Coassembly of hypoxia-sensitive macrocyclic amphiphiles and extracellular vesicles for targeted kidney injury imaging and therapy
Hypoxia is a major contributor to global kidney diseases. Targeting hypoxia is a promising therapeutic option against both acute kidney injury and chronic kidney disease; however, an effective strategy that can achieve simultaneous targeted kidney hypoxia imaging and therapy has yet to be establishe...
Saved in:
Published in | Journal of nanobiotechnology Vol. 19; no. 1; pp. 451 - 21 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
27.12.2021
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hypoxia is a major contributor to global kidney diseases. Targeting hypoxia is a promising therapeutic option against both acute kidney injury and chronic kidney disease; however, an effective strategy that can achieve simultaneous targeted kidney hypoxia imaging and therapy has yet to be established. Herein, we fabricated a unique nano-sized hypoxia-sensitive coassembly (Pc/C5A@EVs) via molecular recognition and self-assembly, which is composed of the macrocyclic amphiphile C5A, the commercial dye sulfonated aluminum phthalocyanine (Pc) and mesenchymal stem cell-excreted extracellular vesicles (MSC-EVs).
In murine models of unilateral or bilateral ischemia/reperfusion injury, MSC-EVs protected the Pc/C5A complex from immune metabolism, prolonged the circulation time of the complex, and specifically led Pc/C5A to hypoxic kidneys via surface integrin receptor α
β
and α
β
, where Pc/C5A released the near-infrared fluorescence of Pc and achieved enhanced hypoxia-sensitive imaging. Meanwhile, the coassembly significantly recovered kidney function by attenuating cell apoptosis, inhibiting the progression of renal fibrosis and reducing tubulointerstitial inflammation. Mechanistically, the Pc/C5A coassembly induced M1-to-M2 macrophage transition by inhibiting the HIF-1α expression in hypoxic renal tubular epithelial cells (TECs) and downstream NF-κB signaling pathway to exert their regenerative effects.
This synergetic nanoscale coassembly with great translational potential provides a novel strategy for precise kidney hypoxia diagnosis and efficient kidney injury treatment. Furthermore, our strategy of coassembling exogenous macrocyclic receptors with endogenous cell-derived membranous structures may offer a functional platform to address multiple clinical needs. |
---|---|
AbstractList | Background Hypoxia is a major contributor to global kidney diseases. Targeting hypoxia is a promising therapeutic option against both acute kidney injury and chronic kidney disease; however, an effective strategy that can achieve simultaneous targeted kidney hypoxia imaging and therapy has yet to be established. Herein, we fabricated a unique nano-sized hypoxia-sensitive coassembly (Pc/C5A@EVs) via molecular recognition and self-assembly, which is composed of the macrocyclic amphiphile C5A, the commercial dye sulfonated aluminum phthalocyanine (Pc) and mesenchymal stem cell-excreted extracellular vesicles (MSC-EVs). Results In murine models of unilateral or bilateral ischemia/reperfusion injury, MSC-EVs protected the Pc/C5A complex from immune metabolism, prolonged the circulation time of the complex, and specifically led Pc/C5A to hypoxic kidneys via surface integrin receptor α4β1 and αLβ2, where Pc/C5A released the near-infrared fluorescence of Pc and achieved enhanced hypoxia-sensitive imaging. Meanwhile, the coassembly significantly recovered kidney function by attenuating cell apoptosis, inhibiting the progression of renal fibrosis and reducing tubulointerstitial inflammation. Mechanistically, the Pc/C5A coassembly induced M1-to-M2 macrophage transition by inhibiting the HIF-1α expression in hypoxic renal tubular epithelial cells (TECs) and downstream NF-κB signaling pathway to exert their regenerative effects. Conclusion This synergetic nanoscale coassembly with great translational potential provides a novel strategy for precise kidney hypoxia diagnosis and efficient kidney injury treatment. Furthermore, our strategy of coassembling exogenous macrocyclic receptors with endogenous cell-derived membranous structures may offer a functional platform to address multiple clinical needs. Hypoxia is a major contributor to global kidney diseases. Targeting hypoxia is a promising therapeutic option against both acute kidney injury and chronic kidney disease; however, an effective strategy that can achieve simultaneous targeted kidney hypoxia imaging and therapy has yet to be established. Herein, we fabricated a unique nano-sized hypoxia-sensitive coassembly (Pc/C5A@EVs) via molecular recognition and self-assembly, which is composed of the macrocyclic amphiphile C5A, the commercial dye sulfonated aluminum phthalocyanine (Pc) and mesenchymal stem cell-excreted extracellular vesicles (MSC-EVs). In murine models of unilateral or bilateral ischemia/reperfusion injury, MSC-EVs protected the Pc/C5A complex from immune metabolism, prolonged the circulation time of the complex, and specifically led Pc/C5A to hypoxic kidneys via surface integrin receptor [alpha].sub.4[beta].sub.1 and [alpha].sub.L[beta].sub.2, where Pc/C5A released the near-infrared fluorescence of Pc and achieved enhanced hypoxia-sensitive imaging. Meanwhile, the coassembly significantly recovered kidney function by attenuating cell apoptosis, inhibiting the progression of renal fibrosis and reducing tubulointerstitial inflammation. Mechanistically, the Pc/C5A coassembly induced M1-to-M2 macrophage transition by inhibiting the HIF-1[alpha] expression in hypoxic renal tubular epithelial cells (TECs) and downstream NF-?B signaling pathway to exert their regenerative effects. This synergetic nanoscale coassembly with great translational potential provides a novel strategy for precise kidney hypoxia diagnosis and efficient kidney injury treatment. Furthermore, our strategy of coassembling exogenous macrocyclic receptors with endogenous cell-derived membranous structures may offer a functional platform to address multiple clinical needs. Hypoxia is a major contributor to global kidney diseases. Targeting hypoxia is a promising therapeutic option against both acute kidney injury and chronic kidney disease; however, an effective strategy that can achieve simultaneous targeted kidney hypoxia imaging and therapy has yet to be established. Herein, we fabricated a unique nano-sized hypoxia-sensitive coassembly (Pc/C5A@EVs) via molecular recognition and self-assembly, which is composed of the macrocyclic amphiphile C5A, the commercial dye sulfonated aluminum phthalocyanine (Pc) and mesenchymal stem cell-excreted extracellular vesicles (MSC-EVs). In murine models of unilateral or bilateral ischemia/reperfusion injury, MSC-EVs protected the Pc/C5A complex from immune metabolism, prolonged the circulation time of the complex, and specifically led Pc/C5A to hypoxic kidneys via surface integrin receptor α β and α β , where Pc/C5A released the near-infrared fluorescence of Pc and achieved enhanced hypoxia-sensitive imaging. Meanwhile, the coassembly significantly recovered kidney function by attenuating cell apoptosis, inhibiting the progression of renal fibrosis and reducing tubulointerstitial inflammation. Mechanistically, the Pc/C5A coassembly induced M1-to-M2 macrophage transition by inhibiting the HIF-1α expression in hypoxic renal tubular epithelial cells (TECs) and downstream NF-κB signaling pathway to exert their regenerative effects. This synergetic nanoscale coassembly with great translational potential provides a novel strategy for precise kidney hypoxia diagnosis and efficient kidney injury treatment. Furthermore, our strategy of coassembling exogenous macrocyclic receptors with endogenous cell-derived membranous structures may offer a functional platform to address multiple clinical needs. Hypoxia is a major contributor to global kidney diseases. Targeting hypoxia is a promising therapeutic option against both acute kidney injury and chronic kidney disease; however, an effective strategy that can achieve simultaneous targeted kidney hypoxia imaging and therapy has yet to be established. Herein, we fabricated a unique nano-sized hypoxia-sensitive coassembly (Pc/C5A@EVs) via molecular recognition and self-assembly, which is composed of the macrocyclic amphiphile C5A, the commercial dye sulfonated aluminum phthalocyanine (Pc) and mesenchymal stem cell-excreted extracellular vesicles (MSC-EVs).BACKGROUNDHypoxia is a major contributor to global kidney diseases. Targeting hypoxia is a promising therapeutic option against both acute kidney injury and chronic kidney disease; however, an effective strategy that can achieve simultaneous targeted kidney hypoxia imaging and therapy has yet to be established. Herein, we fabricated a unique nano-sized hypoxia-sensitive coassembly (Pc/C5A@EVs) via molecular recognition and self-assembly, which is composed of the macrocyclic amphiphile C5A, the commercial dye sulfonated aluminum phthalocyanine (Pc) and mesenchymal stem cell-excreted extracellular vesicles (MSC-EVs).In murine models of unilateral or bilateral ischemia/reperfusion injury, MSC-EVs protected the Pc/C5A complex from immune metabolism, prolonged the circulation time of the complex, and specifically led Pc/C5A to hypoxic kidneys via surface integrin receptor α4β1 and αLβ2, where Pc/C5A released the near-infrared fluorescence of Pc and achieved enhanced hypoxia-sensitive imaging. Meanwhile, the coassembly significantly recovered kidney function by attenuating cell apoptosis, inhibiting the progression of renal fibrosis and reducing tubulointerstitial inflammation. Mechanistically, the Pc/C5A coassembly induced M1-to-M2 macrophage transition by inhibiting the HIF-1α expression in hypoxic renal tubular epithelial cells (TECs) and downstream NF-κB signaling pathway to exert their regenerative effects.RESULTSIn murine models of unilateral or bilateral ischemia/reperfusion injury, MSC-EVs protected the Pc/C5A complex from immune metabolism, prolonged the circulation time of the complex, and specifically led Pc/C5A to hypoxic kidneys via surface integrin receptor α4β1 and αLβ2, where Pc/C5A released the near-infrared fluorescence of Pc and achieved enhanced hypoxia-sensitive imaging. Meanwhile, the coassembly significantly recovered kidney function by attenuating cell apoptosis, inhibiting the progression of renal fibrosis and reducing tubulointerstitial inflammation. Mechanistically, the Pc/C5A coassembly induced M1-to-M2 macrophage transition by inhibiting the HIF-1α expression in hypoxic renal tubular epithelial cells (TECs) and downstream NF-κB signaling pathway to exert their regenerative effects.This synergetic nanoscale coassembly with great translational potential provides a novel strategy for precise kidney hypoxia diagnosis and efficient kidney injury treatment. Furthermore, our strategy of coassembling exogenous macrocyclic receptors with endogenous cell-derived membranous structures may offer a functional platform to address multiple clinical needs.CONCLUSIONThis synergetic nanoscale coassembly with great translational potential provides a novel strategy for precise kidney hypoxia diagnosis and efficient kidney injury treatment. Furthermore, our strategy of coassembling exogenous macrocyclic receptors with endogenous cell-derived membranous structures may offer a functional platform to address multiple clinical needs. Background Hypoxia is a major contributor to global kidney diseases. Targeting hypoxia is a promising therapeutic option against both acute kidney injury and chronic kidney disease; however, an effective strategy that can achieve simultaneous targeted kidney hypoxia imaging and therapy has yet to be established. Herein, we fabricated a unique nano-sized hypoxia-sensitive coassembly (Pc/C5A@EVs) via molecular recognition and self-assembly, which is composed of the macrocyclic amphiphile C5A, the commercial dye sulfonated aluminum phthalocyanine (Pc) and mesenchymal stem cell-excreted extracellular vesicles (MSC-EVs). Results In murine models of unilateral or bilateral ischemia/reperfusion injury, MSC-EVs protected the Pc/C5A complex from immune metabolism, prolonged the circulation time of the complex, and specifically led Pc/C5A to hypoxic kidneys via surface integrin receptor [alpha].sub.4[beta].sub.1 and [alpha].sub.L[beta].sub.2, where Pc/C5A released the near-infrared fluorescence of Pc and achieved enhanced hypoxia-sensitive imaging. Meanwhile, the coassembly significantly recovered kidney function by attenuating cell apoptosis, inhibiting the progression of renal fibrosis and reducing tubulointerstitial inflammation. Mechanistically, the Pc/C5A coassembly induced M1-to-M2 macrophage transition by inhibiting the HIF-1[alpha] expression in hypoxic renal tubular epithelial cells (TECs) and downstream NF-?B signaling pathway to exert their regenerative effects. Conclusion This synergetic nanoscale coassembly with great translational potential provides a novel strategy for precise kidney hypoxia diagnosis and efficient kidney injury treatment. Furthermore, our strategy of coassembling exogenous macrocyclic receptors with endogenous cell-derived membranous structures may offer a functional platform to address multiple clinical needs. Graphical Keywords: Supramolecular chemistry, Extracellular vesicles, Macrocyclic amphiphile, Kidney hypoxia, Coassembly Abstract Background Hypoxia is a major contributor to global kidney diseases. Targeting hypoxia is a promising therapeutic option against both acute kidney injury and chronic kidney disease; however, an effective strategy that can achieve simultaneous targeted kidney hypoxia imaging and therapy has yet to be established. Herein, we fabricated a unique nano-sized hypoxia-sensitive coassembly (Pc/C5A@EVs) via molecular recognition and self-assembly, which is composed of the macrocyclic amphiphile C5A, the commercial dye sulfonated aluminum phthalocyanine (Pc) and mesenchymal stem cell-excreted extracellular vesicles (MSC-EVs). Results In murine models of unilateral or bilateral ischemia/reperfusion injury, MSC-EVs protected the Pc/C5A complex from immune metabolism, prolonged the circulation time of the complex, and specifically led Pc/C5A to hypoxic kidneys via surface integrin receptor α4β1 and αLβ2, where Pc/C5A released the near-infrared fluorescence of Pc and achieved enhanced hypoxia-sensitive imaging. Meanwhile, the coassembly significantly recovered kidney function by attenuating cell apoptosis, inhibiting the progression of renal fibrosis and reducing tubulointerstitial inflammation. Mechanistically, the Pc/C5A coassembly induced M1-to-M2 macrophage transition by inhibiting the HIF-1α expression in hypoxic renal tubular epithelial cells (TECs) and downstream NF-κB signaling pathway to exert their regenerative effects. Conclusion This synergetic nanoscale coassembly with great translational potential provides a novel strategy for precise kidney hypoxia diagnosis and efficient kidney injury treatment. Furthermore, our strategy of coassembling exogenous macrocyclic receptors with endogenous cell-derived membranous structures may offer a functional platform to address multiple clinical needs. Graphical Abstract |
ArticleNumber | 451 |
Audience | Academic |
Author | Bian, Qiang Cao, Hong-Mei Cheng, Yuan-Qiu Wang, Lan-Xing Geng, Wen-Chao Guo, Dong-Sheng Kong, Xiang-Lei Kong, De-Ling Hu, Xin-Yue Yue, Yu-Xin Wang, Yue-Bing Li, Hua-Bin Liu, Jian-Feng |
Author_xml | – sequence: 1 givenname: Yuan-Qiu surname: Cheng fullname: Cheng, Yuan-Qiu – sequence: 2 givenname: Yu-Xin surname: Yue fullname: Yue, Yu-Xin – sequence: 3 givenname: Hong-Mei surname: Cao fullname: Cao, Hong-Mei – sequence: 4 givenname: Wen-Chao surname: Geng fullname: Geng, Wen-Chao – sequence: 5 givenname: Lan-Xing surname: Wang fullname: Wang, Lan-Xing – sequence: 6 givenname: Xin-Yue surname: Hu fullname: Hu, Xin-Yue – sequence: 7 givenname: Hua-Bin surname: Li fullname: Li, Hua-Bin – sequence: 8 givenname: Qiang surname: Bian fullname: Bian, Qiang – sequence: 9 givenname: Xiang-Lei surname: Kong fullname: Kong, Xiang-Lei – sequence: 10 givenname: Jian-Feng surname: Liu fullname: Liu, Jian-Feng – sequence: 11 givenname: De-Ling surname: Kong fullname: Kong, De-Ling – sequence: 12 givenname: Dong-Sheng surname: Guo fullname: Guo, Dong-Sheng – sequence: 13 givenname: Yue-Bing orcidid: 0000-0001-6988-0788 surname: Wang fullname: Wang, Yue-Bing |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34961540$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktr3DAUhU1JaR7tH-iiGLppF04ljeTHphCGPgYChT7WQpavPZra0lSSJ_Gy_7zXM0nJhFJsIyN956B77zlPTqyzkCQvKbmktMzfBcoqQTPC8KO0YtnNk-SM8qLIFlSIkwf_p8l5CBtCGOOMP0tOF7zKqeDkLPm9dCoEGOp-Sl2brqetuzUqC2CDiWYH6aC0d3rSvdGpGrZrg28PIVW2SeE2eqWh78de-XQHwej5qHU-jcp3EKFJf5rGwpQauxk9LoPqjO326rgGr7bT8-Rpq_oAL-7Wi-THxw_fl5-z6y-fVsur60yLqohZSVvIBWdlVdO2XigAJoDpJietEG2DOwXUTPGGEs0LlmuhW17VRSmwVMQWF8nq4Ns4tZFbj1fxk3TKyP2G851UPs4VSMpAVIrmtKoEp5qqnPJGlDUXNdGaN-j1_uC1HesBGg0WG9EfmR6fWLOWndvJsqCcswoN3twZePdrhBDlYMLcSWXBjUEyHA8lZZXP6OtH6MaN3mKrkGKULArBHlCdwgKMbd08mtlUXqFJLgpScqQu_0Hh08BgNKarxdkeC94eCZCJOPVOjSHI1bevx-yrh0352437sCFQHgBMVAgeWqlNVNG4uUeml5TIOdfykGuJuZb7XMsblLJH0nv3_4j-AFgy--I |
CitedBy_id | crossref_primary_10_1016_j_cej_2023_148138 crossref_primary_10_1021_accountsmr_3c00130 crossref_primary_10_1002_ps_7492 crossref_primary_10_1002_cjoc_202200714 crossref_primary_10_1021_acs_molpharmaceut_2c01079 crossref_primary_10_1021_acs_accounts_3c00585 crossref_primary_10_1002_asia_202200106 crossref_primary_10_1002_anie_202213578 crossref_primary_10_1038_s41467_023_41388_2 crossref_primary_10_1002_adhm_202300263 crossref_primary_10_1002_adhm_202402480 crossref_primary_10_1002_smll_202301019 crossref_primary_10_1016_j_ijpharm_2024_124786 crossref_primary_10_1016_j_supmat_2024_100063 crossref_primary_10_1016_j_bioactmat_2025_02_018 crossref_primary_10_1016_j_supmat_2025_100101 crossref_primary_10_2217_nnm_2023_0200 crossref_primary_10_1007_s11426_023_1857_2 crossref_primary_10_1186_s12951_025_03181_9 crossref_primary_10_1002_adma_202306583 crossref_primary_10_1186_s12951_024_02906_6 crossref_primary_10_1155_sci_1075016 crossref_primary_10_3390_pharmaceutics14081733 crossref_primary_10_1016_j_jconrel_2024_03_017 crossref_primary_10_1021_acsami_3c08756 crossref_primary_10_1016_j_bioactmat_2022_08_002 crossref_primary_10_3390_molecules28165934 crossref_primary_10_1002_adfm_202314607 crossref_primary_10_1016_j_colsurfb_2023_113598 crossref_primary_10_1016_j_cytogfr_2023_12_006 crossref_primary_10_2147_IJN_S456533 crossref_primary_10_1016_j_jconrel_2022_03_041 crossref_primary_10_1021_acsnano_2c03597 crossref_primary_10_1016_j_mtbio_2025_101646 crossref_primary_10_1039_D2CC06286K crossref_primary_10_1002_ange_202213578 crossref_primary_10_2147_IJN_S452393 crossref_primary_10_3390_molecules27113457 |
Cites_doi | 10.1016/S0009-8981(01)00596-4 10.1093/jn/137.9.2013 10.1038/nrneph.2015.214 10.1038/nrneph.2017.98 10.1002/anie.201813397 10.2174/156720510790274392 10.1016/j.chembiol.2010.09.012 10.1021/acsnano.8b09776 10.1016/j.freeradbiomed.2018.08.019 10.1016/j.coi.2012.01.010 10.1161/HYPERTENSIONAHA.115.05578 10.1002/anie.201705578 10.1681/ASN.2017050523 10.1016/j.tibtech.2018.11.012 10.1002/anie.201709457 10.1016/j.kint.2018.09.013 10.1080/20013078.2020.1806444 10.1038/nature22341 10.1021/jacs.8b02331 10.1021/ja105937q 10.1039/D0SC03922E 10.1038/nrneph.2014.180 10.1002/anie.202001355 10.1016/j.addr.2020.04.004 10.1111/j.1523-1755.2005.09909.x 10.1111/febs.13578 10.3389/fphys.2017.00099 10.1016/j.addr.2016.02.006 10.1021/jacs.8b03584 10.1038/ki.2015.21 10.1002/adfm.201905671 10.1016/j.mam.2015.12.004 10.1039/C5CC05518K 10.1016/j.kint.2017.09.033 10.1038/s41467-020-16439-7 10.1002/anie.201308368 10.1038/s41467-020-18626-y 10.1016/j.biomaterials.2016.11.023 10.3121/cmr.2015.1282 10.1166/jbn.2018.2598 10.1039/C8CS00304A 10.1016/j.kint.2019.04.034 10.1016/j.kint.2016.10.020 10.1038/s41581-019-0182-z 10.1172/JCI69073 10.1681/ASN.2009060615 10.1038/nrneph.2010.124 10.1021/acsnano.9b08207 10.1073/pnas.2014352117 10.1002/(SICI)1521-3773(19980202)37:1/2<112::AID-ANIE112>3.0.CO;2-O 10.1002/smll.201903135 10.1016/j.biomaterials.2020.120467 10.1186/s40824-016-0068-0 10.1021/acs.chemrev.6b00525 10.1038/nrneph.2015.215 10.1088/2050-6120/3/4/044004 10.2215/CJN.13201019 10.1021/acs.nanolett.1c00488 10.1002/anie.202011185 |
ContentType | Journal Article |
Copyright | 2021. The Author(s). COPYRIGHT 2021 BioMed Central Ltd. 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2021 |
Copyright_xml | – notice: 2021. The Author(s). – notice: COPYRIGHT 2021 BioMed Central Ltd. – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2021 |
DBID | AAYXX CITATION NPM ISR 3V. 7QO 7TB 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU COVID D1I DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. LK8 M0S M1P M7P P64 PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s12951-021-01192-w |
DatabaseName | CrossRef PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Mechanical & Transportation Engineering Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1477-3155 |
EndPage | 21 |
ExternalDocumentID | oai_doaj_org_article_12e59a16199541c1a614d58b45b0cc4d PMC8714429 A693657084 34961540 10_1186_s12951_021_01192_w |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51873090 – fundername: National Natural Science Foundation of China grantid: 81830060 – fundername: National Basic Research Program of China (973 Program) grantid: 2020YFA0803700 – fundername: National Natural Science Foundation of China grantid: U20A20259 – fundername: National Natural Science Foundation of China grantid: 81971670 – fundername: ; grantid: 81971670; U20A20259; 81830060; 51873090 – fundername: ; grantid: 2020YFA0803700; 2020YFA0803700 |
GroupedDBID | --- 0R~ 29L 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABDBF ABJCF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADDVE ADMLS ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 D1I DIK DU5 E3Z EBD EBLON EBS EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE I-F IAO IHR INH INR ISR ITC ITG ITH KB. KQ8 LK8 M1P M48 M7P MM. M~E O5R O5S OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV RVI SCM SOJ SV3 TR2 TUS UKHRP WOQ WOW XSB ~8M -A0 3V. ACRMQ ADINQ C24 FRP NPM PMFND 7QO 7TB 7XB 8FD 8FK AZQEC COVID DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c597t-81fe654289b1fb3aee25e2cd60f55fdb3a7eb2a4d10c4726c5cf49b785961cd63 |
IEDL.DBID | M48 |
ISSN | 1477-3155 |
IngestDate | Wed Aug 27 01:28:35 EDT 2025 Thu Aug 21 13:40:53 EDT 2025 Fri Jul 11 06:51:15 EDT 2025 Fri Jul 25 19:31:21 EDT 2025 Tue Jun 17 21:05:40 EDT 2025 Tue Jun 10 20:36:30 EDT 2025 Fri Jun 27 04:19:54 EDT 2025 Wed Feb 19 02:27:24 EST 2025 Tue Jul 01 01:26:48 EDT 2025 Thu Apr 24 23:00:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Coassembly Extracellular vesicles Macrocyclic amphiphile Kidney hypoxia Supramolecular chemistry |
Language | English |
License | 2021. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c597t-81fe654289b1fb3aee25e2cd60f55fdb3a7eb2a4d10c4726c5cf49b785961cd63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6988-0788 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12951-021-01192-w |
PMID | 34961540 |
PQID | 2621037529 |
PQPubID | 44676 |
PageCount | 21 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_12e59a16199541c1a614d58b45b0cc4d pubmedcentral_primary_oai_pubmedcentral_nih_gov_8714429 proquest_miscellaneous_2615108969 proquest_journals_2621037529 gale_infotracmisc_A693657084 gale_infotracacademiconefile_A693657084 gale_incontextgauss_ISR_A693657084 pubmed_primary_34961540 crossref_citationtrail_10_1186_s12951_021_01192_w crossref_primary_10_1186_s12951_021_01192_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-27 |
PublicationDateYYYYMMDD | 2021-12-27 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Journal of nanobiotechnology |
PublicationTitleAlternate | J Nanobiotechnology |
PublicationYear | 2021 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | F Emma (1192_CR3) 2016; 12 Z-L Li (1192_CR5) 2019; 95 I Mimura (1192_CR11) 2010; 6 D Karpman (1192_CR34) 2017; 13 Y-C Pan (1192_CR44) 2020; 60 KU Eckardt (1192_CR2) 2005; 68 G Cheng (1192_CR53) 2018; 140 PP Kapitsinou (1192_CR58) 2014; 124 H Cao (1192_CR33) 2020; 14 H Ono (1192_CR38) 2001; 312 Q Huang (1192_CR50) 2020; 11 RH Fang (1192_CR66) 2018; 30 L D'Ignazio (1192_CR62) 2016; 283 K Kiyose (1192_CR15) 2010; 132 T-X Zhang (1192_CR23) 2020; 32 ZZ Zhang (1192_CR24) 2021; 33 P Bonnitcha (1192_CR12) 2018; 126 T-T Tang (1192_CR35) 2020; 6 S Kamerkar (1192_CR30) 2017; 546 Q Fu (1192_CR61) 2016; 14 MP Chao (1192_CR54) 2012; 24 W-C Geng (1192_CR51) 2020; 59 Y-C Pan (1192_CR46) 2020; 2 L-L Lv (1192_CR7) 2018; 29 1192_CR55 J Gao (1192_CR45) 2018; 140 LL Lv (1192_CR64) 2017; 91 F Perche (1192_CR16) 2014; 53 A Chevalier (1192_CR18) 2015; 3 OM Elsharkasy (1192_CR28) 2020; 159 L Liu (1192_CR31) 2020; 6 Y Kodama (1192_CR13) 2019; 96 R Luo (1192_CR63) 2015; 66 L Rao (1192_CR25) 2019 F Arnaud-Neu (1192_CR43) 1998; 37 Y-Y Yang (1192_CR47) 2010; 17 P Vader (1192_CR32) 2016; 106 L Rao (1192_CR68) 2020; 117 P Yuan (1192_CR19) 2017; 56 CPC Ow (1192_CR1) 2018; 222 V Agrahari (1192_CR36) 2019; 37 W Nassar (1192_CR37) 2016; 20 HR Jang (1192_CR65) 2015; 11 D Zhou (1192_CR9) 2016; 12 L Rao (1192_CR26) 2018; 57 PI Creeke (1192_CR39) 2007; 137 J Yamaguchi (1192_CR60) 2015; 88 J Schodel (1192_CR59) 2019; 15 B-C Liu (1192_CR6) 2018; 93 A Sharma (1192_CR21) 2019; 48 Q Cai (1192_CR17) 2015; 51 H Choi (1192_CR52) 2020; 6 P Verwilst (1192_CR48) 2017; 115 DF Higgins (1192_CR10) 2007; 117 L Rao (1192_CR27) 2020; 11 W-C Geng (1192_CR22) 2019; 58 A Srivastava (1192_CR14) 2020; 15 DJ Llewellyn (1192_CR40) 2010; 7 L Ge (1192_CR42) 2021; 21 J Xin (1192_CR49) 2018; 14 EP Cummins (1192_CR57) 2016; 47–48 H Cao (1192_CR41) 2019; 13 M Zhuang (1192_CR56) 2019; 15 Y Hirakawa (1192_CR4) 2017; 8 S Lee (1192_CR8) 2011; 22 J-N Liu (1192_CR20) 2017; 117 C Gao (1192_CR67) 2020; 11 Z Belhadj (1192_CR29) 2020; 9 |
References_xml | – volume: 312 start-page: 227 year: 2001 ident: 1192_CR38 publication-title: Clin Chim Acta doi: 10.1016/S0009-8981(01)00596-4 – volume: 137 start-page: 2013 year: 2007 ident: 1192_CR39 publication-title: J Nutr doi: 10.1093/jn/137.9.2013 – volume: 12 start-page: 267 year: 2016 ident: 1192_CR3 publication-title: Nat Rev Nephrol doi: 10.1038/nrneph.2015.214 – volume: 13 start-page: 545 year: 2017 ident: 1192_CR34 publication-title: Nat Rev Nephrol doi: 10.1038/nrneph.2017.98 – volume: 30 year: 2018 ident: 1192_CR66 publication-title: Adv Mater – volume: 58 start-page: 2377 year: 2019 ident: 1192_CR22 publication-title: Angew Chem Int Edit doi: 10.1002/anie.201813397 – volume: 7 start-page: 91 year: 2010 ident: 1192_CR40 publication-title: Curr Alzheimer Res doi: 10.2174/156720510790274392 – volume: 17 start-page: 1212 year: 2010 ident: 1192_CR47 publication-title: Chem Biol doi: 10.1016/j.chembiol.2010.09.012 – volume: 13 start-page: 3522 year: 2019 ident: 1192_CR41 publication-title: ACS Nano doi: 10.1021/acsnano.8b09776 – volume: 126 start-page: 296 year: 2018 ident: 1192_CR12 publication-title: Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2018.08.019 – volume: 24 start-page: 225 year: 2012 ident: 1192_CR54 publication-title: Curr Opin Immunol doi: 10.1016/j.coi.2012.01.010 – volume: 32 year: 2020 ident: 1192_CR23 publication-title: Adv Mater – volume: 66 start-page: 75 year: 2015 ident: 1192_CR63 publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.115.05578 – volume: 56 start-page: 12481 year: 2017 ident: 1192_CR19 publication-title: Angew Chem Int Edit doi: 10.1002/anie.201705578 – volume: 29 start-page: 919 year: 2018 ident: 1192_CR7 publication-title: J Am Soc Nephrol doi: 10.1681/ASN.2017050523 – volume: 37 start-page: 707 year: 2019 ident: 1192_CR36 publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2018.11.012 – volume: 57 start-page: 986 year: 2018 ident: 1192_CR26 publication-title: Angew Chem Int Edit doi: 10.1002/anie.201709457 – volume: 95 start-page: 388 year: 2019 ident: 1192_CR5 publication-title: Kidney Int doi: 10.1016/j.kint.2018.09.013 – volume: 9 start-page: 1806444 year: 2020 ident: 1192_CR29 publication-title: J Extracell Vesicles doi: 10.1080/20013078.2020.1806444 – volume: 546 start-page: 498 year: 2017 ident: 1192_CR30 publication-title: Nature doi: 10.1038/nature22341 – volume: 6 year: 2020 ident: 1192_CR31 publication-title: Sci Adv – volume: 140 start-page: 4945 year: 2018 ident: 1192_CR45 publication-title: J Am Chem Soc doi: 10.1021/jacs.8b02331 – volume: 132 start-page: 15846 year: 2010 ident: 1192_CR15 publication-title: J Am Chem Soc doi: 10.1021/ja105937q – volume: 11 start-page: 9623 year: 2020 ident: 1192_CR50 publication-title: Chem Sci doi: 10.1039/D0SC03922E – volume: 6 year: 2020 ident: 1192_CR52 publication-title: Sci Adv – volume: 11 start-page: 88 year: 2015 ident: 1192_CR65 publication-title: Nat Rev Nephrol doi: 10.1038/nrneph.2014.180 – volume: 59 start-page: 12684 year: 2020 ident: 1192_CR51 publication-title: Angew Chem Int Edit doi: 10.1002/anie.202001355 – volume: 159 start-page: 332 year: 2020 ident: 1192_CR28 publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2020.04.004 – volume: 2 start-page: 2485 year: 2020 ident: 1192_CR46 publication-title: CCS Chem – volume: 68 start-page: S46 year: 2005 ident: 1192_CR2 publication-title: Kidney Int Suppl doi: 10.1111/j.1523-1755.2005.09909.x – volume: 222 year: 2018 ident: 1192_CR1 publication-title: Acta Physiol – volume: 283 start-page: 413 year: 2016 ident: 1192_CR62 publication-title: FEBS J doi: 10.1111/febs.13578 – volume: 117 start-page: 3810 year: 2007 ident: 1192_CR10 publication-title: J Clin Invest – volume: 8 start-page: 99 year: 2017 ident: 1192_CR4 publication-title: Front Physiol doi: 10.3389/fphys.2017.00099 – volume: 106 start-page: 148 year: 2016 ident: 1192_CR32 publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2016.02.006 – volume: 140 start-page: 7282 year: 2018 ident: 1192_CR53 publication-title: J Am Chem Soc doi: 10.1021/jacs.8b03584 – volume: 88 start-page: 262 year: 2015 ident: 1192_CR60 publication-title: Kidney Int doi: 10.1038/ki.2015.21 – year: 2019 ident: 1192_CR25 publication-title: Adv Funct Mater doi: 10.1002/adfm.201905671 – volume: 47–48 start-page: 24 year: 2016 ident: 1192_CR57 publication-title: Mol Asp Med doi: 10.1016/j.mam.2015.12.004 – volume: 51 start-page: 14739 year: 2015 ident: 1192_CR17 publication-title: Chem Commun doi: 10.1039/C5CC05518K – volume: 93 start-page: 568 year: 2018 ident: 1192_CR6 publication-title: Kidney Int doi: 10.1016/j.kint.2017.09.033 – volume: 33 year: 2021 ident: 1192_CR24 publication-title: Adv Mater – volume: 11 start-page: 2622 year: 2020 ident: 1192_CR67 publication-title: Nat Commun doi: 10.1038/s41467-020-16439-7 – volume: 53 start-page: 3362 year: 2014 ident: 1192_CR16 publication-title: Angew Chem Int Edit doi: 10.1002/anie.201308368 – volume: 11 start-page: 4909 year: 2020 ident: 1192_CR27 publication-title: Nat Commun doi: 10.1038/s41467-020-18626-y – volume: 115 start-page: 104 year: 2017 ident: 1192_CR48 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.11.023 – volume: 14 start-page: 15 year: 2016 ident: 1192_CR61 publication-title: Clin Med Res doi: 10.3121/cmr.2015.1282 – volume: 14 start-page: 1430 year: 2018 ident: 1192_CR49 publication-title: J Biomed Nanotechnol doi: 10.1166/jbn.2018.2598 – volume: 48 start-page: 771 year: 2019 ident: 1192_CR21 publication-title: Chem Soc Rev doi: 10.1039/C8CS00304A – volume: 96 start-page: 787 year: 2019 ident: 1192_CR13 publication-title: Kidney Int doi: 10.1016/j.kint.2019.04.034 – volume: 91 start-page: 587 year: 2017 ident: 1192_CR64 publication-title: Kidney Int doi: 10.1016/j.kint.2016.10.020 – volume: 15 start-page: 641 year: 2019 ident: 1192_CR59 publication-title: Nat Rev Nephrol doi: 10.1038/s41581-019-0182-z – volume: 124 start-page: 2396 year: 2014 ident: 1192_CR58 publication-title: J Clin Invest doi: 10.1172/JCI69073 – volume: 22 start-page: 317 year: 2011 ident: 1192_CR8 publication-title: J Am Soc Nephrol doi: 10.1681/ASN.2009060615 – volume: 6 start-page: 667 year: 2010 ident: 1192_CR11 publication-title: Nat Rev Nephrol doi: 10.1038/nrneph.2010.124 – volume: 14 start-page: 4014 year: 2020 ident: 1192_CR33 publication-title: ACS Nano doi: 10.1021/acsnano.9b08207 – volume: 117 start-page: 27141 year: 2020 ident: 1192_CR68 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.2014352117 – volume: 37 start-page: 112 year: 1998 ident: 1192_CR43 publication-title: Angew Chem Int Edit doi: 10.1002/(SICI)1521-3773(19980202)37:1/2<112::AID-ANIE112>3.0.CO;2-O – volume: 15 year: 2019 ident: 1192_CR56 publication-title: Small doi: 10.1002/smll.201903135 – ident: 1192_CR55 doi: 10.1016/j.biomaterials.2020.120467 – volume: 20 start-page: 21 year: 2016 ident: 1192_CR37 publication-title: Biomater Res doi: 10.1186/s40824-016-0068-0 – volume: 117 start-page: 6160 year: 2017 ident: 1192_CR20 publication-title: Chem Soc Rev doi: 10.1021/acs.chemrev.6b00525 – volume: 12 start-page: 68 year: 2016 ident: 1192_CR9 publication-title: Nat Rev Nephrol doi: 10.1038/nrneph.2015.215 – volume: 3 year: 2015 ident: 1192_CR18 publication-title: Methods Appl. Fluoresc. doi: 10.1088/2050-6120/3/4/044004 – volume: 15 start-page: 776 year: 2020 ident: 1192_CR14 publication-title: Clin J Am Soc Nephrol doi: 10.2215/CJN.13201019 – volume: 6 year: 2020 ident: 1192_CR35 publication-title: Sci Adv – volume: 21 start-page: 3218 year: 2021 ident: 1192_CR42 publication-title: Nano Lett doi: 10.1021/acs.nanolett.1c00488 – volume: 60 start-page: 1875 year: 2020 ident: 1192_CR44 publication-title: Angew Chem Int Edit doi: 10.1002/anie.202011185 |
SSID | ssj0022424 |
Score | 2.4529924 |
Snippet | Hypoxia is a major contributor to global kidney diseases. Targeting hypoxia is a promising therapeutic option against both acute kidney injury and chronic... Background Hypoxia is a major contributor to global kidney diseases. Targeting hypoxia is a promising therapeutic option against both acute kidney injury and... Abstract Background Hypoxia is a major contributor to global kidney diseases. Targeting hypoxia is a promising therapeutic option against both acute kidney... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 451 |
SubjectTerms | Adenosine Aluminum Analysis Animal models Apoptosis Care and treatment Chronic kidney failure Coassembly Diagnosis Epithelial cells Epithelium Extracellular vesicles Fibrosis Fluorescence Hypoxia Hypoxia-inducible factor 1a Injuries Ischemia Kidney diseases Kidney hypoxia Kidneys Macrocycles Macrocyclic amphiphile Macrophages Medical imaging Mesenchyme Metabolism NF-κB protein Receptors Reperfusion Risk factors Scientific imaging Self-assembly Signal transduction Sodium Stem cells Supramolecular chemistry Vesicles |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAvFkoyCAkDihq7LWd5FgqqsKBA1CpN8tPGthNqma3bY78c2ac7GojJLgg7SkeS8nM2PPN6psZQt5ErooqlD4Db5GZiNJl1iuWQWzwhfC8KExiW3xWJ6fi05k82xn1hZywoT3woLgDxoOsDOASbFzGHDMQT7wsrZA2d054vH0h5m2SqTHVwqKHTYlMqQ46iGoS0maOqTNgmux6EoZSt_4_7-SdoDQlTO5EoON75O4IHenh8Mr3ya3QPCB3dhoKPiS_jloAw2FpFz1tIz3vL9qb2mQdstTxXqNLA-_jereoHTVgyBp-i9BR03gK1_SlwT_ykZlKr0KXGHMUUC0d-OLB05-1b0JP6-YH2ILWyzTjKO0eCrn6R-T0-MO3o5NsHLKQOcglVmCUGHBoVVlZFu3chMBl4M6rPEoZPTwpIPk2wrPciYIrJ10UlS1KWSkGYvPHZK9pm_CU0Ijo08Yq8NyCqDW5UcYZxiD-iTAXM8I2Otdu7ECOgzAWOmUipdKDnTTYSSc76esZebfdczH03_ir9Hs05VYSe2enB-BRevQo_S-PmpHX6Agau2M0SL_5btZdpz9-_aIPVTVHrlAJ3_J2FIotGseM1QygCWyoNZHcn0jC8XXT5Y2_6fH66DRXHOs3Ja9m5NV2GXciJa4J7RplAKzlZaVA5sngntvvxikAgI3zGSkmjjtRzHSlqc9Tc3FIoAVglGf_Q5PPyW2OZ45hBdg-2VtdrsMLwHAr-zId19_agUS6 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgvMAD4puOgQxC4gFFi93YSZ7QmJgGDzwAk_pm-XMLtEnXtIw-8p9z56RdI6RJfYrPUuI7n3_n_u6OkLeBy7z0hUvAWkSSBWET4yRL4GxweeZ4nuvItvgqT8-yLxMx6S_c2p5WufGJ0VG7xuId-SGXHFPaBC8_zC8T7BqF_672LTRukztYugwpXfnkOuDC1IdNokwhD1s42wQEzxwDaEA2ydXgMIo1-__3zDtH05A2uXMOnTwg93sASY86jT8kt3z9iNzbKSv4mPw9bgAS-5mZrmkT6MV63vypdNIiVx29G51peB-7ttPKUg3qrOA39S3VtaPgrBcar_ORn0p_-zby5ihgW9qxxr2jvypX-zWt6p-gEVrNYqejOLtL51o_IWcnn34cnyZ9q4XEQkSxBNUEj62ritKwYMbaey48t06mQYjg4EkOIbjOHEttlnNphQ1ZafJClJKB2Pgp2aub2j8nNCAGNaH0PDUganSqpbaaMTgFMz_ORoRt1lzZvg45tsOYqhiPFFJ1elKgJxX1pK5G5P12zryrwnGj9EdU5VYSK2jHB83iXPUbUjHuRakB72JBPGaZBpziRGEyYVJrMzcib9AQFNbIqJGEc65Xbas-f_-mjmQ5RsZQAd_yrhcKDSpH9zkNsBJYVmsgeTCQhE1sh8Mbe1O9E2nVtcmPyOvtMM5EYlztmxXKAGRLi1KCzLPOPLffjb0AACGnI5IPDHewMMORurqIJcYhjM4Aqezf_FovyF2Ou4lhhtcB2VsuVv4lYLSleRU34j9mXTzx priority: 102 providerName: ProQuest |
Title | Coassembly of hypoxia-sensitive macrocyclic amphiphiles and extracellular vesicles for targeted kidney injury imaging and therapy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34961540 https://www.proquest.com/docview/2621037529 https://www.proquest.com/docview/2615108969 https://pubmed.ncbi.nlm.nih.gov/PMC8714429 https://doaj.org/article/12e59a16199541c1a614d58b45b0cc4d |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELf28QIPiO8VRmUQEg8okLi2kzwgtE0rA4kJDSr1zXJsZwu0yWhatj7yn3PnpFUjJiSkqA_xOUp8d77fufdByMucyTh1iQ1AWkTAc2GCzMooANtgY25ZHGsfbXEqT0b801iMt8iq3VG7gPWNrh32kxrNJm-ufy7fg8K_8wqfyLc12CwBTjFDxxgQS3C1TXbBMsWoqJ_5-l8FhqkQPtsoxrM5IVZJNDc-o2OofD3_v3ftDbPVDancsFHDu-ROCy7pQSMN98iWK--T2xslBx-Q30cVwGU3zSZLWuX0YnlZXRc6qDGOHXc-OtXwPmZpJoWhGlhdwDVxNdWlpbCRzzQe9WPsKv3lah9TRwH30iai3Fn6o7ClW9Ki_A7cosXUd0Hys5tUr-VDMhoefzs6Cdo2DIEBb2MObMsdtrVK0izKs4F2jgnHjJVhLkRu4U4M7rnmNgoNj5k0wuQ8zeJEpDICssEjslNWpdsjNEd8muWpY2EGpJkOtdRGR8CqhLsB75FotebKtDXKsVXGRHlfJZGq4ZMCPinPJ3XVI6_Xcy6bCh3_pD5EVq4psbq2v1HNzlWrrCpiTqQasDAWy4tMpAHDWJFkXGShMdz2yAsUBIX1M0oM0DnXi7pWH7-eqQOZDjCaKIFvedUS5RUyR7f5DrASWHKrQ7nfoQQFN93hlbyplX4oJhlmeAqW9sjz9TDOxKC50lULpAE4FyapBJrHjXiuvxv7BAB6Dnsk7ghuZ2G6I2Vx4cuPg4vNAcU8-a91f0puMVSuCJPB9snOfLZwzwDOzbM-2Y7HMfwmww99snt4fPrlrO-PRvpee_8AUIVKng |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJuFAgaBOKCoiTd2kgNCpVDt0tIDtNLejGM7bdrdZNnssuTIH-I3MpPHdiOk3irlFI8jxzOe-SaZByGvEyaCyIbGAWnhjp9w7cRGeA7YBhP4hgWBqqItDsXg2P8y4qMN8rfNhcGwylYnVora5Bq_kW8zwTCljbPow_Sng12j8O9q20KjFot9Wy7BZSveDz8Bf98wtvf5aHfgNF0FHA3geQ6rSCx2aQqj2EvivrKWccu0EW7CeWLgTgDepvKN52o_YEJznfhRHIQ8Eh6Q9eG518h1MLwunqhgdOHgYapFm5gTiu0CbCkHZ52hww5Iyll2jF_VI-B_S7BmCrthmmt2b-8Oud0AVrpTS9hdsmGze-TWWhnD--TPbg4Q3E7icUnzhJ6W0_x3qpwCY-NRm9KJgvXoUo9TTRWITwrX2BZUZYaCcZgp_H2A8bD0ly2qOD0KWJrWUerW0PPUZLakaXYGEkDTSdVZqZpdp4-VD8jxlTDhIdnM8sw-JjRBzBsnkWVuDKSxcpVQWnkeWF3f9v0e8do9l7qpe47tN8ay8n9CIWs-SeCTrPgklz3ybjVnWlf9uJT6I7JyRYkVu6sb-exENgpAeszySAG-xgJ8nvYU4CLDw9jnsau1b3rkFQqCxJocGQb9nKhFUcjh929yR0R9jFAK4V3eNkRJjsxRTQ4F7ASW8epQbnUoQWno7nArb7JRWoW8OGI98nI1jDMxEC-z-QJpACK6YSSA5lEtnqv3xt4DgMjdHgk6gtvZmO5Ilp5WJc3BbfcBGT25fFkvyI3B0dcDeTA83H9KbjI8WR5ml22RzflsYZ8BPpzHz6tDScmPq9YC_wDgAnrO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coassembly+of+hypoxia-sensitive+macrocyclic+amphiphiles+and+extracellular+vesicles+for+targeted+kidney+injury+imaging+and+therapy&rft.jtitle=Journal+of+nanobiotechnology&rft.au=Cheng%2C+Yuan-Qiu&rft.au=Yue%2C+Yu-Xin&rft.au=Cao%2C+Hong-Mei&rft.au=Geng%2C+Wen-Chao&rft.date=2021-12-27&rft.issn=1477-3155&rft.eissn=1477-3155&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1186%2Fs12951-021-01192-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12951_021_01192_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-3155&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-3155&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-3155&client=summon |