Structural Basis for the Rescue of Stalled Ribosomes: Structure of YaeJ Bound to the Ribosome

In bacteria, the hybrid transfer-messenger RNA (tmRNA) rescues ribosomes stalled on defective messenger RNAs (mRNAs). However, certain gram-negative bacteria have evolved proteins that are capable of rescuing stalled ribosomes in a tmRNA-independent manner. Here, we report a 3.2 angstrom-resolution...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 335; no. 6074; pp. 1370 - 1372
Main Authors Gagnon, Matthieu G., Seetharaman, Sai V., Bulkley, David, Steitz, Thomas A.
Format Journal Article
LanguageEnglish
Published Washington, DC American Association for the Advancement of Science 16.03.2012
The American Association for the Advancement of Science
Subjects
RNA
Online AccessGet full text

Cover

Loading…
Abstract In bacteria, the hybrid transfer-messenger RNA (tmRNA) rescues ribosomes stalled on defective messenger RNAs (mRNAs). However, certain gram-negative bacteria have evolved proteins that are capable of rescuing stalled ribosomes in a tmRNA-independent manner. Here, we report a 3.2 angstrom-resolution crystal structure of the rescue factor Yae] bound to the Thermus thermophilus 70S ribosome in complex with the initiator tRNAi fMet and a short mRNA. The structure reveals that the C-terminal tail of Yae] functions as a sensor to discriminate between stalled and actively translating ribosomes by binding in the mRNA entry channel downstream of the A site between the head and shoulder of the 30S subunit. This allows the N-terminal globular domain to sample different conformations, so that its conserved GGQ motif is optimally positioned to catalyze the hydrolysis of peptidyl-tRNA. This structure gives insights into the mechanism of Yae] function and provides a basis for understanding how it rescues stalled ribosomes.
AbstractList In bacteria, the hybrid transfer-messenger RNA (tmRNA) rescues ribosomes stalled on defective messenger RNAs (mRNAs). However, certain gram-negative bacteria have evolved proteins that are capable of rescuing stalled ribosomes in a tmRNA-independent manner. Here, we report a 3.2 angstrom-resolution crystal structure of the rescue factor YaeJ bound to the Thermus thermophilus 70S ribosome in complex with the initiator tRNAifMet and a short mRNA. The structure reveals that the C-terminal tail of YaeJ functions as a sensor to discriminate between stalled and actively translating ribosomes by binding in the mRNA entry channel downstream of the A site between the head and shoulder of the 30S subunit. This allows the N-terminal globular domain to sample different conformations, so that its conserved GGQ motif is optimally positioned to catalyze the hydrolysis of peptidyl-tRNA. This structure gives insights into the mechanism of YaeJ function and provides a basis for understanding how it rescues stalled ribosomes.
Ribosome Rescue Ribosomes stall when they reach the end of defective messenger RNAs (mRNAs). In bacteria, the most-studied ribosomal rescue pathway involves a ribonucleoprotein complex comprising tmRNA (which acts as both transfer RNA and mRNA) and the protein SmpB. In an alternative pathway, some Gram-negative bacteria contain proteins that achieve tmRNA-independent rescue. Now, Neubauer et al. (p. 1366 ) present the structure of the Thermus thermophilus ribosome bound to a fragment of tmRNA, SmpB, and elongation factor Tu, and Gagnon et al. (p. 1370 ) report the structure of the T. thermophilus ribosome in complex with an initiator tRNA, a short mRNA fragment, and the rescue factor YaeJ. Though the two rescue systems are very different, both involve a protein tail that binds in the mRNA channel. This orients the rescue apparatus to facilitate switching translation to a different message in the tmRNA system or hydrolysis of peptidyl tRNA by YaeJ. Two crystal structures show the molecular bases for two pathways that rescue ribosomes that have stalled on defective messenger RNAs. In bacteria, the hybrid transfer-messenger RNA (tmRNA) rescues ribosomes stalled on defective messenger RNAs (mRNAs). However, certain gram-negative bacteria have evolved proteins that are capable of rescuing stalled ribosomes in a tmRNA-independent manner. Here, we report a 3.2 angstrom–resolution crystal structure of the rescue factor YaeJ bound to the Thermus thermophilus 70 S ribosome in complex with the initiator tRNA i fMet and a short mRNA. The structure reveals that the C-terminal tail of YaeJ functions as a sensor to discriminate between stalled and actively translating ribosomes by binding in the mRNA entry channel downstream of the A site between the head and shoulder of the 30 S subunit. This allows the N-terminal globular domain to sample different conformations, so that its conserved GGQ motif is optimally positioned to catalyze the hydrolysis of peptidyl-tRNA. This structure gives insights into the mechanism of YaeJ function and provides a basis for understanding how it rescues stalled ribosomes.
In bacteria, the hybrid transfer-messenger RNA (tmRNA) rescues ribosomes stalled on defective messenger RNAs (mRNAs). However, certain gram-negative bacteria have evolved proteins that are capable of rescuing stalled ribosomes in a tmRNA-independent manner. Here, we report a 3.2 angstrom-resolution crystal structure of the rescue factor YaeJ bound to the Thermus thermophilus 70S ribosome in complex with the initiator tRNA(i)(fMet) and a short mRNA. The structure reveals that the C-terminal tail of YaeJ functions as a sensor to discriminate between stalled and actively translating ribosomes by binding in the mRNA entry channel downstream of the A site between the head and shoulder of the 30S subunit. This allows the N-terminal globular domain to sample different conformations, so that its conserved GGQ motif is optimally positioned to catalyze the hydrolysis of peptidyl-tRNA. This structure gives insights into the mechanism of YaeJ function and provides a basis for understanding how it rescues stalled ribosomes.
In bacteria, the hybrid transfer-messenger RNA (tmRNA) rescues ribosomes stalled on defective messenger RNAs (mRNAs). However, certain gram-negative bacteria have evolved proteins that are capable of rescuing stalled ribosomes in a tmRNA-independent manner. Here, we report a 3.2 angstrom–resolution crystal structure of the rescue factor YaeJ bound to the Thermus thermophilus 70 S ribosome in complex with the initiator tRNA i fMet and a short mRNA. The structure reveals that the C-terminal tail of YaeJ functions as a sensor to discriminate between stalled and actively translating ribosomes by binding in the mRNA entry channel downstream of the A site between the head and shoulder of the 30S subunit. This allows the N-terminal globular domain to sample different conformations, so that its conserved GGQ motif is optimally positioned to catalyze the hydrolysis of peptidyl-tRNA. This structure gives insights into the mechanism of YaeJ function and provides a basis for understanding how it rescues stalled ribosomes.
In bacteria, the hybrid transfer-messenger RNA (tmRNA) rescues ribosomes stalled on defective messenger RNAs (mRNAs). However, certain gram-negative bacteria have evolved proteins that are capable of rescuing stalled ribosomes in a tmRNA-independent manner. Here, we report a 3.2 angstrom-resolution crystal structure of the rescue factor Yae] bound to the Thermus thermophilus 70S ribosome in complex with the initiator tRNAi fMet and a short mRNA. The structure reveals that the C-terminal tail of Yae] functions as a sensor to discriminate between stalled and actively translating ribosomes by binding in the mRNA entry channel downstream of the A site between the head and shoulder of the 30S subunit. This allows the N-terminal globular domain to sample different conformations, so that its conserved GGQ motif is optimally positioned to catalyze the hydrolysis of peptidyl-tRNA. This structure gives insights into the mechanism of Yae] function and provides a basis for understanding how it rescues stalled ribosomes.
Ribosomes stall when they reach the end of defective messenger RNAs (mRNAs). In bacteria, the most-studied ribosomal rescue pathway involves a ribonucleoprotein complex comprising tmRNA (which acts as both transfer RNA and mRNA) and the protein SmpB. In an alternative pathway, some Gram-negative bacteria contain proteins that achieve tmRNA-independent rescue. Now, Neubauer et al. (p. 1366) present the structure of the Thermus thermophilus ribosome bound to a fragment of tmRNA, SmpB, and elongation factor Tu, and Gagnon et al. (p. 1370) report the structure of the T. thermophilus ribosome in complex with an initiator tRNA, a short mRNA fragment, and the rescue factor YaeJ. Though the two rescue systems are very different, both involve a protein tail that binds in the mRNA channel. This orients the rescue apparatus to facilitate switching translation to a different message in the tmRNA system or hydrolysis of peptidyl tRNA by YaeJ. In bacteria, the hybrid transfer-messenger RNA (tmRNA) rescues ribosomes stalled on defective messenger RNAs (mRNAs). However, certain gram-negative bacteria have evolved proteins that are capable of rescuing stalled ribosomes in a tmRNA-independent manner. Here, we report a 3.2 angstrom-resolution crystal structure of the rescue factor YaeJ bound to the Thermus thermophilus 70S ribosome in complex with the initiator tRNAifMet and a short mRNA. The structure reveals that the C-terminal tail of YaeJ functions as a sensor to discriminate between stalled and actively translating ribosomes by binding in the mRNA entry channel downstream of the A site between the head and shoulder of the 30S subunit. This allows the N-terminal globular domain to sample different conformations, so that its conserved GGQ motif is optimally positioned to catalyze the hydrolysis of peptidyl-tRNA. This structure gives insights into the mechanism of YaeJ function and provides a basis for understanding how it rescues stalled ribosomes. [PUBLICATION ABSTRACT]
In bacteria, the hybrid transfer-messenger RNA (tmRNA) rescues ribosomes stalled on defective messenger RNAs (mRNAs). However, certain gram-negative bacteria have evolved proteins that are capable of rescuing stalled ribosomes in a tmRNA-independent manner. Here, we report a 3.2 angstrom-resolution crystal structure of the rescue factor YaeJ bound to the Thermus thermophilus 70S ribosome in complex with the initiator tRNA{sub i}{sup fMet} and a short mRNA. The structure reveals that the C-terminal tail of YaeJ functions as a sensor to discriminate between stalled and actively translating ribosomes by binding in the mRNA entry channel downstream of the A site between the head and shoulder of the 30S subunit. This allows the N-terminal globular domain to sample different conformations, so that its conserved GGQ motif is optimally positioned to catalyze the hydrolysis of peptidyl-tRNA. This structure gives insights into the mechanism of YaeJ function and provides a basis for understanding how it rescues stalled ribosomes.
Author Bulkley, David
Seetharaman, Sai V.
Steitz, Thomas A.
Gagnon, Matthieu G.
AuthorAffiliation 3 Howard Hughes Medical Institute, Yale University, New Haven, CT 06520–8114, USA
2 Department of Chemistry, Yale University, New Haven, CT 06520–8107, USA
1 Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520–8114, USA
AuthorAffiliation_xml – name: 1 Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520–8114, USA
– name: 3 Howard Hughes Medical Institute, Yale University, New Haven, CT 06520–8114, USA
– name: 2 Department of Chemistry, Yale University, New Haven, CT 06520–8107, USA
Author_xml – sequence: 1
  givenname: Matthieu G.
  surname: Gagnon
  fullname: Gagnon, Matthieu G.
– sequence: 2
  givenname: Sai V.
  surname: Seetharaman
  fullname: Seetharaman, Sai V.
– sequence: 3
  givenname: David
  surname: Bulkley
  fullname: Bulkley, David
– sequence: 4
  givenname: Thomas A.
  surname: Steitz
  fullname: Steitz, Thomas A.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25639722$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22422986$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1039065$$D View this record in Osti.gov
BookMark eNp9ks1rFTEUxYNU7Gt17UoJguhm2nxMkkkXgi1-UhBaXbiQkMnc8c1jXlKTjOB_b54zfdWNqyzO75zLvTlH6MAHDwg9puSEUiZPkxvAOzihjKq65vfQihItKs0IP0ArQrisGqLEITpKaUNI0TR_gA4ZqxnTjVyhb9c5Ti5P0Y743KYh4T5EnNeAryC5CXDo8XW24wgdvhrakMIW0hm-df3Rv1r4iM_D5Ducw-xdyIfofm_HBI-W9xh9efvm88X76vLTuw8Xry8rJ7TKldI9CNZS1zEArZpOtJxaKzqQApiVvGVSuFa0pBc9YY3SkjIFvRNKNpQ2_Bi9mnNvpnYLnQOfy0LmJg5bG3-ZYAfzr-KHtfkefhrOlar5LuDZHBBSHky5aga3dsF7cNlQwjWRokAvlikx_JggZbMdkoNxtB7ClIxmjaZE0rqQL_9LUkKahnPB1N3kPboJU_TlWru8moma8QKdzpCLIaUI_X41SsyuCGYpglmKUBxP_77Inr_9-QI8XwCbnB37aL0b0h0nJNeKscI9mblNyiHu9ZoK0jBJ-W8j-sdy
CODEN SCIEAS
CitedBy_id crossref_primary_10_1126_science_1253525
crossref_primary_10_1002_ijch_201300012
crossref_primary_10_1038_nrmicro3438
crossref_primary_10_1038_s41594_019_0350_7
crossref_primary_10_1146_annurev_biochem_080211_105026
crossref_primary_10_1093_nar_gkae128
crossref_primary_10_1093_nar_gkz1201
crossref_primary_10_1016_j_jtbi_2017_01_040
crossref_primary_10_7554_eLife_23687
crossref_primary_10_1093_nar_gku1069
crossref_primary_10_1016_j_devcel_2012_10_012
crossref_primary_10_3389_fmicb_2014_00113
crossref_primary_10_3389_fmicb_2021_652980
crossref_primary_10_1038_s41467_019_13408_7
crossref_primary_10_3389_fmicb_2014_00156
crossref_primary_10_1080_15476286_2022_2067712
crossref_primary_10_1051_medsci_20153103014
crossref_primary_10_3390_cryst9110597
crossref_primary_10_1038_ejhg_2013_284
crossref_primary_10_1038_nature21053
crossref_primary_10_1128_JB_00628_13
crossref_primary_10_1038_nrm3457
crossref_primary_10_1016_j_ccr_2016_10_003
crossref_primary_10_1038_s41467_020_15517_0
crossref_primary_10_1242_jcs_231811
crossref_primary_10_1146_annurev_biochem_060815_014334
crossref_primary_10_1016_j_jmb_2018_01_007
crossref_primary_10_13070_mm_cn_2_116
crossref_primary_10_13070_mm_en_2_116
crossref_primary_10_1146_annurev_cellbio_111315_125249
crossref_primary_10_7554_eLife_61984
crossref_primary_10_1093_nar_gkt1329
crossref_primary_10_1038_nature12890
crossref_primary_10_1016_j_cell_2014_11_049
crossref_primary_10_1371_journal_pgen_1005964
crossref_primary_10_31857_S0320972521090062
crossref_primary_10_3389_fgene_2014_00066
crossref_primary_10_1016_j_str_2015_08_011
crossref_primary_10_31857_S0320972521080066
crossref_primary_10_1261_rna_045773_114
crossref_primary_10_1016_j_jmb_2012_08_007
crossref_primary_10_1098_rstb_2016_0184
crossref_primary_10_1126_science_aai9127
crossref_primary_10_1038_ncomms13521
crossref_primary_10_1098_rstb_2016_0183
crossref_primary_10_1134_S0006297921080058
crossref_primary_10_1093_nar_gkt1280
crossref_primary_10_1111_1574_6976_12083
crossref_primary_10_1016_j_bbagrm_2013_02_004
crossref_primary_10_1093_nar_gkaa1132
crossref_primary_10_1261_rna_053082_115
crossref_primary_10_1128_mBio_02436_18
crossref_primary_10_1038_nrm3340
crossref_primary_10_1021_acs_biochem_7b00824
crossref_primary_10_1038_nature20821
crossref_primary_10_1038_ncomms3940
crossref_primary_10_1038_nature20822
crossref_primary_10_1038_nsmb_2301
crossref_primary_10_1002_mbo3_272
crossref_primary_10_1016_j_tibs_2013_06_002
crossref_primary_10_1093_molbev_mss157
crossref_primary_10_1038_s42003_021_01835_6
crossref_primary_10_1073_pnas_2202464119
crossref_primary_10_3389_fmicb_2014_00170
crossref_primary_10_1080_15476286_2021_2015561
crossref_primary_10_1126_sciadv_abq5234
crossref_primary_10_3389_fmicb_2014_00374
crossref_primary_10_1038_s41467_020_19370_z
crossref_primary_10_1371_journal_pgen_1004616
crossref_primary_10_1093_hmg_ddae012
crossref_primary_10_1266_ggs_20_00007
crossref_primary_10_1016_j_jmb_2013_09_035
crossref_primary_10_1134_S0006297921090066
crossref_primary_10_1128_JB_01490_14
crossref_primary_10_1016_j_tibs_2017_05_009
crossref_primary_10_1093_nar_gkw018
crossref_primary_10_1016_j_biochi_2018_12_005
crossref_primary_10_1111_j_1365_2958_2012_08207_x
crossref_primary_10_1016_j_molcel_2021_03_042
crossref_primary_10_1038_s41467_020_17853_7
crossref_primary_10_13070_mm_fr_2_116
crossref_primary_10_3390_microorganisms10020372
crossref_primary_10_1002_prot_24152
crossref_primary_10_1016_j_biochi_2014_11_014
crossref_primary_10_3389_fmicb_2014_00462
crossref_primary_10_1371_journal_pone_0111811
Cites_doi 10.1038/emboj.2010.14
10.1261/rna.1757410
10.1093/bioinformatics/15.4.305
10.1093/nar/gkq1097
10.1016/0003-2697(89)90602-7
10.1111/j.1365-2958.2010.07375.x
10.1146/annurev.micro.61.080706.093323
10.1107/S0907444902016657
10.1093/bioinformatics/btm404
10.4161/rna.8.3.15387
10.1016/j.jmb.2010.09.033
10.1126/science.1131127
10.1038/nature04152
10.1111/j.1365-2958.2011.07638.x
10.1261/rna.1916610
10.1126/science.1212642
10.1046/j.1365-2958.2003.03301.x
10.1128/JB.181.7.2148-2157.1999
10.1017/S135583829999043X
10.1261/rna.2174803
10.1126/science.1164840
10.1093/nar/24.5.907
10.1016/j.jmb.2004.02.043
10.1126/science.1175800
10.1261/rna.2185710
10.1111/j.1365-2958.2011.07607.x
10.1093/nar/gki410
10.1126/science.271.5251.990
10.1038/nature07115
10.1261/rna.1592509
10.1038/nature01831
10.1093/nar/gkm677
10.1126/science.1198308
10.1107/S0021889893005588
10.1038/35003097
10.1107/S0907444904019158
ContentType Journal Article
Copyright Copyright © 2012 American Association for the Advancement of Science
2015 INIST-CNRS
Copyright © 2012, American Association for the Advancement of Science
Copyright_xml – notice: Copyright © 2012 American Association for the Advancement of Science
– notice: 2015 INIST-CNRS
– notice: Copyright © 2012, American Association for the Advancement of Science
CorporateAuthor Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
CorporateAuthor_xml – name: Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
OTOTI
5PM
DOI 10.1126/science.1217443
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Nucleic Acids Abstracts
CrossRef
MEDLINE


Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 1372
ExternalDocumentID 1039065
2611052611
10_1126_science_1217443
22422986
25639722
41508261
Genre Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: P30 EB009998
– fundername: NIGMS NIH HHS
  grantid: GM022778
– fundername: NIGMS NIH HHS
  grantid: P01 GM022778
– fundername: Howard Hughes Medical Institute
– fundername: Howard Hughes Medical Institute :
  grantid: || HHMI_
– fundername: National Institute of General Medical Sciences : NIGMS
  grantid: P01 GM022778 || GM
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
.HR
08G
0B8
0R~
0WA
123
18M
2FS
2KS
2WC
34G
36B
39C
3R3
4.4
4R4
53G
5RE
63O
68V
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAJYS
AAMNW
AANCE
AAWTO
AAYJJ
ABBHK
ABCQX
ABDBF
ABDEX
ABEFU
ABIVO
ABOCM
ABPLY
ABPMR
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQAM
ACQOY
ACTDY
ADDRP
ADULT
ADZLD
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFCHL
AFDAS
AFFDN
AFFNX
AFHKK
AFOSN
AFQFN
AFRAH
AGCDD
AGFXO
AGNAY
AGSOS
AHMBA
AHPSJ
AIDAL
AIDUJ
AJGZS
ALMA_UNASSIGNED_HOLDINGS
ANJGP
AQVQM
ASPBG
AVWKF
B-7
BKF
BLC
C2-
C45
CS3
DB2
DCCCD
DNJUQ
DOOOF
DU5
DWIUU
EBS
EJD
EMOBN
ESX
F5P
FA8
FEDTE
GX1
HZ~
I.T
IAO
IEA
IGG
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
J9C
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OK1
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QJJ
RHF
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VQA
VVN
WH7
WI4
X7M
XFK
XJF
XZL
Y6R
YCJ
YK4
YKV
YNT
YOJ
YR2
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZA5
ZCA
ZE2
~02
~H1
~KM
~ZZ
.GJ
.GO
0-V
08R
186
2XV
3EH
3V.
41~
42X
66.
692
79B
7X7
7XC
88A
88E
88I
8AF
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8GL
8WZ
97F
A6W
AADHG
AAFWJ
AAKAS
AAUGY
AAYOK
ABJCF
ABPTK
ABTAH
ABUWG
ADBBV
ADMHC
ADZCM
AFKRA
AJUXI
ALSLI
ARALO
ARAPS
ATCPS
AZQEC
BBNVY
BBWZM
BCU
BEC
BENPR
BGLVJ
BHPHI
BKNYI
BKSAR
BPHCQ
BVXVI
C51
CCPQU
CJNVE
D0S
D1I
D1J
D1K
DWQXO
D~A
EAU
EGS
EWM
EX3
F20
FYUFA
G8K
GICCO
GNUQQ
GUQSH
HCIFZ
HGD
HQ3
HTVGU
IAG
IBG
IEP
IER
IPC
IQODW
ISN
ISR
ITC
J5H
K6-
K9-
KB.
KQ8
L6V
LK5
LK8
M0K
M0L
M0R
M1P
M2O
M2P
M2Q
M7P
M7R
M7S
N4W
P62
PATMY
PCBAR
PDBOC
PK8
PROAC
PSQYO
PTHSS
PV9
PYCSY
QS-
R05
RNS
RZL
SJFOW
SKT
UBY
UHU
UKHRP
VOH
WOQ
WOW
X7L
XIH
XKJ
XOL
YJ6
YXB
ZCF
ZCG
ZGI
ZKG
ZVL
ZVM
ZXP
ZY4
~G0
ADACV
ADUKH
AFRQD
ALIPV
CGR
CUY
CVF
ECM
EIF
IPSME
NPM
UIG
AAYXX
CITATION
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
6XO
ABQIS
AFUVZ
OTOTI
PQEST
UMP
5PM
ID FETCH-LOGICAL-c597t-79fe52b1cd2ee978d5b31aa5de65e2a63b265cb5b0f5f028796127efc57681183
ISSN 0036-8075
IngestDate Tue Sep 17 20:41:18 EDT 2024
Thu May 18 22:23:58 EDT 2023
Sat Aug 17 02:51:02 EDT 2024
Fri Aug 16 21:12:38 EDT 2024
Tue Sep 24 21:51:53 EDT 2024
Thu Sep 26 16:23:48 EDT 2024
Sat Sep 28 08:30:14 EDT 2024
Sun Oct 29 17:06:59 EDT 2023
Fri Feb 02 07:03:12 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6074
Keywords Thermus thermophilus
Bacteria
Molecular complex
Ribosome
Crystalline structure
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c597t-79fe52b1cd2ee978d5b31aa5de65e2a63b265cb5b0f5f028796127efc57681183
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
National Institutes of Health (NIH)
These authors contributed equally to this work.
OpenAccessLink https://europepmc.org/articles/pmc3377438?pdf=render
PMID 22422986
PQID 928425423
PQPubID 1256
PageCount 3
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3377438
osti_scitechconnect_1039065
proquest_miscellaneous_928910614
proquest_miscellaneous_1008833527
proquest_journals_928425423
crossref_primary_10_1126_science_1217443
pubmed_primary_22422986
pascalfrancis_primary_25639722
jstor_primary_41508261
PublicationCentury 2000
PublicationDate 2012-03-16
PublicationDateYYYYMMDD 2012-03-16
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-16
  day: 16
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2012
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_11_2
  doi: 10.1038/emboj.2010.14
– ident: e_1_3_2_21_2
  doi: 10.1261/rna.1757410
– ident: e_1_3_2_38_2
  doi: 10.1093/bioinformatics/15.4.305
– ident: e_1_3_2_5_2
  doi: 10.1093/nar/gkq1097
– ident: e_1_3_2_30_2
  doi: 10.1016/0003-2697(89)90602-7
– ident: e_1_3_2_8_2
  doi: 10.1111/j.1365-2958.2010.07375.x
– ident: e_1_3_2_9_2
  doi: 10.1146/annurev.micro.61.080706.093323
– ident: e_1_3_2_34_2
  doi: 10.1107/S0907444902016657
– ident: e_1_3_2_37_2
  doi: 10.1093/bioinformatics/btm404
– ident: e_1_3_2_2_2
  doi: 10.4161/rna.8.3.15387
– ident: e_1_3_2_12_2
  doi: 10.1016/j.jmb.2010.09.033
– ident: e_1_3_2_16_2
  doi: 10.1126/science.1131127
– ident: e_1_3_2_26_2
  doi: 10.1038/nature04152
– ident: e_1_3_2_6_2
  doi: 10.1111/j.1365-2958.2011.07638.x
– ident: e_1_3_2_13_2
  doi: 10.1261/rna.1916610
– ident: e_1_3_2_29_2
  doi: 10.1126/science.1212642
– ident: e_1_3_2_17_2
  doi: 10.1046/j.1365-2958.2003.03301.x
– ident: e_1_3_2_4_2
  doi: 10.1128/JB.181.7.2148-2157.1999
– ident: e_1_3_2_18_2
  doi: 10.1017/S135583829999043X
– ident: e_1_3_2_19_2
  doi: 10.1261/rna.2174803
– ident: e_1_3_2_23_2
  doi: 10.1126/science.1164840
– ident: e_1_3_2_32_2
  doi: 10.1093/nar/24.5.907
– ident: e_1_3_2_20_2
  doi: 10.1016/j.jmb.2004.02.043
– ident: e_1_3_2_31_2
  doi: 10.1126/science.1175800
– ident: e_1_3_2_25_2
  doi: 10.1261/rna.2185710
– ident: e_1_3_2_7_2
  doi: 10.1111/j.1365-2958.2011.07607.x
– ident: e_1_3_2_36_2
  doi: 10.1093/nar/gki410
– ident: e_1_3_2_3_2
  doi: 10.1126/science.271.5251.990
– ident: e_1_3_2_24_2
  doi: 10.1038/nature07115
– ident: e_1_3_2_27_2
  doi: 10.1261/rna.1592509
– ident: e_1_3_2_22_2
  doi: 10.1038/nature01831
– ident: e_1_3_2_14_2
  doi: 10.1093/nar/gkm677
– ident: e_1_3_2_28_2
  doi: 10.1126/science.1198308
– ident: e_1_3_2_33_2
  doi: 10.1107/S0021889893005588
– ident: e_1_3_2_10_2
  doi: 10.1038/35003097
– ident: e_1_3_2_35_2
  doi: 10.1107/S0907444904019158
SSID ssj0009593
Score 2.4024796
Snippet In bacteria, the hybrid transfer-messenger RNA (tmRNA) rescues ribosomes stalled on defective messenger RNAs (mRNAs). However, certain gram-negative bacteria...
Ribosome Rescue Ribosomes stall when they reach the end of defective messenger RNAs (mRNAs). In bacteria, the most-studied ribosomal rescue pathway involves a...
Ribosomes stall when they reach the end of defective messenger RNAs (mRNAs). In bacteria, the most-studied ribosomal rescue pathway involves a...
SourceID pubmedcentral
osti
proquest
crossref
pubmed
pascalfrancis
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1370
SubjectTerms 60 APPLIED LIFE SCIENCES
Amino Acid Sequence
BACTERIA
BASIC BIOLOGICAL SCIENCES
Biochemistry
Biological and medical sciences
Carboxylic Ester Hydrolases - chemistry
Carboxylic Ester Hydrolases - metabolism
Catalysis
Codons
Conformation
CRYSTAL STRUCTURE
Crystalline structure
Crystallography, X-Ray
Escherichia coli - chemistry
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - metabolism
Fundamental and applied biological sciences. Psychology
Gram-negative bacteria
HYDROLYSIS
Messenger RNA
Models, Molecular
Molecular biophysics
Molecular Sequence Data
Molecular structure
Nucleic Acid Conformation
Peptides
Protein Biosynthesis
Protein Structure, Tertiary
PROTEINS
Ribonucleic acid
Ribosome Subunits, Large, Bacterial - chemistry
Ribosome Subunits, Large, Bacterial - metabolism
Ribosome Subunits, Small, Bacterial - chemistry
Ribosome Subunits, Small, Bacterial - metabolism
RIBOSOMES
Ribosomes - chemistry
Ribosomes - metabolism
RNA
RNA, Bacterial - chemistry
RNA, Bacterial - metabolism
RNA, Messenger - chemistry
RNA, Messenger - metabolism
RNA, Ribosomal - chemistry
RNA, Ribosomal - metabolism
RNA, Transfer, Amino Acyl - chemistry
RNA, Transfer, Amino Acyl - metabolism
RNA, Transfer, Met - chemistry
RNA, Transfer, Met - metabolism
SENSORS
Structure in molecular biology
Thermus thermophilus
Thermus thermophilus - chemistry
Thermus thermophilus - metabolism
Thermus thermophilus - ultrastructure
Transfer RNA
Title Structural Basis for the Rescue of Stalled Ribosomes: Structure of YaeJ Bound to the Ribosome
URI https://www.jstor.org/stable/41508261
https://www.ncbi.nlm.nih.gov/pubmed/22422986
https://www.proquest.com/docview/928425423/abstract/
https://search.proquest.com/docview/1008833527
https://search.proquest.com/docview/928910614
https://www.osti.gov/biblio/1039065
https://pubmed.ncbi.nlm.nih.gov/PMC3377438
Volume 335
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFLaqISQuiA0GYTAZicNQlSmxkzjh1iLoNAkOY0PlgKLEcUSl0iAlPcCv5afwnu2k7tRKjEvVNnZa5Xuxv-d8_h4hr4HF11ImgACPEj8SVeCnUap8yMNiIUQaJgFucP74Kbm4iS7n8Xw0-uOoltZdeS5_79xX8j-owneAK-6SvQOyw0nhC3gP-MIrIAyv_4TxZ23-qo0zpgU6i_SawSvVyrVeDQAyuVwCqbxalE3b_DAKuL6fbvG1UJfjKVZX6nlo39Ylrv0YAIR0eMjjQDv88sRoCnqJge3mrDfMUNpnBMRYanyh1uPZ-bDOo1SHDtL9smyxGH8ZDk7Xy75UtqPE15Lkha5Ka9VO48m5u5aBohDum62WzvaBO_1_d2y31spmZjPDeYCVKFnA3fGeG38UG9hJICJnAA-5qWNiyQB8ZLsnGqc0pkKLDhEZu6lb7t0R-u0zzM_vMZHFuDwwm4d7baGt-ZSzras_9xZvMtJZYBENzAMo5y1auKNrU4plV650W_LrcKjrR-ShTX7oxETyIRmp1RG5b8qh_joih_Zqt_TMuqG_eUy-bYKc6iCnABUFqKgJctrU1AY5HYL8LR1CHI9jiFMd4rRrTF_b8gm5-fD--t2Fb2uC-BJS384XWa1iVoayYkplIq3ikodFEVcqiRUrEl6yJJZlXAZ1XAN3FhlQeKFqiXk1JNP8mBxAlKtnhAZVIlNRFhEqDyTwNFGkFa_SULJEwbTlkbP-iuc_jfVLrlNmluQWnNyC45FjjcjQrofdIycIEbZHT2aJ4jXZ5ai_AO7vkdMt5IbukIdAnsAYdO-hzO240-YZw0fnkAZ55NVwFCYFfNJXrFSzbtGIPNW7KYVH6J42cJpMrwd55KmJjc3PA29nWZp4RGxFzdAAPem3j6wW37U3PeeQT_L0-b4LckIebG78F-QAgkG9BFrflaf6zvgLucD5Rw
link.rule.ids 230,315,786,790,891,27957,27958
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+Basis+for+the+Rescue+of+Stalled+Ribosomes%3A+Structure+of+YaeJ+Bound+to+the+Ribosome&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Gagnon%2C+Matthieu+G.&rft.au=Seetharaman%2C+Sai+V.&rft.au=Bulkley%2C+David&rft.au=Steitz%2C+Thomas+A.&rft.date=2012-03-16&rft.pub=American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=335&rft.issue=6074&rft.spage=1370&rft.epage=1372&rft_id=info:doi/10.1126%2Fscience.1217443&rft.externalDocID=41508261
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon