FXR activation protects against NAFLD via bile-acid-dependent reductions in lipid absorption
FXR agonists are used to treat non-alcoholic fatty liver disease (NAFLD), in part because they reduce hepatic lipids. Here, we show that FXR activation with the FXR agonist GSK2324 controls hepatic lipids via reduced absorption and selective decreases in fatty acid synthesis. Using comprehensive lip...
Saved in:
Published in | Cell metabolism Vol. 33; no. 8; pp. 1671 - 1684.e4 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
03.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | FXR agonists are used to treat non-alcoholic fatty liver disease (NAFLD), in part because they reduce hepatic lipids. Here, we show that FXR activation with the FXR agonist GSK2324 controls hepatic lipids via reduced absorption and selective decreases in fatty acid synthesis. Using comprehensive lipidomic analyses, we show that FXR activation in mice or humans specifically reduces hepatic levels of mono- and polyunsaturated fatty acids (MUFA and PUFA). Decreases in MUFA are due to FXR-dependent repression of Scd1, Dgat2, and Lpin1 expression, which is independent of SHP and SREBP1c. FXR-dependent decreases in PUFAs are mediated by decreases in lipid absorption. Replenishing bile acids in the diet prevented decreased lipid absorption in GSK2324-treated mice, suggesting that FXR reduces absorption via decreased bile acids. We used tissue-specific FXR KO mice to show that hepatic FXR controls lipogenic genes, whereas intestinal FXR controls lipid absorption. Together, our studies establish two distinct pathways by which FXR regulates hepatic lipids.
[Display omitted]
•Non-steroidal agonists of FXR significantly decrease intestinal lipid absorption•FXR decreases hepatic triglycerides independently of SHP and SREBP1C•FXR activation reduces expression of three key lipogenic genes, Scd1, Lpin1, and Dgat2•Intestinal and hepatic FXR are both required to decrease hepatic triglycerides
The nuclear receptor FXR lowers hepatic triglycerides to protect against the onset of NAFLD. Clifford et al. demonstrate that activation of FXR decreases hepatic triglycerides through two distinct mechanisms. First, via bile-acid-dependent decreases in intestinal lipid absorption and second, through selective changes in lipogenesis. |
---|---|
AbstractList | FXR agonists are used to treat non-alcoholic fatty liver disease (NAFLD), in part because they reduce hepatic lipids. Here, we show that FXR activation with the FXR agonist GSK2324 controls hepatic lipids via reduced absorption and selective decreases in fatty acid synthesis. Using comprehensive lipidomic analyses, we show that FXR activation in mice or humans specifically reduces hepatic levels of mono- and polyunsaturated fatty acids (MUFA and PUFA). Decreases in MUFA are due to FXR-dependent repression of Scd1, Dgat2, and Lpin1 expression, which is independent of SHP and SREBP1c. FXR-dependent decreases in PUFAs are mediated by decreases in lipid absorption. Replenishing bile acids in the diet prevented decreased lipid absorption in GSK2324-treated mice, suggesting that FXR reduces absorption via decreased bile acids. We used tissue-specific FXR KO mice to show that hepatic FXR controls lipogenic genes, whereas intestinal FXR controls lipid absorption. Together, our studies establish two distinct pathways by which FXR regulates hepatic lipids.FXR agonists are used to treat non-alcoholic fatty liver disease (NAFLD), in part because they reduce hepatic lipids. Here, we show that FXR activation with the FXR agonist GSK2324 controls hepatic lipids via reduced absorption and selective decreases in fatty acid synthesis. Using comprehensive lipidomic analyses, we show that FXR activation in mice or humans specifically reduces hepatic levels of mono- and polyunsaturated fatty acids (MUFA and PUFA). Decreases in MUFA are due to FXR-dependent repression of Scd1, Dgat2, and Lpin1 expression, which is independent of SHP and SREBP1c. FXR-dependent decreases in PUFAs are mediated by decreases in lipid absorption. Replenishing bile acids in the diet prevented decreased lipid absorption in GSK2324-treated mice, suggesting that FXR reduces absorption via decreased bile acids. We used tissue-specific FXR KO mice to show that hepatic FXR controls lipogenic genes, whereas intestinal FXR controls lipid absorption. Together, our studies establish two distinct pathways by which FXR regulates hepatic lipids. FXR agonists are used to treat non-alcoholic fatty liver disease (NAFLD), in part because they reduce hepatic lipids. Here, we show that FXR activation with the FXR agonist GSK2324 controls hepatic lipids via reduced absorption and selective decreases in fatty acid synthesis. Using comprehensive lipidomic analyses, we show that FXR activation in mice or humans specifically reduces hepatic levels of mono- and polyunsaturated fatty acids (MUFA and PUFA). Decreases in MUFA are due to FXR-dependent repression of Scd1, Dgat2, and Lpin1 expression, which is independent of SHP and SREBP1c. FXR-dependent decreases in PUFAs are mediated by decreases in lipid absorption. Replenishing bile acids in the diet prevented decreased lipid absorption in GSK2324-treated mice, suggesting that FXR reduces absorption via decreased bile acids. We used tissue-specific FXR KO mice to show that hepatic FXR controls lipogenic genes, whereas intestinal FXR controls lipid absorption. Together, our studies establish two distinct pathways by which FXR regulates hepatic lipids. FXR agonists are used to treat non-alcoholic fatty liver disease (NAFLD), in part because they reduce hepatic lipids. Here, we show that FXR activation with the FXR agonist GSK2324 controls hepatic lipids via reduced absorption and selective decreases in fatty acid synthesis. Using comprehensive lipidomic analyses, we show that FXR activation in mice or humans specifically reduces hepatic levels of mono- and polyunsaturated fatty acids (MUFA and PUFA). Decreases in MUFA are due to FXR-dependent repression of Scd1, Dgat2, and Lpin1 expression, which is independent of SHP and SREBP1c. FXR-dependent decreases in PUFAs are mediated by decreases in lipid absorption. Replenishing bile acids in the diet prevented decreased lipid absorption in GSK2324-treated mice, suggesting that FXR reduces absorption via decreased bile acids. We used tissue-specific FXR KO mice to show that hepatic FXR controls lipogenic genes, whereas intestinal FXR controls lipid absorption. Together, our studies establish two distinct pathways by which FXR regulates hepatic lipids. [Display omitted] •Non-steroidal agonists of FXR significantly decrease intestinal lipid absorption•FXR decreases hepatic triglycerides independently of SHP and SREBP1C•FXR activation reduces expression of three key lipogenic genes, Scd1, Lpin1, and Dgat2•Intestinal and hepatic FXR are both required to decrease hepatic triglycerides The nuclear receptor FXR lowers hepatic triglycerides to protect against the onset of NAFLD. Clifford et al. demonstrate that activation of FXR decreases hepatic triglycerides through two distinct mechanisms. First, via bile-acid-dependent decreases in intestinal lipid absorption and second, through selective changes in lipogenesis. FXR agonists are used to treat non-alcoholic fatty liver disease (NAFLD), in part because they reduce hepatic lipids. Here, we show that FXR activation with the FXR agonist GSK2324 controls hepatic lipids via reduced absorption and selective decreases in fatty acid synthesis. Using comprehensive lipidomic analyses, we show that FXR activation in mice or humans specifically reduces hepatic levels of mono- and polyunsaturated fatty acids (MUFA and PUFA). Decreases in MUFA are due to FXR-dependent repression of Scd1, Dgat2 , and Lpin1 expression, which is independent of SHP and SREBP1c. FXR-dependent decreases in PUFAs are mediated by decreases in lipid absorption. Replenishing bile acids in the diet prevented decreased lipid absorption in GSK2324-treated mice, suggesting that FXR reduces absorption via decreased bile acids. We used tissue-specific FXR KO mice to show that hepatic FXR controls lipogenic genes, whereas intestinal FXR controls lipid absorption. Together, our studies establish two distinct pathways by which FXR regulates hepatic lipids. The nuclear receptor FXR lowers hepatic triglycerides to protect against the onset of NAFLD. Clifford et al. demonstrate that activation of FXR decreases hepatic triglycerides through two distinct mechanisms. First, via bile-acid-dependent decreases in intestinal lipid absorption and second, through selective changes in lipogenesis. |
Author | Cheng, Angela Jarrett, Kelsey E. Clifford, Bethan L. Barshop, William Drew, Brian G. Marschall, Hanns-Ulrich Thorell, Anders Williams, Kevin J. Wahlström, Annika Meikle, Peter J. Sedgeman, Leslie R. Calkin, Anna C. Morand, Pauline Ashby, Julianne W. Edwards, Peter A. de Aguiar Vallim, Thomas Q. Mack, Julia J. Liu, Yingying Tarling, Elizabeth J. Brearley-Sholto, Madelaine C. Wohlschlegel, James Chan, Alvin P. |
AuthorAffiliation | 2 Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA 11 Molecular Biology Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA 12 These authors contributed equally 13 Lead contact 9 Metabolomics Laboratory, Baker Heart & Diabetes Institute, Melbourne, VIC, Australia 3 Lipidomics Core Facility, Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA 1 Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA 8 Karolinska Institutet, Department of Clinical Science, Danderyd Hospital and Department of Surgery, Ersta Hospital, Stockholm, Sweden 5 Lipid Metabolism & Cardiometabolic Disease Laboratory, Baker Heart & Diabetes Institute, Melbourne, VIC, Australia 7 Molecular Metabolism & Ageing Laboratory, Baker Heart & Diabetes Institute, Melbourne, VIC, Aust |
AuthorAffiliation_xml | – name: 12 These authors contributed equally – name: 1 Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA – name: 2 Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA – name: 6 Central Clinical School, Monash University, Melbourne, VIC, Australia – name: 11 Molecular Biology Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA – name: 4 Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden – name: 3 Lipidomics Core Facility, Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA – name: 13 Lead contact – name: 8 Karolinska Institutet, Department of Clinical Science, Danderyd Hospital and Department of Surgery, Ersta Hospital, Stockholm, Sweden – name: 9 Metabolomics Laboratory, Baker Heart & Diabetes Institute, Melbourne, VIC, Australia – name: 5 Lipid Metabolism & Cardiometabolic Disease Laboratory, Baker Heart & Diabetes Institute, Melbourne, VIC, Australia – name: 10 Jonsson Comprehensive Cancer Center (JCCC), UCLA, Los Angeles, CA, USA – name: 7 Molecular Metabolism & Ageing Laboratory, Baker Heart & Diabetes Institute, Melbourne, VIC, Australia |
Author_xml | – sequence: 1 givenname: Bethan L. surname: Clifford fullname: Clifford, Bethan L. organization: Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA – sequence: 2 givenname: Leslie R. surname: Sedgeman fullname: Sedgeman, Leslie R. organization: Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA – sequence: 3 givenname: Kevin J. surname: Williams fullname: Williams, Kevin J. organization: Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA – sequence: 4 givenname: Pauline surname: Morand fullname: Morand, Pauline organization: Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA – sequence: 5 givenname: Angela surname: Cheng fullname: Cheng, Angela organization: Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA – sequence: 6 givenname: Kelsey E. surname: Jarrett fullname: Jarrett, Kelsey E. organization: Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA – sequence: 7 givenname: Alvin P. surname: Chan fullname: Chan, Alvin P. organization: Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA – sequence: 8 givenname: Madelaine C. surname: Brearley-Sholto fullname: Brearley-Sholto, Madelaine C. organization: Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA – sequence: 9 givenname: Annika surname: Wahlström fullname: Wahlström, Annika organization: Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden – sequence: 10 givenname: Julianne W. surname: Ashby fullname: Ashby, Julianne W. organization: Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA – sequence: 11 givenname: William surname: Barshop fullname: Barshop, William organization: Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA – sequence: 12 givenname: James surname: Wohlschlegel fullname: Wohlschlegel, James organization: Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA – sequence: 13 givenname: Anna C. surname: Calkin fullname: Calkin, Anna C. organization: Lipid Metabolism & Cardiometabolic Disease Laboratory, Baker Heart & Diabetes Institute, Melbourne, VIC, Australia – sequence: 14 givenname: Yingying surname: Liu fullname: Liu, Yingying organization: Lipid Metabolism & Cardiometabolic Disease Laboratory, Baker Heart & Diabetes Institute, Melbourne, VIC, Australia – sequence: 15 givenname: Anders surname: Thorell fullname: Thorell, Anders organization: Karolinska Institutet, Department of Clinical Science, Danderyd Hospital and Department of Surgery, Ersta Hospital, Stockholm, Sweden – sequence: 16 givenname: Peter J. surname: Meikle fullname: Meikle, Peter J. organization: Metabolomics Laboratory, Baker Heart & Diabetes Institute, Melbourne, VIC, Australia – sequence: 17 givenname: Brian G. surname: Drew fullname: Drew, Brian G. organization: Central Clinical School, Monash University, Melbourne, VIC, Australia – sequence: 18 givenname: Julia J. surname: Mack fullname: Mack, Julia J. organization: Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA – sequence: 19 givenname: Hanns-Ulrich surname: Marschall fullname: Marschall, Hanns-Ulrich organization: Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden – sequence: 20 givenname: Elizabeth J. surname: Tarling fullname: Tarling, Elizabeth J. organization: Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA – sequence: 21 givenname: Peter A. surname: Edwards fullname: Edwards, Peter A. organization: Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA – sequence: 22 givenname: Thomas Q. surname: de Aguiar Vallim fullname: de Aguiar Vallim, Thomas Q. email: tvallim@mednet.ucla.edu organization: Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34270928$$D View this record in MEDLINE/PubMed https://gup.ub.gu.se/publication/308972$$DView record from Swedish Publication Index http://kipublications.ki.se/Default.aspx?queryparsed=id:147355319$$DView record from Swedish Publication Index |
BookMark | eNp9kk2LFDEQhoOsuB_6BzxIjl56zEenuwMiLKujwqAgCh6EkEmqx4w9SW-SHvHfm3bGxfUwEEhRed6qFPVeojMfPCD0lJIFJbR5sV2YHeQFI4wuSLMglD1AF1RyVrU1I2clFoJUNeX0HF2mtCWEN1zyR-ic16wlknUX6Nvy6yesTXZ7nV3weIwhg8kJ6412PmX84Xq5eo33TuO1G6DSxtnKwgjegs84gp3MLEzYeTy40Vms1ynEcU4-Rg97PSR4cryv0Jflm88376rVx7fvb65XlRGyzVXbC2At76yRzPQd1eu-YbbVujFMSEuAaA6sBkY72vXCMNISIZgwtdDS1oRfoepQN_2EcVqrMbqdjr9U0E4dUz9KBKpuSDkn-c00qpLaTDPPSSdbVvhXB77AO7CmTB71cE92_8W772oT9qrjgksxF3h-LBDD7QQpq51LBoZBewhTUqyMI7ua1rKgz_7tddfk78oKwA6AiSGlCP0dQomafaG2avaFmn2hSKOKL4qo-09kXP6z8fJfN5yWvjxIoWxw7yCqZBx4A9bF4hRlgzsl_w1IVNV8 |
CitedBy_id | crossref_primary_10_1210_endocr_bqae112 crossref_primary_10_26599_FMH_2024_9420016 crossref_primary_10_1016_j_jhepr_2024_101250 crossref_primary_10_3390_nu15183988 crossref_primary_10_1016_j_lfs_2024_123211 crossref_primary_10_3390_biomedicines11041097 crossref_primary_10_3390_ijms25031544 crossref_primary_10_1016_j_biopha_2022_113577 crossref_primary_10_3390_ijms231911710 crossref_primary_10_1186_s40104_024_01113_5 crossref_primary_10_26599_FSHW_2024_9250045 crossref_primary_10_3389_fendo_2023_1095440 crossref_primary_10_1111_1750_3841_17565 crossref_primary_10_2174_1389557523666230324092842 crossref_primary_10_3390_nu17071097 crossref_primary_10_1016_j_coph_2022_102286 crossref_primary_10_1080_10408398_2024_2385028 crossref_primary_10_1039_D3FO00770G crossref_primary_10_1097_HC9_0000000000000127 crossref_primary_10_1038_s41392_024_02072_z crossref_primary_10_1097_HC9_0000000000000234 crossref_primary_10_3389_fendo_2022_899731 crossref_primary_10_1016_j_isci_2023_106561 crossref_primary_10_1016_j_toxlet_2024_07_003 crossref_primary_10_1016_j_jpba_2025_116734 crossref_primary_10_1055_a_2128_5538 crossref_primary_10_1039_D3FO04555B crossref_primary_10_1360_SSV_2024_0098 crossref_primary_10_14336_AD_2023_0830 crossref_primary_10_3389_fgstr_2024_1534431 crossref_primary_10_1016_j_apsb_2022_08_019 crossref_primary_10_1038_s42003_024_06158_w crossref_primary_10_1016_j_aqrep_2021_100997 crossref_primary_10_3389_fendo_2023_1268865 crossref_primary_10_1002_mnfr_202300927 crossref_primary_10_1007_s00018_022_04658_8 crossref_primary_10_1080_19490976_2023_2281015 crossref_primary_10_1039_D3FO02471G crossref_primary_10_1155_2021_6889533 crossref_primary_10_1016_j_intimp_2024_113035 crossref_primary_10_1016_j_fbio_2024_105010 crossref_primary_10_1016_j_dsx_2024_103068 crossref_primary_10_1016_j_jare_2024_11_003 crossref_primary_10_1507_endocrj_EJ22_0544 crossref_primary_10_12677_jcpm_2024_32083 crossref_primary_10_1021_acs_est_4c08945 crossref_primary_10_3390_nu15040948 crossref_primary_10_1080_19490976_2024_2331460 crossref_primary_10_1016_j_crfs_2023_100630 crossref_primary_10_3389_fphar_2021_771976 crossref_primary_10_3390_molecules29050976 crossref_primary_10_1016_j_pharmthera_2022_108238 crossref_primary_10_3390_nu15061323 crossref_primary_10_1016_j_diabres_2024_111846 crossref_primary_10_1016_j_jlr_2022_100324 crossref_primary_10_1016_j_jff_2024_106466 crossref_primary_10_1097_HEP_0000000000001214 crossref_primary_10_3390_molecules29174080 crossref_primary_10_3390_nu15143187 crossref_primary_10_1038_s41467_023_36981_4 crossref_primary_10_1021_acs_jproteome_3c00475 crossref_primary_10_3390_molecules30051010 crossref_primary_10_1016_j_cbpa_2023_102370 crossref_primary_10_1080_10408398_2022_2040945 crossref_primary_10_11569_wcjd_v31_i19_797 crossref_primary_10_1016_j_bcp_2024_116313 crossref_primary_10_1016_j_jbc_2022_102745 crossref_primary_10_1128_msystems_00817_24 crossref_primary_10_1016_j_bcp_2024_116437 crossref_primary_10_1016_j_jff_2024_106179 crossref_primary_10_1038_s41587_023_01680_4 crossref_primary_10_1002_med_21991 crossref_primary_10_1128_spectrum_05323_22 crossref_primary_10_3389_fphar_2022_843409 crossref_primary_10_1016_j_ejphar_2024_176334 crossref_primary_10_1016_j_biopha_2024_116400 crossref_primary_10_1038_s42255_022_00722_6 crossref_primary_10_1111_acer_14719 crossref_primary_10_3389_fmed_2023_1122873 crossref_primary_10_3389_fmicb_2023_1145430 crossref_primary_10_1155_2022_4752148 crossref_primary_10_1002_ptr_7770 crossref_primary_10_1155_2023_6409385 crossref_primary_10_1039_D2FO02341E crossref_primary_10_3389_fnut_2024_1447878 crossref_primary_10_3390_nu16081169 crossref_primary_10_3390_foods12173237 crossref_primary_10_1080_10715762_2023_2226315 crossref_primary_10_3389_fnut_2022_914323 crossref_primary_10_1186_s40168_023_01709_5 crossref_primary_10_1016_j_ejmech_2023_115307 crossref_primary_10_3389_fphar_2025_1542143 crossref_primary_10_1038_s41401_022_00880_z crossref_primary_10_1016_j_livres_2024_03_002 crossref_primary_10_1016_j_smim_2023_101859 crossref_primary_10_1002_mnfr_202300561 crossref_primary_10_1016_j_biopha_2024_116658 crossref_primary_10_1097_MOL_0000000000000933 crossref_primary_10_3390_metabo12121276 crossref_primary_10_1016_j_psj_2024_104422 crossref_primary_10_3390_nu16183120 crossref_primary_10_1016_j_cca_2024_120004 crossref_primary_10_1002_ame2_12328 crossref_primary_10_3390_nu15143115 crossref_primary_10_1042_CS20230934 crossref_primary_10_3389_fphar_2023_1160665 crossref_primary_10_1371_journal_pone_0296265 crossref_primary_10_1007_s10126_024_10365_1 crossref_primary_10_1016_j_cbi_2024_111364 crossref_primary_10_1021_acs_jmedchem_2c01918 crossref_primary_10_1016_j_phrs_2023_106983 crossref_primary_10_1016_j_clinre_2024_102431 crossref_primary_10_1111_jgh_16279 crossref_primary_10_1016_j_plefa_2024_102663 crossref_primary_10_1021_acs_chemrestox_1c00424 crossref_primary_10_3390_nu16142272 crossref_primary_10_1016_j_jff_2024_106038 crossref_primary_10_1016_j_jpba_2025_116668 crossref_primary_10_1016_j_phymed_2023_154703 crossref_primary_10_1093_jas_skad334 crossref_primary_10_3390_biom13091356 crossref_primary_10_3389_fmicb_2024_1373402 crossref_primary_10_3390_ijms232213967 crossref_primary_10_1038_s41598_023_38530_x crossref_primary_10_1016_j_biopha_2023_114957 crossref_primary_10_1111_jpi_70005 crossref_primary_10_1097_CRD_0000000000000537 crossref_primary_10_1002_hep_32577 crossref_primary_10_1042_CS20241137 crossref_primary_10_1002_elsc_202300016 crossref_primary_10_1016_j_ecoenv_2024_116589 crossref_primary_10_1021_acs_jafc_3c03149 crossref_primary_10_1038_s41401_024_01329_1 crossref_primary_10_1038_s41564_023_01570_0 crossref_primary_10_3390_ijms23094822 crossref_primary_10_1002_oby_23876 crossref_primary_10_1016_j_csbj_2023_05_026 crossref_primary_10_1016_j_jes_2024_06_026 crossref_primary_10_48175_IJARSCT_18773 crossref_primary_10_3389_fphar_2023_1135952 crossref_primary_10_37349_edd_2023_00029 crossref_primary_10_1016_j_cmet_2021_12_011 crossref_primary_10_1016_j_jff_2023_105679 crossref_primary_10_1016_j_biomaterials_2023_122291 crossref_primary_10_3389_fimmu_2022_951406 crossref_primary_10_3389_fmolb_2022_1089359 crossref_primary_10_1016_j_fbio_2024_104546 crossref_primary_10_1016_j_cmet_2025_02_009 crossref_primary_10_1007_s11427_023_2353_0 crossref_primary_10_1080_15376516_2024_2364192 crossref_primary_10_1161_ATVBAHA_122_317320 crossref_primary_10_1016_j_jhazmat_2024_134821 crossref_primary_10_3390_agriculture13112159 crossref_primary_10_3390_biom14070841 crossref_primary_10_1016_j_chemosphere_2022_134336 crossref_primary_10_3390_molecules29030709 crossref_primary_10_3389_fmed_2021_761538 crossref_primary_10_3389_fmed_2023_1247851 crossref_primary_10_1016_j_bbalip_2021_159089 crossref_primary_10_1038_s41522_023_00398_0 crossref_primary_10_11569_wcjd_v30_i22_971 crossref_primary_10_3389_fphar_2023_1163694 crossref_primary_10_1016_j_abb_2024_110024 crossref_primary_10_1016_j_micres_2024_127865 crossref_primary_10_1016_j_ejmech_2023_115992 crossref_primary_10_1038_s41392_023_01727_7 crossref_primary_10_1016_j_celrep_2024_114572 crossref_primary_10_1016_j_psj_2024_104183 crossref_primary_10_1177_17562848221138676 crossref_primary_10_3390_biom13081199 crossref_primary_10_1186_s12951_025_03190_8 crossref_primary_10_3389_fcell_2023_1147434 crossref_primary_10_1016_j_phymed_2024_155759 crossref_primary_10_1016_j_jep_2022_115333 crossref_primary_10_1016_j_fct_2022_113440 crossref_primary_10_1021_acs_jafc_3c04683 crossref_primary_10_3390_ijms23020774 crossref_primary_10_1111_apha_14065 crossref_primary_10_1016_j_cell_2024_10_001 crossref_primary_10_3390_ijms252011213 crossref_primary_10_1016_j_ijbiomac_2025_141850 crossref_primary_10_1016_j_jnutbio_2024_109635 crossref_primary_10_1016_j_jhep_2022_12_025 crossref_primary_10_1016_j_biocel_2024_106585 crossref_primary_10_1016_j_lfs_2023_122279 crossref_primary_10_1016_j_ejphar_2024_176582 crossref_primary_10_3389_fendo_2023_1114424 crossref_primary_10_3389_fimmu_2022_946628 crossref_primary_10_3389_fnut_2022_1030528 crossref_primary_10_1111_liv_70027 crossref_primary_10_1016_j_jhepr_2023_100936 crossref_primary_10_15252_emmm_202114742 crossref_primary_10_3389_fvets_2023_1147024 crossref_primary_10_15212_AMM_2024_0082 crossref_primary_10_3390_metabo13070836 crossref_primary_10_3390_foods13050699 crossref_primary_10_1016_j_ijbiomac_2025_142276 crossref_primary_10_1016_j_lfs_2024_123259 crossref_primary_10_1016_j_engreg_2024_04_003 crossref_primary_10_1016_j_metabol_2023_155610 crossref_primary_10_1016_j_molmet_2023_101856 crossref_primary_10_3389_fnut_2023_1121203 crossref_primary_10_1515_mr_2024_0020 crossref_primary_10_1021_acs_jafc_3c05158 crossref_primary_10_1016_j_apsb_2024_04_027 crossref_primary_10_3390_biomedicines9121893 crossref_primary_10_1186_s12876_025_03756_8 crossref_primary_10_37349_eemd_2025_101425 crossref_primary_10_1002_edm2_460 crossref_primary_10_1016_j_toxlet_2024_08_009 crossref_primary_10_1016_j_jff_2024_106566 crossref_primary_10_1016_j_immuni_2025_02_015 crossref_primary_10_1016_j_jhep_2023_11_001 crossref_primary_10_1038_s41401_022_00860_3 crossref_primary_10_3390_ijms242417508 crossref_primary_10_1016_j_jep_2023_117106 crossref_primary_10_1016_j_crfs_2022_08_015 crossref_primary_10_1016_j_bcp_2024_116730 crossref_primary_10_1016_j_jhep_2022_10_023 crossref_primary_10_1016_j_jhepr_2023_100917 crossref_primary_10_3389_fphar_2024_1426049 crossref_primary_10_1016_j_chom_2024_06_008 crossref_primary_10_3390_ijms25084387 crossref_primary_10_1016_j_jnutbio_2023_109547 crossref_primary_10_1007_s13105_023_00987_9 crossref_primary_10_3390_ijms252413656 crossref_primary_10_3390_molecules26206117 crossref_primary_10_1016_j_biopha_2024_116585 crossref_primary_10_3390_nu16060893 crossref_primary_10_1016_j_ejphar_2023_176196 crossref_primary_10_2147_CEG_S226130 crossref_primary_10_1002_cbdv_202300980 crossref_primary_10_1136_egastro_2023_100020 crossref_primary_10_2147_CIA_S431220 crossref_primary_10_1002_ptr_8443 crossref_primary_10_1016_j_drudis_2024_103910 crossref_primary_10_1093_lifemeta_load032 crossref_primary_10_1016_j_livres_2023_09_002 crossref_primary_10_1016_j_arr_2024_102475 crossref_primary_10_3389_fphar_2023_1148737 crossref_primary_10_1016_j_phymed_2025_156537 crossref_primary_10_1039_D2FO01161A crossref_primary_10_1007_s10695_022_01116_x crossref_primary_10_1016_j_biopha_2024_116594 crossref_primary_10_1016_j_bbadis_2023_166656 crossref_primary_10_1016_j_ijbiomac_2023_125307 crossref_primary_10_1021_acs_jafc_4c01353 crossref_primary_10_3390_foods13233727 crossref_primary_10_3390_cells11182883 crossref_primary_10_1016_j_bioorg_2023_107071 crossref_primary_10_1093_procel_pwae016 crossref_primary_10_3389_fimmu_2022_968799 crossref_primary_10_1038_s41598_025_94401_7 crossref_primary_10_1021_acs_analchem_4c03743 crossref_primary_10_1021_acs_jmedchem_4c02720 crossref_primary_10_1002_ame2_12506 crossref_primary_10_1016_j_ejmech_2022_114903 crossref_primary_10_1016_j_tips_2024_07_006 crossref_primary_10_1038_s41401_024_01303_x crossref_primary_10_1016_j_atherosclerosis_2022_07_010 crossref_primary_10_3389_fendo_2023_1239276 |
Cites_doi | 10.1053/j.gastro.2004.04.007 10.1016/S1097-2765(00)00051-4 10.1038/s41586-019-0984-y 10.1194/jlr.M600342-JLR200 10.1152/ajpendo.00321.2020 10.1172/JCI0215593 10.1080/17474124.2020.1748498 10.1097/MOL.0b013e3282f9b54d 10.1371/journal.pone.0147772 10.1016/S0045-6535(99)00219-2 10.1126/science.1204265 10.1053/j.gastro.2016.08.057 10.1194/jlr.M700330-JLR200 10.2741/3399 10.1002/hep.23450 10.1074/jbc.M109.083899 10.1016/0005-2760(87)90002-6 10.1172/JCI122595 10.1038/nature13961 10.1161/CIRCRESAHA.112.300648 10.1210/me.2011-1157 10.1016/j.bmcl.2010.12.089 10.1073/pnas.2019388118 10.1038/nrendo.2017.173 10.1016/S0021-9258(20)78929-5 10.1002/hep.30612 10.1002/hep.26672 10.1007/164_2019_228 10.1016/j.cmet.2015.01.007 10.1002/hep.29305 10.1016/j.cmet.2016.01.001 10.1194/jlr.R055095 10.1016/j.cmet.2013.03.013 10.1172/JCI104909 10.1038/nrgastro.2017.109 10.1172/JCI76738 10.1016/j.chembiol.2018.10.008 10.1002/hep.21632 10.1038/nm.3760 10.1139/y59-099 10.1172/JCI0216309 10.1038/s41575-019-0250-7 10.1152/ajpgi.00111.2012 10.1016/j.jhep.2019.06.011 10.1172/JCI94029 10.1172/JCI21025 10.1016/j.cld.2015.10.011 10.1194/jlr.M800323-JLR200 10.1016/j.cmet.2013.01.003 10.1194/jlr.R054114 10.1038/s41574-019-0266-7 10.1016/S0092-8674(00)00062-3 10.1016/j.xpro.2020.100235 10.1152/ajpendo.90958.2008 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTPV AOWAS F1U D8T ZZAVC |
DOI | 10.1016/j.cmet.2021.06.012 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Göteborgs universitet SWEPUB Freely available online SwePub Articles full text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1932-7420 |
EndPage | 1684.e4 |
ExternalDocumentID | oai_swepub_ki_se_460460 oai_gup_ub_gu_se_308972 PMC8353952 34270928 10_1016_j_cmet_2021_06_012 S1550413121002825 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R00 HL118161 – fundername: NIBIB NIH HHS grantid: T32 EB027629 – fundername: NIDDK NIH HHS grantid: R01 DK128952 – fundername: NIDDK NIH HHS grantid: R01 DK112119 – fundername: NIGMS NIH HHS grantid: R01 GM089778 – fundername: NIDDK NIH HHS grantid: T32 DK007180 – fundername: NIDDK NIH HHS grantid: R01 DK118064 – fundername: NHLBI NIH HHS grantid: R01 HL122677 – fundername: NHLBI NIH HHS grantid: K99 HL118161 – fundername: NIDDK NIH HHS grantid: R01 DK102559 |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 53G 5GY 62- 6J9 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FEDTE FIRID HVGLF IHE IXB J1W JIG M3Z M41 O-L O9- OK1 P2P RCE ROL RPZ SES SSZ TR2 UNMZH WQ6 ZA5 AAEDT AAIKJ AAMRU AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AGHFR AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION EJD HZ~ OZT RIG CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM ADTPV AOWAS F1U D8T ZZAVC |
ID | FETCH-LOGICAL-c597t-7f5e2738dc92cf81abf62d7aa6c259d0e0a3e24e21818f5c20705525c45a9d403 |
IEDL.DBID | IXB |
ISSN | 1550-4131 1932-7420 |
IngestDate | Mon Aug 25 03:40:39 EDT 2025 Thu Aug 21 06:20:28 EDT 2025 Thu Aug 21 13:55:36 EDT 2025 Fri Jul 11 01:27:29 EDT 2025 Mon Jul 21 05:49:54 EDT 2025 Tue Jul 01 03:58:20 EDT 2025 Thu Apr 24 23:01:25 EDT 2025 Fri Feb 23 02:39:54 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | intestinal lipid absorption FXR NAFLD bile acids |
Language | English |
License | Copyright © 2021 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c597t-7f5e2738dc92cf81abf62d7aa6c259d0e0a3e24e21818f5c20705525c45a9d403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AUTHOR CONTRIBUTIONS T.Q.d.A.V., E.J.T., and P.A.E. oversaw and supervised the projects. Mouse experiments were performed by B.L.C., L.R.S., K.E.J., and A.C. Lipidomic analyses were performed by K.J.W. at the UCLA lipidomics core except for one study, which was performed by Y.L., A.C.C., B.G.D., and P.J.M. Radiolabeled absorption studies were performed by L.R.S. Bodipy-labeling study tissue processing, imaging, and quantification were performed by L.R.S., J.W.A., and J.J.M. Bile analysis by LC-MS was performed by L.R.S., M.C.B.-S., and W.B. under the supervision of J.W. GC-MS analyses were performed by P.M. and B.L.C. Sample collection and preparation for GC-MS were performed by B.L.C., A.P.C., and K.E.J. Human samples were collected by A.T., A.W., and H.U.M. Data analysis and statistical analyses were performed by B.L.C., L.R.S., and T.Q.d.A.V. Figures were generated by B.L.C., L.R.S., and T.Q.d.A.V. The manuscript was written by B.L.C., P.A.E., and T.Q.d.A.V. All authors revised and approved the final manuscript. |
OpenAccessLink | http://kipublications.ki.se/Default.aspx?queryparsed=id:147355319 |
PMID | 34270928 |
PQID | 2552984149 |
PQPubID | 23479 |
ParticipantIDs | swepub_primary_oai_swepub_ki_se_460460 swepub_primary_oai_gup_ub_gu_se_308972 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8353952 proquest_miscellaneous_2552984149 pubmed_primary_34270928 crossref_primary_10_1016_j_cmet_2021_06_012 crossref_citationtrail_10_1016_j_cmet_2021_06_012 elsevier_sciencedirect_doi_10_1016_j_cmet_2021_06_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-03 |
PublicationDateYYYYMMDD | 2021-08-03 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell metabolism |
PublicationTitleAlternate | Cell Metab |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Montet, Parquet, Sacquet, Montet, Infante, Amic (bib36) 1987; 918 de Aguiar Vallim, Tarling, Kim, Civelek, Baldán, Esau, Edwards (bib13) 2013; 112 Horton, Goldstein, Brown (bib23) 2002; 109 Matsukuma, Bennett, Huang, Wang, Gil, Osborne (bib35) 2006; 47 Akinrotimi, Riessen, Vanduyne, Park, Lee, Wong, Zavacki, Schoonjans, Anakk (bib2) 2017; 66 Hsieh, Williams, Su, Bensinger (bib24) 2021; 2 Spector, Kim (bib44) 2015; 56 Ahmad, Haeusler (bib1) 2019; 15 Flowers, Ntambi (bib17) 2008; 19 Targher, Lonardo, Byrne (bib46) 2018; 14 Hartman, Lai, Evans (bib20) 2009; 50 Li-Hawkins, Gåfvels, Olin, Lund, Andersson, Schuster, Björkhem, Russell, Eggertsen (bib34) 2002; 110 Gonzalez, Jiang, Patterson (bib18) 2016; 151 Shah, Kowdley (bib42) 2020; 14 Schumacher, Guo (bib41) 2019; 256 Sinal, Tohkin, Miyata, Ward, Lambert, Gonzalez (bib43) 2000; 102 Jiang, Xie, Li, Zhang, Nichols, Krausz, Cai, Qi, Fang, Takahashi (bib28) 2015; 125 Tarling, Clifford, Cheng, Morand, Cheng, Lester, Sallam, Turner, De Aguiar Vallim (bib47) 2017; 127 Bonde, Eggertsen, Rudling (bib8) 2016; 11 Hofmann (bib21) 2009; 14 Takeuchi, Reue (bib45) 2009; 296 Watanabe, Houten, Wang, Moschetta, Mangelsdorf, Heyman, Moore, Auwerx (bib50) 2004; 113 Lee, Wagner, Xiao, Kim, Feng, Lazar, Moore (bib33) 2014; 516 Zhang, Léveillé, Courty, Gunes, N Nguyen, Estall (bib55) 2020; 319 Parker, Calkin, Seldin, Keating, Tarling, Yang, Moody, Liu, Zerenturk, Needham (bib38) 2019; 567 de Aguiar Vallim, Tarling, Ahn, Hagey, Romanoski, Lee, Graham, Motohashi, Yamamoto, Edwards (bib14) 2015; 21 Sayin, Wahlström, Felin, Jäntti, Marschall, Bamberg, Angelin, Hyötyläinen, Orešič, Bäckhed (bib40) 2013; 17 Ko, Qu, Black, Tso (bib32) 2020; 17 de Aguiar Vallim, Tarling, Edwards (bib12) 2013; 17 Moser, McLachlan (bib37) 1999; 39 Wang, Rong, Duerr, Hermanson, Hedde, Wong, Vallim, Cravatt, Gratton, Ford (bib49) 2016; 23 Jones, Repa, Russell, Dietschy, Turley (bib29) 2012; 303 Zhang, Csaki, Ronquillo, Baufeld, Lin, Gutierrez, Dwyer, Brindley, Fong, Tontonoz (bib54) 2019; 129 Bligh, Dyer (bib7) 1959; 37 Younossi, Anstee, Marietti, Hardy, Henry, Eslam, George, Bugianesi (bib51) 2018; 15 Zhang, Yin, Anderson, Ma, Gonzalez, Willson, Edwards (bib52) 2010; 285 Jandacek, Heubi, Tso (bib27) 2004; 127 Cohen, Horton, Hobbs (bib10) 2011; 332 Huang, Iqbal, Saha, Liu, Chan, Hussain, Moore, Wang (bib25) 2007; 46 Bass, Caravella, Chen, Creech, Deaton, Madauss, Marr, McFadyen, Miller, Mills (bib5) 2011; 21 Al-Dury, Wahlström, Panzitt, Thorell, Ståhlman, Trauner, Fickert, Bäckhed, Fändriks, Wagner (bib3) 2019; 71 Burr, Burr (bib9) 1930; 86 Ding, Zhang, Yang, Jin, Sousa, Dong, Wang, Tu, Ma, Tian (bib15) 2021; 118 Huynh, Barlow, Jayawardana, Weir, Mellett, Cinel, Magliano, Shaw, Drew, Meikle (bib26) 2019; 26 Goodwin, Jones, Price, Watson, McKee, Moore, Galardi, Wilson, Lewis, Roth (bib19) 2000; 6 Fang, Suh, Reilly, Yu, Osborn, Lackey, Yoshihara, Perino, Jacinto, Lukasheva (bib16) 2015; 21 Kim, Ahn, Inagaki, Choi, Ito, Guo, Kliewer, Gonzalez (bib30) 2007; 48 Kleiner, Makhlouf (bib31) 2016; 20 Zhang, Ge, Heemstra, Chen, Xu, Smith, Ma, Kasim, Edwards, Novak (bib53) 2012; 26 Alves-Bezerra, Cohen (bib4) 2017; 8 Hofmann, Borgstroem (bib22) 1964; 43 Rizzolo, Buckley, Kong, Zhan, Shen, Stofan, Brinker, Goedken, Buckley, Guo (bib39) 2019; 70 Birkenfeld, Shulman (bib6) 2014; 59 Dawson, Karpen (bib11) 2015; 56 Thomas, Hart, Kong, Fang, Zhong, Guo (bib48) 2010; 51 Zhang (10.1016/j.cmet.2021.06.012_bib54) 2019; 129 Li-Hawkins (10.1016/j.cmet.2021.06.012_bib34) 2002; 110 Matsukuma (10.1016/j.cmet.2021.06.012_bib35) 2006; 47 de Aguiar Vallim (10.1016/j.cmet.2021.06.012_bib14) 2015; 21 Moser (10.1016/j.cmet.2021.06.012_bib37) 1999; 39 Hofmann (10.1016/j.cmet.2021.06.012_bib22) 1964; 43 Jones (10.1016/j.cmet.2021.06.012_bib29) 2012; 303 Ahmad (10.1016/j.cmet.2021.06.012_bib1) 2019; 15 Cohen (10.1016/j.cmet.2021.06.012_bib10) 2011; 332 Gonzalez (10.1016/j.cmet.2021.06.012_bib18) 2016; 151 Hofmann (10.1016/j.cmet.2021.06.012_bib21) 2009; 14 Al-Dury (10.1016/j.cmet.2021.06.012_bib3) 2019; 71 Spector (10.1016/j.cmet.2021.06.012_bib44) 2015; 56 Thomas (10.1016/j.cmet.2021.06.012_bib48) 2010; 51 Shah (10.1016/j.cmet.2021.06.012_bib42) 2020; 14 Younossi (10.1016/j.cmet.2021.06.012_bib51) 2018; 15 Zhang (10.1016/j.cmet.2021.06.012_bib55) 2020; 319 Lee (10.1016/j.cmet.2021.06.012_bib33) 2014; 516 de Aguiar Vallim (10.1016/j.cmet.2021.06.012_bib12) 2013; 17 Goodwin (10.1016/j.cmet.2021.06.012_bib19) 2000; 6 Sinal (10.1016/j.cmet.2021.06.012_bib43) 2000; 102 Dawson (10.1016/j.cmet.2021.06.012_bib11) 2015; 56 Hartman (10.1016/j.cmet.2021.06.012_bib20) 2009; 50 Takeuchi (10.1016/j.cmet.2021.06.012_bib45) 2009; 296 Bonde (10.1016/j.cmet.2021.06.012_bib8) 2016; 11 Ding (10.1016/j.cmet.2021.06.012_bib15) 2021; 118 Kim (10.1016/j.cmet.2021.06.012_bib30) 2007; 48 Targher (10.1016/j.cmet.2021.06.012_bib46) 2018; 14 Ko (10.1016/j.cmet.2021.06.012_bib32) 2020; 17 Hsieh (10.1016/j.cmet.2021.06.012_bib24) 2021; 2 Montet (10.1016/j.cmet.2021.06.012_bib36) 1987; 918 Flowers (10.1016/j.cmet.2021.06.012_bib17) 2008; 19 Rizzolo (10.1016/j.cmet.2021.06.012_bib39) 2019; 70 Huynh (10.1016/j.cmet.2021.06.012_bib26) 2019; 26 Alves-Bezerra (10.1016/j.cmet.2021.06.012_bib4) 2017; 8 de Aguiar Vallim (10.1016/j.cmet.2021.06.012_bib13) 2013; 112 Birkenfeld (10.1016/j.cmet.2021.06.012_bib6) 2014; 59 Huang (10.1016/j.cmet.2021.06.012_bib25) 2007; 46 Tarling (10.1016/j.cmet.2021.06.012_bib47) 2017; 127 Bligh (10.1016/j.cmet.2021.06.012_bib7) 1959; 37 Schumacher (10.1016/j.cmet.2021.06.012_bib41) 2019; 256 Burr (10.1016/j.cmet.2021.06.012_bib9) 1930; 86 Sayin (10.1016/j.cmet.2021.06.012_bib40) 2013; 17 Horton (10.1016/j.cmet.2021.06.012_bib23) 2002; 109 Fang (10.1016/j.cmet.2021.06.012_bib16) 2015; 21 Parker (10.1016/j.cmet.2021.06.012_bib38) 2019; 567 Wang (10.1016/j.cmet.2021.06.012_bib49) 2016; 23 Zhang (10.1016/j.cmet.2021.06.012_bib52) 2010; 285 Jiang (10.1016/j.cmet.2021.06.012_bib28) 2015; 125 Jandacek (10.1016/j.cmet.2021.06.012_bib27) 2004; 127 Akinrotimi (10.1016/j.cmet.2021.06.012_bib2) 2017; 66 Bass (10.1016/j.cmet.2021.06.012_bib5) 2011; 21 Kleiner (10.1016/j.cmet.2021.06.012_bib31) 2016; 20 Watanabe (10.1016/j.cmet.2021.06.012_bib50) 2004; 113 Zhang (10.1016/j.cmet.2021.06.012_bib53) 2012; 26 |
References_xml | – volume: 70 start-page: 389 year: 2019 end-page: 402 ident: bib39 article-title: Bile acid homeostasis in a cholesterol 7α-hydroxylase and sterol 27-hydroxylase double knockout mouse model publication-title: Hepatology – volume: 118 start-page: 1 year: 2021 end-page: 10 ident: bib15 article-title: Vertical sleeve gastrectomy confers metabolic improvements by reducing intestinal bile acids and lipid absorption in mice publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 8 start-page: 1 year: 2017 end-page: 8 ident: bib4 article-title: Triglyceride metabolism in the liver publication-title: Compr. Physiol. – volume: 19 start-page: 248 year: 2008 end-page: 256 ident: bib17 article-title: Role of stearoyl-coenzyme A desaturase in regulating lipid metabolism publication-title: Curr. Opin. Lipidol. – volume: 20 start-page: 293 year: 2016 end-page: 312 ident: bib31 article-title: Histology of NAFLD and NASH in adults and children publication-title: Clin. Liver Dis. – volume: 21 start-page: 1206 year: 2011 end-page: 1213 ident: bib5 article-title: Conformationally constrained farnesoid X receptor (FXR) agonists: heteroaryl replacements of the naphthalene publication-title: Bioorg. Med. Chem. Lett. – volume: 6 start-page: 517 year: 2000 end-page: 526 ident: bib19 article-title: A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis publication-title: Mol. Cell – volume: 56 start-page: 11 year: 2015 end-page: 21 ident: bib44 article-title: Discovery of essential fatty acids publication-title: J. Lipid Res. – volume: 17 start-page: 657 year: 2013 end-page: 669 ident: bib12 article-title: Pleiotropic roles of bile acids in metabolism publication-title: Cell Metab – volume: 127 start-page: 139 year: 2004 end-page: 144 ident: bib27 article-title: A novel, noninvasive method for the measurement of intestinal fat absorption publication-title: Gastroenterology – volume: 21 start-page: 159 year: 2015 end-page: 165 ident: bib16 article-title: Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance publication-title: Nat. Med. – volume: 109 start-page: 1125 year: 2002 end-page: 1131 ident: bib23 article-title: SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver publication-title: J. Clin. Invest. – volume: 86 start-page: 587 year: 1930 end-page: 621 ident: bib9 article-title: On the nature and role of the fatty acids essential in nutrition publication-title: J. Biol. Chem. – volume: 332 start-page: 1519 year: 2011 end-page: 1523 ident: bib10 article-title: Human fatty liver disease: old questions and new insights publication-title: Science – volume: 39 start-page: 1513 year: 1999 end-page: 1521 ident: bib37 article-title: A non-absorbable dietary fat substitute enhances elimination of persistent lipophilic contaminants in humans publication-title: Chemosphere – volume: 516 start-page: 112 year: 2014 end-page: 115 ident: bib33 article-title: Nutrient-sensing nuclear receptors coordinate autophagy publication-title: Nature – volume: 256 start-page: 325 year: 2019 end-page: 357 ident: bib41 article-title: Pharmacologic modulation of bile acid-FXR-FGF15/FGF19 pathway for the treatment of nonalcoholic steatohepatitis publication-title: Handb. Exp. Pharmacol. – volume: 71 start-page: 986 year: 2019 end-page: 991 ident: bib3 article-title: Obeticholic acid may increase the risk of gallstone formation in susceptible patients publication-title: J. Hepatol. – volume: 14 start-page: 99 year: 2018 end-page: 114 ident: bib46 article-title: Nonalcoholic fatty liver disease and chronic vascular complications of diabetes mellitus publication-title: Nat. Rev. Endocrinol. – volume: 102 start-page: 731 year: 2000 end-page: 744 ident: bib43 article-title: Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis publication-title: Cell – volume: 26 start-page: 71 year: 2019 end-page: 84.e4 ident: bib26 article-title: High-throughput plasma lipidomics: detailed mapping of the associations with cardiometabolic risk factors publication-title: Cell Chem. Biol. – volume: 113 start-page: 1408 year: 2004 end-page: 1418 ident: bib50 article-title: Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c publication-title: J. Clin. Invest. – volume: 14 start-page: 2584 year: 2009 end-page: 2598 ident: bib21 article-title: The enterohepatic circulation of bile acids in mammals: form and functions publication-title: Front. Biosci. (Landmark Ed.) – volume: 11 year: 2016 ident: bib8 article-title: Mice abundant in muricholic bile acids show resistance to dietary induced steatosis, weight gain, and to impaired glucose metabolism publication-title: PLoS One – volume: 2 start-page: 100235 year: 2021 ident: bib24 article-title: Profiling of mouse macrophage lipidome using direct infusion shotgun mass spectrometry publication-title: Star Protoc – volume: 17 start-page: 225 year: 2013 end-page: 235 ident: bib40 article-title: Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist publication-title: Cell Metab – volume: 15 start-page: 11 year: 2018 end-page: 20 ident: bib51 article-title: Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention publication-title: Nat. Rev. Gastroenterol. Hepatol. – volume: 37 start-page: 911 year: 1959 end-page: 917 ident: bib7 article-title: A rapid method of total lipid extraction and purification publication-title: Can. J. Biochem. Physiol. – volume: 43 start-page: 247 year: 1964 end-page: 257 ident: bib22 article-title: The intraluminal phase of fat digestion in man: the lipid content of the micellar and oil phases of intestinal content obtained during fat digestion and absorption publication-title: J. Clin. Invest. – volume: 567 start-page: 187 year: 2019 end-page: 193 ident: bib38 article-title: An integrative systems genetic analysis of mammalian lipid metabolism publication-title: Nature – volume: 125 start-page: 386 year: 2015 end-page: 402 ident: bib28 article-title: Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease publication-title: J. Clin. Invest. – volume: 303 start-page: G263 year: 2012 end-page: G274 ident: bib29 article-title: Delineation of biochemical, molecular, and physiological changes accompanying bile acid pool size restoration in Cyp7a1(-/-) mice fed low levels of cholic acid publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. – volume: 50 start-page: 193 year: 2009 end-page: 203 ident: bib20 article-title: Loss of small heterodimer partner expression in the liver protects against dyslipidemia publication-title: J. Lipid Res. – volume: 319 start-page: E863 year: 2020 end-page: E876 ident: bib55 article-title: Differences in metabolic and liver pathobiology induced by two dietary mouse models of nonalcoholic fatty liver disease publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 26 start-page: 272 year: 2012 end-page: 280 ident: bib53 article-title: Loss of FXR protects against diet-induced obesity and accelerates liver carcinogenesis in ob/ob mice publication-title: Mol. Endocrinol. – volume: 47 start-page: 2754 year: 2006 end-page: 2761 ident: bib35 article-title: Coordinated control of bile acids and lipogenesis through FXR-dependent regulation of fatty acid synthase publication-title: J. Lipid Res. – volume: 296 start-page: E1195 year: 2009 end-page: E1209 ident: bib45 article-title: Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 21 start-page: 298 year: 2015 end-page: 311 ident: bib14 article-title: MAFG is a transcriptional repressor of bile acid synthesis and metabolism publication-title: Cell Metab – volume: 59 start-page: 713 year: 2014 end-page: 723 ident: bib6 article-title: Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes publication-title: Hepatology – volume: 17 start-page: 169 year: 2020 end-page: 183 ident: bib32 article-title: Regulation of intestinal lipid metabolism: current concepts and relevance to disease publication-title: Nat. Rev. Gastroenterol. Hepatol. – volume: 127 start-page: 3741 year: 2017 end-page: 3754 ident: bib47 article-title: RNA-binding protein ZFP36L1 maintains posttranscriptional regulation of bile acid metabolism publication-title: J. Clin. Invest. – volume: 285 start-page: 3035 year: 2010 end-page: 3043 ident: bib52 article-title: Identification of novel pathways that control farnesoid X receptor-mediated hypocholesterolemia publication-title: J. Biol. Chem. – volume: 15 start-page: 701 year: 2019 end-page: 712 ident: bib1 article-title: Bile acids in glucose metabolism and insulin signalling—mechanisms and research needs publication-title: Nat. Rev. Endocrinol. – volume: 66 start-page: 1854 year: 2017 end-page: 1865 ident: bib2 article-title: Small heterodimer partner deletion prevents hepatic steatosis and when combined with farnesoid X receptor loss protects against type 2 diabetes in mice publication-title: Hepatology – volume: 112 start-page: 1602 year: 2013 end-page: 1612 ident: bib13 article-title: MicroRNA-144 regulates hepatic ABCA1 and plasma HDL following activation of the nuclear receptor FXR publication-title: Circ. Res. – volume: 151 start-page: 845 year: 2016 end-page: 859 ident: bib18 article-title: An intestinal microbiota-farnesoid X receptor axis modulates metabolic disease publication-title: Gastroenterology – volume: 918 start-page: 1 year: 1987 end-page: 10 ident: bib36 article-title: Beta-muricholic acid; potentiometric and cholesterol-dissolving properties publication-title: Biochim. Biophys. Acta – volume: 23 start-page: 492 year: 2016 end-page: 504 ident: bib49 article-title: Intestinal phospholipid remodeling is required for dietary-lipid uptake and survival on a high-fat diet publication-title: Cell Metab – volume: 46 start-page: 147 year: 2007 end-page: 157 ident: bib25 article-title: Molecular characterization of the role of orphan receptor small heterodimer partner in development of fatty liver publication-title: Hepatology – volume: 129 start-page: 281 year: 2019 end-page: 295 ident: bib54 article-title: Lipin 2/3 phosphatidic acid phosphatases maintain phospholipid homeostasis to regulate chylomicron synthesis publication-title: J. Clin. Invest. – volume: 48 start-page: 2664 year: 2007 end-page: 2672 ident: bib30 article-title: Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine publication-title: J. Lipid Res. – volume: 110 start-page: 1191 year: 2002 end-page: 1200 ident: bib34 article-title: Cholic acid mediates negative feedback regulation of bile acid synthesis in mice publication-title: J. Clin. Invest. – volume: 14 start-page: 311 year: 2020 end-page: 321 ident: bib42 article-title: Obeticholic acid for the treatment of nonalcoholic steatohepatitis publication-title: Expert Rev. Gastroenterol. Hepatol. – volume: 51 start-page: 1410 year: 2010 end-page: 1419 ident: bib48 article-title: Genome-wide tissue-specific farnesoid X receptor binding in mouse liver and intestine publication-title: Hepatology – volume: 56 start-page: 1085 year: 2015 end-page: 1099 ident: bib11 article-title: Intestinal transport and metabolism of bile acids publication-title: J. Lipid Res. – volume: 127 start-page: 139 year: 2004 ident: 10.1016/j.cmet.2021.06.012_bib27 article-title: A novel, noninvasive method for the measurement of intestinal fat absorption publication-title: Gastroenterology doi: 10.1053/j.gastro.2004.04.007 – volume: 6 start-page: 517 year: 2000 ident: 10.1016/j.cmet.2021.06.012_bib19 article-title: A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)00051-4 – volume: 567 start-page: 187 year: 2019 ident: 10.1016/j.cmet.2021.06.012_bib38 article-title: An integrative systems genetic analysis of mammalian lipid metabolism publication-title: Nature doi: 10.1038/s41586-019-0984-y – volume: 47 start-page: 2754 year: 2006 ident: 10.1016/j.cmet.2021.06.012_bib35 article-title: Coordinated control of bile acids and lipogenesis through FXR-dependent regulation of fatty acid synthase publication-title: J. Lipid Res. doi: 10.1194/jlr.M600342-JLR200 – volume: 319 start-page: E863 year: 2020 ident: 10.1016/j.cmet.2021.06.012_bib55 article-title: Differences in metabolic and liver pathobiology induced by two dietary mouse models of nonalcoholic fatty liver disease publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00321.2020 – volume: 109 start-page: 1125 year: 2002 ident: 10.1016/j.cmet.2021.06.012_bib23 article-title: SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver publication-title: J. Clin. Invest. doi: 10.1172/JCI0215593 – volume: 14 start-page: 311 year: 2020 ident: 10.1016/j.cmet.2021.06.012_bib42 article-title: Obeticholic acid for the treatment of nonalcoholic steatohepatitis publication-title: Expert Rev. Gastroenterol. Hepatol. doi: 10.1080/17474124.2020.1748498 – volume: 19 start-page: 248 year: 2008 ident: 10.1016/j.cmet.2021.06.012_bib17 article-title: Role of stearoyl-coenzyme A desaturase in regulating lipid metabolism publication-title: Curr. Opin. Lipidol. doi: 10.1097/MOL.0b013e3282f9b54d – volume: 11 year: 2016 ident: 10.1016/j.cmet.2021.06.012_bib8 article-title: Mice abundant in muricholic bile acids show resistance to dietary induced steatosis, weight gain, and to impaired glucose metabolism publication-title: PLoS One doi: 10.1371/journal.pone.0147772 – volume: 39 start-page: 1513 year: 1999 ident: 10.1016/j.cmet.2021.06.012_bib37 article-title: A non-absorbable dietary fat substitute enhances elimination of persistent lipophilic contaminants in humans publication-title: Chemosphere doi: 10.1016/S0045-6535(99)00219-2 – volume: 332 start-page: 1519 year: 2011 ident: 10.1016/j.cmet.2021.06.012_bib10 article-title: Human fatty liver disease: old questions and new insights publication-title: Science doi: 10.1126/science.1204265 – volume: 151 start-page: 845 year: 2016 ident: 10.1016/j.cmet.2021.06.012_bib18 article-title: An intestinal microbiota-farnesoid X receptor axis modulates metabolic disease publication-title: Gastroenterology doi: 10.1053/j.gastro.2016.08.057 – volume: 48 start-page: 2664 year: 2007 ident: 10.1016/j.cmet.2021.06.012_bib30 article-title: Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine publication-title: J. Lipid Res. doi: 10.1194/jlr.M700330-JLR200 – volume: 14 start-page: 2584 year: 2009 ident: 10.1016/j.cmet.2021.06.012_bib21 article-title: The enterohepatic circulation of bile acids in mammals: form and functions publication-title: Front. Biosci. (Landmark Ed.) doi: 10.2741/3399 – volume: 8 start-page: 1 year: 2017 ident: 10.1016/j.cmet.2021.06.012_bib4 article-title: Triglyceride metabolism in the liver publication-title: Compr. Physiol. – volume: 51 start-page: 1410 year: 2010 ident: 10.1016/j.cmet.2021.06.012_bib48 article-title: Genome-wide tissue-specific farnesoid X receptor binding in mouse liver and intestine publication-title: Hepatology doi: 10.1002/hep.23450 – volume: 285 start-page: 3035 year: 2010 ident: 10.1016/j.cmet.2021.06.012_bib52 article-title: Identification of novel pathways that control farnesoid X receptor-mediated hypocholesterolemia publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.083899 – volume: 918 start-page: 1 year: 1987 ident: 10.1016/j.cmet.2021.06.012_bib36 article-title: Beta-muricholic acid; potentiometric and cholesterol-dissolving properties publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2760(87)90002-6 – volume: 129 start-page: 281 year: 2019 ident: 10.1016/j.cmet.2021.06.012_bib54 article-title: Lipin 2/3 phosphatidic acid phosphatases maintain phospholipid homeostasis to regulate chylomicron synthesis publication-title: J. Clin. Invest. doi: 10.1172/JCI122595 – volume: 516 start-page: 112 year: 2014 ident: 10.1016/j.cmet.2021.06.012_bib33 article-title: Nutrient-sensing nuclear receptors coordinate autophagy publication-title: Nature doi: 10.1038/nature13961 – volume: 112 start-page: 1602 year: 2013 ident: 10.1016/j.cmet.2021.06.012_bib13 article-title: MicroRNA-144 regulates hepatic ABCA1 and plasma HDL following activation of the nuclear receptor FXR publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.112.300648 – volume: 26 start-page: 272 year: 2012 ident: 10.1016/j.cmet.2021.06.012_bib53 article-title: Loss of FXR protects against diet-induced obesity and accelerates liver carcinogenesis in ob/ob mice publication-title: Mol. Endocrinol. doi: 10.1210/me.2011-1157 – volume: 21 start-page: 1206 year: 2011 ident: 10.1016/j.cmet.2021.06.012_bib5 article-title: Conformationally constrained farnesoid X receptor (FXR) agonists: heteroaryl replacements of the naphthalene publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2010.12.089 – volume: 118 start-page: 1 year: 2021 ident: 10.1016/j.cmet.2021.06.012_bib15 article-title: Vertical sleeve gastrectomy confers metabolic improvements by reducing intestinal bile acids and lipid absorption in mice publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2019388118 – volume: 14 start-page: 99 year: 2018 ident: 10.1016/j.cmet.2021.06.012_bib46 article-title: Nonalcoholic fatty liver disease and chronic vascular complications of diabetes mellitus publication-title: Nat. Rev. Endocrinol. doi: 10.1038/nrendo.2017.173 – volume: 86 start-page: 587 year: 1930 ident: 10.1016/j.cmet.2021.06.012_bib9 article-title: On the nature and role of the fatty acids essential in nutrition publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(20)78929-5 – volume: 70 start-page: 389 year: 2019 ident: 10.1016/j.cmet.2021.06.012_bib39 article-title: Bile acid homeostasis in a cholesterol 7α-hydroxylase and sterol 27-hydroxylase double knockout mouse model publication-title: Hepatology doi: 10.1002/hep.30612 – volume: 59 start-page: 713 year: 2014 ident: 10.1016/j.cmet.2021.06.012_bib6 article-title: Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes publication-title: Hepatology doi: 10.1002/hep.26672 – volume: 256 start-page: 325 year: 2019 ident: 10.1016/j.cmet.2021.06.012_bib41 article-title: Pharmacologic modulation of bile acid-FXR-FGF15/FGF19 pathway for the treatment of nonalcoholic steatohepatitis publication-title: Handb. Exp. Pharmacol. doi: 10.1007/164_2019_228 – volume: 21 start-page: 298 year: 2015 ident: 10.1016/j.cmet.2021.06.012_bib14 article-title: MAFG is a transcriptional repressor of bile acid synthesis and metabolism publication-title: Cell Metab doi: 10.1016/j.cmet.2015.01.007 – volume: 66 start-page: 1854 year: 2017 ident: 10.1016/j.cmet.2021.06.012_bib2 article-title: Small heterodimer partner deletion prevents hepatic steatosis and when combined with farnesoid X receptor loss protects against type 2 diabetes in mice publication-title: Hepatology doi: 10.1002/hep.29305 – volume: 23 start-page: 492 year: 2016 ident: 10.1016/j.cmet.2021.06.012_bib49 article-title: Intestinal phospholipid remodeling is required for dietary-lipid uptake and survival on a high-fat diet publication-title: Cell Metab doi: 10.1016/j.cmet.2016.01.001 – volume: 56 start-page: 11 year: 2015 ident: 10.1016/j.cmet.2021.06.012_bib44 article-title: Discovery of essential fatty acids publication-title: J. Lipid Res. doi: 10.1194/jlr.R055095 – volume: 17 start-page: 657 year: 2013 ident: 10.1016/j.cmet.2021.06.012_bib12 article-title: Pleiotropic roles of bile acids in metabolism publication-title: Cell Metab doi: 10.1016/j.cmet.2013.03.013 – volume: 43 start-page: 247 year: 1964 ident: 10.1016/j.cmet.2021.06.012_bib22 article-title: The intraluminal phase of fat digestion in man: the lipid content of the micellar and oil phases of intestinal content obtained during fat digestion and absorption publication-title: J. Clin. Invest. doi: 10.1172/JCI104909 – volume: 15 start-page: 11 year: 2018 ident: 10.1016/j.cmet.2021.06.012_bib51 article-title: Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/nrgastro.2017.109 – volume: 125 start-page: 386 year: 2015 ident: 10.1016/j.cmet.2021.06.012_bib28 article-title: Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease publication-title: J. Clin. Invest. doi: 10.1172/JCI76738 – volume: 26 start-page: 71 year: 2019 ident: 10.1016/j.cmet.2021.06.012_bib26 article-title: High-throughput plasma lipidomics: detailed mapping of the associations with cardiometabolic risk factors publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2018.10.008 – volume: 46 start-page: 147 year: 2007 ident: 10.1016/j.cmet.2021.06.012_bib25 article-title: Molecular characterization of the role of orphan receptor small heterodimer partner in development of fatty liver publication-title: Hepatology doi: 10.1002/hep.21632 – volume: 21 start-page: 159 year: 2015 ident: 10.1016/j.cmet.2021.06.012_bib16 article-title: Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance publication-title: Nat. Med. doi: 10.1038/nm.3760 – volume: 37 start-page: 911 year: 1959 ident: 10.1016/j.cmet.2021.06.012_bib7 article-title: A rapid method of total lipid extraction and purification publication-title: Can. J. Biochem. Physiol. doi: 10.1139/y59-099 – volume: 110 start-page: 1191 year: 2002 ident: 10.1016/j.cmet.2021.06.012_bib34 article-title: Cholic acid mediates negative feedback regulation of bile acid synthesis in mice publication-title: J. Clin. Invest. doi: 10.1172/JCI0216309 – volume: 17 start-page: 169 year: 2020 ident: 10.1016/j.cmet.2021.06.012_bib32 article-title: Regulation of intestinal lipid metabolism: current concepts and relevance to disease publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/s41575-019-0250-7 – volume: 303 start-page: G263 year: 2012 ident: 10.1016/j.cmet.2021.06.012_bib29 article-title: Delineation of biochemical, molecular, and physiological changes accompanying bile acid pool size restoration in Cyp7a1(-/-) mice fed low levels of cholic acid publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. doi: 10.1152/ajpgi.00111.2012 – volume: 71 start-page: 986 year: 2019 ident: 10.1016/j.cmet.2021.06.012_bib3 article-title: Obeticholic acid may increase the risk of gallstone formation in susceptible patients publication-title: J. Hepatol. doi: 10.1016/j.jhep.2019.06.011 – volume: 127 start-page: 3741 year: 2017 ident: 10.1016/j.cmet.2021.06.012_bib47 article-title: RNA-binding protein ZFP36L1 maintains posttranscriptional regulation of bile acid metabolism publication-title: J. Clin. Invest. doi: 10.1172/JCI94029 – volume: 113 start-page: 1408 year: 2004 ident: 10.1016/j.cmet.2021.06.012_bib50 article-title: Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c publication-title: J. Clin. Invest. doi: 10.1172/JCI21025 – volume: 20 start-page: 293 year: 2016 ident: 10.1016/j.cmet.2021.06.012_bib31 article-title: Histology of NAFLD and NASH in adults and children publication-title: Clin. Liver Dis. doi: 10.1016/j.cld.2015.10.011 – volume: 50 start-page: 193 year: 2009 ident: 10.1016/j.cmet.2021.06.012_bib20 article-title: Loss of small heterodimer partner expression in the liver protects against dyslipidemia publication-title: J. Lipid Res. doi: 10.1194/jlr.M800323-JLR200 – volume: 17 start-page: 225 year: 2013 ident: 10.1016/j.cmet.2021.06.012_bib40 article-title: Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist publication-title: Cell Metab doi: 10.1016/j.cmet.2013.01.003 – volume: 56 start-page: 1085 year: 2015 ident: 10.1016/j.cmet.2021.06.012_bib11 article-title: Intestinal transport and metabolism of bile acids publication-title: J. Lipid Res. doi: 10.1194/jlr.R054114 – volume: 15 start-page: 701 year: 2019 ident: 10.1016/j.cmet.2021.06.012_bib1 article-title: Bile acids in glucose metabolism and insulin signalling—mechanisms and research needs publication-title: Nat. Rev. Endocrinol. doi: 10.1038/s41574-019-0266-7 – volume: 102 start-page: 731 year: 2000 ident: 10.1016/j.cmet.2021.06.012_bib43 article-title: Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis publication-title: Cell doi: 10.1016/S0092-8674(00)00062-3 – volume: 2 start-page: 100235 year: 2021 ident: 10.1016/j.cmet.2021.06.012_bib24 article-title: Profiling of mouse macrophage lipidome using direct infusion shotgun mass spectrometry publication-title: Star Protoc doi: 10.1016/j.xpro.2020.100235 – volume: 296 start-page: E1195 year: 2009 ident: 10.1016/j.cmet.2021.06.012_bib45 article-title: Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.90958.2008 |
SSID | ssj0036393 |
Score | 2.701471 |
Snippet | FXR agonists are used to treat non-alcoholic fatty liver disease (NAFLD), in part because they reduce hepatic lipids. Here, we show that FXR activation with... |
SourceID | swepub pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1671 |
SubjectTerms | Animals beta-muricholic acid Bile bile acids Bile Acids and Salts - metabolism binding Cell Biology cholesterol Endocrinology & Metabolism Endocrinology and Diabetes Endokrinologi och diabetes farnesoid-x-receptor fatty liver-disease FXR Humans intestinal lipid absorption Lipids Liver - metabolism metabolism Mice Mice, Inbred C57BL NAFLD Non-alcoholic Fatty Liver Disease - metabolism Non-alcoholic Fatty Liver Disease - prevention & control nuclear receptor Phosphatidate Phosphatase - metabolism Receptors, Cytoplasmic and Nuclear - metabolism small heterodimer partner |
Title | FXR activation protects against NAFLD via bile-acid-dependent reductions in lipid absorption |
URI | https://dx.doi.org/10.1016/j.cmet.2021.06.012 https://www.ncbi.nlm.nih.gov/pubmed/34270928 https://www.proquest.com/docview/2552984149 https://pubmed.ncbi.nlm.nih.gov/PMC8353952 https://gup.ub.gu.se/publication/308972 http://kipublications.ki.se/Default.aspx?queryparsed=id:147355319 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-lUPBFtH6dHyWC-CLhskn267G2HkW0D2rhHoSQZLNntO4d9yH43zuTzR4spX3wcbMTNmSS38xsZn4h5I1sitIXVc2qRpVM-cwzC2aKcce5dbawRYnVyJ8vi4sr9XGezw_I2VALg2mVCft7TI9onVqmaTanqxCmX9G5BghGBqxYgQk4LFUVi_jm7wc0lmCBY5I9CDOUToUzfY6X--0xn1JkkcMzE7cZp5vO580cyhHTaLROswfkfnIr6Wk_8ofkwHfH5Ki_aPLvI_J9Nv9CsYSh_wFLEzvDhpqFCeAg0svT2adz-icYagEmmHGhYcP9uFu6Rn7XuEBp6Oh1WIWGGrtZriPePCZXsw_fzi5YuleBOQgftqxsc48VOY2rhWurzNi2EE1pTOEgGGq450Z6oTxa_6rNneBIuSNyp3JTN4rLJ-SwW3b-GaGtqxyYN_AhwPFqrLEl4ANvC28wkORqQrJhQrVLpON498W1HrLLfmpUgkYlaEyxy8SEvNv3WfWUG3dK54Oe9GjhaLAJd_Z7PShVw47CYxLT-eVuoyHIEnWlIHSckKe9kvfjkEqUvBbVhJQj9e8FkK17_KYLPyJrN7i6ss7hu2_7hTLqstitNDQtdnrjteRVXd4imJp-BRRUBR5rP__PGXhB7uFTzGaUL8nhdr3zr8DD2tqTuIX-AVWjJdc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWRQguiDflaSTEBVl1HCdOjstC1YVuD7Ar9YBk2Y5TDEta9YHEv2fGSSpVq90DV3usWB5n5ptk5htC3qZVrnxelKyopGLSJ55ZcFOMO86ts7nNFVYjn07z8bn8PMtmB-S4r4XBtMrO9rc2PVrrbmTYneZwGcLwG4JrMMHIgBUrMG-Qm4AGFPZvOJl96M1xCi44ZtmDNEPxrnKmTfJyvz0mVIokkngm4irvdBl9Xk6i3KMaje5pdI_c7XAlPWq3fp8c-OYBudV2mvz7kHwfzb5SrGFov8DSjp5hTc3cBECIdHo0mnykf4KhFuwEMy5UrG-Qu6ErJHiNN5SGhl6EZaiosevFKhqcR-R89OnseMy6xgrMQfywYarOPJbkVK4Uri4SY-tcVMqY3EE0VHHPTeqF9Oj-izpzgiPnjsiczExZSZ4-JofNovFPCa1d4cC_AYgA5FVZYxUYCF7n3mAkyeWAJP2BatexjmPziwvdp5f91KgEjUrQmGOXiAF5v1uzbDk3rpXOej3pvZujwSlcu-5Nr1QNrxT-JzGNX2zXGqIsURYSYscBedIqebePVArFS1EMiNpT_04A6br3Z5rwI9J2A9ZNywye-669KHtL5tulhqH5Vq-9TnlRqisEu6FfAQVljv-1n_3nCbwmt8dnpxM9OZl-eU7u4ExMbUxfkMPNautfAtza2FfxdfoHESoo9g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FXR+activation+protects+against+NAFLD+via+bile-acid-dependent+reductions+in+lipid+absorption&rft.jtitle=Cell+metabolism&rft.au=Clifford%2C+B.+L.&rft.au=Sedgeman%2C+L.+R.&rft.au=Williams%2C+K.+J.&rft.au=Morand%2C+P.&rft.date=2021-08-03&rft.issn=1550-4131&rft.volume=33&rft.issue=8&rft_id=info:doi/10.1016%2Fj.cmet.2021.06.012&rft.externalDocID=oai_gup_ub_gu_se_308972 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon |