FXR activation protects against NAFLD via bile-acid-dependent reductions in lipid absorption

FXR agonists are used to treat non-alcoholic fatty liver disease (NAFLD), in part because they reduce hepatic lipids. Here, we show that FXR activation with the FXR agonist GSK2324 controls hepatic lipids via reduced absorption and selective decreases in fatty acid synthesis. Using comprehensive lip...

Full description

Saved in:
Bibliographic Details
Published inCell metabolism Vol. 33; no. 8; pp. 1671 - 1684.e4
Main Authors Clifford, Bethan L., Sedgeman, Leslie R., Williams, Kevin J., Morand, Pauline, Cheng, Angela, Jarrett, Kelsey E., Chan, Alvin P., Brearley-Sholto, Madelaine C., Wahlström, Annika, Ashby, Julianne W., Barshop, William, Wohlschlegel, James, Calkin, Anna C., Liu, Yingying, Thorell, Anders, Meikle, Peter J., Drew, Brian G., Mack, Julia J., Marschall, Hanns-Ulrich, Tarling, Elizabeth J., Edwards, Peter A., de Aguiar Vallim, Thomas Q.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 03.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract FXR agonists are used to treat non-alcoholic fatty liver disease (NAFLD), in part because they reduce hepatic lipids. Here, we show that FXR activation with the FXR agonist GSK2324 controls hepatic lipids via reduced absorption and selective decreases in fatty acid synthesis. Using comprehensive lipidomic analyses, we show that FXR activation in mice or humans specifically reduces hepatic levels of mono- and polyunsaturated fatty acids (MUFA and PUFA). Decreases in MUFA are due to FXR-dependent repression of Scd1, Dgat2, and Lpin1 expression, which is independent of SHP and SREBP1c. FXR-dependent decreases in PUFAs are mediated by decreases in lipid absorption. Replenishing bile acids in the diet prevented decreased lipid absorption in GSK2324-treated mice, suggesting that FXR reduces absorption via decreased bile acids. We used tissue-specific FXR KO mice to show that hepatic FXR controls lipogenic genes, whereas intestinal FXR controls lipid absorption. Together, our studies establish two distinct pathways by which FXR regulates hepatic lipids. [Display omitted] •Non-steroidal agonists of FXR significantly decrease intestinal lipid absorption•FXR decreases hepatic triglycerides independently of SHP and SREBP1C•FXR activation reduces expression of three key lipogenic genes, Scd1, Lpin1, and Dgat2•Intestinal and hepatic FXR are both required to decrease hepatic triglycerides The nuclear receptor FXR lowers hepatic triglycerides to protect against the onset of NAFLD. Clifford et al. demonstrate that activation of FXR decreases hepatic triglycerides through two distinct mechanisms. First, via bile-acid-dependent decreases in intestinal lipid absorption and second, through selective changes in lipogenesis.
AbstractList FXR agonists are used to treat non-alcoholic fatty liver disease (NAFLD), in part because they reduce hepatic lipids. Here, we show that FXR activation with the FXR agonist GSK2324 controls hepatic lipids via reduced absorption and selective decreases in fatty acid synthesis. Using comprehensive lipidomic analyses, we show that FXR activation in mice or humans specifically reduces hepatic levels of mono- and polyunsaturated fatty acids (MUFA and PUFA). Decreases in MUFA are due to FXR-dependent repression of Scd1, Dgat2, and Lpin1 expression, which is independent of SHP and SREBP1c. FXR-dependent decreases in PUFAs are mediated by decreases in lipid absorption. Replenishing bile acids in the diet prevented decreased lipid absorption in GSK2324-treated mice, suggesting that FXR reduces absorption via decreased bile acids. We used tissue-specific FXR KO mice to show that hepatic FXR controls lipogenic genes, whereas intestinal FXR controls lipid absorption. Together, our studies establish two distinct pathways by which FXR regulates hepatic lipids.FXR agonists are used to treat non-alcoholic fatty liver disease (NAFLD), in part because they reduce hepatic lipids. Here, we show that FXR activation with the FXR agonist GSK2324 controls hepatic lipids via reduced absorption and selective decreases in fatty acid synthesis. Using comprehensive lipidomic analyses, we show that FXR activation in mice or humans specifically reduces hepatic levels of mono- and polyunsaturated fatty acids (MUFA and PUFA). Decreases in MUFA are due to FXR-dependent repression of Scd1, Dgat2, and Lpin1 expression, which is independent of SHP and SREBP1c. FXR-dependent decreases in PUFAs are mediated by decreases in lipid absorption. Replenishing bile acids in the diet prevented decreased lipid absorption in GSK2324-treated mice, suggesting that FXR reduces absorption via decreased bile acids. We used tissue-specific FXR KO mice to show that hepatic FXR controls lipogenic genes, whereas intestinal FXR controls lipid absorption. Together, our studies establish two distinct pathways by which FXR regulates hepatic lipids.
FXR agonists are used to treat non-alcoholic fatty liver disease (NAFLD), in part because they reduce hepatic lipids. Here, we show that FXR activation with the FXR agonist GSK2324 controls hepatic lipids via reduced absorption and selective decreases in fatty acid synthesis. Using comprehensive lipidomic analyses, we show that FXR activation in mice or humans specifically reduces hepatic levels of mono- and polyunsaturated fatty acids (MUFA and PUFA). Decreases in MUFA are due to FXR-dependent repression of Scd1, Dgat2, and Lpin1 expression, which is independent of SHP and SREBP1c. FXR-dependent decreases in PUFAs are mediated by decreases in lipid absorption. Replenishing bile acids in the diet prevented decreased lipid absorption in GSK2324-treated mice, suggesting that FXR reduces absorption via decreased bile acids. We used tissue-specific FXR KO mice to show that hepatic FXR controls lipogenic genes, whereas intestinal FXR controls lipid absorption. Together, our studies establish two distinct pathways by which FXR regulates hepatic lipids.
FXR agonists are used to treat non-alcoholic fatty liver disease (NAFLD), in part because they reduce hepatic lipids. Here, we show that FXR activation with the FXR agonist GSK2324 controls hepatic lipids via reduced absorption and selective decreases in fatty acid synthesis. Using comprehensive lipidomic analyses, we show that FXR activation in mice or humans specifically reduces hepatic levels of mono- and polyunsaturated fatty acids (MUFA and PUFA). Decreases in MUFA are due to FXR-dependent repression of Scd1, Dgat2, and Lpin1 expression, which is independent of SHP and SREBP1c. FXR-dependent decreases in PUFAs are mediated by decreases in lipid absorption. Replenishing bile acids in the diet prevented decreased lipid absorption in GSK2324-treated mice, suggesting that FXR reduces absorption via decreased bile acids. We used tissue-specific FXR KO mice to show that hepatic FXR controls lipogenic genes, whereas intestinal FXR controls lipid absorption. Together, our studies establish two distinct pathways by which FXR regulates hepatic lipids. [Display omitted] •Non-steroidal agonists of FXR significantly decrease intestinal lipid absorption•FXR decreases hepatic triglycerides independently of SHP and SREBP1C•FXR activation reduces expression of three key lipogenic genes, Scd1, Lpin1, and Dgat2•Intestinal and hepatic FXR are both required to decrease hepatic triglycerides The nuclear receptor FXR lowers hepatic triglycerides to protect against the onset of NAFLD. Clifford et al. demonstrate that activation of FXR decreases hepatic triglycerides through two distinct mechanisms. First, via bile-acid-dependent decreases in intestinal lipid absorption and second, through selective changes in lipogenesis.
FXR agonists are used to treat non-alcoholic fatty liver disease (NAFLD), in part because they reduce hepatic lipids. Here, we show that FXR activation with the FXR agonist GSK2324 controls hepatic lipids via reduced absorption and selective decreases in fatty acid synthesis. Using comprehensive lipidomic analyses, we show that FXR activation in mice or humans specifically reduces hepatic levels of mono- and polyunsaturated fatty acids (MUFA and PUFA). Decreases in MUFA are due to FXR-dependent repression of Scd1, Dgat2 , and Lpin1 expression, which is independent of SHP and SREBP1c. FXR-dependent decreases in PUFAs are mediated by decreases in lipid absorption. Replenishing bile acids in the diet prevented decreased lipid absorption in GSK2324-treated mice, suggesting that FXR reduces absorption via decreased bile acids. We used tissue-specific FXR KO mice to show that hepatic FXR controls lipogenic genes, whereas intestinal FXR controls lipid absorption. Together, our studies establish two distinct pathways by which FXR regulates hepatic lipids. The nuclear receptor FXR lowers hepatic triglycerides to protect against the onset of NAFLD. Clifford et al. demonstrate that activation of FXR decreases hepatic triglycerides through two distinct mechanisms. First, via bile-acid-dependent decreases in intestinal lipid absorption and second, through selective changes in lipogenesis.
Author Cheng, Angela
Jarrett, Kelsey E.
Clifford, Bethan L.
Barshop, William
Drew, Brian G.
Marschall, Hanns-Ulrich
Thorell, Anders
Williams, Kevin J.
Wahlström, Annika
Meikle, Peter J.
Sedgeman, Leslie R.
Calkin, Anna C.
Morand, Pauline
Ashby, Julianne W.
Edwards, Peter A.
de Aguiar Vallim, Thomas Q.
Mack, Julia J.
Liu, Yingying
Tarling, Elizabeth J.
Brearley-Sholto, Madelaine C.
Wohlschlegel, James
Chan, Alvin P.
AuthorAffiliation 2 Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
11 Molecular Biology Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
12 These authors contributed equally
13 Lead contact
9 Metabolomics Laboratory, Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
3 Lipidomics Core Facility, Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
1 Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
8 Karolinska Institutet, Department of Clinical Science, Danderyd Hospital and Department of Surgery, Ersta Hospital, Stockholm, Sweden
5 Lipid Metabolism & Cardiometabolic Disease Laboratory, Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
7 Molecular Metabolism & Ageing Laboratory, Baker Heart & Diabetes Institute, Melbourne, VIC, Aust
AuthorAffiliation_xml – name: 12 These authors contributed equally
– name: 1 Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
– name: 2 Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
– name: 6 Central Clinical School, Monash University, Melbourne, VIC, Australia
– name: 11 Molecular Biology Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
– name: 4 Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
– name: 3 Lipidomics Core Facility, Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
– name: 13 Lead contact
– name: 8 Karolinska Institutet, Department of Clinical Science, Danderyd Hospital and Department of Surgery, Ersta Hospital, Stockholm, Sweden
– name: 9 Metabolomics Laboratory, Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
– name: 5 Lipid Metabolism & Cardiometabolic Disease Laboratory, Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
– name: 10 Jonsson Comprehensive Cancer Center (JCCC), UCLA, Los Angeles, CA, USA
– name: 7 Molecular Metabolism & Ageing Laboratory, Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
Author_xml – sequence: 1
  givenname: Bethan L.
  surname: Clifford
  fullname: Clifford, Bethan L.
  organization: Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
– sequence: 2
  givenname: Leslie R.
  surname: Sedgeman
  fullname: Sedgeman, Leslie R.
  organization: Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
– sequence: 3
  givenname: Kevin J.
  surname: Williams
  fullname: Williams, Kevin J.
  organization: Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
– sequence: 4
  givenname: Pauline
  surname: Morand
  fullname: Morand, Pauline
  organization: Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
– sequence: 5
  givenname: Angela
  surname: Cheng
  fullname: Cheng, Angela
  organization: Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
– sequence: 6
  givenname: Kelsey E.
  surname: Jarrett
  fullname: Jarrett, Kelsey E.
  organization: Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
– sequence: 7
  givenname: Alvin P.
  surname: Chan
  fullname: Chan, Alvin P.
  organization: Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
– sequence: 8
  givenname: Madelaine C.
  surname: Brearley-Sholto
  fullname: Brearley-Sholto, Madelaine C.
  organization: Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
– sequence: 9
  givenname: Annika
  surname: Wahlström
  fullname: Wahlström, Annika
  organization: Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
– sequence: 10
  givenname: Julianne W.
  surname: Ashby
  fullname: Ashby, Julianne W.
  organization: Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
– sequence: 11
  givenname: William
  surname: Barshop
  fullname: Barshop, William
  organization: Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
– sequence: 12
  givenname: James
  surname: Wohlschlegel
  fullname: Wohlschlegel, James
  organization: Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
– sequence: 13
  givenname: Anna C.
  surname: Calkin
  fullname: Calkin, Anna C.
  organization: Lipid Metabolism & Cardiometabolic Disease Laboratory, Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
– sequence: 14
  givenname: Yingying
  surname: Liu
  fullname: Liu, Yingying
  organization: Lipid Metabolism & Cardiometabolic Disease Laboratory, Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
– sequence: 15
  givenname: Anders
  surname: Thorell
  fullname: Thorell, Anders
  organization: Karolinska Institutet, Department of Clinical Science, Danderyd Hospital and Department of Surgery, Ersta Hospital, Stockholm, Sweden
– sequence: 16
  givenname: Peter J.
  surname: Meikle
  fullname: Meikle, Peter J.
  organization: Metabolomics Laboratory, Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
– sequence: 17
  givenname: Brian G.
  surname: Drew
  fullname: Drew, Brian G.
  organization: Central Clinical School, Monash University, Melbourne, VIC, Australia
– sequence: 18
  givenname: Julia J.
  surname: Mack
  fullname: Mack, Julia J.
  organization: Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
– sequence: 19
  givenname: Hanns-Ulrich
  surname: Marschall
  fullname: Marschall, Hanns-Ulrich
  organization: Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
– sequence: 20
  givenname: Elizabeth J.
  surname: Tarling
  fullname: Tarling, Elizabeth J.
  organization: Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
– sequence: 21
  givenname: Peter A.
  surname: Edwards
  fullname: Edwards, Peter A.
  organization: Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
– sequence: 22
  givenname: Thomas Q.
  surname: de Aguiar Vallim
  fullname: de Aguiar Vallim, Thomas Q.
  email: tvallim@mednet.ucla.edu
  organization: Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34270928$$D View this record in MEDLINE/PubMed
https://gup.ub.gu.se/publication/308972$$DView record from Swedish Publication Index
http://kipublications.ki.se/Default.aspx?queryparsed=id:147355319$$DView record from Swedish Publication Index
BookMark eNp9kk2LFDEQhoOsuB_6BzxIjl56zEenuwMiLKujwqAgCh6EkEmqx4w9SW-SHvHfm3bGxfUwEEhRed6qFPVeojMfPCD0lJIFJbR5sV2YHeQFI4wuSLMglD1AF1RyVrU1I2clFoJUNeX0HF2mtCWEN1zyR-ic16wlknUX6Nvy6yesTXZ7nV3weIwhg8kJ6412PmX84Xq5eo33TuO1G6DSxtnKwgjegs84gp3MLEzYeTy40Vms1ynEcU4-Rg97PSR4cryv0Jflm88376rVx7fvb65XlRGyzVXbC2At76yRzPQd1eu-YbbVujFMSEuAaA6sBkY72vXCMNISIZgwtdDS1oRfoepQN_2EcVqrMbqdjr9U0E4dUz9KBKpuSDkn-c00qpLaTDPPSSdbVvhXB77AO7CmTB71cE92_8W772oT9qrjgksxF3h-LBDD7QQpq51LBoZBewhTUqyMI7ua1rKgz_7tddfk78oKwA6AiSGlCP0dQomafaG2avaFmn2hSKOKL4qo-09kXP6z8fJfN5yWvjxIoWxw7yCqZBx4A9bF4hRlgzsl_w1IVNV8
CitedBy_id crossref_primary_10_1210_endocr_bqae112
crossref_primary_10_26599_FMH_2024_9420016
crossref_primary_10_1016_j_jhepr_2024_101250
crossref_primary_10_3390_nu15183988
crossref_primary_10_1016_j_lfs_2024_123211
crossref_primary_10_3390_biomedicines11041097
crossref_primary_10_3390_ijms25031544
crossref_primary_10_1016_j_biopha_2022_113577
crossref_primary_10_3390_ijms231911710
crossref_primary_10_1186_s40104_024_01113_5
crossref_primary_10_26599_FSHW_2024_9250045
crossref_primary_10_3389_fendo_2023_1095440
crossref_primary_10_1111_1750_3841_17565
crossref_primary_10_2174_1389557523666230324092842
crossref_primary_10_3390_nu17071097
crossref_primary_10_1016_j_coph_2022_102286
crossref_primary_10_1080_10408398_2024_2385028
crossref_primary_10_1039_D3FO00770G
crossref_primary_10_1097_HC9_0000000000000127
crossref_primary_10_1038_s41392_024_02072_z
crossref_primary_10_1097_HC9_0000000000000234
crossref_primary_10_3389_fendo_2022_899731
crossref_primary_10_1016_j_isci_2023_106561
crossref_primary_10_1016_j_toxlet_2024_07_003
crossref_primary_10_1016_j_jpba_2025_116734
crossref_primary_10_1055_a_2128_5538
crossref_primary_10_1039_D3FO04555B
crossref_primary_10_1360_SSV_2024_0098
crossref_primary_10_14336_AD_2023_0830
crossref_primary_10_3389_fgstr_2024_1534431
crossref_primary_10_1016_j_apsb_2022_08_019
crossref_primary_10_1038_s42003_024_06158_w
crossref_primary_10_1016_j_aqrep_2021_100997
crossref_primary_10_3389_fendo_2023_1268865
crossref_primary_10_1002_mnfr_202300927
crossref_primary_10_1007_s00018_022_04658_8
crossref_primary_10_1080_19490976_2023_2281015
crossref_primary_10_1039_D3FO02471G
crossref_primary_10_1155_2021_6889533
crossref_primary_10_1016_j_intimp_2024_113035
crossref_primary_10_1016_j_fbio_2024_105010
crossref_primary_10_1016_j_dsx_2024_103068
crossref_primary_10_1016_j_jare_2024_11_003
crossref_primary_10_1507_endocrj_EJ22_0544
crossref_primary_10_12677_jcpm_2024_32083
crossref_primary_10_1021_acs_est_4c08945
crossref_primary_10_3390_nu15040948
crossref_primary_10_1080_19490976_2024_2331460
crossref_primary_10_1016_j_crfs_2023_100630
crossref_primary_10_3389_fphar_2021_771976
crossref_primary_10_3390_molecules29050976
crossref_primary_10_1016_j_pharmthera_2022_108238
crossref_primary_10_3390_nu15061323
crossref_primary_10_1016_j_diabres_2024_111846
crossref_primary_10_1016_j_jlr_2022_100324
crossref_primary_10_1016_j_jff_2024_106466
crossref_primary_10_1097_HEP_0000000000001214
crossref_primary_10_3390_molecules29174080
crossref_primary_10_3390_nu15143187
crossref_primary_10_1038_s41467_023_36981_4
crossref_primary_10_1021_acs_jproteome_3c00475
crossref_primary_10_3390_molecules30051010
crossref_primary_10_1016_j_cbpa_2023_102370
crossref_primary_10_1080_10408398_2022_2040945
crossref_primary_10_11569_wcjd_v31_i19_797
crossref_primary_10_1016_j_bcp_2024_116313
crossref_primary_10_1016_j_jbc_2022_102745
crossref_primary_10_1128_msystems_00817_24
crossref_primary_10_1016_j_bcp_2024_116437
crossref_primary_10_1016_j_jff_2024_106179
crossref_primary_10_1038_s41587_023_01680_4
crossref_primary_10_1002_med_21991
crossref_primary_10_1128_spectrum_05323_22
crossref_primary_10_3389_fphar_2022_843409
crossref_primary_10_1016_j_ejphar_2024_176334
crossref_primary_10_1016_j_biopha_2024_116400
crossref_primary_10_1038_s42255_022_00722_6
crossref_primary_10_1111_acer_14719
crossref_primary_10_3389_fmed_2023_1122873
crossref_primary_10_3389_fmicb_2023_1145430
crossref_primary_10_1155_2022_4752148
crossref_primary_10_1002_ptr_7770
crossref_primary_10_1155_2023_6409385
crossref_primary_10_1039_D2FO02341E
crossref_primary_10_3389_fnut_2024_1447878
crossref_primary_10_3390_nu16081169
crossref_primary_10_3390_foods12173237
crossref_primary_10_1080_10715762_2023_2226315
crossref_primary_10_3389_fnut_2022_914323
crossref_primary_10_1186_s40168_023_01709_5
crossref_primary_10_1016_j_ejmech_2023_115307
crossref_primary_10_3389_fphar_2025_1542143
crossref_primary_10_1038_s41401_022_00880_z
crossref_primary_10_1016_j_livres_2024_03_002
crossref_primary_10_1016_j_smim_2023_101859
crossref_primary_10_1002_mnfr_202300561
crossref_primary_10_1016_j_biopha_2024_116658
crossref_primary_10_1097_MOL_0000000000000933
crossref_primary_10_3390_metabo12121276
crossref_primary_10_1016_j_psj_2024_104422
crossref_primary_10_3390_nu16183120
crossref_primary_10_1016_j_cca_2024_120004
crossref_primary_10_1002_ame2_12328
crossref_primary_10_3390_nu15143115
crossref_primary_10_1042_CS20230934
crossref_primary_10_3389_fphar_2023_1160665
crossref_primary_10_1371_journal_pone_0296265
crossref_primary_10_1007_s10126_024_10365_1
crossref_primary_10_1016_j_cbi_2024_111364
crossref_primary_10_1021_acs_jmedchem_2c01918
crossref_primary_10_1016_j_phrs_2023_106983
crossref_primary_10_1016_j_clinre_2024_102431
crossref_primary_10_1111_jgh_16279
crossref_primary_10_1016_j_plefa_2024_102663
crossref_primary_10_1021_acs_chemrestox_1c00424
crossref_primary_10_3390_nu16142272
crossref_primary_10_1016_j_jff_2024_106038
crossref_primary_10_1016_j_jpba_2025_116668
crossref_primary_10_1016_j_phymed_2023_154703
crossref_primary_10_1093_jas_skad334
crossref_primary_10_3390_biom13091356
crossref_primary_10_3389_fmicb_2024_1373402
crossref_primary_10_3390_ijms232213967
crossref_primary_10_1038_s41598_023_38530_x
crossref_primary_10_1016_j_biopha_2023_114957
crossref_primary_10_1111_jpi_70005
crossref_primary_10_1097_CRD_0000000000000537
crossref_primary_10_1002_hep_32577
crossref_primary_10_1042_CS20241137
crossref_primary_10_1002_elsc_202300016
crossref_primary_10_1016_j_ecoenv_2024_116589
crossref_primary_10_1021_acs_jafc_3c03149
crossref_primary_10_1038_s41401_024_01329_1
crossref_primary_10_1038_s41564_023_01570_0
crossref_primary_10_3390_ijms23094822
crossref_primary_10_1002_oby_23876
crossref_primary_10_1016_j_csbj_2023_05_026
crossref_primary_10_1016_j_jes_2024_06_026
crossref_primary_10_48175_IJARSCT_18773
crossref_primary_10_3389_fphar_2023_1135952
crossref_primary_10_37349_edd_2023_00029
crossref_primary_10_1016_j_cmet_2021_12_011
crossref_primary_10_1016_j_jff_2023_105679
crossref_primary_10_1016_j_biomaterials_2023_122291
crossref_primary_10_3389_fimmu_2022_951406
crossref_primary_10_3389_fmolb_2022_1089359
crossref_primary_10_1016_j_fbio_2024_104546
crossref_primary_10_1016_j_cmet_2025_02_009
crossref_primary_10_1007_s11427_023_2353_0
crossref_primary_10_1080_15376516_2024_2364192
crossref_primary_10_1161_ATVBAHA_122_317320
crossref_primary_10_1016_j_jhazmat_2024_134821
crossref_primary_10_3390_agriculture13112159
crossref_primary_10_3390_biom14070841
crossref_primary_10_1016_j_chemosphere_2022_134336
crossref_primary_10_3390_molecules29030709
crossref_primary_10_3389_fmed_2021_761538
crossref_primary_10_3389_fmed_2023_1247851
crossref_primary_10_1016_j_bbalip_2021_159089
crossref_primary_10_1038_s41522_023_00398_0
crossref_primary_10_11569_wcjd_v30_i22_971
crossref_primary_10_3389_fphar_2023_1163694
crossref_primary_10_1016_j_abb_2024_110024
crossref_primary_10_1016_j_micres_2024_127865
crossref_primary_10_1016_j_ejmech_2023_115992
crossref_primary_10_1038_s41392_023_01727_7
crossref_primary_10_1016_j_celrep_2024_114572
crossref_primary_10_1016_j_psj_2024_104183
crossref_primary_10_1177_17562848221138676
crossref_primary_10_3390_biom13081199
crossref_primary_10_1186_s12951_025_03190_8
crossref_primary_10_3389_fcell_2023_1147434
crossref_primary_10_1016_j_phymed_2024_155759
crossref_primary_10_1016_j_jep_2022_115333
crossref_primary_10_1016_j_fct_2022_113440
crossref_primary_10_1021_acs_jafc_3c04683
crossref_primary_10_3390_ijms23020774
crossref_primary_10_1111_apha_14065
crossref_primary_10_1016_j_cell_2024_10_001
crossref_primary_10_3390_ijms252011213
crossref_primary_10_1016_j_ijbiomac_2025_141850
crossref_primary_10_1016_j_jnutbio_2024_109635
crossref_primary_10_1016_j_jhep_2022_12_025
crossref_primary_10_1016_j_biocel_2024_106585
crossref_primary_10_1016_j_lfs_2023_122279
crossref_primary_10_1016_j_ejphar_2024_176582
crossref_primary_10_3389_fendo_2023_1114424
crossref_primary_10_3389_fimmu_2022_946628
crossref_primary_10_3389_fnut_2022_1030528
crossref_primary_10_1111_liv_70027
crossref_primary_10_1016_j_jhepr_2023_100936
crossref_primary_10_15252_emmm_202114742
crossref_primary_10_3389_fvets_2023_1147024
crossref_primary_10_15212_AMM_2024_0082
crossref_primary_10_3390_metabo13070836
crossref_primary_10_3390_foods13050699
crossref_primary_10_1016_j_ijbiomac_2025_142276
crossref_primary_10_1016_j_lfs_2024_123259
crossref_primary_10_1016_j_engreg_2024_04_003
crossref_primary_10_1016_j_metabol_2023_155610
crossref_primary_10_1016_j_molmet_2023_101856
crossref_primary_10_3389_fnut_2023_1121203
crossref_primary_10_1515_mr_2024_0020
crossref_primary_10_1021_acs_jafc_3c05158
crossref_primary_10_1016_j_apsb_2024_04_027
crossref_primary_10_3390_biomedicines9121893
crossref_primary_10_1186_s12876_025_03756_8
crossref_primary_10_37349_eemd_2025_101425
crossref_primary_10_1002_edm2_460
crossref_primary_10_1016_j_toxlet_2024_08_009
crossref_primary_10_1016_j_jff_2024_106566
crossref_primary_10_1016_j_immuni_2025_02_015
crossref_primary_10_1016_j_jhep_2023_11_001
crossref_primary_10_1038_s41401_022_00860_3
crossref_primary_10_3390_ijms242417508
crossref_primary_10_1016_j_jep_2023_117106
crossref_primary_10_1016_j_crfs_2022_08_015
crossref_primary_10_1016_j_bcp_2024_116730
crossref_primary_10_1016_j_jhep_2022_10_023
crossref_primary_10_1016_j_jhepr_2023_100917
crossref_primary_10_3389_fphar_2024_1426049
crossref_primary_10_1016_j_chom_2024_06_008
crossref_primary_10_3390_ijms25084387
crossref_primary_10_1016_j_jnutbio_2023_109547
crossref_primary_10_1007_s13105_023_00987_9
crossref_primary_10_3390_ijms252413656
crossref_primary_10_3390_molecules26206117
crossref_primary_10_1016_j_biopha_2024_116585
crossref_primary_10_3390_nu16060893
crossref_primary_10_1016_j_ejphar_2023_176196
crossref_primary_10_2147_CEG_S226130
crossref_primary_10_1002_cbdv_202300980
crossref_primary_10_1136_egastro_2023_100020
crossref_primary_10_2147_CIA_S431220
crossref_primary_10_1002_ptr_8443
crossref_primary_10_1016_j_drudis_2024_103910
crossref_primary_10_1093_lifemeta_load032
crossref_primary_10_1016_j_livres_2023_09_002
crossref_primary_10_1016_j_arr_2024_102475
crossref_primary_10_3389_fphar_2023_1148737
crossref_primary_10_1016_j_phymed_2025_156537
crossref_primary_10_1039_D2FO01161A
crossref_primary_10_1007_s10695_022_01116_x
crossref_primary_10_1016_j_biopha_2024_116594
crossref_primary_10_1016_j_bbadis_2023_166656
crossref_primary_10_1016_j_ijbiomac_2023_125307
crossref_primary_10_1021_acs_jafc_4c01353
crossref_primary_10_3390_foods13233727
crossref_primary_10_3390_cells11182883
crossref_primary_10_1016_j_bioorg_2023_107071
crossref_primary_10_1093_procel_pwae016
crossref_primary_10_3389_fimmu_2022_968799
crossref_primary_10_1038_s41598_025_94401_7
crossref_primary_10_1021_acs_analchem_4c03743
crossref_primary_10_1021_acs_jmedchem_4c02720
crossref_primary_10_1002_ame2_12506
crossref_primary_10_1016_j_ejmech_2022_114903
crossref_primary_10_1016_j_tips_2024_07_006
crossref_primary_10_1038_s41401_024_01303_x
crossref_primary_10_1016_j_atherosclerosis_2022_07_010
crossref_primary_10_3389_fendo_2023_1239276
Cites_doi 10.1053/j.gastro.2004.04.007
10.1016/S1097-2765(00)00051-4
10.1038/s41586-019-0984-y
10.1194/jlr.M600342-JLR200
10.1152/ajpendo.00321.2020
10.1172/JCI0215593
10.1080/17474124.2020.1748498
10.1097/MOL.0b013e3282f9b54d
10.1371/journal.pone.0147772
10.1016/S0045-6535(99)00219-2
10.1126/science.1204265
10.1053/j.gastro.2016.08.057
10.1194/jlr.M700330-JLR200
10.2741/3399
10.1002/hep.23450
10.1074/jbc.M109.083899
10.1016/0005-2760(87)90002-6
10.1172/JCI122595
10.1038/nature13961
10.1161/CIRCRESAHA.112.300648
10.1210/me.2011-1157
10.1016/j.bmcl.2010.12.089
10.1073/pnas.2019388118
10.1038/nrendo.2017.173
10.1016/S0021-9258(20)78929-5
10.1002/hep.30612
10.1002/hep.26672
10.1007/164_2019_228
10.1016/j.cmet.2015.01.007
10.1002/hep.29305
10.1016/j.cmet.2016.01.001
10.1194/jlr.R055095
10.1016/j.cmet.2013.03.013
10.1172/JCI104909
10.1038/nrgastro.2017.109
10.1172/JCI76738
10.1016/j.chembiol.2018.10.008
10.1002/hep.21632
10.1038/nm.3760
10.1139/y59-099
10.1172/JCI0216309
10.1038/s41575-019-0250-7
10.1152/ajpgi.00111.2012
10.1016/j.jhep.2019.06.011
10.1172/JCI94029
10.1172/JCI21025
10.1016/j.cld.2015.10.011
10.1194/jlr.M800323-JLR200
10.1016/j.cmet.2013.01.003
10.1194/jlr.R054114
10.1038/s41574-019-0266-7
10.1016/S0092-8674(00)00062-3
10.1016/j.xpro.2020.100235
10.1152/ajpendo.90958.2008
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTPV
AOWAS
F1U
D8T
ZZAVC
DOI 10.1016/j.cmet.2021.06.012
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Göteborgs universitet
SWEPUB Freely available online
SwePub Articles full text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1932-7420
EndPage 1684.e4
ExternalDocumentID oai_swepub_ki_se_460460
oai_gup_ub_gu_se_308972
PMC8353952
34270928
10_1016_j_cmet_2021_06_012
S1550413121002825
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R00 HL118161
– fundername: NIBIB NIH HHS
  grantid: T32 EB027629
– fundername: NIDDK NIH HHS
  grantid: R01 DK128952
– fundername: NIDDK NIH HHS
  grantid: R01 DK112119
– fundername: NIGMS NIH HHS
  grantid: R01 GM089778
– fundername: NIDDK NIH HHS
  grantid: T32 DK007180
– fundername: NIDDK NIH HHS
  grantid: R01 DK118064
– fundername: NHLBI NIH HHS
  grantid: R01 HL122677
– fundername: NHLBI NIH HHS
  grantid: K99 HL118161
– fundername: NIDDK NIH HHS
  grantid: R01 DK102559
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6J9
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IHE
IXB
J1W
JIG
M3Z
M41
O-L
O9-
OK1
P2P
RCE
ROL
RPZ
SES
SSZ
TR2
UNMZH
WQ6
ZA5
AAEDT
AAIKJ
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
EJD
HZ~
OZT
RIG
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ADTPV
AOWAS
F1U
D8T
ZZAVC
ID FETCH-LOGICAL-c597t-7f5e2738dc92cf81abf62d7aa6c259d0e0a3e24e21818f5c20705525c45a9d403
IEDL.DBID IXB
ISSN 1550-4131
1932-7420
IngestDate Mon Aug 25 03:40:39 EDT 2025
Thu Aug 21 06:20:28 EDT 2025
Thu Aug 21 13:55:36 EDT 2025
Fri Jul 11 01:27:29 EDT 2025
Mon Jul 21 05:49:54 EDT 2025
Tue Jul 01 03:58:20 EDT 2025
Thu Apr 24 23:01:25 EDT 2025
Fri Feb 23 02:39:54 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords intestinal lipid absorption
FXR
NAFLD
bile acids
Language English
License Copyright © 2021 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c597t-7f5e2738dc92cf81abf62d7aa6c259d0e0a3e24e21818f5c20705525c45a9d403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AUTHOR CONTRIBUTIONS
T.Q.d.A.V., E.J.T., and P.A.E. oversaw and supervised the projects. Mouse experiments were performed by B.L.C., L.R.S., K.E.J., and A.C. Lipidomic analyses were performed by K.J.W. at the UCLA lipidomics core except for one study, which was performed by Y.L., A.C.C., B.G.D., and P.J.M. Radiolabeled absorption studies were performed by L.R.S. Bodipy-labeling study tissue processing, imaging, and quantification were performed by L.R.S., J.W.A., and J.J.M. Bile analysis by LC-MS was performed by L.R.S., M.C.B.-S., and W.B. under the supervision of J.W. GC-MS analyses were performed by P.M. and B.L.C. Sample collection and preparation for GC-MS were performed by B.L.C., A.P.C., and K.E.J. Human samples were collected by A.T., A.W., and H.U.M. Data analysis and statistical analyses were performed by B.L.C., L.R.S., and T.Q.d.A.V. Figures were generated by B.L.C., L.R.S., and T.Q.d.A.V. The manuscript was written by B.L.C., P.A.E., and T.Q.d.A.V. All authors revised and approved the final manuscript.
OpenAccessLink http://kipublications.ki.se/Default.aspx?queryparsed=id:147355319
PMID 34270928
PQID 2552984149
PQPubID 23479
ParticipantIDs swepub_primary_oai_swepub_ki_se_460460
swepub_primary_oai_gup_ub_gu_se_308972
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8353952
proquest_miscellaneous_2552984149
pubmed_primary_34270928
crossref_primary_10_1016_j_cmet_2021_06_012
crossref_citationtrail_10_1016_j_cmet_2021_06_012
elsevier_sciencedirect_doi_10_1016_j_cmet_2021_06_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-03
PublicationDateYYYYMMDD 2021-08-03
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-03
  day: 03
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell metabolism
PublicationTitleAlternate Cell Metab
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Montet, Parquet, Sacquet, Montet, Infante, Amic (bib36) 1987; 918
de Aguiar Vallim, Tarling, Kim, Civelek, Baldán, Esau, Edwards (bib13) 2013; 112
Horton, Goldstein, Brown (bib23) 2002; 109
Matsukuma, Bennett, Huang, Wang, Gil, Osborne (bib35) 2006; 47
Akinrotimi, Riessen, Vanduyne, Park, Lee, Wong, Zavacki, Schoonjans, Anakk (bib2) 2017; 66
Hsieh, Williams, Su, Bensinger (bib24) 2021; 2
Spector, Kim (bib44) 2015; 56
Ahmad, Haeusler (bib1) 2019; 15
Flowers, Ntambi (bib17) 2008; 19
Targher, Lonardo, Byrne (bib46) 2018; 14
Hartman, Lai, Evans (bib20) 2009; 50
Li-Hawkins, Gåfvels, Olin, Lund, Andersson, Schuster, Björkhem, Russell, Eggertsen (bib34) 2002; 110
Gonzalez, Jiang, Patterson (bib18) 2016; 151
Shah, Kowdley (bib42) 2020; 14
Schumacher, Guo (bib41) 2019; 256
Sinal, Tohkin, Miyata, Ward, Lambert, Gonzalez (bib43) 2000; 102
Jiang, Xie, Li, Zhang, Nichols, Krausz, Cai, Qi, Fang, Takahashi (bib28) 2015; 125
Tarling, Clifford, Cheng, Morand, Cheng, Lester, Sallam, Turner, De Aguiar Vallim (bib47) 2017; 127
Bonde, Eggertsen, Rudling (bib8) 2016; 11
Hofmann (bib21) 2009; 14
Takeuchi, Reue (bib45) 2009; 296
Watanabe, Houten, Wang, Moschetta, Mangelsdorf, Heyman, Moore, Auwerx (bib50) 2004; 113
Lee, Wagner, Xiao, Kim, Feng, Lazar, Moore (bib33) 2014; 516
Zhang, Léveillé, Courty, Gunes, N Nguyen, Estall (bib55) 2020; 319
Parker, Calkin, Seldin, Keating, Tarling, Yang, Moody, Liu, Zerenturk, Needham (bib38) 2019; 567
de Aguiar Vallim, Tarling, Ahn, Hagey, Romanoski, Lee, Graham, Motohashi, Yamamoto, Edwards (bib14) 2015; 21
Sayin, Wahlström, Felin, Jäntti, Marschall, Bamberg, Angelin, Hyötyläinen, Orešič, Bäckhed (bib40) 2013; 17
Ko, Qu, Black, Tso (bib32) 2020; 17
de Aguiar Vallim, Tarling, Edwards (bib12) 2013; 17
Moser, McLachlan (bib37) 1999; 39
Wang, Rong, Duerr, Hermanson, Hedde, Wong, Vallim, Cravatt, Gratton, Ford (bib49) 2016; 23
Jones, Repa, Russell, Dietschy, Turley (bib29) 2012; 303
Zhang, Csaki, Ronquillo, Baufeld, Lin, Gutierrez, Dwyer, Brindley, Fong, Tontonoz (bib54) 2019; 129
Bligh, Dyer (bib7) 1959; 37
Younossi, Anstee, Marietti, Hardy, Henry, Eslam, George, Bugianesi (bib51) 2018; 15
Zhang, Yin, Anderson, Ma, Gonzalez, Willson, Edwards (bib52) 2010; 285
Jandacek, Heubi, Tso (bib27) 2004; 127
Cohen, Horton, Hobbs (bib10) 2011; 332
Huang, Iqbal, Saha, Liu, Chan, Hussain, Moore, Wang (bib25) 2007; 46
Bass, Caravella, Chen, Creech, Deaton, Madauss, Marr, McFadyen, Miller, Mills (bib5) 2011; 21
Al-Dury, Wahlström, Panzitt, Thorell, Ståhlman, Trauner, Fickert, Bäckhed, Fändriks, Wagner (bib3) 2019; 71
Burr, Burr (bib9) 1930; 86
Ding, Zhang, Yang, Jin, Sousa, Dong, Wang, Tu, Ma, Tian (bib15) 2021; 118
Huynh, Barlow, Jayawardana, Weir, Mellett, Cinel, Magliano, Shaw, Drew, Meikle (bib26) 2019; 26
Goodwin, Jones, Price, Watson, McKee, Moore, Galardi, Wilson, Lewis, Roth (bib19) 2000; 6
Fang, Suh, Reilly, Yu, Osborn, Lackey, Yoshihara, Perino, Jacinto, Lukasheva (bib16) 2015; 21
Kim, Ahn, Inagaki, Choi, Ito, Guo, Kliewer, Gonzalez (bib30) 2007; 48
Kleiner, Makhlouf (bib31) 2016; 20
Zhang, Ge, Heemstra, Chen, Xu, Smith, Ma, Kasim, Edwards, Novak (bib53) 2012; 26
Alves-Bezerra, Cohen (bib4) 2017; 8
Hofmann, Borgstroem (bib22) 1964; 43
Rizzolo, Buckley, Kong, Zhan, Shen, Stofan, Brinker, Goedken, Buckley, Guo (bib39) 2019; 70
Birkenfeld, Shulman (bib6) 2014; 59
Dawson, Karpen (bib11) 2015; 56
Thomas, Hart, Kong, Fang, Zhong, Guo (bib48) 2010; 51
Zhang (10.1016/j.cmet.2021.06.012_bib54) 2019; 129
Li-Hawkins (10.1016/j.cmet.2021.06.012_bib34) 2002; 110
Matsukuma (10.1016/j.cmet.2021.06.012_bib35) 2006; 47
de Aguiar Vallim (10.1016/j.cmet.2021.06.012_bib14) 2015; 21
Moser (10.1016/j.cmet.2021.06.012_bib37) 1999; 39
Hofmann (10.1016/j.cmet.2021.06.012_bib22) 1964; 43
Jones (10.1016/j.cmet.2021.06.012_bib29) 2012; 303
Ahmad (10.1016/j.cmet.2021.06.012_bib1) 2019; 15
Cohen (10.1016/j.cmet.2021.06.012_bib10) 2011; 332
Gonzalez (10.1016/j.cmet.2021.06.012_bib18) 2016; 151
Hofmann (10.1016/j.cmet.2021.06.012_bib21) 2009; 14
Al-Dury (10.1016/j.cmet.2021.06.012_bib3) 2019; 71
Spector (10.1016/j.cmet.2021.06.012_bib44) 2015; 56
Thomas (10.1016/j.cmet.2021.06.012_bib48) 2010; 51
Shah (10.1016/j.cmet.2021.06.012_bib42) 2020; 14
Younossi (10.1016/j.cmet.2021.06.012_bib51) 2018; 15
Zhang (10.1016/j.cmet.2021.06.012_bib55) 2020; 319
Lee (10.1016/j.cmet.2021.06.012_bib33) 2014; 516
de Aguiar Vallim (10.1016/j.cmet.2021.06.012_bib12) 2013; 17
Goodwin (10.1016/j.cmet.2021.06.012_bib19) 2000; 6
Sinal (10.1016/j.cmet.2021.06.012_bib43) 2000; 102
Dawson (10.1016/j.cmet.2021.06.012_bib11) 2015; 56
Hartman (10.1016/j.cmet.2021.06.012_bib20) 2009; 50
Takeuchi (10.1016/j.cmet.2021.06.012_bib45) 2009; 296
Bonde (10.1016/j.cmet.2021.06.012_bib8) 2016; 11
Ding (10.1016/j.cmet.2021.06.012_bib15) 2021; 118
Kim (10.1016/j.cmet.2021.06.012_bib30) 2007; 48
Targher (10.1016/j.cmet.2021.06.012_bib46) 2018; 14
Ko (10.1016/j.cmet.2021.06.012_bib32) 2020; 17
Hsieh (10.1016/j.cmet.2021.06.012_bib24) 2021; 2
Montet (10.1016/j.cmet.2021.06.012_bib36) 1987; 918
Flowers (10.1016/j.cmet.2021.06.012_bib17) 2008; 19
Rizzolo (10.1016/j.cmet.2021.06.012_bib39) 2019; 70
Huynh (10.1016/j.cmet.2021.06.012_bib26) 2019; 26
Alves-Bezerra (10.1016/j.cmet.2021.06.012_bib4) 2017; 8
de Aguiar Vallim (10.1016/j.cmet.2021.06.012_bib13) 2013; 112
Birkenfeld (10.1016/j.cmet.2021.06.012_bib6) 2014; 59
Huang (10.1016/j.cmet.2021.06.012_bib25) 2007; 46
Tarling (10.1016/j.cmet.2021.06.012_bib47) 2017; 127
Bligh (10.1016/j.cmet.2021.06.012_bib7) 1959; 37
Schumacher (10.1016/j.cmet.2021.06.012_bib41) 2019; 256
Burr (10.1016/j.cmet.2021.06.012_bib9) 1930; 86
Sayin (10.1016/j.cmet.2021.06.012_bib40) 2013; 17
Horton (10.1016/j.cmet.2021.06.012_bib23) 2002; 109
Fang (10.1016/j.cmet.2021.06.012_bib16) 2015; 21
Parker (10.1016/j.cmet.2021.06.012_bib38) 2019; 567
Wang (10.1016/j.cmet.2021.06.012_bib49) 2016; 23
Zhang (10.1016/j.cmet.2021.06.012_bib52) 2010; 285
Jiang (10.1016/j.cmet.2021.06.012_bib28) 2015; 125
Jandacek (10.1016/j.cmet.2021.06.012_bib27) 2004; 127
Akinrotimi (10.1016/j.cmet.2021.06.012_bib2) 2017; 66
Bass (10.1016/j.cmet.2021.06.012_bib5) 2011; 21
Kleiner (10.1016/j.cmet.2021.06.012_bib31) 2016; 20
Watanabe (10.1016/j.cmet.2021.06.012_bib50) 2004; 113
Zhang (10.1016/j.cmet.2021.06.012_bib53) 2012; 26
References_xml – volume: 70
  start-page: 389
  year: 2019
  end-page: 402
  ident: bib39
  article-title: Bile acid homeostasis in a cholesterol 7α-hydroxylase and sterol 27-hydroxylase double knockout mouse model
  publication-title: Hepatology
– volume: 118
  start-page: 1
  year: 2021
  end-page: 10
  ident: bib15
  article-title: Vertical sleeve gastrectomy confers metabolic improvements by reducing intestinal bile acids and lipid absorption in mice
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 8
  start-page: 1
  year: 2017
  end-page: 8
  ident: bib4
  article-title: Triglyceride metabolism in the liver
  publication-title: Compr. Physiol.
– volume: 19
  start-page: 248
  year: 2008
  end-page: 256
  ident: bib17
  article-title: Role of stearoyl-coenzyme A desaturase in regulating lipid metabolism
  publication-title: Curr. Opin. Lipidol.
– volume: 20
  start-page: 293
  year: 2016
  end-page: 312
  ident: bib31
  article-title: Histology of NAFLD and NASH in adults and children
  publication-title: Clin. Liver Dis.
– volume: 21
  start-page: 1206
  year: 2011
  end-page: 1213
  ident: bib5
  article-title: Conformationally constrained farnesoid X receptor (FXR) agonists: heteroaryl replacements of the naphthalene
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 6
  start-page: 517
  year: 2000
  end-page: 526
  ident: bib19
  article-title: A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis
  publication-title: Mol. Cell
– volume: 56
  start-page: 11
  year: 2015
  end-page: 21
  ident: bib44
  article-title: Discovery of essential fatty acids
  publication-title: J. Lipid Res.
– volume: 17
  start-page: 657
  year: 2013
  end-page: 669
  ident: bib12
  article-title: Pleiotropic roles of bile acids in metabolism
  publication-title: Cell Metab
– volume: 127
  start-page: 139
  year: 2004
  end-page: 144
  ident: bib27
  article-title: A novel, noninvasive method for the measurement of intestinal fat absorption
  publication-title: Gastroenterology
– volume: 21
  start-page: 159
  year: 2015
  end-page: 165
  ident: bib16
  article-title: Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance
  publication-title: Nat. Med.
– volume: 109
  start-page: 1125
  year: 2002
  end-page: 1131
  ident: bib23
  article-title: SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver
  publication-title: J. Clin. Invest.
– volume: 86
  start-page: 587
  year: 1930
  end-page: 621
  ident: bib9
  article-title: On the nature and role of the fatty acids essential in nutrition
  publication-title: J. Biol. Chem.
– volume: 332
  start-page: 1519
  year: 2011
  end-page: 1523
  ident: bib10
  article-title: Human fatty liver disease: old questions and new insights
  publication-title: Science
– volume: 39
  start-page: 1513
  year: 1999
  end-page: 1521
  ident: bib37
  article-title: A non-absorbable dietary fat substitute enhances elimination of persistent lipophilic contaminants in humans
  publication-title: Chemosphere
– volume: 516
  start-page: 112
  year: 2014
  end-page: 115
  ident: bib33
  article-title: Nutrient-sensing nuclear receptors coordinate autophagy
  publication-title: Nature
– volume: 256
  start-page: 325
  year: 2019
  end-page: 357
  ident: bib41
  article-title: Pharmacologic modulation of bile acid-FXR-FGF15/FGF19 pathway for the treatment of nonalcoholic steatohepatitis
  publication-title: Handb. Exp. Pharmacol.
– volume: 71
  start-page: 986
  year: 2019
  end-page: 991
  ident: bib3
  article-title: Obeticholic acid may increase the risk of gallstone formation in susceptible patients
  publication-title: J. Hepatol.
– volume: 14
  start-page: 99
  year: 2018
  end-page: 114
  ident: bib46
  article-title: Nonalcoholic fatty liver disease and chronic vascular complications of diabetes mellitus
  publication-title: Nat. Rev. Endocrinol.
– volume: 102
  start-page: 731
  year: 2000
  end-page: 744
  ident: bib43
  article-title: Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis
  publication-title: Cell
– volume: 26
  start-page: 71
  year: 2019
  end-page: 84.e4
  ident: bib26
  article-title: High-throughput plasma lipidomics: detailed mapping of the associations with cardiometabolic risk factors
  publication-title: Cell Chem. Biol.
– volume: 113
  start-page: 1408
  year: 2004
  end-page: 1418
  ident: bib50
  article-title: Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c
  publication-title: J. Clin. Invest.
– volume: 14
  start-page: 2584
  year: 2009
  end-page: 2598
  ident: bib21
  article-title: The enterohepatic circulation of bile acids in mammals: form and functions
  publication-title: Front. Biosci. (Landmark Ed.)
– volume: 11
  year: 2016
  ident: bib8
  article-title: Mice abundant in muricholic bile acids show resistance to dietary induced steatosis, weight gain, and to impaired glucose metabolism
  publication-title: PLoS One
– volume: 2
  start-page: 100235
  year: 2021
  ident: bib24
  article-title: Profiling of mouse macrophage lipidome using direct infusion shotgun mass spectrometry
  publication-title: Star Protoc
– volume: 17
  start-page: 225
  year: 2013
  end-page: 235
  ident: bib40
  article-title: Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist
  publication-title: Cell Metab
– volume: 15
  start-page: 11
  year: 2018
  end-page: 20
  ident: bib51
  article-title: Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
– volume: 37
  start-page: 911
  year: 1959
  end-page: 917
  ident: bib7
  article-title: A rapid method of total lipid extraction and purification
  publication-title: Can. J. Biochem. Physiol.
– volume: 43
  start-page: 247
  year: 1964
  end-page: 257
  ident: bib22
  article-title: The intraluminal phase of fat digestion in man: the lipid content of the micellar and oil phases of intestinal content obtained during fat digestion and absorption
  publication-title: J. Clin. Invest.
– volume: 567
  start-page: 187
  year: 2019
  end-page: 193
  ident: bib38
  article-title: An integrative systems genetic analysis of mammalian lipid metabolism
  publication-title: Nature
– volume: 125
  start-page: 386
  year: 2015
  end-page: 402
  ident: bib28
  article-title: Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease
  publication-title: J. Clin. Invest.
– volume: 303
  start-page: G263
  year: 2012
  end-page: G274
  ident: bib29
  article-title: Delineation of biochemical, molecular, and physiological changes accompanying bile acid pool size restoration in Cyp7a1(-/-) mice fed low levels of cholic acid
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
– volume: 50
  start-page: 193
  year: 2009
  end-page: 203
  ident: bib20
  article-title: Loss of small heterodimer partner expression in the liver protects against dyslipidemia
  publication-title: J. Lipid Res.
– volume: 319
  start-page: E863
  year: 2020
  end-page: E876
  ident: bib55
  article-title: Differences in metabolic and liver pathobiology induced by two dietary mouse models of nonalcoholic fatty liver disease
  publication-title: Am. J. Physiol. Endocrinol. Metab.
– volume: 26
  start-page: 272
  year: 2012
  end-page: 280
  ident: bib53
  article-title: Loss of FXR protects against diet-induced obesity and accelerates liver carcinogenesis in ob/ob mice
  publication-title: Mol. Endocrinol.
– volume: 47
  start-page: 2754
  year: 2006
  end-page: 2761
  ident: bib35
  article-title: Coordinated control of bile acids and lipogenesis through FXR-dependent regulation of fatty acid synthase
  publication-title: J. Lipid Res.
– volume: 296
  start-page: E1195
  year: 2009
  end-page: E1209
  ident: bib45
  article-title: Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis
  publication-title: Am. J. Physiol. Endocrinol. Metab.
– volume: 21
  start-page: 298
  year: 2015
  end-page: 311
  ident: bib14
  article-title: MAFG is a transcriptional repressor of bile acid synthesis and metabolism
  publication-title: Cell Metab
– volume: 59
  start-page: 713
  year: 2014
  end-page: 723
  ident: bib6
  article-title: Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes
  publication-title: Hepatology
– volume: 17
  start-page: 169
  year: 2020
  end-page: 183
  ident: bib32
  article-title: Regulation of intestinal lipid metabolism: current concepts and relevance to disease
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
– volume: 127
  start-page: 3741
  year: 2017
  end-page: 3754
  ident: bib47
  article-title: RNA-binding protein ZFP36L1 maintains posttranscriptional regulation of bile acid metabolism
  publication-title: J. Clin. Invest.
– volume: 285
  start-page: 3035
  year: 2010
  end-page: 3043
  ident: bib52
  article-title: Identification of novel pathways that control farnesoid X receptor-mediated hypocholesterolemia
  publication-title: J. Biol. Chem.
– volume: 15
  start-page: 701
  year: 2019
  end-page: 712
  ident: bib1
  article-title: Bile acids in glucose metabolism and insulin signalling—mechanisms and research needs
  publication-title: Nat. Rev. Endocrinol.
– volume: 66
  start-page: 1854
  year: 2017
  end-page: 1865
  ident: bib2
  article-title: Small heterodimer partner deletion prevents hepatic steatosis and when combined with farnesoid X receptor loss protects against type 2 diabetes in mice
  publication-title: Hepatology
– volume: 112
  start-page: 1602
  year: 2013
  end-page: 1612
  ident: bib13
  article-title: MicroRNA-144 regulates hepatic ABCA1 and plasma HDL following activation of the nuclear receptor FXR
  publication-title: Circ. Res.
– volume: 151
  start-page: 845
  year: 2016
  end-page: 859
  ident: bib18
  article-title: An intestinal microbiota-farnesoid X receptor axis modulates metabolic disease
  publication-title: Gastroenterology
– volume: 918
  start-page: 1
  year: 1987
  end-page: 10
  ident: bib36
  article-title: Beta-muricholic acid; potentiometric and cholesterol-dissolving properties
  publication-title: Biochim. Biophys. Acta
– volume: 23
  start-page: 492
  year: 2016
  end-page: 504
  ident: bib49
  article-title: Intestinal phospholipid remodeling is required for dietary-lipid uptake and survival on a high-fat diet
  publication-title: Cell Metab
– volume: 46
  start-page: 147
  year: 2007
  end-page: 157
  ident: bib25
  article-title: Molecular characterization of the role of orphan receptor small heterodimer partner in development of fatty liver
  publication-title: Hepatology
– volume: 129
  start-page: 281
  year: 2019
  end-page: 295
  ident: bib54
  article-title: Lipin 2/3 phosphatidic acid phosphatases maintain phospholipid homeostasis to regulate chylomicron synthesis
  publication-title: J. Clin. Invest.
– volume: 48
  start-page: 2664
  year: 2007
  end-page: 2672
  ident: bib30
  article-title: Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine
  publication-title: J. Lipid Res.
– volume: 110
  start-page: 1191
  year: 2002
  end-page: 1200
  ident: bib34
  article-title: Cholic acid mediates negative feedback regulation of bile acid synthesis in mice
  publication-title: J. Clin. Invest.
– volume: 14
  start-page: 311
  year: 2020
  end-page: 321
  ident: bib42
  article-title: Obeticholic acid for the treatment of nonalcoholic steatohepatitis
  publication-title: Expert Rev. Gastroenterol. Hepatol.
– volume: 51
  start-page: 1410
  year: 2010
  end-page: 1419
  ident: bib48
  article-title: Genome-wide tissue-specific farnesoid X receptor binding in mouse liver and intestine
  publication-title: Hepatology
– volume: 56
  start-page: 1085
  year: 2015
  end-page: 1099
  ident: bib11
  article-title: Intestinal transport and metabolism of bile acids
  publication-title: J. Lipid Res.
– volume: 127
  start-page: 139
  year: 2004
  ident: 10.1016/j.cmet.2021.06.012_bib27
  article-title: A novel, noninvasive method for the measurement of intestinal fat absorption
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2004.04.007
– volume: 6
  start-page: 517
  year: 2000
  ident: 10.1016/j.cmet.2021.06.012_bib19
  article-title: A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)00051-4
– volume: 567
  start-page: 187
  year: 2019
  ident: 10.1016/j.cmet.2021.06.012_bib38
  article-title: An integrative systems genetic analysis of mammalian lipid metabolism
  publication-title: Nature
  doi: 10.1038/s41586-019-0984-y
– volume: 47
  start-page: 2754
  year: 2006
  ident: 10.1016/j.cmet.2021.06.012_bib35
  article-title: Coordinated control of bile acids and lipogenesis through FXR-dependent regulation of fatty acid synthase
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M600342-JLR200
– volume: 319
  start-page: E863
  year: 2020
  ident: 10.1016/j.cmet.2021.06.012_bib55
  article-title: Differences in metabolic and liver pathobiology induced by two dietary mouse models of nonalcoholic fatty liver disease
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00321.2020
– volume: 109
  start-page: 1125
  year: 2002
  ident: 10.1016/j.cmet.2021.06.012_bib23
  article-title: SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI0215593
– volume: 14
  start-page: 311
  year: 2020
  ident: 10.1016/j.cmet.2021.06.012_bib42
  article-title: Obeticholic acid for the treatment of nonalcoholic steatohepatitis
  publication-title: Expert Rev. Gastroenterol. Hepatol.
  doi: 10.1080/17474124.2020.1748498
– volume: 19
  start-page: 248
  year: 2008
  ident: 10.1016/j.cmet.2021.06.012_bib17
  article-title: Role of stearoyl-coenzyme A desaturase in regulating lipid metabolism
  publication-title: Curr. Opin. Lipidol.
  doi: 10.1097/MOL.0b013e3282f9b54d
– volume: 11
  year: 2016
  ident: 10.1016/j.cmet.2021.06.012_bib8
  article-title: Mice abundant in muricholic bile acids show resistance to dietary induced steatosis, weight gain, and to impaired glucose metabolism
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0147772
– volume: 39
  start-page: 1513
  year: 1999
  ident: 10.1016/j.cmet.2021.06.012_bib37
  article-title: A non-absorbable dietary fat substitute enhances elimination of persistent lipophilic contaminants in humans
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(99)00219-2
– volume: 332
  start-page: 1519
  year: 2011
  ident: 10.1016/j.cmet.2021.06.012_bib10
  article-title: Human fatty liver disease: old questions and new insights
  publication-title: Science
  doi: 10.1126/science.1204265
– volume: 151
  start-page: 845
  year: 2016
  ident: 10.1016/j.cmet.2021.06.012_bib18
  article-title: An intestinal microbiota-farnesoid X receptor axis modulates metabolic disease
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2016.08.057
– volume: 48
  start-page: 2664
  year: 2007
  ident: 10.1016/j.cmet.2021.06.012_bib30
  article-title: Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M700330-JLR200
– volume: 14
  start-page: 2584
  year: 2009
  ident: 10.1016/j.cmet.2021.06.012_bib21
  article-title: The enterohepatic circulation of bile acids in mammals: form and functions
  publication-title: Front. Biosci. (Landmark Ed.)
  doi: 10.2741/3399
– volume: 8
  start-page: 1
  year: 2017
  ident: 10.1016/j.cmet.2021.06.012_bib4
  article-title: Triglyceride metabolism in the liver
  publication-title: Compr. Physiol.
– volume: 51
  start-page: 1410
  year: 2010
  ident: 10.1016/j.cmet.2021.06.012_bib48
  article-title: Genome-wide tissue-specific farnesoid X receptor binding in mouse liver and intestine
  publication-title: Hepatology
  doi: 10.1002/hep.23450
– volume: 285
  start-page: 3035
  year: 2010
  ident: 10.1016/j.cmet.2021.06.012_bib52
  article-title: Identification of novel pathways that control farnesoid X receptor-mediated hypocholesterolemia
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.083899
– volume: 918
  start-page: 1
  year: 1987
  ident: 10.1016/j.cmet.2021.06.012_bib36
  article-title: Beta-muricholic acid; potentiometric and cholesterol-dissolving properties
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2760(87)90002-6
– volume: 129
  start-page: 281
  year: 2019
  ident: 10.1016/j.cmet.2021.06.012_bib54
  article-title: Lipin 2/3 phosphatidic acid phosphatases maintain phospholipid homeostasis to regulate chylomicron synthesis
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI122595
– volume: 516
  start-page: 112
  year: 2014
  ident: 10.1016/j.cmet.2021.06.012_bib33
  article-title: Nutrient-sensing nuclear receptors coordinate autophagy
  publication-title: Nature
  doi: 10.1038/nature13961
– volume: 112
  start-page: 1602
  year: 2013
  ident: 10.1016/j.cmet.2021.06.012_bib13
  article-title: MicroRNA-144 regulates hepatic ABCA1 and plasma HDL following activation of the nuclear receptor FXR
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.112.300648
– volume: 26
  start-page: 272
  year: 2012
  ident: 10.1016/j.cmet.2021.06.012_bib53
  article-title: Loss of FXR protects against diet-induced obesity and accelerates liver carcinogenesis in ob/ob mice
  publication-title: Mol. Endocrinol.
  doi: 10.1210/me.2011-1157
– volume: 21
  start-page: 1206
  year: 2011
  ident: 10.1016/j.cmet.2021.06.012_bib5
  article-title: Conformationally constrained farnesoid X receptor (FXR) agonists: heteroaryl replacements of the naphthalene
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2010.12.089
– volume: 118
  start-page: 1
  year: 2021
  ident: 10.1016/j.cmet.2021.06.012_bib15
  article-title: Vertical sleeve gastrectomy confers metabolic improvements by reducing intestinal bile acids and lipid absorption in mice
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2019388118
– volume: 14
  start-page: 99
  year: 2018
  ident: 10.1016/j.cmet.2021.06.012_bib46
  article-title: Nonalcoholic fatty liver disease and chronic vascular complications of diabetes mellitus
  publication-title: Nat. Rev. Endocrinol.
  doi: 10.1038/nrendo.2017.173
– volume: 86
  start-page: 587
  year: 1930
  ident: 10.1016/j.cmet.2021.06.012_bib9
  article-title: On the nature and role of the fatty acids essential in nutrition
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(20)78929-5
– volume: 70
  start-page: 389
  year: 2019
  ident: 10.1016/j.cmet.2021.06.012_bib39
  article-title: Bile acid homeostasis in a cholesterol 7α-hydroxylase and sterol 27-hydroxylase double knockout mouse model
  publication-title: Hepatology
  doi: 10.1002/hep.30612
– volume: 59
  start-page: 713
  year: 2014
  ident: 10.1016/j.cmet.2021.06.012_bib6
  article-title: Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes
  publication-title: Hepatology
  doi: 10.1002/hep.26672
– volume: 256
  start-page: 325
  year: 2019
  ident: 10.1016/j.cmet.2021.06.012_bib41
  article-title: Pharmacologic modulation of bile acid-FXR-FGF15/FGF19 pathway for the treatment of nonalcoholic steatohepatitis
  publication-title: Handb. Exp. Pharmacol.
  doi: 10.1007/164_2019_228
– volume: 21
  start-page: 298
  year: 2015
  ident: 10.1016/j.cmet.2021.06.012_bib14
  article-title: MAFG is a transcriptional repressor of bile acid synthesis and metabolism
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2015.01.007
– volume: 66
  start-page: 1854
  year: 2017
  ident: 10.1016/j.cmet.2021.06.012_bib2
  article-title: Small heterodimer partner deletion prevents hepatic steatosis and when combined with farnesoid X receptor loss protects against type 2 diabetes in mice
  publication-title: Hepatology
  doi: 10.1002/hep.29305
– volume: 23
  start-page: 492
  year: 2016
  ident: 10.1016/j.cmet.2021.06.012_bib49
  article-title: Intestinal phospholipid remodeling is required for dietary-lipid uptake and survival on a high-fat diet
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2016.01.001
– volume: 56
  start-page: 11
  year: 2015
  ident: 10.1016/j.cmet.2021.06.012_bib44
  article-title: Discovery of essential fatty acids
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.R055095
– volume: 17
  start-page: 657
  year: 2013
  ident: 10.1016/j.cmet.2021.06.012_bib12
  article-title: Pleiotropic roles of bile acids in metabolism
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2013.03.013
– volume: 43
  start-page: 247
  year: 1964
  ident: 10.1016/j.cmet.2021.06.012_bib22
  article-title: The intraluminal phase of fat digestion in man: the lipid content of the micellar and oil phases of intestinal content obtained during fat digestion and absorption
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI104909
– volume: 15
  start-page: 11
  year: 2018
  ident: 10.1016/j.cmet.2021.06.012_bib51
  article-title: Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/nrgastro.2017.109
– volume: 125
  start-page: 386
  year: 2015
  ident: 10.1016/j.cmet.2021.06.012_bib28
  article-title: Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI76738
– volume: 26
  start-page: 71
  year: 2019
  ident: 10.1016/j.cmet.2021.06.012_bib26
  article-title: High-throughput plasma lipidomics: detailed mapping of the associations with cardiometabolic risk factors
  publication-title: Cell Chem. Biol.
  doi: 10.1016/j.chembiol.2018.10.008
– volume: 46
  start-page: 147
  year: 2007
  ident: 10.1016/j.cmet.2021.06.012_bib25
  article-title: Molecular characterization of the role of orphan receptor small heterodimer partner in development of fatty liver
  publication-title: Hepatology
  doi: 10.1002/hep.21632
– volume: 21
  start-page: 159
  year: 2015
  ident: 10.1016/j.cmet.2021.06.012_bib16
  article-title: Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance
  publication-title: Nat. Med.
  doi: 10.1038/nm.3760
– volume: 37
  start-page: 911
  year: 1959
  ident: 10.1016/j.cmet.2021.06.012_bib7
  article-title: A rapid method of total lipid extraction and purification
  publication-title: Can. J. Biochem. Physiol.
  doi: 10.1139/y59-099
– volume: 110
  start-page: 1191
  year: 2002
  ident: 10.1016/j.cmet.2021.06.012_bib34
  article-title: Cholic acid mediates negative feedback regulation of bile acid synthesis in mice
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI0216309
– volume: 17
  start-page: 169
  year: 2020
  ident: 10.1016/j.cmet.2021.06.012_bib32
  article-title: Regulation of intestinal lipid metabolism: current concepts and relevance to disease
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/s41575-019-0250-7
– volume: 303
  start-page: G263
  year: 2012
  ident: 10.1016/j.cmet.2021.06.012_bib29
  article-title: Delineation of biochemical, molecular, and physiological changes accompanying bile acid pool size restoration in Cyp7a1(-/-) mice fed low levels of cholic acid
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
  doi: 10.1152/ajpgi.00111.2012
– volume: 71
  start-page: 986
  year: 2019
  ident: 10.1016/j.cmet.2021.06.012_bib3
  article-title: Obeticholic acid may increase the risk of gallstone formation in susceptible patients
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2019.06.011
– volume: 127
  start-page: 3741
  year: 2017
  ident: 10.1016/j.cmet.2021.06.012_bib47
  article-title: RNA-binding protein ZFP36L1 maintains posttranscriptional regulation of bile acid metabolism
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI94029
– volume: 113
  start-page: 1408
  year: 2004
  ident: 10.1016/j.cmet.2021.06.012_bib50
  article-title: Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI21025
– volume: 20
  start-page: 293
  year: 2016
  ident: 10.1016/j.cmet.2021.06.012_bib31
  article-title: Histology of NAFLD and NASH in adults and children
  publication-title: Clin. Liver Dis.
  doi: 10.1016/j.cld.2015.10.011
– volume: 50
  start-page: 193
  year: 2009
  ident: 10.1016/j.cmet.2021.06.012_bib20
  article-title: Loss of small heterodimer partner expression in the liver protects against dyslipidemia
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M800323-JLR200
– volume: 17
  start-page: 225
  year: 2013
  ident: 10.1016/j.cmet.2021.06.012_bib40
  article-title: Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2013.01.003
– volume: 56
  start-page: 1085
  year: 2015
  ident: 10.1016/j.cmet.2021.06.012_bib11
  article-title: Intestinal transport and metabolism of bile acids
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.R054114
– volume: 15
  start-page: 701
  year: 2019
  ident: 10.1016/j.cmet.2021.06.012_bib1
  article-title: Bile acids in glucose metabolism and insulin signalling—mechanisms and research needs
  publication-title: Nat. Rev. Endocrinol.
  doi: 10.1038/s41574-019-0266-7
– volume: 102
  start-page: 731
  year: 2000
  ident: 10.1016/j.cmet.2021.06.012_bib43
  article-title: Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)00062-3
– volume: 2
  start-page: 100235
  year: 2021
  ident: 10.1016/j.cmet.2021.06.012_bib24
  article-title: Profiling of mouse macrophage lipidome using direct infusion shotgun mass spectrometry
  publication-title: Star Protoc
  doi: 10.1016/j.xpro.2020.100235
– volume: 296
  start-page: E1195
  year: 2009
  ident: 10.1016/j.cmet.2021.06.012_bib45
  article-title: Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.90958.2008
SSID ssj0036393
Score 2.701471
Snippet FXR agonists are used to treat non-alcoholic fatty liver disease (NAFLD), in part because they reduce hepatic lipids. Here, we show that FXR activation with...
SourceID swepub
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1671
SubjectTerms Animals
beta-muricholic acid
Bile
bile acids
Bile Acids and Salts - metabolism
binding
Cell Biology
cholesterol
Endocrinology & Metabolism
Endocrinology and Diabetes
Endokrinologi och diabetes
farnesoid-x-receptor
fatty liver-disease
FXR
Humans
intestinal lipid absorption
Lipids
Liver - metabolism
metabolism
Mice
Mice, Inbred C57BL
NAFLD
Non-alcoholic Fatty Liver Disease - metabolism
Non-alcoholic Fatty Liver Disease - prevention & control
nuclear receptor
Phosphatidate Phosphatase - metabolism
Receptors, Cytoplasmic and Nuclear - metabolism
small heterodimer partner
Title FXR activation protects against NAFLD via bile-acid-dependent reductions in lipid absorption
URI https://dx.doi.org/10.1016/j.cmet.2021.06.012
https://www.ncbi.nlm.nih.gov/pubmed/34270928
https://www.proquest.com/docview/2552984149
https://pubmed.ncbi.nlm.nih.gov/PMC8353952
https://gup.ub.gu.se/publication/308972
http://kipublications.ki.se/Default.aspx?queryparsed=id:147355319
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-lUPBFtH6dHyWC-CLhskn267G2HkW0D2rhHoSQZLNntO4d9yH43zuTzR4spX3wcbMTNmSS38xsZn4h5I1sitIXVc2qRpVM-cwzC2aKcce5dbawRYnVyJ8vi4sr9XGezw_I2VALg2mVCft7TI9onVqmaTanqxCmX9G5BghGBqxYgQk4LFUVi_jm7wc0lmCBY5I9CDOUToUzfY6X--0xn1JkkcMzE7cZp5vO580cyhHTaLROswfkfnIr6Wk_8ofkwHfH5Ki_aPLvI_J9Nv9CsYSh_wFLEzvDhpqFCeAg0svT2adz-icYagEmmHGhYcP9uFu6Rn7XuEBp6Oh1WIWGGrtZriPePCZXsw_fzi5YuleBOQgftqxsc48VOY2rhWurzNi2EE1pTOEgGGq450Z6oTxa_6rNneBIuSNyp3JTN4rLJ-SwW3b-GaGtqxyYN_AhwPFqrLEl4ANvC28wkORqQrJhQrVLpON498W1HrLLfmpUgkYlaEyxy8SEvNv3WfWUG3dK54Oe9GjhaLAJd_Z7PShVw47CYxLT-eVuoyHIEnWlIHSckKe9kvfjkEqUvBbVhJQj9e8FkK17_KYLPyJrN7i6ss7hu2_7hTLqstitNDQtdnrjteRVXd4imJp-BRRUBR5rP__PGXhB7uFTzGaUL8nhdr3zr8DD2tqTuIX-AVWjJdc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWRQguiDflaSTEBVl1HCdOjstC1YVuD7Ar9YBk2Y5TDEta9YHEv2fGSSpVq90DV3usWB5n5ptk5htC3qZVrnxelKyopGLSJ55ZcFOMO86ts7nNFVYjn07z8bn8PMtmB-S4r4XBtMrO9rc2PVrrbmTYneZwGcLwG4JrMMHIgBUrMG-Qm4AGFPZvOJl96M1xCi44ZtmDNEPxrnKmTfJyvz0mVIokkngm4irvdBl9Xk6i3KMaje5pdI_c7XAlPWq3fp8c-OYBudV2mvz7kHwfzb5SrGFov8DSjp5hTc3cBECIdHo0mnykf4KhFuwEMy5UrG-Qu6ErJHiNN5SGhl6EZaiosevFKhqcR-R89OnseMy6xgrMQfywYarOPJbkVK4Uri4SY-tcVMqY3EE0VHHPTeqF9Oj-izpzgiPnjsiczExZSZ4-JofNovFPCa1d4cC_AYgA5FVZYxUYCF7n3mAkyeWAJP2BatexjmPziwvdp5f91KgEjUrQmGOXiAF5v1uzbDk3rpXOej3pvZujwSlcu-5Nr1QNrxT-JzGNX2zXGqIsURYSYscBedIqebePVArFS1EMiNpT_04A6br3Z5rwI9J2A9ZNywye-669KHtL5tulhqH5Vq-9TnlRqisEu6FfAQVljv-1n_3nCbwmt8dnpxM9OZl-eU7u4ExMbUxfkMPNautfAtza2FfxdfoHESoo9g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FXR+activation+protects+against+NAFLD+via+bile-acid-dependent+reductions+in+lipid+absorption&rft.jtitle=Cell+metabolism&rft.au=Clifford%2C+B.+L.&rft.au=Sedgeman%2C+L.+R.&rft.au=Williams%2C+K.+J.&rft.au=Morand%2C+P.&rft.date=2021-08-03&rft.issn=1550-4131&rft.volume=33&rft.issue=8&rft_id=info:doi/10.1016%2Fj.cmet.2021.06.012&rft.externalDocID=oai_gup_ub_gu_se_308972
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon