A Novel Method to Reduce ELISA Serial Dilution Assay Workload Applied to SARS-CoV-2 and Seasonal HCoVs

Assays using ELISA measurements on serially diluted serum samples have been heavily used to measure serum reactivity to SARS-CoV-2 antigens and are widely used in virology and elsewhere in biology. We test a method using Bayesian hierarchical modelling to reduce the workload of these assays and meas...

Full description

Saved in:
Bibliographic Details
Published inViruses Vol. 14; no. 3; p. 562
Main Authors Pattinson, David, Jester, Peter, Guan, Lizheng, Yamayoshi, Seiya, Chiba, Shiho, Presler, Robert, Rao, Hongyu, Iwatsuki-Horimoto, Kiyoko, Ikeda, Nobuhiro, Hagihara, Masao, Uchida, Tomoyuki, Mitamura, Keiko, Halfmann, Peter, Neumann, Gabriele, Kawaoka, Yoshihiro
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 09.03.2022
MDPI
Subjects
Online AccessGet full text
ISSN1999-4915
1999-4915
DOI10.3390/v14030562

Cover

Loading…
Abstract Assays using ELISA measurements on serially diluted serum samples have been heavily used to measure serum reactivity to SARS-CoV-2 antigens and are widely used in virology and elsewhere in biology. We test a method using Bayesian hierarchical modelling to reduce the workload of these assays and measure reactivity of SARS-CoV-2 and HCoV antigens to human serum samples collected before and during the COVID-19 pandemic. Inflection titers for SARS-CoV-2 full-length spike protein (S1S2), spike protein receptor-binding domain (RBD), and nucleoprotein (N) inferred from 3 spread-out dilutions correlated with those inferred from 8 consecutive dilutions with an R2 value of 0.97 or higher. We confirm existing findings showing a small proportion of pre-pandemic human serum samples contain cross-reactive antibodies to SARS-CoV-2 S1S2 and N, and that SARS-CoV-2 infection increases serum reactivity to the beta-HCoVs OC43 and HKU1 S1S2. In serial dilution assays, large savings in resources and/or increases in throughput can be achieved by reducing the number of dilutions measured and using Bayesian hierarchical modelling to infer inflection or endpoint titers. We have released software for conducting these types of analysis.
AbstractList Assays using ELISA measurements on serially diluted serum samples have been heavily used to measure serum reactivity to SARS-CoV-2 antigens and are widely used in virology and elsewhere in biology. We test a method using Bayesian hierarchical modelling to reduce the workload of these assays and measure reactivity of SARS-CoV-2 and HCoV antigens to human serum samples collected before and during the COVID-19 pandemic. Inflection titers for SARS-CoV-2 full-length spike protein (S1S2), spike protein receptor-binding domain (RBD), and nucleoprotein (N) inferred from 3 spread-out dilutions correlated with those inferred from 8 consecutive dilutions with an R value of 0.97 or higher. We confirm existing findings showing a small proportion of pre-pandemic human serum samples contain cross-reactive antibodies to SARS-CoV-2 S1S2 and N, and that SARS-CoV-2 infection increases serum reactivity to the beta-HCoVs OC43 and HKU1 S1S2. In serial dilution assays, large savings in resources and/or increases in throughput can be achieved by reducing the number of dilutions measured and using Bayesian hierarchical modelling to infer inflection or endpoint titers. We have released software for conducting these types of analysis.
Assays using ELISA measurements on serially diluted serum samples have been heavily used to measure serum reactivity to SARS-CoV-2 antigens and are widely used in virology and elsewhere in biology. We test a method using Bayesian hierarchical modelling to reduce the workload of these assays and measure reactivity of SARS-CoV-2 and HCoV antigens to human serum samples collected before and during the COVID-19 pandemic. Inflection titers for SARS-CoV-2 full-length spike protein (S1S2), spike protein receptor-binding domain (RBD), and nucleoprotein (N) inferred from 3 spread-out dilutions correlated with those inferred from 8 consecutive dilutions with an R² value of 0.97 or higher. We confirm existing findings showing a small proportion of pre-pandemic human serum samples contain cross-reactive antibodies to SARS-CoV-2 S1S2 and N, and that SARS-CoV-2 infection increases serum reactivity to the beta-HCoVs OC43 and HKU1 S1S2. In serial dilution assays, large savings in resources and/or increases in throughput can be achieved by reducing the number of dilutions measured and using Bayesian hierarchical modelling to infer inflection or endpoint titers. We have released software for conducting these types of analysis.
Assays using ELISA measurements on serially diluted serum samples have been heavily used to measure serum reactivity to SARS-CoV-2 antigens and are widely used in virology and elsewhere in biology. We test a method using Bayesian hierarchical modelling to reduce the workload of these assays and measure reactivity of SARS-CoV-2 and HCoV antigens to human serum samples collected before and during the COVID-19 pandemic. Inflection titers for SARS-CoV-2 full-length spike protein (S1S2), spike protein receptor-binding domain (RBD), and nucleoprotein (N) inferred from 3 spread-out dilutions correlated with those inferred from 8 consecutive dilutions with an R2 value of 0.97 or higher. We confirm existing findings showing a small proportion of pre-pandemic human serum samples contain cross-reactive antibodies to SARS-CoV-2 S1S2 and N, and that SARS-CoV-2 infection increases serum reactivity to the beta-HCoVs OC43 and HKU1 S1S2. In serial dilution assays, large savings in resources and/or increases in throughput can be achieved by reducing the number of dilutions measured and using Bayesian hierarchical modelling to infer inflection or endpoint titers. We have released software for conducting these types of analysis.
Assays using ELISA measurements on serially diluted serum samples have been heavily used to measure serum reactivity to SARS-CoV-2 antigens and are widely used in virology and elsewhere in biology. We test a method using Bayesian hierarchical modelling to reduce the workload of these assays and measure reactivity of SARS-CoV-2 and HCoV antigens to human serum samples collected before and during the COVID-19 pandemic. Inflection titers for SARS-CoV-2 full-length spike protein (S1S2), spike protein receptor-binding domain (RBD), and nucleoprotein (N) inferred from 3 spread-out dilutions correlated with those inferred from 8 consecutive dilutions with an R2 value of 0.97 or higher. We confirm existing findings showing a small proportion of pre-pandemic human serum samples contain cross-reactive antibodies to SARS-CoV-2 S1S2 and N, and that SARS-CoV-2 infection increases serum reactivity to the beta-HCoVs OC43 and HKU1 S1S2. In serial dilution assays, large savings in resources and/or increases in throughput can be achieved by reducing the number of dilutions measured and using Bayesian hierarchical modelling to infer inflection or endpoint titers. We have released software for conducting these types of analysis.Assays using ELISA measurements on serially diluted serum samples have been heavily used to measure serum reactivity to SARS-CoV-2 antigens and are widely used in virology and elsewhere in biology. We test a method using Bayesian hierarchical modelling to reduce the workload of these assays and measure reactivity of SARS-CoV-2 and HCoV antigens to human serum samples collected before and during the COVID-19 pandemic. Inflection titers for SARS-CoV-2 full-length spike protein (S1S2), spike protein receptor-binding domain (RBD), and nucleoprotein (N) inferred from 3 spread-out dilutions correlated with those inferred from 8 consecutive dilutions with an R2 value of 0.97 or higher. We confirm existing findings showing a small proportion of pre-pandemic human serum samples contain cross-reactive antibodies to SARS-CoV-2 S1S2 and N, and that SARS-CoV-2 infection increases serum reactivity to the beta-HCoVs OC43 and HKU1 S1S2. In serial dilution assays, large savings in resources and/or increases in throughput can be achieved by reducing the number of dilutions measured and using Bayesian hierarchical modelling to infer inflection or endpoint titers. We have released software for conducting these types of analysis.
Assays using ELISA measurements on serially diluted serum samples have been heavily used to measure serum reactivity to SARS-CoV-2 antigens and are widely used in virology and elsewhere in biology. We test a method using Bayesian hierarchical modelling to reduce the workload of these assays and measure reactivity of SARS-CoV-2 and HCoV antigens to human serum samples collected before and during the COVID-19 pandemic. Inflection titers for SARS-CoV-2 full-length spike protein (S1S2), spike protein receptor-binding domain (RBD), and nucleoprotein (N) inferred from 3 spread-out dilutions correlated with those inferred from 8 consecutive dilutions with an R 2 value of 0.97 or higher. We confirm existing findings showing a small proportion of pre-pandemic human serum samples contain cross-reactive antibodies to SARS-CoV-2 S1S2 and N, and that SARS-CoV-2 infection increases serum reactivity to the beta-HCoVs OC43 and HKU1 S1S2. In serial dilution assays, large savings in resources and/or increases in throughput can be achieved by reducing the number of dilutions measured and using Bayesian hierarchical modelling to infer inflection or endpoint titers. We have released software for conducting these types of analysis.
Author Gabriele Neumann
Peter Jester
Tomoyuki Uchida
Keiko Mitamura
Shiho Chiba
Yoshihiro Kawaoka
Lizheng Guan
Hongyu Rao
Nobuhiro Ikeda
Peter Halfmann
Kiyoko Iwatsuki-Horimoto
Seiya Yamayoshi
Masao Hagihara
Robert Presler
David Pattinson
AuthorAffiliation 1 Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; david.pattinson@wisc.edu (D.P.); peter.jester@wisc.edu (P.J.); lizheng.guan@wisc.edu (L.G.); shiho.chiba@wisc.edu (S.C.); robert.presler@wisc.edu (R.P.); hongyu.rao@wisc.edu (H.R.); peter.halfmann@wisc.edu (P.H.); gabriele.neumann@wisc.edu (G.N.)
6 Division of Infection Control, Eiju General Hospital, Tokyo 104-0045, Japan; mitamurakeiko77@gmail.com
4 Department of General Internal Medicine, Eiju General Hospital, Tokyo 104-0045, Japan; n-ikeda@eijuhp.com
7 Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-0071, Japan
3 The Research Center for Global Viral Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8665, Japan
5 Department of Hematology, Eiju General Hospital, Tokyo 104-0045, Japan; hagihara@eijuhp.com (M.H.); i8i_i8i@hot
AuthorAffiliation_xml – name: 4 Department of General Internal Medicine, Eiju General Hospital, Tokyo 104-0045, Japan; n-ikeda@eijuhp.com
– name: 1 Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; david.pattinson@wisc.edu (D.P.); peter.jester@wisc.edu (P.J.); lizheng.guan@wisc.edu (L.G.); shiho.chiba@wisc.edu (S.C.); robert.presler@wisc.edu (R.P.); hongyu.rao@wisc.edu (H.R.); peter.halfmann@wisc.edu (P.H.); gabriele.neumann@wisc.edu (G.N.)
– name: 5 Department of Hematology, Eiju General Hospital, Tokyo 104-0045, Japan; hagihara@eijuhp.com (M.H.); i8i_i8i@hotmail.com (T.U.)
– name: 6 Division of Infection Control, Eiju General Hospital, Tokyo 104-0045, Japan; mitamurakeiko77@gmail.com
– name: 2 Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-0071, Japan; yamayo@ims.u-tokyo.ac.jp (S.Y.); kenken@ims.u-tokyo.ac.jp (K.I.-H.)
– name: 7 Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-0071, Japan
– name: 3 The Research Center for Global Viral Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8665, Japan
Author_xml – sequence: 1
  givenname: David
  orcidid: 0000-0003-0001-8203
  surname: Pattinson
  fullname: Pattinson, David
– sequence: 2
  givenname: Peter
  orcidid: 0000-0003-2802-7451
  surname: Jester
  fullname: Jester, Peter
– sequence: 3
  givenname: Lizheng
  surname: Guan
  fullname: Guan, Lizheng
– sequence: 4
  givenname: Seiya
  orcidid: 0000-0001-7768-5157
  surname: Yamayoshi
  fullname: Yamayoshi, Seiya
– sequence: 5
  givenname: Shiho
  surname: Chiba
  fullname: Chiba, Shiho
– sequence: 6
  givenname: Robert
  orcidid: 0000-0002-2509-6219
  surname: Presler
  fullname: Presler, Robert
– sequence: 7
  givenname: Hongyu
  surname: Rao
  fullname: Rao, Hongyu
– sequence: 8
  givenname: Kiyoko
  surname: Iwatsuki-Horimoto
  fullname: Iwatsuki-Horimoto, Kiyoko
– sequence: 9
  givenname: Nobuhiro
  surname: Ikeda
  fullname: Ikeda, Nobuhiro
– sequence: 10
  givenname: Masao
  surname: Hagihara
  fullname: Hagihara, Masao
– sequence: 11
  givenname: Tomoyuki
  surname: Uchida
  fullname: Uchida, Tomoyuki
– sequence: 12
  givenname: Keiko
  surname: Mitamura
  fullname: Mitamura, Keiko
– sequence: 13
  givenname: Peter
  surname: Halfmann
  fullname: Halfmann, Peter
– sequence: 14
  givenname: Gabriele
  surname: Neumann
  fullname: Neumann, Gabriele
– sequence: 15
  givenname: Yoshihiro
  surname: Kawaoka
  fullname: Kawaoka, Yoshihiro
BackLink https://cir.nii.ac.jp/crid/1872835442625593600$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/35336970$$D View this record in MEDLINE/PubMed
BookMark eNqNkstuEzEUhkeoiJbSBS-ALMECFkN9v2wqjUKhkQJIDZel5fF4WhdnHOxJpL49TlKitmLBxpfj7__PsX2eVwdDHFxVvUTwPSEKnq4RhQQyjp9UR0gpVVOF2MG99WF1krNvIRRYQUTZs-qQMEK4EvCo6hvwJa5dAJ_deB07MEZw6bqVdeB8Np03YO6SNwF88GE1-jiAJmdzC37G9CtE04FmuQzebWXz5nJeT-KPGgMzdEVochyK9KLE8ovqaW9Cdid383H1_eP5t8lFPfv6aTppZrVlSoy1NNawnjuEW9dTygxDSHSMt5YIBjkhVhrEYYcpERxR3ouCtS2mkpStoOS4mu58u2hu9DL5hUm3Ohqvt4GYrrRJo7fBaaQcKpm4RBBSLEsOqzjntm87bIllxets57VctQvXWTeMyYQHpg9PBn-tr-JaS8UYIpti3t4ZpPh75fKoFz5bF4IZXFxljTmVUnBO8f-gFEIslSjo60foTVyl8tJbCnMJy88X6tX94vdV__35ArzbATbFnJPr9wiCetNYet9YhT19xFo_mk0_lHv78E_Fm51i8L7AmxFJgSVhtJSIGVOEQ0j-AMkg1CA
CitedBy_id crossref_primary_10_1016_j_omtm_2024_101286
crossref_primary_10_1111_irv_13104
crossref_primary_10_3390_vaccines13030268
crossref_primary_10_1016_j_ebiom_2024_105103
Cites_doi 10.1016/j.tim.2016.03.003
10.1016/bs.aivir.2018.01.001
10.1038/s41591-020-0913-5
10.1093/infdis/jiab333
10.1016/j.eclinm.2021.100734
10.1128/JCM.00533-08
10.1016/j.mayocp.2020.05.032
10.1016/0022-1759(87)90289-4
10.1038/s41467-021-23074-3
10.1016/j.jcv.2007.08.007
10.1371/journal.pone.0146021
10.1097/INF.0000000000002660
10.7717/peerj-cs.55
10.1093/infdis/jiaa680
10.1016/S0929-6646(09)60066-8
10.3390/microorganisms8121993
10.1056/NEJMoa2001017
10.1101/2020.06.22.20137695
10.1016/S0022-1759(98)00170-7
10.1128/JCM.00636-10
10.1172/JCI146927
10.1016/j.jviromet.2015.02.014
10.1101/2020.10.10.20210070
10.1080/22221751.2021.1905488
10.1126/science.abd0826
10.1016/j.cell.2021.02.010
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID RYH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7U9
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOA
DOI 10.3390/v14030562
DatabaseName CiNii Complete
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA
Publicly Available Content Database

MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1999-4915
ExternalDocumentID oai_doaj_org_article_19e16e1681004286bcc9666cfbd2c3c5
PMC8955134
35336970
10_3390_v14030562
Genre Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: Japan Agency for Medical Research and Development
  grantid: 20fk0108272
– fundername: CDC HHS
  grantid: 75D30120C09259
– fundername: Japan Agency for Medical Research and Development
  grantid: 20fk0108527
– fundername: Japan Agency for Medical Research and Development
  grantid: 20fk0108301
GroupedDBID ---
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
ABDBF
ABUWG
ACUHS
AFKRA
AFPKN
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
DIK
E3Z
EBD
ESX
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M48
M7P
MODMG
M~E
O5R
O5S
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RPM
RYH
TR2
TUS
UKHRP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
3V.
7U9
7XB
8FK
AZQEC
COVID
DWQXO
GNUQQ
H94
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
7S9
L.6
5PM
PUEGO
ID FETCH-LOGICAL-c597t-8aca5f6e12bef445a5117d56bc3750633c8a160d24376146f7ef4bb2483614743
IEDL.DBID M48
ISSN 1999-4915
IngestDate Wed Aug 27 01:32:08 EDT 2025
Thu Aug 21 14:31:17 EDT 2025
Fri Jul 11 11:49:16 EDT 2025
Thu Jul 10 17:13:44 EDT 2025
Fri Jul 25 12:03:35 EDT 2025
Mon Jul 21 06:05:05 EDT 2025
Thu Apr 24 22:55:36 EDT 2025
Tue Jul 01 02:48:33 EDT 2025
Thu Jun 26 22:48:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords SARS-CoV-2
HCoV-229E
HCoV-HKU1
HCoV-NL63
hierarchical modelling
inflection titer
endpoint assay
Bayesian analysis
ELISA
HCoV-OC43
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c597t-8aca5f6e12bef445a5117d56bc3750633c8a160d24376146f7ef4bb2483614743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
Postal address: Influenza Research Institute, 575 Science Dr, Madison, WI 53711, USA.
ORCID 0000-0003-0001-8203
0000-0001-7768-5157
0000-0003-2802-7451
0000-0002-2509-6219
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/v14030562
PMID 35336970
PQID 2642680199
PQPubID 2032319
ParticipantIDs doaj_primary_oai_doaj_org_article_19e16e1681004286bcc9666cfbd2c3c5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8955134
proquest_miscellaneous_2648876642
proquest_miscellaneous_2644002897
proquest_journals_2642680199
pubmed_primary_35336970
crossref_primary_10_3390_v14030562
crossref_citationtrail_10_3390_v14030562
nii_cinii_1872835442625593600
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220309
PublicationDateYYYYMMDD 2022-03-09
PublicationDate_xml – month: 3
  year: 2022
  text: 20220309
  day: 9
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Viruses
PublicationTitleAlternate Viruses
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Gaunt (ref_5) 2010; 48
Amanat (ref_21) 2020; 26
Hsieh (ref_22) 2020; 369
Karpinski (ref_25) 1987; 103
Corman (ref_7) 2018; 100
Zimmermann (ref_29) 2020; 39
ref_11
Rucinski (ref_18) 2020; 95
ref_30
ref_19
Frey (ref_20) 1998; 221
Henss (ref_13) 2021; 223
Shao (ref_26) 2007; 40
Yue (ref_8) 2020; 102
ref_15
Yamayoshi (ref_23) 2021; 32
Shrwani (ref_17) 2021; 224
Gao (ref_32) 2016; 115
Zhu (ref_1) 2020; 382
Su (ref_6) 2016; 24
Song (ref_16) 2021; 12
Dijkman (ref_27) 2008; 46
ref_3
ref_2
Westgeest (ref_31) 2015; 217
Anderson (ref_10) 2021; 184
Morgenlander (ref_14) 2021; 131
ref_9
Dijkman (ref_28) 2009; 108
ref_4
Guo (ref_12) 2021; 10
Salvatier (ref_24) 2016; 2
References_xml – volume: 24
  start-page: 490
  year: 2016
  ident: ref_6
  article-title: Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2016.03.003
– volume: 100
  start-page: 163
  year: 2018
  ident: ref_7
  article-title: Hosts and Sources of Endemic Human Coronaviruses
  publication-title: Adv. Virus Res.
  doi: 10.1016/bs.aivir.2018.01.001
– volume: 26
  start-page: 1033
  year: 2020
  ident: ref_21
  article-title: A serological assay to detect SARS-CoV-2 seroconversion in humans
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0913-5
– ident: ref_30
– ident: ref_3
– volume: 224
  start-page: 1305
  year: 2021
  ident: ref_17
  article-title: Detection of serum cross-reactive antibodies and memory response to SARS-CoV-2 in pre-pandemic and post-COVID-19 convalescent samples
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jiab333
– volume: 32
  start-page: 100734
  year: 2021
  ident: ref_23
  article-title: Antibody titers against SARS-CoV-2 decline, but do not disappear for several months
  publication-title: EClinicalMedicine
  doi: 10.1016/j.eclinm.2021.100734
– volume: 46
  start-page: 2368
  year: 2008
  ident: ref_27
  article-title: Human coronavirus NL63 and 229E seroconversion in children
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.00533-08
– volume: 102
  start-page: 557
  year: 2020
  ident: ref_8
  article-title: High prevalence of pre-existing serological cross-reactivity against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in sub-Saharan Africa
  publication-title: Int. J. Infect. Dis.
– volume: 95
  start-page: 1701
  year: 2020
  ident: ref_18
  article-title: Seasonality of Coronavirus 229E, HKU1, NL63, and OC43 from 2014 to 2020
  publication-title: Mayo Clin. Proc.
  doi: 10.1016/j.mayocp.2020.05.032
– volume: 115
  start-page: e54573
  year: 2016
  ident: ref_32
  article-title: Measuring Influenza Neuraminidase Inhibition Antibody Titers by Enzyme-linked Lectin Assay
  publication-title: J. Vis. Exp.
– volume: 103
  start-page: 189
  year: 1987
  ident: ref_25
  article-title: Statistical considerations in the quantitation of serum immunoglobulin levels using the enzyme-linked immunosorbent assay (ELISA)
  publication-title: J. Immunol. Methods
  doi: 10.1016/0022-1759(87)90289-4
– volume: 12
  start-page: 2938
  year: 2021
  ident: ref_16
  article-title: Cross-reactive serum and memory B-cell responses to spike protein in SARS-CoV-2 and endemic coronavirus infection
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23074-3
– volume: 40
  start-page: 207
  year: 2007
  ident: ref_26
  article-title: Seroepidemiology of group I human coronaviruses in children
  publication-title: J. Clin. Virol.
  doi: 10.1016/j.jcv.2007.08.007
– ident: ref_19
  doi: 10.1371/journal.pone.0146021
– volume: 39
  start-page: 355
  year: 2020
  ident: ref_29
  article-title: Coronavirus Infections in Children Including COVID-19: An Overview of the Epidemiology, Clinical Features, Diagnosis, Treatment and Prevention Options in Children
  publication-title: Pediatr. Infect. Dis. J.
  doi: 10.1097/INF.0000000000002660
– volume: 2
  start-page: e55
  year: 2016
  ident: ref_24
  article-title: Probabilistic programming in Python using PyMC3
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.55
– volume: 223
  start-page: 56
  year: 2021
  ident: ref_13
  article-title: Analysis of Humoral Immune Responses in Patients with Severe Acute Respiratory Syndrome Coronavirus 2 Infection
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jiaa680
– volume: 108
  start-page: 270
  year: 2009
  ident: ref_28
  article-title: Human coronaviruses 229E and NL63: Close yet still so far
  publication-title: J. Formos. Med. Assoc.
  doi: 10.1016/S0929-6646(09)60066-8
– ident: ref_15
  doi: 10.3390/microorganisms8121993
– ident: ref_4
– volume: 382
  start-page: 727
  year: 2020
  ident: ref_1
  article-title: A Novel Coronavirus from Patients with Pneumonia in China, 2019
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2001017
– ident: ref_9
  doi: 10.1101/2020.06.22.20137695
– ident: ref_2
– volume: 221
  start-page: 35
  year: 1998
  ident: ref_20
  article-title: A statistically defined endpoint titer determination method for immunoassays
  publication-title: J. Immunol. Methods
  doi: 10.1016/S0022-1759(98)00170-7
– volume: 48
  start-page: 2940
  year: 2010
  ident: ref_5
  article-title: Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method
  publication-title: J. Clin. Microbiol. Am. Soc. Microbiol.
  doi: 10.1128/JCM.00636-10
– volume: 131
  start-page: 1
  year: 2021
  ident: ref_14
  article-title: Antibody responses to endemic coronaviruses modulate COVID-19 convalescent plasma functionality
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI146927
– volume: 217
  start-page: 55
  year: 2015
  ident: ref_31
  article-title: Optimization of an enzyme-linked lectin assay suitable for rapid antigenic characterization of the neuraminidase of human influenza A(H3N2) viruses
  publication-title: J. Virol. Methods
  doi: 10.1016/j.jviromet.2015.02.014
– ident: ref_11
  doi: 10.1101/2020.10.10.20210070
– volume: 10
  start-page: 664
  year: 2021
  ident: ref_12
  article-title: Cross-reactive antibody against human coronavirus OC43 spike protein correlates with disease severity in COVID-19 patients: A retrospective study
  publication-title: Emerg. Microbes Infect.
  doi: 10.1080/22221751.2021.1905488
– volume: 369
  start-page: 1501
  year: 2020
  ident: ref_22
  article-title: Structure-based design of prefusion-stabilized SARS-CoV-2 spikes
  publication-title: Science
  doi: 10.1126/science.abd0826
– volume: 184
  start-page: 1858
  year: 2021
  ident: ref_10
  article-title: Seasonal human coronavirus antibodies are boosted upon SARS-CoV-2 infection but not associated with protection
  publication-title: Cell
  doi: 10.1016/j.cell.2021.02.010
SSID ssib007290145
ssj0066907
ssib038073297
Score 2.3110714
Snippet Assays using ELISA measurements on serially diluted serum samples have been heavily used to measure serum reactivity to SARS-CoV-2 antigens and are widely used...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
nii
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 562
SubjectTerms Antibodies
Antibodies, Viral
Antigens
Bayes Theorem
Bayesian analysis
Bayesian theory
blood serum
computer software
Coronaviruses
COVID-19
COVID-19 - diagnosis
COVID-19 infection
Disease transmission
ELISA
Enzyme-Linked Immunosorbent Assay
HCoV-229E
HCoV-HKU1
HCoV-NL63
HCoV-OC43
Humans
Infections
Influenza
Laboratories
Microbiology
Middle East respiratory syndrome
nucleoproteins
Pandemics
QR1-502
Respiratory diseases
SARS-CoV-2
SARS-CoV-2; HCoV-OC43; HCoV-HKU1; HCoV-229E; HCoV-NL63; ELISA; Bayesian analysis; hierarchical modelling; endpoint assay; inflection titer
Seasons
Serology
Severe acute respiratory syndrome coronavirus 2
Spike protein
Standard deviation
virology
Workload
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEOglNGmbunmglh56EVlbsiQfNy-2pckhm4TcjF6mC4tdkk0g_z4zktdkQ2gvBWOwNDbSaOT5xpa-IeQbYHRVCCeZNyEwYUXFkLSdCaNt5QRX3uDm5LNzObkSP2_Km2epvnBNWKIHToo7yKuQSzh0HuG9tM4BQpeusb5w3EX2UvB5y2AqvYMlxnyJR4hDUH_wgKx06OpXvE8k6Qef0s5mr-HLl8skn_md03dkoweMdJwauknehHaLrKcUko_vSTOm591DmNOzmAqaLjp6gWysgZ78-jEd0_T1ix7PkoVRGA7zSPET-bwznvYgFG-bji-m7Ki7ZgU1rYcbTUTpdAJldx_I1enJ5dGE9bkTmIMQYcG0caZsQHGFDY0QpQFgpXwJ6uOAESTnTptcjjzyEYKHlo0CMWsLoTlcAqz4SNbarg2fCFUwz52RSIUvBcQ_2hspjLFcN74yZZWR70ud1q4nFsf8FvMaAgxUfz2oPyNfB9E_iU3jNaFDHJhBAAmwYwGYRd2bRf0vs8jIHgwrtAfPuVZIKyeQfb_EFIajUUZ2lwNe97P2rgZwCN0D0At9-jJUw3zDnyimDd19lBHx96z6qwy8uyU8LSPbyYaG3nDA17JS0AC1Yl0r3V2taWe_I--3rjAbj_j8P_SzQ94WuJEDV9NVu2RtcXsf9gBeLex-nElPbsocbQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9BJyReEN9kH8ggHnix1iSOYz-hbnQqiFWoZWhvkWM7o1KVjLWbtP-eu8QNFE17qZTkUtk-393vbOd3AB8Qo-eJsJI74z0XpdCcSNu5MKrUVqS5M_Rx8ulUTs7E1_PsPCy4rcKxyo1PbB21ayytkR9i4E4kulOtP13-5lQ1inZXQwmNh7CDLlhlA9g5Gk-_zza-WFLu1_EJpZjcH94QOx2F_K0o1JL1Y2ypF4u7cOb_xyX_iT8nT-FJAI5s1Gn6GTzw9XN41JWSvH0B1YhNmxu_ZKdtSWi2btiMWFk9G3_7Mh-xbhWMfV50M42hWswto6XyZWMcC2CUXpuPZnN-3PzkCTO1wxdNi9bZBO-tXsLZyfjH8YSHGgrcYqqw5spYk1XSx0npKyEygwArd5ksbYpYQaapVSaWQ0e8hBipZZWjWFkmQqV4ifDiFQzqpvZvgOVo79ZIosSXAvMg5YwUxpSpqpw2mY7g42ZMCxsIxqnOxbLARIOGv-iHP4L3vehlx6pxl9ARKaYXICLs9kZzdVEEuypi7WPsHbGqUfaH_bKYwElblS6xqc0iOEC1YnvoN1Y50csJYuHPqJThcBjB_kbhRbDeVfF3rkXwrn-MdkebKab2zXUrI9pt2vxeGfThEv8tgtfdHOp7kyLOljrHBuRbs2uru9tP6sWvlv9baarKI3bvb_oePE7oUw06L6f3YbC-uvYHCKDW5dtgJX8AAVQVpA
  priority: 102
  providerName: ProQuest
Title A Novel Method to Reduce ELISA Serial Dilution Assay Workload Applied to SARS-CoV-2 and Seasonal HCoVs
URI https://cir.nii.ac.jp/crid/1872835442625593600
https://www.ncbi.nlm.nih.gov/pubmed/35336970
https://www.proquest.com/docview/2642680199
https://www.proquest.com/docview/2644002897
https://www.proquest.com/docview/2648876642
https://pubmed.ncbi.nlm.nih.gov/PMC8955134
https://doaj.org/article/19e16e1681004286bcc9666cfbd2c3c5
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB71IVAvFe-6tNGCOHAxxPZ61z4glJaUgEiEEoJys9a7axopsts0rci_Z8YvNShwsWTv2PJ4Zjzf7NrfALxBjC59roVrlLUuT3nsEmm7y1WUxpoH0ij6OXk4EoMp_zoLZzvQ9NisH-DN1tKO-klNl4t3v6_XHzHgP1DFiSX7-zvinKNEvgv7mJAEOfeQt4sJggrAilRoU_wAHgaIdkRMnYrvZaWSvB9zTT6fb8Odf38-eS8fXTyCwxpIsl5l-cewY_Mn8KBqLbl-ClmPjYo7u2DDskU0WxVsTCytlvW_fZn0WDUrxj7NK89jaCa1ZjR1viiUYTU4pdMmvfHEPS9-uj5TucETVYne2QCP3TyD6UX_x_nArXsquBpLh5UbKa3CTFjPT23GeagQcEkTilQHiB1EEOhIeaJriKcQM7fIJIqlqc-jAHcRbjyHvbzI7REwifGvlSCKfMGxLoqMElypNIgyE6swduBt80wTXROOU9-LRYKFB1kiaS3hwOtW9Kpi2dgmdEaGaQWIGLs8UCx_JXWcJV5sPdSOWNaoGkS9NBZ0Qmep8XWgQwdO0ax4P7T1Ikl0c5xY-UNqbdjtOnDSGDxpnDFB0IjqIRhGnV61wxiHtLiiclvcljK8XLaV_5XBd7rAqznwovKhVpvGEx2QG961oe7mSD6_LPnAo5i69PDjf17zJRz49NcGfToXn8DeanlrTxFLrdIO7MqZ7MD-WX_0fdwpZyRw-3nmdcoY-gMaIRnk
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVgguiDeGFhYEEhersXe99h4QSttUCU0ilLSoN3e9XkOkyC5NWpQ_xW9kxi8IqnrrxZLtsbWP2Zlv9vENwHvE6KEvjHRTba0rEqFcIm13hY4SZQQPU02Hk0dj2T8RX06D0w343ZyFoW2VjU0sDXVaGJoj30XH7Us0p0p9Pv_pUtYoWl1tUmhUanFkV78wZFt8Ghxg_37w_cPe8X7frbMKuAbB89KNtNFBJq3nJzYTItAIOcI0kInh6D0l5ybSnuykxNSHvktmIYoliS8ijrfocPG_d2ALYYbCUbS11xt_nTS2X1KsWfEXca46u1fEhkcQY83rlckB0Jfls9l1uPb_7Zn_-LvDh_CgBqqsW2nWI9iw-WO4W6WuXD2BrMvGxZWds1GZgpotCzYhFljLesPBtMuqWTd2MKs0m6Ea6BWjqfl5oVNWg1_6bNqdTN394pvrM52n-KEuowPWx2eLp3ByK637DDbzIrcvgIVoX4yWRMEvBcZdUaql0DrhUZYqHSgHPjZtGpua0JzyasxjDGyo-eO2-R1414qeVywe1wntUce0AkS8XT4oLr7H9TiOPWU9rB2xuFG0ifUyGDBKkyWpb7gJHNjBbsXy0NWLQqKzE8T6H1DqxE7Hge2mw-PaWiziv7rtwNv2NY5zWrzRuS0uSxlRLguHN8qgz5D4NweeVzrU1oYjrpcqxAKEa9q1Vt31N_nsR8k3HinKAiRe3lz0N3CvfzwaxsPB-OgV3PfpmAjt1VPbsLm8uLQ7CN6Wyet6xDA4u-1B-gdW5VDb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuiDeGFhYEEpdVYnu99h4QSptECW2jKqGoN3e9XkOkyC5NWpS_xq9jxo9AUNVbL5Zsj619zOw3s49vAN6jjx56wkieamu5SITiRNrOhY4SZYQfppoOJx-N5fBEfDkNTrfgd3MWhrZVNmNiOVCnhaE58jYCtydxOFWqndXbIo57g8_nPzllkKKV1iadRqUiB3b1C8O3xadRD_v6g-cN-l_3h7zOMMANOtJLHmmjg0xa10tsJkSg0f0I00Amxkcklb5vIu3KTkqsfYhjMgtRLEk8Efl4i-CL_70D2yGiYtSC7b3--HjS4ICkuLPiMvJ91WlfETMeuRsbCFgmCkBcy2ez63zc_7dq_oN9g4fwoHZaWbfSskewZfPHcLdKY7l6AlmXjYsrO2dHZTpqtizYhBhhLesfjqZdVs3Asd6s0nKGKqFXjKbp54VOWe0I02fT7mTK94tv3GM6T_FDXUYKbIjPFk_h5FZa9xm08iK3L4CFONYYLYmOXwqMwaJUS6F14kdZqnSgHPjYtGlsanJzyrExjzHIoeaP183vwLu16HnF6HGd0B51zFqASLjLB8XF97i26dhV1sXaEaMbRZ5YL4PBozRZknrGN4EDu9itWB66ulFI1HaCMgAElEax03Fgp-nwuB45FvFfPXfg7fo12jwt5OjcFpeljCiXiMMbZRA_JP7NgeeVDq1r46OPL1WIBQg3tGujuptv8tmPkns8UpQRSLy8uehv4B4aZ3w4Gh-8gvsenRihbXtqB1rLi0u7i37cMnldGwyDs9u20T85DlUH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Method+to+Reduce+ELISA+Serial+Dilution+Assay+Workload+Applied+to+SARS-CoV-2+and+Seasonal+HCoVs&rft.jtitle=Viruses&rft.au=Pattinson%2C+David&rft.au=Jester%2C+Peter&rft.au=Guan%2C+Lizheng&rft.au=Yamayoshi%2C+Seiya&rft.date=2022-03-09&rft.eissn=1999-4915&rft.volume=14&rft.issue=3&rft_id=info:doi/10.3390%2Fv14030562&rft_id=info%3Apmid%2F35336970&rft.externalDocID=35336970
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4915&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4915&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4915&client=summon