A Novel Method to Reduce ELISA Serial Dilution Assay Workload Applied to SARS-CoV-2 and Seasonal HCoVs
Assays using ELISA measurements on serially diluted serum samples have been heavily used to measure serum reactivity to SARS-CoV-2 antigens and are widely used in virology and elsewhere in biology. We test a method using Bayesian hierarchical modelling to reduce the workload of these assays and meas...
Saved in:
Published in | Viruses Vol. 14; no. 3; p. 562 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
09.03.2022
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1999-4915 1999-4915 |
DOI | 10.3390/v14030562 |
Cover
Loading…
Abstract | Assays using ELISA measurements on serially diluted serum samples have been heavily used to measure serum reactivity to SARS-CoV-2 antigens and are widely used in virology and elsewhere in biology. We test a method using Bayesian hierarchical modelling to reduce the workload of these assays and measure reactivity of SARS-CoV-2 and HCoV antigens to human serum samples collected before and during the COVID-19 pandemic. Inflection titers for SARS-CoV-2 full-length spike protein (S1S2), spike protein receptor-binding domain (RBD), and nucleoprotein (N) inferred from 3 spread-out dilutions correlated with those inferred from 8 consecutive dilutions with an R2 value of 0.97 or higher. We confirm existing findings showing a small proportion of pre-pandemic human serum samples contain cross-reactive antibodies to SARS-CoV-2 S1S2 and N, and that SARS-CoV-2 infection increases serum reactivity to the beta-HCoVs OC43 and HKU1 S1S2. In serial dilution assays, large savings in resources and/or increases in throughput can be achieved by reducing the number of dilutions measured and using Bayesian hierarchical modelling to infer inflection or endpoint titers. We have released software for conducting these types of analysis. |
---|---|
AbstractList | Assays using ELISA measurements on serially diluted serum samples have been heavily used to measure serum reactivity to SARS-CoV-2 antigens and are widely used in virology and elsewhere in biology. We test a method using Bayesian hierarchical modelling to reduce the workload of these assays and measure reactivity of SARS-CoV-2 and HCoV antigens to human serum samples collected before and during the COVID-19 pandemic. Inflection titers for SARS-CoV-2 full-length spike protein (S1S2), spike protein receptor-binding domain (RBD), and nucleoprotein (N) inferred from 3 spread-out dilutions correlated with those inferred from 8 consecutive dilutions with an R
value of 0.97 or higher. We confirm existing findings showing a small proportion of pre-pandemic human serum samples contain cross-reactive antibodies to SARS-CoV-2 S1S2 and N, and that SARS-CoV-2 infection increases serum reactivity to the beta-HCoVs OC43 and HKU1 S1S2. In serial dilution assays, large savings in resources and/or increases in throughput can be achieved by reducing the number of dilutions measured and using Bayesian hierarchical modelling to infer inflection or endpoint titers. We have released software for conducting these types of analysis. Assays using ELISA measurements on serially diluted serum samples have been heavily used to measure serum reactivity to SARS-CoV-2 antigens and are widely used in virology and elsewhere in biology. We test a method using Bayesian hierarchical modelling to reduce the workload of these assays and measure reactivity of SARS-CoV-2 and HCoV antigens to human serum samples collected before and during the COVID-19 pandemic. Inflection titers for SARS-CoV-2 full-length spike protein (S1S2), spike protein receptor-binding domain (RBD), and nucleoprotein (N) inferred from 3 spread-out dilutions correlated with those inferred from 8 consecutive dilutions with an R² value of 0.97 or higher. We confirm existing findings showing a small proportion of pre-pandemic human serum samples contain cross-reactive antibodies to SARS-CoV-2 S1S2 and N, and that SARS-CoV-2 infection increases serum reactivity to the beta-HCoVs OC43 and HKU1 S1S2. In serial dilution assays, large savings in resources and/or increases in throughput can be achieved by reducing the number of dilutions measured and using Bayesian hierarchical modelling to infer inflection or endpoint titers. We have released software for conducting these types of analysis. Assays using ELISA measurements on serially diluted serum samples have been heavily used to measure serum reactivity to SARS-CoV-2 antigens and are widely used in virology and elsewhere in biology. We test a method using Bayesian hierarchical modelling to reduce the workload of these assays and measure reactivity of SARS-CoV-2 and HCoV antigens to human serum samples collected before and during the COVID-19 pandemic. Inflection titers for SARS-CoV-2 full-length spike protein (S1S2), spike protein receptor-binding domain (RBD), and nucleoprotein (N) inferred from 3 spread-out dilutions correlated with those inferred from 8 consecutive dilutions with an R2 value of 0.97 or higher. We confirm existing findings showing a small proportion of pre-pandemic human serum samples contain cross-reactive antibodies to SARS-CoV-2 S1S2 and N, and that SARS-CoV-2 infection increases serum reactivity to the beta-HCoVs OC43 and HKU1 S1S2. In serial dilution assays, large savings in resources and/or increases in throughput can be achieved by reducing the number of dilutions measured and using Bayesian hierarchical modelling to infer inflection or endpoint titers. We have released software for conducting these types of analysis. Assays using ELISA measurements on serially diluted serum samples have been heavily used to measure serum reactivity to SARS-CoV-2 antigens and are widely used in virology and elsewhere in biology. We test a method using Bayesian hierarchical modelling to reduce the workload of these assays and measure reactivity of SARS-CoV-2 and HCoV antigens to human serum samples collected before and during the COVID-19 pandemic. Inflection titers for SARS-CoV-2 full-length spike protein (S1S2), spike protein receptor-binding domain (RBD), and nucleoprotein (N) inferred from 3 spread-out dilutions correlated with those inferred from 8 consecutive dilutions with an R2 value of 0.97 or higher. We confirm existing findings showing a small proportion of pre-pandemic human serum samples contain cross-reactive antibodies to SARS-CoV-2 S1S2 and N, and that SARS-CoV-2 infection increases serum reactivity to the beta-HCoVs OC43 and HKU1 S1S2. In serial dilution assays, large savings in resources and/or increases in throughput can be achieved by reducing the number of dilutions measured and using Bayesian hierarchical modelling to infer inflection or endpoint titers. We have released software for conducting these types of analysis.Assays using ELISA measurements on serially diluted serum samples have been heavily used to measure serum reactivity to SARS-CoV-2 antigens and are widely used in virology and elsewhere in biology. We test a method using Bayesian hierarchical modelling to reduce the workload of these assays and measure reactivity of SARS-CoV-2 and HCoV antigens to human serum samples collected before and during the COVID-19 pandemic. Inflection titers for SARS-CoV-2 full-length spike protein (S1S2), spike protein receptor-binding domain (RBD), and nucleoprotein (N) inferred from 3 spread-out dilutions correlated with those inferred from 8 consecutive dilutions with an R2 value of 0.97 or higher. We confirm existing findings showing a small proportion of pre-pandemic human serum samples contain cross-reactive antibodies to SARS-CoV-2 S1S2 and N, and that SARS-CoV-2 infection increases serum reactivity to the beta-HCoVs OC43 and HKU1 S1S2. In serial dilution assays, large savings in resources and/or increases in throughput can be achieved by reducing the number of dilutions measured and using Bayesian hierarchical modelling to infer inflection or endpoint titers. We have released software for conducting these types of analysis. Assays using ELISA measurements on serially diluted serum samples have been heavily used to measure serum reactivity to SARS-CoV-2 antigens and are widely used in virology and elsewhere in biology. We test a method using Bayesian hierarchical modelling to reduce the workload of these assays and measure reactivity of SARS-CoV-2 and HCoV antigens to human serum samples collected before and during the COVID-19 pandemic. Inflection titers for SARS-CoV-2 full-length spike protein (S1S2), spike protein receptor-binding domain (RBD), and nucleoprotein (N) inferred from 3 spread-out dilutions correlated with those inferred from 8 consecutive dilutions with an R 2 value of 0.97 or higher. We confirm existing findings showing a small proportion of pre-pandemic human serum samples contain cross-reactive antibodies to SARS-CoV-2 S1S2 and N, and that SARS-CoV-2 infection increases serum reactivity to the beta-HCoVs OC43 and HKU1 S1S2. In serial dilution assays, large savings in resources and/or increases in throughput can be achieved by reducing the number of dilutions measured and using Bayesian hierarchical modelling to infer inflection or endpoint titers. We have released software for conducting these types of analysis. |
Author | Gabriele Neumann Peter Jester Tomoyuki Uchida Keiko Mitamura Shiho Chiba Yoshihiro Kawaoka Lizheng Guan Hongyu Rao Nobuhiro Ikeda Peter Halfmann Kiyoko Iwatsuki-Horimoto Seiya Yamayoshi Masao Hagihara Robert Presler David Pattinson |
AuthorAffiliation | 1 Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; david.pattinson@wisc.edu (D.P.); peter.jester@wisc.edu (P.J.); lizheng.guan@wisc.edu (L.G.); shiho.chiba@wisc.edu (S.C.); robert.presler@wisc.edu (R.P.); hongyu.rao@wisc.edu (H.R.); peter.halfmann@wisc.edu (P.H.); gabriele.neumann@wisc.edu (G.N.) 6 Division of Infection Control, Eiju General Hospital, Tokyo 104-0045, Japan; mitamurakeiko77@gmail.com 4 Department of General Internal Medicine, Eiju General Hospital, Tokyo 104-0045, Japan; n-ikeda@eijuhp.com 7 Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-0071, Japan 3 The Research Center for Global Viral Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8665, Japan 5 Department of Hematology, Eiju General Hospital, Tokyo 104-0045, Japan; hagihara@eijuhp.com (M.H.); i8i_i8i@hot |
AuthorAffiliation_xml | – name: 4 Department of General Internal Medicine, Eiju General Hospital, Tokyo 104-0045, Japan; n-ikeda@eijuhp.com – name: 1 Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; david.pattinson@wisc.edu (D.P.); peter.jester@wisc.edu (P.J.); lizheng.guan@wisc.edu (L.G.); shiho.chiba@wisc.edu (S.C.); robert.presler@wisc.edu (R.P.); hongyu.rao@wisc.edu (H.R.); peter.halfmann@wisc.edu (P.H.); gabriele.neumann@wisc.edu (G.N.) – name: 5 Department of Hematology, Eiju General Hospital, Tokyo 104-0045, Japan; hagihara@eijuhp.com (M.H.); i8i_i8i@hotmail.com (T.U.) – name: 6 Division of Infection Control, Eiju General Hospital, Tokyo 104-0045, Japan; mitamurakeiko77@gmail.com – name: 2 Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-0071, Japan; yamayo@ims.u-tokyo.ac.jp (S.Y.); kenken@ims.u-tokyo.ac.jp (K.I.-H.) – name: 7 Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-0071, Japan – name: 3 The Research Center for Global Viral Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8665, Japan |
Author_xml | – sequence: 1 givenname: David orcidid: 0000-0003-0001-8203 surname: Pattinson fullname: Pattinson, David – sequence: 2 givenname: Peter orcidid: 0000-0003-2802-7451 surname: Jester fullname: Jester, Peter – sequence: 3 givenname: Lizheng surname: Guan fullname: Guan, Lizheng – sequence: 4 givenname: Seiya orcidid: 0000-0001-7768-5157 surname: Yamayoshi fullname: Yamayoshi, Seiya – sequence: 5 givenname: Shiho surname: Chiba fullname: Chiba, Shiho – sequence: 6 givenname: Robert orcidid: 0000-0002-2509-6219 surname: Presler fullname: Presler, Robert – sequence: 7 givenname: Hongyu surname: Rao fullname: Rao, Hongyu – sequence: 8 givenname: Kiyoko surname: Iwatsuki-Horimoto fullname: Iwatsuki-Horimoto, Kiyoko – sequence: 9 givenname: Nobuhiro surname: Ikeda fullname: Ikeda, Nobuhiro – sequence: 10 givenname: Masao surname: Hagihara fullname: Hagihara, Masao – sequence: 11 givenname: Tomoyuki surname: Uchida fullname: Uchida, Tomoyuki – sequence: 12 givenname: Keiko surname: Mitamura fullname: Mitamura, Keiko – sequence: 13 givenname: Peter surname: Halfmann fullname: Halfmann, Peter – sequence: 14 givenname: Gabriele surname: Neumann fullname: Neumann, Gabriele – sequence: 15 givenname: Yoshihiro surname: Kawaoka fullname: Kawaoka, Yoshihiro |
BackLink | https://cir.nii.ac.jp/crid/1872835442625593600$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/35336970$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstuEzEUhkeoiJbSBS-ALMECFkN9v2wqjUKhkQJIDZel5fF4WhdnHOxJpL49TlKitmLBxpfj7__PsX2eVwdDHFxVvUTwPSEKnq4RhQQyjp9UR0gpVVOF2MG99WF1krNvIRRYQUTZs-qQMEK4EvCo6hvwJa5dAJ_deB07MEZw6bqVdeB8Np03YO6SNwF88GE1-jiAJmdzC37G9CtE04FmuQzebWXz5nJeT-KPGgMzdEVochyK9KLE8ovqaW9Cdid383H1_eP5t8lFPfv6aTppZrVlSoy1NNawnjuEW9dTygxDSHSMt5YIBjkhVhrEYYcpERxR3ouCtS2mkpStoOS4mu58u2hu9DL5hUm3Ohqvt4GYrrRJo7fBaaQcKpm4RBBSLEsOqzjntm87bIllxets57VctQvXWTeMyYQHpg9PBn-tr-JaS8UYIpti3t4ZpPh75fKoFz5bF4IZXFxljTmVUnBO8f-gFEIslSjo60foTVyl8tJbCnMJy88X6tX94vdV__35ArzbATbFnJPr9wiCetNYet9YhT19xFo_mk0_lHv78E_Fm51i8L7AmxFJgSVhtJSIGVOEQ0j-AMkg1CA |
CitedBy_id | crossref_primary_10_1016_j_omtm_2024_101286 crossref_primary_10_1111_irv_13104 crossref_primary_10_3390_vaccines13030268 crossref_primary_10_1016_j_ebiom_2024_105103 |
Cites_doi | 10.1016/j.tim.2016.03.003 10.1016/bs.aivir.2018.01.001 10.1038/s41591-020-0913-5 10.1093/infdis/jiab333 10.1016/j.eclinm.2021.100734 10.1128/JCM.00533-08 10.1016/j.mayocp.2020.05.032 10.1016/0022-1759(87)90289-4 10.1038/s41467-021-23074-3 10.1016/j.jcv.2007.08.007 10.1371/journal.pone.0146021 10.1097/INF.0000000000002660 10.7717/peerj-cs.55 10.1093/infdis/jiaa680 10.1016/S0929-6646(09)60066-8 10.3390/microorganisms8121993 10.1056/NEJMoa2001017 10.1101/2020.06.22.20137695 10.1016/S0022-1759(98)00170-7 10.1128/JCM.00636-10 10.1172/JCI146927 10.1016/j.jviromet.2015.02.014 10.1101/2020.10.10.20210070 10.1080/22221751.2021.1905488 10.1126/science.abd0826 10.1016/j.cell.2021.02.010 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | RYH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7U9 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM DOA |
DOI | 10.3390/v14030562 |
DatabaseName | CiNii Complete CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1999-4915 |
ExternalDocumentID | oai_doaj_org_article_19e16e1681004286bcc9666cfbd2c3c5 PMC8955134 35336970 10_3390_v14030562 |
Genre | Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GrantInformation_xml | – fundername: Japan Agency for Medical Research and Development grantid: 20fk0108272 – fundername: CDC HHS grantid: 75D30120C09259 – fundername: Japan Agency for Medical Research and Development grantid: 20fk0108527 – fundername: Japan Agency for Medical Research and Development grantid: 20fk0108301 |
GroupedDBID | --- 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH ABDBF ABUWG ACUHS AFKRA AFPKN AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI BPHCQ BVXVI CCPQU DIK E3Z EBD ESX FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M48 M7P MODMG M~E O5R O5S OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RPM RYH TR2 TUS UKHRP AAYXX CITATION CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 3V. 7U9 7XB 8FK AZQEC COVID DWQXO GNUQQ H94 K9. PKEHL PQEST PQUKI PRINS 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c597t-8aca5f6e12bef445a5117d56bc3750633c8a160d24376146f7ef4bb2483614743 |
IEDL.DBID | M48 |
ISSN | 1999-4915 |
IngestDate | Wed Aug 27 01:32:08 EDT 2025 Thu Aug 21 14:31:17 EDT 2025 Fri Jul 11 11:49:16 EDT 2025 Thu Jul 10 17:13:44 EDT 2025 Fri Jul 25 12:03:35 EDT 2025 Mon Jul 21 06:05:05 EDT 2025 Thu Apr 24 22:55:36 EDT 2025 Tue Jul 01 02:48:33 EDT 2025 Thu Jun 26 22:48:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | SARS-CoV-2 HCoV-229E HCoV-HKU1 HCoV-NL63 hierarchical modelling inflection titer endpoint assay Bayesian analysis ELISA HCoV-OC43 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c597t-8aca5f6e12bef445a5117d56bc3750633c8a160d24376146f7ef4bb2483614743 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. Postal address: Influenza Research Institute, 575 Science Dr, Madison, WI 53711, USA. |
ORCID | 0000-0003-0001-8203 0000-0001-7768-5157 0000-0003-2802-7451 0000-0002-2509-6219 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/v14030562 |
PMID | 35336970 |
PQID | 2642680199 |
PQPubID | 2032319 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_19e16e1681004286bcc9666cfbd2c3c5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8955134 proquest_miscellaneous_2648876642 proquest_miscellaneous_2644002897 proquest_journals_2642680199 pubmed_primary_35336970 crossref_primary_10_3390_v14030562 crossref_citationtrail_10_3390_v14030562 nii_cinii_1872835442625593600 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220309 |
PublicationDateYYYYMMDD | 2022-03-09 |
PublicationDate_xml | – month: 3 year: 2022 text: 20220309 day: 9 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Viruses |
PublicationTitleAlternate | Viruses |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Gaunt (ref_5) 2010; 48 Amanat (ref_21) 2020; 26 Hsieh (ref_22) 2020; 369 Karpinski (ref_25) 1987; 103 Corman (ref_7) 2018; 100 Zimmermann (ref_29) 2020; 39 ref_11 Rucinski (ref_18) 2020; 95 ref_30 ref_19 Frey (ref_20) 1998; 221 Henss (ref_13) 2021; 223 Shao (ref_26) 2007; 40 Yue (ref_8) 2020; 102 ref_15 Yamayoshi (ref_23) 2021; 32 Shrwani (ref_17) 2021; 224 Gao (ref_32) 2016; 115 Zhu (ref_1) 2020; 382 Su (ref_6) 2016; 24 Song (ref_16) 2021; 12 Dijkman (ref_27) 2008; 46 ref_3 ref_2 Westgeest (ref_31) 2015; 217 Anderson (ref_10) 2021; 184 Morgenlander (ref_14) 2021; 131 ref_9 Dijkman (ref_28) 2009; 108 ref_4 Guo (ref_12) 2021; 10 Salvatier (ref_24) 2016; 2 |
References_xml | – volume: 24 start-page: 490 year: 2016 ident: ref_6 article-title: Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses publication-title: Trends Microbiol. doi: 10.1016/j.tim.2016.03.003 – volume: 100 start-page: 163 year: 2018 ident: ref_7 article-title: Hosts and Sources of Endemic Human Coronaviruses publication-title: Adv. Virus Res. doi: 10.1016/bs.aivir.2018.01.001 – volume: 26 start-page: 1033 year: 2020 ident: ref_21 article-title: A serological assay to detect SARS-CoV-2 seroconversion in humans publication-title: Nat. Med. doi: 10.1038/s41591-020-0913-5 – ident: ref_30 – ident: ref_3 – volume: 224 start-page: 1305 year: 2021 ident: ref_17 article-title: Detection of serum cross-reactive antibodies and memory response to SARS-CoV-2 in pre-pandemic and post-COVID-19 convalescent samples publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiab333 – volume: 32 start-page: 100734 year: 2021 ident: ref_23 article-title: Antibody titers against SARS-CoV-2 decline, but do not disappear for several months publication-title: EClinicalMedicine doi: 10.1016/j.eclinm.2021.100734 – volume: 46 start-page: 2368 year: 2008 ident: ref_27 article-title: Human coronavirus NL63 and 229E seroconversion in children publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.00533-08 – volume: 102 start-page: 557 year: 2020 ident: ref_8 article-title: High prevalence of pre-existing serological cross-reactivity against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in sub-Saharan Africa publication-title: Int. J. Infect. Dis. – volume: 95 start-page: 1701 year: 2020 ident: ref_18 article-title: Seasonality of Coronavirus 229E, HKU1, NL63, and OC43 from 2014 to 2020 publication-title: Mayo Clin. Proc. doi: 10.1016/j.mayocp.2020.05.032 – volume: 115 start-page: e54573 year: 2016 ident: ref_32 article-title: Measuring Influenza Neuraminidase Inhibition Antibody Titers by Enzyme-linked Lectin Assay publication-title: J. Vis. Exp. – volume: 103 start-page: 189 year: 1987 ident: ref_25 article-title: Statistical considerations in the quantitation of serum immunoglobulin levels using the enzyme-linked immunosorbent assay (ELISA) publication-title: J. Immunol. Methods doi: 10.1016/0022-1759(87)90289-4 – volume: 12 start-page: 2938 year: 2021 ident: ref_16 article-title: Cross-reactive serum and memory B-cell responses to spike protein in SARS-CoV-2 and endemic coronavirus infection publication-title: Nat. Commun. doi: 10.1038/s41467-021-23074-3 – volume: 40 start-page: 207 year: 2007 ident: ref_26 article-title: Seroepidemiology of group I human coronaviruses in children publication-title: J. Clin. Virol. doi: 10.1016/j.jcv.2007.08.007 – ident: ref_19 doi: 10.1371/journal.pone.0146021 – volume: 39 start-page: 355 year: 2020 ident: ref_29 article-title: Coronavirus Infections in Children Including COVID-19: An Overview of the Epidemiology, Clinical Features, Diagnosis, Treatment and Prevention Options in Children publication-title: Pediatr. Infect. Dis. J. doi: 10.1097/INF.0000000000002660 – volume: 2 start-page: e55 year: 2016 ident: ref_24 article-title: Probabilistic programming in Python using PyMC3 publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.55 – volume: 223 start-page: 56 year: 2021 ident: ref_13 article-title: Analysis of Humoral Immune Responses in Patients with Severe Acute Respiratory Syndrome Coronavirus 2 Infection publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiaa680 – volume: 108 start-page: 270 year: 2009 ident: ref_28 article-title: Human coronaviruses 229E and NL63: Close yet still so far publication-title: J. Formos. Med. Assoc. doi: 10.1016/S0929-6646(09)60066-8 – ident: ref_15 doi: 10.3390/microorganisms8121993 – ident: ref_4 – volume: 382 start-page: 727 year: 2020 ident: ref_1 article-title: A Novel Coronavirus from Patients with Pneumonia in China, 2019 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2001017 – ident: ref_9 doi: 10.1101/2020.06.22.20137695 – ident: ref_2 – volume: 221 start-page: 35 year: 1998 ident: ref_20 article-title: A statistically defined endpoint titer determination method for immunoassays publication-title: J. Immunol. Methods doi: 10.1016/S0022-1759(98)00170-7 – volume: 48 start-page: 2940 year: 2010 ident: ref_5 article-title: Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method publication-title: J. Clin. Microbiol. Am. Soc. Microbiol. doi: 10.1128/JCM.00636-10 – volume: 131 start-page: 1 year: 2021 ident: ref_14 article-title: Antibody responses to endemic coronaviruses modulate COVID-19 convalescent plasma functionality publication-title: J. Clin. Investig. doi: 10.1172/JCI146927 – volume: 217 start-page: 55 year: 2015 ident: ref_31 article-title: Optimization of an enzyme-linked lectin assay suitable for rapid antigenic characterization of the neuraminidase of human influenza A(H3N2) viruses publication-title: J. Virol. Methods doi: 10.1016/j.jviromet.2015.02.014 – ident: ref_11 doi: 10.1101/2020.10.10.20210070 – volume: 10 start-page: 664 year: 2021 ident: ref_12 article-title: Cross-reactive antibody against human coronavirus OC43 spike protein correlates with disease severity in COVID-19 patients: A retrospective study publication-title: Emerg. Microbes Infect. doi: 10.1080/22221751.2021.1905488 – volume: 369 start-page: 1501 year: 2020 ident: ref_22 article-title: Structure-based design of prefusion-stabilized SARS-CoV-2 spikes publication-title: Science doi: 10.1126/science.abd0826 – volume: 184 start-page: 1858 year: 2021 ident: ref_10 article-title: Seasonal human coronavirus antibodies are boosted upon SARS-CoV-2 infection but not associated with protection publication-title: Cell doi: 10.1016/j.cell.2021.02.010 |
SSID | ssib007290145 ssj0066907 ssib038073297 |
Score | 2.3110714 |
Snippet | Assays using ELISA measurements on serially diluted serum samples have been heavily used to measure serum reactivity to SARS-CoV-2 antigens and are widely used... |
SourceID | doaj pubmedcentral proquest pubmed crossref nii |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 562 |
SubjectTerms | Antibodies Antibodies, Viral Antigens Bayes Theorem Bayesian analysis Bayesian theory blood serum computer software Coronaviruses COVID-19 COVID-19 - diagnosis COVID-19 infection Disease transmission ELISA Enzyme-Linked Immunosorbent Assay HCoV-229E HCoV-HKU1 HCoV-NL63 HCoV-OC43 Humans Infections Influenza Laboratories Microbiology Middle East respiratory syndrome nucleoproteins Pandemics QR1-502 Respiratory diseases SARS-CoV-2 SARS-CoV-2; HCoV-OC43; HCoV-HKU1; HCoV-229E; HCoV-NL63; ELISA; Bayesian analysis; hierarchical modelling; endpoint assay; inflection titer Seasons Serology Severe acute respiratory syndrome coronavirus 2 Spike protein Standard deviation virology Workload |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEOglNGmbunmglh56EVlbsiQfNy-2pckhm4TcjF6mC4tdkk0g_z4zktdkQ2gvBWOwNDbSaOT5xpa-IeQbYHRVCCeZNyEwYUXFkLSdCaNt5QRX3uDm5LNzObkSP2_Km2epvnBNWKIHToo7yKuQSzh0HuG9tM4BQpeusb5w3EX2UvB5y2AqvYMlxnyJR4hDUH_wgKx06OpXvE8k6Qef0s5mr-HLl8skn_md03dkoweMdJwauknehHaLrKcUko_vSTOm591DmNOzmAqaLjp6gWysgZ78-jEd0_T1ix7PkoVRGA7zSPET-bwznvYgFG-bji-m7Ki7ZgU1rYcbTUTpdAJldx_I1enJ5dGE9bkTmIMQYcG0caZsQHGFDY0QpQFgpXwJ6uOAESTnTptcjjzyEYKHlo0CMWsLoTlcAqz4SNbarg2fCFUwz52RSIUvBcQ_2hspjLFcN74yZZWR70ud1q4nFsf8FvMaAgxUfz2oPyNfB9E_iU3jNaFDHJhBAAmwYwGYRd2bRf0vs8jIHgwrtAfPuVZIKyeQfb_EFIajUUZ2lwNe97P2rgZwCN0D0At9-jJUw3zDnyimDd19lBHx96z6qwy8uyU8LSPbyYaG3nDA17JS0AC1Yl0r3V2taWe_I--3rjAbj_j8P_SzQ94WuJEDV9NVu2RtcXsf9gBeLex-nElPbsocbQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9BJyReEN9kH8ggHnix1iSOYz-hbnQqiFWoZWhvkWM7o1KVjLWbtP-eu8QNFE17qZTkUtk-393vbOd3AB8Qo-eJsJI74z0XpdCcSNu5MKrUVqS5M_Rx8ulUTs7E1_PsPCy4rcKxyo1PbB21ayytkR9i4E4kulOtP13-5lQ1inZXQwmNh7CDLlhlA9g5Gk-_zza-WFLu1_EJpZjcH94QOx2F_K0o1JL1Y2ypF4u7cOb_xyX_iT8nT-FJAI5s1Gn6GTzw9XN41JWSvH0B1YhNmxu_ZKdtSWi2btiMWFk9G3_7Mh-xbhWMfV50M42hWswto6XyZWMcC2CUXpuPZnN-3PzkCTO1wxdNi9bZBO-tXsLZyfjH8YSHGgrcYqqw5spYk1XSx0npKyEygwArd5ksbYpYQaapVSaWQ0e8hBipZZWjWFkmQqV4ifDiFQzqpvZvgOVo79ZIosSXAvMg5YwUxpSpqpw2mY7g42ZMCxsIxqnOxbLARIOGv-iHP4L3vehlx6pxl9ARKaYXICLs9kZzdVEEuypi7WPsHbGqUfaH_bKYwElblS6xqc0iOEC1YnvoN1Y50csJYuHPqJThcBjB_kbhRbDeVfF3rkXwrn-MdkebKab2zXUrI9pt2vxeGfThEv8tgtfdHOp7kyLOljrHBuRbs2uru9tP6sWvlv9baarKI3bvb_oePE7oUw06L6f3YbC-uvYHCKDW5dtgJX8AAVQVpA priority: 102 providerName: ProQuest |
Title | A Novel Method to Reduce ELISA Serial Dilution Assay Workload Applied to SARS-CoV-2 and Seasonal HCoVs |
URI | https://cir.nii.ac.jp/crid/1872835442625593600 https://www.ncbi.nlm.nih.gov/pubmed/35336970 https://www.proquest.com/docview/2642680199 https://www.proquest.com/docview/2644002897 https://www.proquest.com/docview/2648876642 https://pubmed.ncbi.nlm.nih.gov/PMC8955134 https://doaj.org/article/19e16e1681004286bcc9666cfbd2c3c5 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB71IVAvFe-6tNGCOHAxxPZ61z4glJaUgEiEEoJys9a7axopsts0rci_Z8YvNShwsWTv2PJ4Zjzf7NrfALxBjC59roVrlLUuT3nsEmm7y1WUxpoH0ij6OXk4EoMp_zoLZzvQ9NisH-DN1tKO-klNl4t3v6_XHzHgP1DFiSX7-zvinKNEvgv7mJAEOfeQt4sJggrAilRoU_wAHgaIdkRMnYrvZaWSvB9zTT6fb8Odf38-eS8fXTyCwxpIsl5l-cewY_Mn8KBqLbl-ClmPjYo7u2DDskU0WxVsTCytlvW_fZn0WDUrxj7NK89jaCa1ZjR1viiUYTU4pdMmvfHEPS9-uj5TucETVYne2QCP3TyD6UX_x_nArXsquBpLh5UbKa3CTFjPT23GeagQcEkTilQHiB1EEOhIeaJriKcQM7fIJIqlqc-jAHcRbjyHvbzI7REwifGvlSCKfMGxLoqMElypNIgyE6swduBt80wTXROOU9-LRYKFB1kiaS3hwOtW9Kpi2dgmdEaGaQWIGLs8UCx_JXWcJV5sPdSOWNaoGkS9NBZ0Qmep8XWgQwdO0ax4P7T1Ikl0c5xY-UNqbdjtOnDSGDxpnDFB0IjqIRhGnV61wxiHtLiiclvcljK8XLaV_5XBd7rAqznwovKhVpvGEx2QG961oe7mSD6_LPnAo5i69PDjf17zJRz49NcGfToXn8DeanlrTxFLrdIO7MqZ7MD-WX_0fdwpZyRw-3nmdcoY-gMaIRnk |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVgguiDeGFhYEEhersXe99h4QSttUCU0ilLSoN3e9XkOkyC5NWpQ_xW9kxi8IqnrrxZLtsbWP2Zlv9vENwHvE6KEvjHRTba0rEqFcIm13hY4SZQQPU02Hk0dj2T8RX06D0w343ZyFoW2VjU0sDXVaGJoj30XH7Us0p0p9Pv_pUtYoWl1tUmhUanFkV78wZFt8Ghxg_37w_cPe8X7frbMKuAbB89KNtNFBJq3nJzYTItAIOcI0kInh6D0l5ybSnuykxNSHvktmIYoliS8ijrfocPG_d2ALYYbCUbS11xt_nTS2X1KsWfEXca46u1fEhkcQY83rlckB0Jfls9l1uPb_7Zn_-LvDh_CgBqqsW2nWI9iw-WO4W6WuXD2BrMvGxZWds1GZgpotCzYhFljLesPBtMuqWTd2MKs0m6Ea6BWjqfl5oVNWg1_6bNqdTN394pvrM52n-KEuowPWx2eLp3ByK637DDbzIrcvgIVoX4yWRMEvBcZdUaql0DrhUZYqHSgHPjZtGpua0JzyasxjDGyo-eO2-R1414qeVywe1wntUce0AkS8XT4oLr7H9TiOPWU9rB2xuFG0ifUyGDBKkyWpb7gJHNjBbsXy0NWLQqKzE8T6H1DqxE7Hge2mw-PaWiziv7rtwNv2NY5zWrzRuS0uSxlRLguHN8qgz5D4NweeVzrU1oYjrpcqxAKEa9q1Vt31N_nsR8k3HinKAiRe3lz0N3CvfzwaxsPB-OgV3PfpmAjt1VPbsLm8uLQ7CN6Wyet6xDA4u-1B-gdW5VDb |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuiDeGFhYEEpdVYnu99h4QSptECW2jKqGoN3e9XkOkyC5NWpS_xq9jxo9AUNVbL5Zsj619zOw3s49vAN6jjx56wkieamu5SITiRNrOhY4SZYQfppoOJx-N5fBEfDkNTrfgd3MWhrZVNmNiOVCnhaE58jYCtydxOFWqndXbIo57g8_nPzllkKKV1iadRqUiB3b1C8O3xadRD_v6g-cN-l_3h7zOMMANOtJLHmmjg0xa10tsJkSg0f0I00Amxkcklb5vIu3KTkqsfYhjMgtRLEk8Efl4i-CL_70D2yGiYtSC7b3--HjS4ICkuLPiMvJ91WlfETMeuRsbCFgmCkBcy2ez63zc_7dq_oN9g4fwoHZaWbfSskewZfPHcLdKY7l6AlmXjYsrO2dHZTpqtizYhBhhLesfjqZdVs3Asd6s0nKGKqFXjKbp54VOWe0I02fT7mTK94tv3GM6T_FDXUYKbIjPFk_h5FZa9xm08iK3L4CFONYYLYmOXwqMwaJUS6F14kdZqnSgHPjYtGlsanJzyrExjzHIoeaP183vwLu16HnF6HGd0B51zFqASLjLB8XF97i26dhV1sXaEaMbRZ5YL4PBozRZknrGN4EDu9itWB66ulFI1HaCMgAElEax03Fgp-nwuB45FvFfPXfg7fo12jwt5OjcFpeljCiXiMMbZRA_JP7NgeeVDq1r46OPL1WIBQg3tGujuptv8tmPkns8UpQRSLy8uehv4B4aZ3w4Gh-8gvsenRihbXtqB1rLi0u7i37cMnldGwyDs9u20T85DlUH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Method+to+Reduce+ELISA+Serial+Dilution+Assay+Workload+Applied+to+SARS-CoV-2+and+Seasonal+HCoVs&rft.jtitle=Viruses&rft.au=Pattinson%2C+David&rft.au=Jester%2C+Peter&rft.au=Guan%2C+Lizheng&rft.au=Yamayoshi%2C+Seiya&rft.date=2022-03-09&rft.eissn=1999-4915&rft.volume=14&rft.issue=3&rft_id=info:doi/10.3390%2Fv14030562&rft_id=info%3Apmid%2F35336970&rft.externalDocID=35336970 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4915&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4915&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4915&client=summon |