage. 2007 Oct 1;37(4):1338-45 22155031 - Neuroimage. 2012 Feb 15;59(4):3201-11 16677956 - Magn Reson Imaging. 2006 May;24(4):495-505 19638948 - J Vis Exp. 2009;(29). pii: 1268. doi: 10.3791/1268 20799804 - J Biomed Opt. 2010 Jul-Aug;15(4):046002 16515389 - Expert Rev Med Devices. 2006 Mar;3(2):235-43 14570163 - Psychophysiology. 2003 Jul;40(4):548-60 22330315 - Neuroimage. 2012 Jul 16;61(4):1120-8 19166945 - Neuroimage. 2009 Apr 15;45(3):788-94 22426347 - Neuroimage. 2012 May 15;61(1):70-81 21972043 - Rofo. 2011 Oct;183(10):956-63 23684871 - Neuroimage. 2014 Jan 15;85 Pt 1:547-54 19963717 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:602-5 14527577 - Neuroimage. 2003 Sep;20(1):145-58 21122154 - J Neuroeng Rehabil. 2010;7:57 22763344 - J Neural Eng. 2012 Aug;9(4):046010 9347608 - Trends Neurosci. 1997 Oct;20(10):435-42 22119653 - Neuroimage. 2012 Feb 15;59(4):3128-38 15808971 - Neuroimage. 2005 Apr 15;25(3):701-7 11994756 - Nat Rev Neurosci. 2002 Mar;3(3):243-9 23319483 - Neurology. 2013 Jan 15;80(3 Suppl 2):S27-34 18601562 - J Biomed Opt. 2008 May-Jun;13(3):034017 21920441 - Neuroimage. 2012 Jan 16;59(2):1602-7 19150756 - Early Hum Dev. 2009 Feb;85(2):77-84 15862131 - Biomed Eng Online. 2005;4:29 22879031 - Adv Exp Med Biol. 2013;765:177-83 |
References_xml | – volume: 24 start-page: 495 year: 2006 end-page: 505 ident: bb0280 article-title: Illuminating the BOLD signal: combined fMRI–fNIRS studies publication-title: Magn. Reson. Imaging – volume: 80 start-page: S27 year: 2013 end-page: S34 ident: bb0045 article-title: The interaction between neuropsychological and motor deficits in patients after stroke publication-title: Neurology – volume: 13 start-page: 034017 year: 2008 ident: bb0250 article-title: Measurement of layer-like hemodynamic trends in scalp and cortex: implications for physiological baseline suppression in functional near-infrared spectroscopy publication-title: J. Biomed. Opt. – volume: 40 start-page: 548 year: 2003 end-page: 560 ident: bb0080 article-title: Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging publication-title: Psychophysiology – year: 2006 ident: bb0270 article-title: Tabulated Molar Extinction Coefficient for Hemoglobin in Water – volume: 25 start-page: 701 year: 2005 end-page: 707 ident: bb0115 article-title: Simultaneous recording of task-induced changes in blood oxygenation, volume, and flow using diffuse optical imaging and arterial spin-labeling MRI publication-title: Neuroimage – volume: 12 start-page: 623 year: 2000 end-page: 639 ident: bb0235 article-title: Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults publication-title: Neuroimage – volume: 20 start-page: 435 year: 1997 end-page: 442 ident: bb0325 article-title: Non-invasive optical spectroscopy and imaging of human brain function publication-title: Trends Neurosci. – year: 2012 ident: bb0105 article-title: Investigating hemodynamics in scalp and brain using high-resolution diffuse optical tomography in humans publication-title: Biomedical Optics, OSA Technical Digest (Optical Society of America, 2012) paper BSu2A.2 – volume: 17 start-page: 1 year: 2002 end-page: 18 ident: bb0230 article-title: Habituation of the visually evoked potential and its vascular response: implications for neurovascular coupling in the healthy adult publication-title: Neuroimage – volume: 411 start-page: 471 year: 1997 end-page: 480 ident: bb0225 article-title: Length of resting period between stimulation cycles modulates hemodynamic response to a motor stimulus publication-title: Adv. Exp. Med. Biol. – volume: 21 start-page: 1554 year: 2004 end-page: 1562 ident: bb9000 article-title: Practicality of wavelength selection to improve signal-to-noise ratio in near-infrared spectroscopy publication-title: Neuroimage – volume: 4 start-page: 29 year: 2005 ident: bb0025 article-title: A portable near infrared spectroscopy system for bedside monitoring of newborn brain publication-title: Biomed. Eng. Online – volume: 80 start-page: 1522 year: 1998 end-page: 1532 ident: bb0040 article-title: Refractory periods observed by intrinsic signal and fluorescent dye imaging publication-title: J. Neurophysiol. – volume: 20 start-page: 145 year: 2003 end-page: 158 ident: bb0210 article-title: Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy publication-title: Neuroimage – volume: 2 year: 2010 ident: bb0095 article-title: Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography publication-title: Front. Neuroenerg. – volume: 75 start-page: 3276 year: 2004 end-page: 3283 ident: bb0320 article-title: Design of a portable near infrared system for topographic imaging of the brain in babies publication-title: Rev. Sci. Instrum. – volume: 9 start-page: 046010 year: 2012 ident: bb0170 article-title: Multi-channel NIRS of the primary motor cortex to discriminate hand from foot activity publication-title: J. Neural Eng. – volume: 85 start-page: 547 year: 2013 end-page: 554 ident: bb0085 article-title: Cortical changes underlying balance recovery in patients with hemiplegic stroke publication-title: Neuroimage – volume: 61 start-page: 70 year: 2012 end-page: 81 ident: bb0150 article-title: The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy publication-title: Neuroimage – volume: 59 start-page: 1602 year: 2012 end-page: 1607 ident: bb0180 article-title: Stride-time variability and sensorimotor cortical activation during walking publication-title: Neuroimage – year: 2013 ident: bb0200 article-title: Developmental changes in brain activation and functional connectivity during response inhibition in the early childhood brain publication-title: Brain Dev – volume: 10 start-page: 11014 year: 2005 ident: bb0350 article-title: Eigenvector-based spatial filtering for reduction of physiological interference in diffuse optical imaging publication-title: J. Biomed. Opt. – volume: 29 start-page: 1268 year: 2009 ident: bb0275 article-title: Exploring cognitive functions in babies, children & adults with near infrared spectroscopy publication-title: J. Vis. Exp. – volume: 16 start-page: 096014 year: 2011 ident: bb0185 article-title: Multichannel wearable system dedicated for simultaneous electroencephalographynear-infrared spectroscopy real-time data acquisitions publication-title: J. Biomed. Opt. – volume: 39 start-page: 600 year: 2008 end-page: 607 ident: bb0300 article-title: Activities in the frontal cortex and gait performance are modulated by preparation. An fNIRS study publication-title: Neuroimage – volume: 765 start-page: 177 year: 2013 end-page: 183 ident: bb0220 article-title: The effect of sudden depressurization on pilots at cruising altitude publication-title: Adv. Exp. Med. Biol. – volume: 23 start-page: 1020 year: 2004 end-page: 1026 ident: bb0305 article-title: Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill: an optical imaging study publication-title: Neuroimage – year: 2003 ident: bb0340 article-title: Pocket PC based wireless continuous wave near infrared spectroscopy system for functional imaging of human brain Engineering in Medicine and Biology Society, 2003 publication-title: Proceedings of the 25th Annual International Conference of the IEEE – volume: 59 start-page: 3128 year: 2012 end-page: 3138 ident: bb0050 article-title: The utility of near-infrared spectroscopy in the regression of low-frequency physiological noise from functional magnetic resonance imaging data publication-title: Neuroimage – volume: 83 start-page: 056101 year: 2012 ident: bb0145 article-title: Note: wearable near-infrared spectroscopy imager for haired region publication-title: Rev. Sci. Instrum. – volume: 15 start-page: 026006 year: 2010 ident: bb0335 article-title: Quantitative evaluation of high-density diffuse optical tomography: in vivo resolution and mapping performance publication-title: J. Biomed. Opt. – volume: 48 start-page: D137 year: 2009 end-page: D143 ident: bb0055 article-title: Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography publication-title: Appl. Opt. – volume: 37 start-page: 1338 year: 2007 end-page: 1345 ident: bb0205 article-title: Sustained prefrontal activation during ataxic gait: a compensatory mechanism for ataxic stroke? publication-title: Neuroimage – volume: 2007 start-page: 3362 year: 2007 end-page: 3364 ident: bb0015 article-title: Development of a multi-channel, portable optical topography system publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc. – volume: 19 start-page: 18636 year: 2012 end-page: 18644 ident: bb0110 article-title: Contrast enhanced high-resolution diffuse optical tomography of the human brain using ICG publication-title: Opt. Express – volume: 66 start-page: 879 year: 2011 end-page: 887 ident: bb0125 article-title: fNIRS study of walking and walking while talking in young and old individuals publication-title: J. Gerontol. A Biol. Sci. Med. Sci. – volume: 45 start-page: 788 year: 2009 end-page: 794 ident: bb0345 article-title: Adaptive filtering to reduce global interference in non-invasive NIRS measures of brain activation: how well and when does it work? publication-title: Neuroimage – volume: 61 start-page: 1120 year: 2012 end-page: 1128 ident: bb0060 article-title: A quantitative spatial comparison of high-density diffuse optical tomography and fMRI cortical mapping publication-title: Neuroimage – volume: 27 start-page: 275 year: 2002 end-page: 281 ident: bb0130 article-title: Regional cerebral blood flow changes associated with emotions in children publication-title: Pediatr. Neurol. – volume: 3 start-page: 243 year: 2002 end-page: 249 ident: bb0030 article-title: The problem of functional localization in the human brain publication-title: Nat. Rev. Neurosci. – volume: 17 start-page: 719 year: 2002 end-page: 731 ident: bb0290 article-title: A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation publication-title: Neuroimage – volume: 3 start-page: 235 year: 2006 end-page: 243 ident: bb0310 article-title: Cerebral oxygenation monitoring: near-infrared spectroscopy publication-title: Expert Rev. Med. Devices – volume: 23 start-page: S275 year: 2004 end-page: S288 ident: bb0020 article-title: Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy publication-title: Neuroimage – start-page: BM4A.3 year: 2012 ident: bb0175 article-title: Imaging of Motor Activity in Freely Moving Subjects Using a Wearable NIRS Imaging System publication-title: Biomedical Optics, OSA Technical Digest (Optical Society of America, 2012) – volume: 183 start-page: 956 year: 2011 end-page: 963 ident: bb0265 article-title: Fast 3D near-infrared breast imaging using indocyanine green for detection and characterization of breast lesions publication-title: Rofo – volume: 121 start-page: 110 year: 2012 end-page: 123 ident: bb0330 article-title: Usefulness of simultaneous EEG-NIRS recording in language studies publication-title: Brain Lang. – volume: 32 start-page: 418 year: 1993 end-page: 425 ident: bb0065 article-title: Spectral dependence of temporal point spread functions in human tissues publication-title: Appl. Opt. – volume: 7 start-page: e44676 year: 2012 ident: bb0090 article-title: Towards measuring brain function on groups of people in the real world publication-title: PLoS One – volume: 18 start-page: 865 year: 2003 end-page: 879 ident: bb0295 article-title: Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters publication-title: Neuroimage – volume: 16 start-page: 10323 year: 2008 end-page: 10330 ident: bb0215 article-title: Wireless miniaturized in-vivo near infrared imaging publication-title: Opt. Express – volume: 23 start-page: 1 year: 2003 end-page: 18 ident: bb0240 article-title: Beyond the visible—imaging the human brain with light publication-title: J. Cereb. Blood Flow Metab. – volume: 54 start-page: 2922 year: 2011 end-page: 2936 ident: bb0190 article-title: Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies publication-title: Neuroimage – year: 2012 ident: bb0245 article-title: A wireless, self-calibrating sensor for fNIRS studies in preterm infants publication-title: Functional Near Infrared Spectroscopy Conference Oct. 26th–28th 2012 London – volume: 59 start-page: 519 year: 2012 end-page: 529 ident: bb0070 article-title: Enhanced performance by a hybrid NIRS-EEG brain computer interface publication-title: Neuroimage – volume: 51 start-page: N91 year: 2006 end-page: N98 ident: bb0165 article-title: The modified Beer–Lambert law revisited publication-title: Phys. Med. Biol. – volume: 16 start-page: 14 year: 2002 end-page: 23 ident: bb0195 article-title: Simultaneous measurements of cerebral oxygenation changes during brain activation by near-infrared spectroscopy and functional magnetic resonance imaging in healthy young and elderly subjects publication-title: Hum. Brain Mapp. – volume: 15 start-page: 061708 year: 2010 ident: bb0285 article-title: Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke publication-title: J. Biomed. Opt. – volume: 59 start-page: 3201 year: 2012 end-page: 3211 ident: bb0100 article-title: Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography publication-title: Neuroimage – volume: 7 start-page: 57 year: 2010 ident: bb0120 article-title: Testing the potential of a virtual reality neurorehabilitation system during performance of observation, imagery and imitation of motor actions recorded by wireless functional near-infrared spectroscopy (fNIRS) publication-title: J. Neuroeng. Rehabil. – volume: 44 start-page: 2140 year: 2005 end-page: 2153 ident: bb0260 article-title: Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements publication-title: Appl. Opt. – volume: 85 start-page: 77 year: 2009 end-page: 84 ident: bb0315 article-title: Brain monitoring in neonates publication-title: Early Hum. Dev. – volume: 29 start-page: 368 year: 2006 end-page: 382 ident: bb0140 article-title: A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans publication-title: Neuroimage – volume: 2 start-page: 12 year: 2012 ident: bb0160 article-title: High-resolution optical functional mapping of the human somatosensory cortex publication-title: Front. Neuroenerg. – volume: 2009 start-page: 602 year: 2009 end-page: 605 ident: bb0255 article-title: Portable single-channel NIRS-based BMI system for motor disabilities' communication tools publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc. – volume: 80 start-page: 043704 year: 2009 ident: bb0010 article-title: Development of wearable optical topography system for mapping the prefrontal cortex activation publication-title: Rev. Sci. Instrum. – volume: 15 start-page: 046002 year: 2010 ident: bb0005 article-title: Noninvasive imaging of prefrontal activation during attention-demanding tasks performed while walking using a wearable optical topography system publication-title: J. Biomed. Opt. – volume: 63 start-page: 921 year: 2012 end-page: 935 ident: bb0075 article-title: A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application publication-title: Neuroimage – year: 2009 ident: bb0135 article-title: Noninvasive imaging of cerebral activation with diffuse optical tomography publication-title: In Vivo Optical Imaging of Brain Function – volume: 16 start-page: 817 year: 1996 end-page: 826 ident: bb0155 article-title: Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy publication-title: J. Cereb. Blood Flow Metab. – volume: 73 year: 2002 ident: bb0035 article-title: Instrumentation for fast functional optical tomography publication-title: Rev. Sci. Instrum. – volume: 51 start-page: N91 year: 2006 ident: 10.1016/j.neuroimage.2013.06.062_bb0165 article-title: The modified Beer–Lambert law revisited publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/51/5/N02 – volume: 85 start-page: 77 year: 2009 ident: 10.1016/j.neuroimage.2013.06.062_bb0315 article-title: Brain monitoring in neonates publication-title: Early Hum. Dev. doi: 10.1016/j.earlhumdev.2008.11.007 – volume: 21 start-page: 1554 year: 2004 ident: 10.1016/j.neuroimage.2013.06.062_bb9000 article-title: Practicality of wavelength selection to improve signal-to-noise ratio in near-infrared spectroscopy publication-title: Neuroimage doi: 10.1016/j.neuroimage.2003.12.017 – volume: 3 start-page: 235 year: 2006 ident: 10.1016/j.neuroimage.2013.06.062_bb0310 article-title: Cerebral oxygenation monitoring: near-infrared spectroscopy publication-title: Expert Rev. Med. Devices doi: 10.1586/17434440.3.2.235 – volume: 39 start-page: 600 year: 2008 ident: 10.1016/j.neuroimage.2013.06.062_bb0300 article-title: Activities in the frontal cortex and gait performance are modulated by preparation. An fNIRS study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.08.044 – volume: 61 start-page: 1120 year: 2012 ident: 10.1016/j.neuroimage.2013.06.062_bb0060 article-title: A quantitative spatial comparison of high-density diffuse optical tomography and fMRI cortical mapping publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.124 – volume: 20 start-page: 145 year: 2003 ident: 10.1016/j.neuroimage.2013.06.062_bb0210 article-title: Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00344-6 – volume: 59 start-page: 3128 year: 2012 ident: 10.1016/j.neuroimage.2013.06.062_bb0050 article-title: The utility of near-infrared spectroscopy in the regression of low-frequency physiological noise from functional magnetic resonance imaging data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.11.028 – volume: 15 start-page: 046002 year: 2010 ident: 10.1016/j.neuroimage.2013.06.062_bb0005 article-title: Noninvasive imaging of prefrontal activation during attention-demanding tasks performed while walking using a wearable optical topography system publication-title: J. Biomed. Opt. doi: 10.1117/1.3462996 – volume: 16 start-page: 096014 year: 2011 ident: 10.1016/j.neuroimage.2013.06.062_bb0185 article-title: Multichannel wearable system dedicated for simultaneous electroencephalographynear-infrared spectroscopy real-time data acquisitions publication-title: J. Biomed. Opt. doi: 10.1117/1.3625575 – volume: 59 start-page: 3201 year: 2012 ident: 10.1016/j.neuroimage.2013.06.062_bb0100 article-title: Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.11.062 – volume: 7 start-page: 57 year: 2010 ident: 10.1016/j.neuroimage.2013.06.062_bb0120 article-title: Testing the potential of a virtual reality neurorehabilitation system during performance of observation, imagery and imitation of motor actions recorded by wireless functional near-infrared spectroscopy (fNIRS) publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-7-57 – volume: 17 start-page: 719 year: 2002 ident: 10.1016/j.neuroimage.2013.06.062_bb0290 article-title: A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation publication-title: Neuroimage doi: 10.1006/nimg.2002.1227 – volume: 37 start-page: 1338 year: 2007 ident: 10.1016/j.neuroimage.2013.06.062_bb0205 article-title: Sustained prefrontal activation during ataxic gait: a compensatory mechanism for ataxic stroke? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.06.014 – volume: 121 start-page: 110 year: 2012 ident: 10.1016/j.neuroimage.2013.06.062_bb0330 article-title: Usefulness of simultaneous EEG-NIRS recording in language studies publication-title: Brain Lang. doi: 10.1016/j.bandl.2011.03.010 – volume: 75 start-page: 3276 year: 2004 ident: 10.1016/j.neuroimage.2013.06.062_bb0320 article-title: Design of a portable near infrared system for topographic imaging of the brain in babies publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1775314 – volume: 183 start-page: 956 year: 2011 ident: 10.1016/j.neuroimage.2013.06.062_bb0265 article-title: Fast 3D near-infrared breast imaging using indocyanine green for detection and characterization of breast lesions publication-title: Rofo doi: 10.1055/s-0031-1281726 – volume: 40 start-page: 548 year: 2003 ident: 10.1016/j.neuroimage.2013.06.062_bb0080 article-title: Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging publication-title: Psychophysiology doi: 10.1111/1469-8986.00057 – volume: 85 start-page: 547 year: 2013 ident: 10.1016/j.neuroimage.2013.06.062_bb0085 article-title: Cortical changes underlying balance recovery in patients with hemiplegic stroke publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.014 – volume: 66 start-page: 879 year: 2011 ident: 10.1016/j.neuroimage.2013.06.062_bb0125 article-title: fNIRS study of walking and walking while talking in young and old individuals publication-title: J. Gerontol. A Biol. Sci. Med. Sci. doi: 10.1093/gerona/glr068 – volume: 765 start-page: 177 year: 2013 ident: 10.1016/j.neuroimage.2013.06.062_bb0220 article-title: The effect of sudden depressurization on pilots at cruising altitude publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-1-4614-4989-8_25 – volume: 16 start-page: 817 year: 1996 ident: 10.1016/j.neuroimage.2013.06.062_bb0155 article-title: Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy publication-title: J. Cereb. Blood Flow Metab. doi: 10.1097/00004647-199609000-00006 – volume: 80 start-page: S27 year: 2013 ident: 10.1016/j.neuroimage.2013.06.062_bb0045 article-title: The interaction between neuropsychological and motor deficits in patients after stroke publication-title: Neurology doi: 10.1212/WNL.0b013e3182762569 – volume: 15 start-page: 061708 year: 2010 ident: 10.1016/j.neuroimage.2013.06.062_bb0285 article-title: Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke publication-title: J. Biomed. Opt. doi: 10.1117/1.3505009 – volume: 7 start-page: e44676 year: 2012 ident: 10.1016/j.neuroimage.2013.06.062_bb0090 article-title: Towards measuring brain function on groups of people in the real world publication-title: PLoS One doi: 10.1371/journal.pone.0044676 – volume: 32 start-page: 418 year: 1993 ident: 10.1016/j.neuroimage.2013.06.062_bb0065 article-title: Spectral dependence of temporal point spread functions in human tissues publication-title: Appl. Opt. doi: 10.1364/AO.32.000418 – volume: 59 start-page: 1602 year: 2012 ident: 10.1016/j.neuroimage.2013.06.062_bb0180 article-title: Stride-time variability and sensorimotor cortical activation during walking publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.08.084 – volume: 4 start-page: 29 year: 2005 ident: 10.1016/j.neuroimage.2013.06.062_bb0025 article-title: A portable near infrared spectroscopy system for bedside monitoring of newborn brain publication-title: Biomed. Eng. Online doi: 10.1186/1475-925X-4-29 – volume: 16 start-page: 10323 year: 2008 ident: 10.1016/j.neuroimage.2013.06.062_bb0215 article-title: Wireless miniaturized in-vivo near infrared imaging publication-title: Opt. Express doi: 10.1364/OE.16.010323 – volume: 83 start-page: 056101 year: 2012 ident: 10.1016/j.neuroimage.2013.06.062_bb0145 article-title: Note: wearable near-infrared spectroscopy imager for haired region publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4704456 – volume: 2007 start-page: 3362 year: 2007 ident: 10.1016/j.neuroimage.2013.06.062_bb0015 article-title: Development of a multi-channel, portable optical topography system publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc. – year: 2009 ident: 10.1016/j.neuroimage.2013.06.062_bb0135 article-title: Noninvasive imaging of cerebral activation with diffuse optical tomography – volume: 23 start-page: 1020 year: 2004 ident: 10.1016/j.neuroimage.2013.06.062_bb0305 article-title: Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill: an optical imaging study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.002 – volume: 20 start-page: 435 year: 1997 ident: 10.1016/j.neuroimage.2013.06.062_bb0325 article-title: Non-invasive optical spectroscopy and imaging of human brain function publication-title: Trends Neurosci. doi: 10.1016/S0166-2236(97)01132-6 – volume: 2009 start-page: 602 year: 2009 ident: 10.1016/j.neuroimage.2013.06.062_bb0255 article-title: Portable single-channel NIRS-based BMI system for motor disabilities' communication tools publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc. – volume: 44 start-page: 2140 year: 2005 ident: 10.1016/j.neuroimage.2013.06.062_bb0260 article-title: Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements publication-title: Appl. Opt. doi: 10.1364/AO.44.002140 – volume: 15 start-page: 026006 year: 2010 ident: 10.1016/j.neuroimage.2013.06.062_bb0335 article-title: Quantitative evaluation of high-density diffuse optical tomography: in vivo resolution and mapping performance publication-title: J. Biomed. Opt. doi: 10.1117/1.3368999 – volume: 25 start-page: 701 year: 2005 ident: 10.1016/j.neuroimage.2013.06.062_bb0115 article-title: Simultaneous recording of task-induced changes in blood oxygenation, volume, and flow using diffuse optical imaging and arterial spin-labeling MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.12.032 – volume: 2 start-page: 12 year: 2012 ident: 10.1016/j.neuroimage.2013.06.062_bb0160 article-title: High-resolution optical functional mapping of the human somatosensory cortex publication-title: Front. Neuroenerg. – year: 2012 ident: 10.1016/j.neuroimage.2013.06.062_bb0105 article-title: Investigating hemodynamics in scalp and brain using high-resolution diffuse optical tomography in humans – volume: 3 start-page: 243 year: 2002 ident: 10.1016/j.neuroimage.2013.06.062_bb0030 article-title: The problem of functional localization in the human brain publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn756 – volume: 9 start-page: 046010 year: 2012 ident: 10.1016/j.neuroimage.2013.06.062_bb0170 article-title: Multi-channel NIRS of the primary motor cortex to discriminate hand from foot activity publication-title: J. Neural Eng. doi: 10.1088/1741-2560/9/4/046010 – volume: 10 start-page: 11014 year: 2005 ident: 10.1016/j.neuroimage.2013.06.062_bb0350 article-title: Eigenvector-based spatial filtering for reduction of physiological interference in diffuse optical imaging publication-title: J. Biomed. Opt. doi: 10.1117/1.1852552 – volume: 411 start-page: 471 year: 1997 ident: 10.1016/j.neuroimage.2013.06.062_bb0225 article-title: Length of resting period between stimulation cycles modulates hemodynamic response to a motor stimulus publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-1-4615-5865-1_60 – volume: 17 start-page: 1 year: 2002 ident: 10.1016/j.neuroimage.2013.06.062_bb0230 article-title: Habituation of the visually evoked potential and its vascular response: implications for neurovascular coupling in the healthy adult publication-title: Neuroimage doi: 10.1006/nimg.2002.1177 – volume: 29 start-page: 368 year: 2006 ident: 10.1016/j.neuroimage.2013.06.062_bb0140 article-title: A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.08.065 – volume: 63 start-page: 921 year: 2012 ident: 10.1016/j.neuroimage.2013.06.062_bb0075 article-title: A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.03.049 – volume: 2 year: 2010 ident: 10.1016/j.neuroimage.2013.06.062_bb0095 article-title: Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography publication-title: Front. Neuroenerg. – year: 2012 ident: 10.1016/j.neuroimage.2013.06.062_bb0245 article-title: A wireless, self-calibrating sensor for fNIRS studies in preterm infants – volume: 13 start-page: 034017 year: 2008 ident: 10.1016/j.neuroimage.2013.06.062_bb0250 article-title: Measurement of layer-like hemodynamic trends in scalp and cortex: implications for physiological baseline suppression in functional near-infrared spectroscopy publication-title: J. Biomed. Opt. doi: 10.1117/1.2940587 – volume: 73 year: 2002 ident: 10.1016/j.neuroimage.2013.06.062_bb0035 article-title: Instrumentation for fast functional optical tomography publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1427768 – volume: 27 start-page: 275 year: 2002 ident: 10.1016/j.neuroimage.2013.06.062_bb0130 article-title: Regional cerebral blood flow changes associated with emotions in children publication-title: Pediatr. Neurol. doi: 10.1016/S0887-8994(02)00432-0 – volume: 24 start-page: 495 year: 2006 ident: 10.1016/j.neuroimage.2013.06.062_bb0280 article-title: Illuminating the BOLD signal: combined fMRI–fNIRS studies publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2005.12.034 – volume: 61 start-page: 70 year: 2012 ident: 10.1016/j.neuroimage.2013.06.062_bb0150 article-title: The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.074 – volume: 16 start-page: 14 year: 2002 ident: 10.1016/j.neuroimage.2013.06.062_bb0195 article-title: Simultaneous measurements of cerebral oxygenation changes during brain activation by near-infrared spectroscopy and functional magnetic resonance imaging in healthy young and elderly subjects publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.10026 – volume: 23 start-page: 1 year: 2003 ident: 10.1016/j.neuroimage.2013.06.062_bb0240 article-title: Beyond the visible—imaging the human brain with light publication-title: J. Cereb. Blood Flow Metab. doi: 10.1097/00004647-200301000-00001 – year: 2006 ident: 10.1016/j.neuroimage.2013.06.062_bb0270 – volume: 12 start-page: 623 year: 2000 ident: 10.1016/j.neuroimage.2013.06.062_bb0235 article-title: Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults publication-title: Neuroimage doi: 10.1006/nimg.2000.0657 – volume: 54 start-page: 2922 year: 2011 ident: 10.1016/j.neuroimage.2013.06.062_bb0190 article-title: Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.10.058 – volume: 18 start-page: 865 year: 2003 ident: 10.1016/j.neuroimage.2013.06.062_bb0295 article-title: Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00021-1 – volume: 80 start-page: 043704 year: 2009 ident: 10.1016/j.neuroimage.2013.06.062_bb0010 article-title: Development of wearable optical topography system for mapping the prefrontal cortex activation publication-title: Rev. Sci. Instrum. doi: 10.1063/1.3115207 – volume: 19 start-page: 18636 year: 2012 ident: 10.1016/j.neuroimage.2013.06.062_bb0110 article-title: Contrast enhanced high-resolution diffuse optical tomography of the human brain using ICG publication-title: Opt. Express doi: 10.1364/OE.19.018636 – start-page: BM4A.3 year: 2012 ident: 10.1016/j.neuroimage.2013.06.062_bb0175 article-title: Imaging of Motor Activity in Freely Moving Subjects Using a Wearable NIRS Imaging System – volume: 48 start-page: D137 year: 2009 ident: 10.1016/j.neuroimage.2013.06.062_bb0055 article-title: Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography publication-title: Appl. Opt. doi: 10.1364/AO.48.00D137 – volume: 29 start-page: 1268 year: 2009 ident: 10.1016/j.neuroimage.2013.06.062_bb0275 article-title: Exploring cognitive functions in babies, children & adults with near infrared spectroscopy publication-title: J. Vis. Exp. – volume: 23 start-page: S275 issue: Suppl. 1 year: 2004 ident: 10.1016/j.neuroimage.2013.06.062_bb0020 article-title: Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.011 – year: 2013 ident: 10.1016/j.neuroimage.2013.06.062_bb0200 article-title: Developmental changes in brain activation and functional connectivity during response inhibition in the early childhood brain publication-title: Brain Dev doi: 10.1016/j.braindev.2012.11.006 – volume: 80 start-page: 1522 year: 1998 ident: 10.1016/j.neuroimage.2013.06.062_bb0040 article-title: Refractory periods observed by intrinsic signal and fluorescent dye imaging publication-title: J. Neurophysiol. doi: 10.1152/jn.1998.80.3.1522 – year: 2003 ident: 10.1016/j.neuroimage.2013.06.062_bb0340 article-title: Pocket PC based wireless continuous wave near infrared spectroscopy system for functional imaging of human brain Engineering in Medicine and Biology Society, 2003 – volume: 45 start-page: 788 year: 2009 ident: 10.1016/j.neuroimage.2013.06.062_bb0345 article-title: Adaptive filtering to reduce global interference in non-invasive NIRS measures of brain activation: how well and when does it work? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.12.048 – volume: 59 start-page: 519 year: 2012 ident: 10.1016/j.neuroimage.2013.06.062_bb0070 article-title: Enhanced performance by a hybrid NIRS-EEG brain computer interface publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.07.084 – reference: 22667665 - Rev Sci Instrum. 2012 May;83(5):056101 – reference: 20725524 - Front Neuroenergetics. 2010 Jul 14;2:null – reference: 12377147 - Neuroimage. 2002 Oct;17(2):719-31 – reference: 21122154 - J Neuroeng Rehabil. 2010;7:57 – reference: 21920441 - Neuroimage. 2012 Jan 16;59(2):1602-7 – reference: 21029781 - Neuroimage. 2011 Feb 14;54(4):2922-36 – reference: 15835360 - Appl Opt. 2005 Apr 10;44(11):2140-53 – reference: 22510258 - Neuroimage. 2012 Nov 1;63(2):921-35 – reference: 14570163 - Psychophysiology. 2003 Jul;40(4):548-60 – reference: 19963717 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:602-5 – reference: 17683949 - Neuroimage. 2007 Oct 1;37(4):1338-45 – reference: 14527577 - Neuroimage. 2003 Sep;20(1):145-58 – reference: 15862131 - Biomed Eng Online. 2005;4:29 – reference: 18601562 - J Biomed Opt. 2008 May-Jun;13(3):034017 – reference: 16677956 - Magn Reson Imaging. 2006 May;24(4):495-505 – reference: 17950626 - Neuroimage. 2008 Jan 15;39(2):600-7 – reference: 12435566 - Pediatr Neurol. 2002 Oct;27(4):275-81 – reference: 21198156 - J Biomed Opt. 2010 Nov-Dec;15(6):061708 – reference: 21593013 - J Gerontol A Biol Sci Med Sci. 2011 Aug;66(8):879-87 – reference: 12482064 - Neuroimage. 2002 Sep;17(1):1-18 – reference: 22426347 - Neuroimage. 2012 May 15;61(1):70-81 – reference: 19150756 - Early Hum Dev. 2009 Feb;85(2):77-84 – reference: 11994756 - Nat Rev Neurosci. 2002 Mar;3(3):243-9 – reference: 9347608 - Trends Neurosci. 1997 Oct;20(10):435-42 – reference: 18607442 - Opt Express. 2008 Jul 7;16(14):10323-30 – reference: 18002717 - Conf Proc IEEE Eng Med Biol Soc. 2007;2007:3362-4 – reference: 21972043 - Rofo. 2011 Oct;183(10):956-63 – reference: 19638948 - J Vis Exp. 2009;(29). pii: 1268. doi: 10.3791/1268 – reference: 19166945 - Neuroimage. 2009 Apr 15;45(3):788-94 – reference: 23265620 - Brain Dev. 2013 Nov;35(10):894-904 – reference: 12725763 - Neuroimage. 2003 Apr;18(4):865-79 – reference: 11112395 - Neuroimage. 2000 Dec;12(6):623-39 – reference: 16481677 - Phys Med Biol. 2006 Mar 7;51(5):N91-8 – reference: 22330315 - Neuroimage. 2012 Jul 16;61(4):1120-8 – reference: 16303317 - Neuroimage. 2006 Jan 15;29(2):368-82 – reference: 9744956 - J Neurophysiol. 1998 Sep;80(3):1522-32 – reference: 8784226 - J Cereb Blood Flow Metab. 1996 Sep;16(5):817-26 – reference: 22763344 - J Neural Eng. 2012 Aug;9(4):046010 – reference: 15501097 - Neuroimage. 2004;23 Suppl 1:S275-88 – reference: 20459251 - J Biomed Opt. 2010 Mar-Apr;15(2):026006 – reference: 21935232 - Opt Express. 2011 Sep 12;19(19):18636-44 – reference: 22155031 - Neuroimage. 2012 Feb 15;59(4):3201-11 – reference: 19405663 - Rev Sci Instrum. 2009 Apr;80(4):043704 – reference: 19340101 - Appl Opt. 2009 Apr 1;48(10):D137-43 – reference: 22879031 - Adv Exp Med Biol. 2013;765:177-83 – reference: 23319483 - Neurology. 2013 Jan 15;80(3 Suppl 2):S27-34 – reference: 22957099 - PLoS One. 2012;7(9):e44676 – reference: 20802707 - Appl Opt. 1993 Feb 1;32(4):418-25 – reference: 20799804 - J Biomed Opt. 2010 Jul-Aug;15(4):046002 – reference: 9269464 - Adv Exp Med Biol. 1997;411:471-80 – reference: 15847580 - J Biomed Opt. 2005 Jan-Feb;10(1):11014 – reference: 22119653 - Neuroimage. 2012 Feb 15;59(4):3128-38 – reference: 16515389 - Expert Rev Med Devices. 2006 Mar;3(2):235-43 – reference: 21546072 - Brain Lang. 2012 May;121(2):110-23 – reference: 23684871 - Neuroimage. 2014 Jan 15;85 Pt 1:547-54 – reference: 21840399 - Neuroimage. 2012 Jan 2;59(1):519-29 – reference: 15528102 - Neuroimage. 2004 Nov;23(3):1020-6 – reference: 20616883 - Front Neuroenergetics. 2010 Jun 14;2:12 – reference: 11870923 - Hum Brain Mapp. 2002 May;16(1):14-23 – reference: 12500086 - J Cereb Blood Flow Metab. 2003 Jan;23(1):1-18 – reference: 21950928 - J Biomed Opt. 2011 Sep;16(9):096014 – reference: 15808971 - Neuroimage. 2005 Apr 15;25(3):701-7 |
SSID | ssj0009148 |
Score | 2.5823598 |
Snippet | Functional near infrared spectroscopy (fNIRS) is a versatile neuroimaging tool with an increasing acceptance in the neuroimaging community. While often lauded... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 64 |
SubjectTerms | Adult Algorithms Bicycling - physiology Brain - anatomy & histology Brain - physiology Cables Cortex (motor) Data Interpretation, Statistical Environment Female Fitness equipment Functional brain imaging Functional Neuroimaging - instrumentation Functional Neuroimaging - methods Hand Strength - physiology Hemodynamics - physiology Humans Image Processing, Computer-Assisted Light emitting diodes Male Medical imaging Monitoring, Ambulatory Optics Outdoor activities Outdoor bicycling Oxygen Consumption - physiology Physical Education and Training Physical therapy Rest - physiology Signal Processing, Computer-Assisted Spectroscopy, Near-Infrared - instrumentation Spectroscopy, Near-Infrared - methods Stroke Studies Wearable NIRS system Young Adult |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1baxQxFA5aQXyxWm9bq0TwNTiT64Q-lCKWKrR4aWHfhskkoZXtbNvZpfjvPWcmM2sVy74tJAdmk5NzSb7zHULeu0x6q13BiqADk6GyzAlfMO_An0GEAIYTC5yPjvXhqfwyVdN04dYmWOVgEztD7ec13pF_QNduBLg3vnd5xbBrFL6uphYa98kDpC5DSJeZmhXpbi77UjglWAETEpKnx3d1fJHnF3BqEeAlOhZPzf_nnv4NP_9GUf7hlg6ekMcpnqT7vQI8JfdCs0UeHqUX8y2y-TVtBD3p-QOekW_79Ab0G2umaIcnZFj924QZjcefv_-gPbkzhWiWOmwgQfHzwcNR-BmvQ5j9ohfdPQRtlw6vcdrn5PTg08nHQ5Y6K7AaEogFs7biVvKY-Txiiuq8VCar8krLWile-KK2QrvoYq29gzPNfYTx2kcOk4IXL8hGM2_CK0K1AQOptDAyRAm5nQuuyrXDNNPWkocJMcOClnWiHcfuF7NywJf9LFdbUeJWlAi103xC8lHysqfeWEPGDntWDqWlYAxL8A9ryO6Osin86MOKNaV3BhUpkxloy5XSTsi7cRgOML7KVE2YL1vMvUymwSlld8xRGMpBcGYm5GWvdeOSYMyFnEuw0Lf0cZyABOK3R5rzs45IXBTKFqLYvvvTX5NH8D8Rq8RytUM2FtfL8AYisYV72x2336lMNTQ priority: 102 providerName: ProQuest |
Title | A wearable multi-channel fNIRS system for brain imaging in freely moving subjects |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811913007003 https://dx.doi.org/10.1016/j.neuroimage.2013.06.062 https://www.ncbi.nlm.nih.gov/pubmed/23810973 https://www.proquest.com/docview/1551735092 https://www.proquest.com/docview/1467068760 https://www.proquest.com/docview/1500781517 https://pubmed.ncbi.nlm.nih.gov/PMC3859838 |
Volume | 85 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBelhbGXse4zW1c02KsW2_qy6FMWWtJtDV26Qt6MZck0I3VLk1D60r99d7bsLhsbgb3EiaUD53y6-5199xMhH2wknFE2ZalXngmfG2a5S5mzEM8AIYDjxAbnk7EanYvPUzndIsO2FwbLKoPvb3x67a3DmX7QZv96NuufATKAcAP5BkfOmprxUwiNVv7x_qHMw8SiaYeTnOHsUM3T1HjVnJGzS1i5WOTFayZPlfwtRP0JQX-vpPwlNB09JU8CpqSD5rJ3yZavnpFHJ-Gt-XPybUBvwaCxSYrWBYQM230rP6fl-HhyRhs2ZwrwlVrcMYLitUJIo_C1vPF-fkcv6wcPdLGy-Nxm8YKcHx1-H45Y2EqBFZAxLJkxeWJEUkYuLjEntU5IHeVxrkQhZZK6tDBc2dKWhXIWFnHiShgvXJnAJO_4S7JdXVX-NaFKg0eUimvhSwHJnPU2j5XFvNIUIvE9olvtZUXgGcftLuZZW1D2I3vQe4Z6z7C2TiU9EneS1w3XxgYypr1BWdtLCt4vg4CwgexBJ7tmcxtK77X2kIV1v8gQgGoOIAyG33fDsGLxNUxe-avVApMtHSmIQtE_5kjEboDGdI-8akysUwmCLCRZAkWvGV83ARnD10eq2UXNHM5TaVKevvmvP_6WPIZfWLvEYrlHtpc3K_8OkNnS7tdLDz71VO-TncFw8vUUj8dfRmM4fjocn05-AmLRP9U |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgJe-BgfKwwwEjxaJLbjJEIIDdjUsrUao5P2lsWxIzZ16VhaTfun-Bu5y0fLQEx92Vsk21Fyd777nX0fAG-Mp2ysTcQjpx1XLo25kTbi1qA9Q4SAipMSnAdD3TtQXw-DwxX41ebCUFhlqxMrRW0nGZ2RvyPTHko0b-Lj2U9OXaPodrVtoVGLxY67vECXrfzQ_4L8fSvE9tboc483XQV4huB5yuM4FbESuWf9nNwzY1UQeqmfapUFgYhslMVSm9zkmbYG5VnYHMczmwuc5KzE996CVSXRlenA6qet4d7-osyvr-rku0DyyPfjJnaojiirKlQen6KeoJAyWdUN1eJ_BvFfwPt33OYfhnD7AdxrECzbrEXuIay4Yg1uD5o7-jW4v9ewno3qigWP4Nsmu0DSUZYWqyIYOeUbF27M8mF__zury0kzxM_MUMsKRp-PNpXhY37u3PiSnVYnH6ycGTo4Kh_DwY1Q_Ql0iknh1oHpEFVyoGWoXK7QmzTOpL425NjGmRKuC2FL0CRrCp1Tv41x0ka0nSQLViTEioSC-7Togj9feVYX-1hiTdzyLGmTWVH9JmiRllj7fr62ATw1kFly9UYrIkmjeMpksU268Ho-jCqD7oHSwk1mJXl7oafRDHrXzAkIPCIcDLvwtJa6OUkI5VGVJyT0FXmcT6CS5VdHiuMfVelyGQVxJKNn13_6K7jTGw12k93-cOc53MV_pkgp7gcb0Jmez9wLxIFT87LZfAyObnq__wZPTnTT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIlVcCpRXoICR4Gg16_V6d4UQqihRQ2lUoJVyM-u1LVqlm9JNVPWv8euY2VcoiCqX3iLZs3LG8_hszwPgtelLmyqT8MQpx6XLUm5Cm3Br0J8hQkDDSQnO-yO1eyQ_jaPxCvxqc2EorLK1iZWhttOc7si3yLXHIbo3seWbsIiDncH7s5-cOkjRS2vbTqMWkT13eYHHt_LdcAf3-o0Qg4-HH3Z502GA5wikZzxNM5FK4fs28HRUM1ZGcT8LMiXzKBKJTfI0VMYbnytrULaF9TieWy9wkrMhfvcW3MZ1BaRj8TheFPwNZJ2GF4U8CYK0iSKqY8uqWpXHp2gxKLgsrCqIKvE_1_gv9P07gvMPlzi4B-sNlmXbtfDdhxVXbMDafvNavwF3DxohYId17YIH8GWbXSDjKF-LVbGMnDKPCzdhfjT8-o3VhaUZImlmqHkFo-Wjd2X40587N7lkp9UdCCvnhq6QyodwdCM8fwSrxbRwT4CpGI1zpMJYOi_xXGmcyQJl6Iib5lK4HsQtQ3XelDynzhsT3ca2nejFVmjaCk1hfkr0IOgoz-qyH0vQpO2e6TatFQ2xRt-0BO3bjraBPjWkWZJ6sxUR3ZigUi8UpgevumE0HvQilBVuOi_p3Bf3FTrE_jVzIoKRCAzjHjyupa5jCeE9qveEjL4ij90EKl5-daQ4_lEVMQ-TKE3C5On1S38Ja6jl-vNwtPcM7uBfppApHkSbsDo7n7vnCAhn5kWleQy-37Sq_wY-kXej |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Wearable+Multi-Channel+fNIRS+System+for+Brain+Imaging+in+Freely+Moving+Subjects&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Piper%2C+Sophie+K.&rft.au=Krueger%2C+Arne&rft.au=Koch%2C+Stefan+P.&rft.au=Mehnert%2C+Jan&rft.date=2014-01-15&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=85&rft.issue=1&rft_id=info:doi/10.1016%2Fj.neuroimage.2013.06.062&rft_id=info%3Apmid%2F23810973&rft.externalDocID=PMC3859838 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |