Mapping genetic loci for tolerance to lime-induced iron deficiency chlorosis in grapevine rootstocks (Vitis sp.)

Iron is essential to plants for chlorophyll formation as well as for the functioning of various iron-containing enzymes. Iron deficiency chlorosis is a wide-spread disorder of plants, in particular, of those growing on calcareous soils. Among the different ways to control iron deficiency problems fo...

Full description

Saved in:
Bibliographic Details
Published inTheoretical and applied genetics Vol. 126; no. 2; pp. 451 - 473
Main Authors Bert, Pierre-François, Bordenave, Louis, Donnart, Martine, Hévin, Cyril, Ollat, Nathalie, Decroocq, Stéphane
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.02.2013
Springer
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Iron is essential to plants for chlorophyll formation as well as for the functioning of various iron-containing enzymes. Iron deficiency chlorosis is a wide-spread disorder of plants, in particular, of those growing on calcareous soils. Among the different ways to control iron deficiency problems for crops, plant material and especially rootstock breeding is a suitable and reliable method, especially for fruit trees and grapes. The aim of the experiment was to characterize the genetic basis of grapevine chlorosis tolerance under lime stress conditions. A segregating population of 138 F1 genotypes issued from an inter-specific cross between Vitis vinifera Cabernet Sauvignon (tolerant) × V. riparia Gloire de Montpellier (sensitive) was developed and phenotyped both as cuttings and as rootstock grafted with Cabernet Sauvignon scions in pots containing non-chlorosing and chlorosing soils. Tolerance was evaluated by chlorosis score, leaf chlorophyll content and growth parameters of the shoots and roots. The experiments were performed in 2001, 2003 and 2006. The plants analysed in 2006 were reassessed in 2007. The most significant findings of the trial were: (a) the soil properties strongly affect plant development, (b) there are differences in tolerance among segregating genotypes when grown as cuttings or as rootstocks on calcareous soil, (c) calcareous conditions induced chlorosis and revealed quantitative trait loci (QTLs) implicated in polygenic control of tolerance, (d) rootstock strongly contributes to lime-induced chlorosis response, and (e) a QTL with strong effect (from 10 to 25 % of the chlorotic symptom variance) was identified on chromosome 13. This QTL colocalized with a QTL for chlorophyll content (R ² = 22 %) and a major QTL for plant development that explains about 50 % of both aerial and root system biomass variation. These findings were supported by stable results among the different years of experiment. These results open new insights into the genetic control of chlorosis tolerance and could aid the development of iron chlorosis-tolerant rootstocks.
AbstractList Iron is essential to plants for chlorophyll formation as well as for the functioning of various iron-containing enzymes. Iron deficiency chlorosis is a wide-spread disorder of plants, in particular, of those growing on calcareous soils. Among the different ways to control iron deficiency problems for crops, plant material and especially rootstock breeding is a suitable and reliable method, especially for fruit trees and grapes. The aim of the experiment was to characterize the genetic basis of grapevine chlorosis tolerance under lime stress conditions. A segregating population of 138 F1 genotypes issued from an inter-specific cross between Vitis vinifera Cabernet Sauvignon (tolerant) V. riparia Gloire de Montpellier (sensitive) was developed and phenotyped both as cuttings and as rootstock grafted with Cabernet Sauvignon scions in pots containing non-chlorosing and chlorosing soils. Tolerance was evaluated by chlorosis score, leaf chlorophyll content and growth parameters of the shoots and roots. The experiments were performed in 2001, 2003 and 2006. The plants analysed in 2006 were reassessed in 2007. The most significant findings of the trial were: (a) the soil properties strongly affect plant development, (b) there are differences in tolerance among segregating genotypes when grown as cuttings or as rootstocks on calcareous soil, (c) calcareous conditions induced chlorosis and revealed quantitative trait loci (QTLs) implicated in polygenic control of tolerance, (d) rootstock strongly contributes to lime-induced chlorosis response, and (e) a QTL with strong effect (from 10 to 25 % of the chlorotic symptom variance) was identified on chromosome 13. This QTL colocalized with a QTL for chlorophyll content (R super(2) = 22 %) and a major QTL for plant development that explains about 50 % of both aerial and root system biomass variation. These findings were supported by stable results among the different years of experiment. These results open new insights into the genetic control of chlorosis tolerance and could aid the development of iron chlorosis-tolerant rootstocks.
Iron is essential to plants for chlorophyll formation as well as for the functioning of various iron-containing enzymes. Iron deficiency chlorosis is a wide-spread disorder of plants, in particular, of those growing on calcareous soils. Among the different ways to control iron deficiency problems for crops, plant material and especially rootstock breeding is a suitable and reliable method, especially for fruit trees and grapes. The aim of the experiment was to characterize the genetic basis of grapevine chlorosis tolerance under lime stress conditions. A segregating population of 138 F1 genotypes issued from an inter-specific cross between Vitis vinifera Cabernet Sauvignon (tolerant) x V. riparia Gloire de Montpellier (sensitive) was developed and phenotyped both as cuttings and as rootstock grafted with Cabernet Sauvignon scions in pots containing non-chlorosing and chlorosing soils. Tolerance was evaluated by chlorosis score, leaf chlorophyll content and growth parameters of the shoots and roots. The experiments were performed in 2001, 2003 and 2006. The plants analysed in 2006 were reassessed in 2007. The most significant findings of the trial were: (a) the soil properties strongly affect plant development, (b) there are differences in tolerance among segregating genotypes when grown as cuttings or as rootstocks on calcareous soil, (c) calcareous conditions induced chlorosis and revealed quantitative trait loci (QTLs) implicated in polygenic control of tolerance, (d) rootstock strongly contributes to lime-induced chlorosis response, and (e) a QTL with strong effect (from 10 to 25 % of the chlorotic symptom variance) was identified on chromosome 13. This QTL colocalized with a QTL for chlorophyll content (R (2) = 22 %) and a major QTL for plant development that explains about 50 % of both aerial and root system biomass variation. These findings were supported by stable results among the different years of experiment. These results open new insights into the genetic control of chlorosis tolerance and could aid the development of iron chlorosis-tolerant rootstocks.
Iron is essential to plants for chlorophyll formation as well as for the functioning of various iron-containing enzymes. Iron deficiency chlorosis is a wide-spread disorder of plants, in particular, of those growing on calcareous soils. Among the different ways to control iron deficiency problems for crops, plant material and especially rootstock breeding is a suitable and reliable method, especially for fruit trees and grapes. The aim of the experiment was to characterize the genetic basis of grapevine chlorosis tolerance under lime stress conditions. A segregating population of 138 F1 genotypes issued from an inter-specific cross between Vitis vinifera Cabernet Sauvignon (tolerant) × V. riparia Gloire de Montpellier (sensitive) was developed and phenotyped both as cuttings and as rootstock grafted with Cabernet Sauvignon scions in pots containing non-chlorosing and chlorosing soils. Tolerance was evaluated by chlorosis score, leaf chlorophyll content and growth parameters of the shoots and roots. The experiments were performed in 2001, 2003 and 2006. The plants analysed in 2006 were reassessed in 2007. The most significant findings of the trial were: (a) the soil properties strongly affect plant development, (b) there are differences in tolerance among segregating genotypes when grown as cuttings or as rootstocks on calcareous soil, (c) calcareous conditions induced chlorosis and revealed quantitative trait loci (QTLs) implicated in polygenic control of tolerance, (d) rootstock strongly contributes to lime-induced chlorosis response, and (e) a QTL with strong effect (from 10 to 25 % of the chlorotic symptom variance) was identified on chromosome 13. This QTL colocalized with a QTL for chlorophyll content (R ² = 22 %) and a major QTL for plant development that explains about 50 % of both aerial and root system biomass variation. These findings were supported by stable results among the different years of experiment. These results open new insights into the genetic control of chlorosis tolerance and could aid the development of iron chlorosis-tolerant rootstocks.
Iron is essential to plants for chlorophyll formation as well as for the functioning of various iron-containing enzymes. Iron deficiency chlorosis is a wide-spread disorder of plants, in particular, of those growing on calcareous soils. Among the different ways to control iron deficiency problems for crops, plant material and especially rootstock breeding is a suitable and reliable method, especially for fruit trees and grapes. The aim of the experiment was to characterize the genetic basis of grapevine chlorosis tolerance under lime stress conditions. A segregating population of 138 F1 genotypes issued from an inter-specific cross between Vitis vinifera Cabernet Sauvignon (tolerant) × V. riparia Gloire de Montpellier (sensitive) was developed and phenotyped both as cuttings and as rootstock grafted with Cabernet Sauvignon scions in pots containing non-chlorosing and chlorosing soils. Tolerance was evaluated by chlorosis score, leaf chlorophyll content and growth parameters of the shoots and roots. The experiments were performed in 2001, 2003 and 2006. The plants analysed in 2006 were reassessed in 2007. The most significant findings of the trial were: (a) the soil properties strongly affect plant development, (b) there are differences in tolerance among segregating genotypes when grown as cuttings or as rootstocks on calcareous soil, (c) calcareous conditions induced chlorosis and revealed quantitative trait loci (QTLs) implicated in polygenic control of tolerance, (d) rootstock strongly contributes to lime-induced chlorosis response, and (e) a QTL with strong effect (from 10 to 25 % of the chlorotic symptom variance) was identified on chromosome 13. This QTL colocalized with a QTL for chlorophyll content (R (2) = 22 %) and a major QTL for plant development that explains about 50 % of both aerial and root system biomass variation. These findings were supported by stable results among the different years of experiment. These results open new insights into the genetic control of chlorosis tolerance and could aid the development of iron chlorosis-tolerant rootstocks.Iron is essential to plants for chlorophyll formation as well as for the functioning of various iron-containing enzymes. Iron deficiency chlorosis is a wide-spread disorder of plants, in particular, of those growing on calcareous soils. Among the different ways to control iron deficiency problems for crops, plant material and especially rootstock breeding is a suitable and reliable method, especially for fruit trees and grapes. The aim of the experiment was to characterize the genetic basis of grapevine chlorosis tolerance under lime stress conditions. A segregating population of 138 F1 genotypes issued from an inter-specific cross between Vitis vinifera Cabernet Sauvignon (tolerant) × V. riparia Gloire de Montpellier (sensitive) was developed and phenotyped both as cuttings and as rootstock grafted with Cabernet Sauvignon scions in pots containing non-chlorosing and chlorosing soils. Tolerance was evaluated by chlorosis score, leaf chlorophyll content and growth parameters of the shoots and roots. The experiments were performed in 2001, 2003 and 2006. The plants analysed in 2006 were reassessed in 2007. The most significant findings of the trial were: (a) the soil properties strongly affect plant development, (b) there are differences in tolerance among segregating genotypes when grown as cuttings or as rootstocks on calcareous soil, (c) calcareous conditions induced chlorosis and revealed quantitative trait loci (QTLs) implicated in polygenic control of tolerance, (d) rootstock strongly contributes to lime-induced chlorosis response, and (e) a QTL with strong effect (from 10 to 25 % of the chlorotic symptom variance) was identified on chromosome 13. This QTL colocalized with a QTL for chlorophyll content (R (2) = 22 %) and a major QTL for plant development that explains about 50 % of both aerial and root system biomass variation. These findings were supported by stable results among the different years of experiment. These results open new insights into the genetic control of chlorosis tolerance and could aid the development of iron chlorosis-tolerant rootstocks.
Iron is essential to plants for chlorophyll formation as well as for the functioning of various iron-containing enzymes. Iron deficiency chlorosis is a wide-spread disorder of plants, in particular, of those growing on calcareous soils. Among the different ways to control iron deficiency problems for crops, plant material and especially rootstock breeding is a suitable and reliable method, especially for fruit trees and grapes. The aim of the experiment was to characterize the genetic basis of grapevine chlorosis tolerance under lime stress conditions. A segregating population of 138 F1 genotypes issued from an inter-specific cross between Vitis vinifera Cabernet Sauvignon (tolerant) × V. riparia Gloire de Montpellier (sensitive) was developed and phenotyped both as cuttings and as rootstock grafted with Cabernet Sauvignon scions in pots containing non-chlorosing and chlorosing soils. Tolerance was evaluated by chlorosis score, leaf chlorophyll content and growth parameters of the shoots and roots. The experiments were performed in 2001, 2003 and 2006. The plants analysed in 2006 were reassessed in 2007. The most significant findings of the trial were: (a) the soil properties strongly affect plant development, (b) there are differences in tolerance among segregating genotypes when grown as cuttings or as rootstocks on calcareous soil, (c) calcareous conditions induced chlorosis and revealed quantitative trait loci (QTLs) implicated in polygenic control of tolerance, (d) rootstock strongly contributes to lime-induced chlorosis response, and (e) a QTL with strong effect (from 10 to 25 % of the chlorotic symptom variance) was identified on chromosome 13. This QTL colocalized with a QTL for chlorophyll content (R ² = 22 %) and a major QTL for plant development that explains about 50 % of both aerial and root system biomass variation. These findings were supported by stable results among the different years of experiment. These results open new insights into the genetic control of chlorosis tolerance and could aid the development of iron chlorosis-tolerant rootstocks.
Iron is essential to plants for chlorophyll formation as well as for the functioning of various iron-containing enzymes. Iron deficiency chlorosis is a wide-spread disorder of plants, in particular, of those growing on calcareous soils. Among the different ways to control iron deficiency problems for crops, plant material and especially rootstock breeding is a suitable and reliable method, especially for fruit trees and grapes. The aim of the experiment was to characterize the genetic basis of grapevine chlorosis tolerance under lime stress conditions. A segregating population of 138 F1 genotypes issued from an inter-specific cross between Vitis vinifera Cabernet Sauvignon (tolerant) × V. riparia Gloire de Montpellier (sensitive) was developed and phenotyped both as cuttings and as rootstock grafted with Cabernet Sauvignon scions in pots containing non-chlorosing and chlorosing soils. Tolerance was evaluated by chlorosis score, leaf chlorophyll content and growth parameters of the shoots and roots. The experiments were performed in 2001, 2003 and 2006. The plants analysed in 2006 were reassessed in 2007. The most significant findings of the trial were: (a) the soil properties strongly affect plant development, (b) there are differences in tolerance among segregating genotypes when grown as cuttings or as rootstocks on calcareous soil, (c) calcareous conditions induced chlorosis and revealed quantitative trait loci (QTLs) implicated in polygenic control of tolerance, (d) rootstock strongly contributes to lime-induced chlorosis response, and (e) a QTL with strong effect (from 10 to 25 % of the chlorotic symptom variance) was identified on chromosome 13. This QTL colocalized with a QTL for chlorophyll content (R (2) = 22 %) and a major QTL for plant development that explains about 50 % of both aerial and root system biomass variation. These findings were supported by stable results among the different years of experiment. These results open new insights into the genetic control of chlorosis tolerance and could aid the development of iron chlorosis-tolerant rootstocks.
Iron is essential to plants for chlorophyll formation as well as for the functioning of various iron-containing enzymes. Iron deficiency chlorosis is a wide-spread disorder of plants, in particular, of those growing on calcareous soils. Among the different ways to control iron deficiency problems for crops, plant material and especially rootstock breeding is a suitable and reliable method, especially for fruit trees and grapes. The aim of the experiment was to characterize the genetic basis of grapevine chlorosis tolerance under lime stress conditions. A segregating population of 138 F1 genotypes issued from an inter-specific cross between Vitis vinifera Cabernet Sauvignon (tolerant) × V. riparia Gloire de Montpellier (sensitive) was developed and phenotyped both as cuttings and as rootstock grafted with Cabernet Sauvignon scions in pots containing non-chlorosing and chlorosing soils. Tolerance was evaluated by chlorosis score, leaf chlorophyll content and growth parameters of the shoots and roots. The experiments were performed in 2001, 2003 and 2006. The plants analysed in 2006 were reassessed in 2007. The most significant findings of the trial were: (a) the soil properties strongly affect plant development, (b) there are differences in tolerance among segregating genotypes when grown as cuttings or as rootstocks on calcareous soil, (c) calcareous conditions induced chlorosis and revealed quantitative trait loci (QTLs) implicated in polygenic control of tolerance, (d) rootstock strongly contributes to lime-induced chlorosis response, and (e) a QTL with strong effect (from 10 to 25 % of the chlorotic symptom variance) was identified on chromosome 13. This QTL colocalized with a QTL for chlorophyll content (R ^sup 2^ = 22 %) and a major QTL for plant development that explains about 50 % of both aerial and root system biomass variation. These findings were supported by stable results among the different years of experiment. These results open new insights into the genetic control of chlorosis tolerance and could aid the development of iron chlorosis-tolerant rootstocks.[PUBLICATION ABSTRACT]
Iron is essential to plants for chlorophyll formation as well as for the functioning of various iron-containing enzymes. Iron deficiency chlorosis is a widespread disorder of plants, in particular, of those growing on calcareous soils. Among the different ways to control iron deficiency problems for crops, plant material and especially rootstock breeding is a suitable and reliable method, especially for fruit trees and grapes. The aim of the experiment was to characterize the genetic basis of grapevine chlorosis tolerance under lime stress conditions. A segregating population of 138 F1 genotypes issued from an inter-specific cross between Vitis vinifera Cabernet Sauvignon (tolerant) x V. riparia Gloire de Montpellier (sensitive) was developed and phenotyped both as cuttings and as rootstock grafted with Cabernet Sauvignon scions in pots containing non-chlorosing and chlorosing soils. Tolerance was evaluated by chlorosis score, leaf chlorophyll content and growth parameters of the shoots and roots. The experiments were performed in 2001, 2003 and 2006. The plants analysed in 2006 were reassessed in 2007. The most significant findings of the trial were: (a) the soil properties strongly affect plant development, (b) there are differences in tolerance among segregating genotypes when grown as cuttings or as rootstocks on calcareous soil, (c) calcareous conditions induced chlorosis and revealed quantitative trait loci (QTLs) implicated in polygenic control of tolerance, (d) rootstock strongly contributes to lime-induced chlorosis response, and (e) a QTL with strong effect (from 10 to 25 % of the chlorotic symptom variance) was identified on chromosome 13. This QTL colocalized with a QTL for chlorophyll content ([R.sup.2] = 22 %) and a major QTL for plant development that explains about 50 % of both aerial and root system biomass variation. These findings were supported by stable results among the different years of experiment. These results open new insights into the genetic control of chlorosis tolerance and could aid the development of iron chlorosis-tolerant rootstocks.
Iron is essential to plants for chlorophyll formation as well as for the functioning of various iron-containing enzymes. Iron deficiency chlorosis is a wide-spread disorder of plants, in particular, of those growing on calcareous soils. Among the different ways to control iron deficiency problems for crops, plant material and especially rootstock breeding is a suitable and reliable method, especially for fruit trees and grapes. The aim of the experiment was to characterize the genetic basis of grapevine chlorosis tolerance under lime stress conditions. A segregating population of 138 F1 genotypes issued from an inter-specific cross between Vitis vinifera Cabernet Sauvignon (tolerant) ×  V. riparia Gloire de Montpellier (sensitive) was developed and phenotyped both as cuttings and as rootstock grafted with Cabernet Sauvignon scions in pots containing non-chlorosing and chlorosing soils. Tolerance was evaluated by chlorosis score, leaf chlorophyll content and growth parameters of the shoots and roots. The experiments were performed in 2001, 2003 and 2006. The plants analysed in 2006 were reassessed in 2007. The most significant findings of the trial were: (a) the soil properties strongly affect plant development, (b) there are differences in tolerance among segregating genotypes when grown as cuttings or as rootstocks on calcareous soil, (c) calcareous conditions induced chlorosis and revealed quantitative trait loci (QTLs) implicated in polygenic control of tolerance, (d) rootstock strongly contributes to lime-induced chlorosis response, and (e) a QTL with strong effect (from 10 to 25 % of the chlorotic symptom variance) was identified on chromosome 13. This QTL colocalized with a QTL for chlorophyll content ( R 2  = 22 %) and a major QTL for plant development that explains about 50 % of both aerial and root system biomass variation. These findings were supported by stable results among the different years of experiment. These results open new insights into the genetic control of chlorosis tolerance and could aid the development of iron chlorosis-tolerant rootstocks.
Audience Academic
Author Bert, Pierre-François
Bordenave, Louis
Hévin, Cyril
Ollat, Nathalie
Decroocq, Stéphane
Donnart, Martine
Author_xml – sequence: 1
  fullname: Bert, Pierre-François
– sequence: 2
  fullname: Bordenave, Louis
– sequence: 3
  fullname: Donnart, Martine
– sequence: 4
  fullname: Hévin, Cyril
– sequence: 5
  fullname: Ollat, Nathalie
– sequence: 6
  fullname: Decroocq, Stéphane
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23139142$$D View this record in MEDLINE/PubMed
https://hal.inrae.fr/hal-02647543$$DView record in HAL
BookMark eNqNkl9rFDEUxYNU7Lb6AXzRgC_dh1nzdzLzuBRtCyuCtb6GbCYzTZ1Npkmm2G_frNNKt0iVQBJufudyczgHYM95ZwB4i9ECIyQ-RoQwIUXeClzXtOAvwAwzSgpCGNkDM4QYKrjgZB8cxHiFECIc0Vdgn1BMa8zIDAxf1DBY18HOOJOshr3XFrY-wOR7E5TTJt9gbzemsK4ZtWmgDd7BxrRWW-P0LdSXvQ8-2gitg11Qg7mxzsDgfYrJ658RHv2wKT_HYTF_DV62qo_mzf15CC4-f_p-fFqsvp6cHS9Xhea1SIVAijSipWutOcW8qoXgqsQlR0KVnJZMs5qyDFBVVflXjNN1pWuFcbumVbOmh2A-9b1UvRyC3ahwK72y8nS5ktsaIiUTnNEbnNmjiR2Cvx5NTHJjozZ9r5zxY5TZ3LpmnJPq3yipcYmwYOg_0Dw45pSUGf3wBL3yY3DZn0wJgWhmH1Gd6o20rvUpKL1tKpeUClKJ8je1-AuVV2M2VucAtTbXdwTzHUFmkvmVOjXGKM_Ov-2y7-4HHdcb0_wx9iFQGRAToHMiYjCt1DapZHPPoGwvMZLb6MopujJvW3ep5FmJnygfmj-nIZMmZtZ1Jjzy7RnR-0nUKi9VF2yUF-cEYYa2aFUSegdZBwKu
CitedBy_id crossref_primary_10_1016_j_envexpbot_2014_04_004
crossref_primary_10_17660_ActaHortic_2024_1390_12
crossref_primary_10_3390_su151310487
crossref_primary_10_1093_jxb_ery422
crossref_primary_10_34133_plantphenomics_0116
crossref_primary_10_1111_1462_2920_16042
crossref_primary_10_1186_1471_2229_13_213
crossref_primary_10_17660_ActaHortic_2016_1136_2
crossref_primary_10_1186_s12870_015_0588_0
crossref_primary_10_1111_ajgw_12463
crossref_primary_10_14302_issn_2690_4829_jen_18_2048
crossref_primary_10_1111_pce_13567
crossref_primary_10_1016_j_scienta_2017_03_012
crossref_primary_10_1016_j_tplants_2015_11_008
crossref_primary_10_17660_ActaHortic_2017_1188_28
crossref_primary_10_1186_s12864_019_6124_0
crossref_primary_10_1007_s00122_017_3046_6
crossref_primary_10_1007_s00122_023_04472_1
crossref_primary_10_1007_s11104_015_2576_4
crossref_primary_10_1186_s40168_017_0391_2
crossref_primary_10_3389_fpls_2022_1083374
crossref_primary_10_1016_j_plaphy_2017_09_004
crossref_primary_10_1007_s10681_015_1354_y
crossref_primary_10_7717_peerj_10773
crossref_primary_10_3389_fpls_2017_01581
crossref_primary_10_1016_j_scienta_2021_110404
crossref_primary_10_17660_ActaHortic_2019_1248_68
crossref_primary_10_1007_s11240_017_1338_9
crossref_primary_10_5010_JPB_2015_42_4_298
Cites_doi 10.1007/s00122-011-1565-0
10.1186/1471-2229-10-64
10.1007/1-4020-4743-6_11
10.1007/s00122-008-0794-3
10.1007/BF00008070
10.1007/s00122-005-2016-6
10.1534/genetics.109.103929
10.1007/s00122-009-0979-4
10.1007/s00122-008-0900-6
10.1007/1-4020-4743-6_3
10.1186/1471-2229-10-215
10.1104/pp.102.016089
10.1016/j.plantsci.2009.02.011
10.1007/s10681-007-9595-z
10.1111/j.1469-8137.2012.04059.x
10.4161/psb.3.6.5419
10.1111/j.1365-313X.2008.03502.x
10.1007/s10681-004-2033-6
10.1007/s00122-004-1704-y
10.1080/01904160009382154
10.1007/s00122-008-0802-7
10.1007/s11104-010-0431-1
10.1007/s00122-010-1511-6
10.1093/jhered/93.1.77
10.1016/j.plaphy.2007.03.006
10.1534/genetics.106.067462
10.1007/s11104-011-0972-y
10.1023/A:1009637320805
10.1080/01904169709365348
10.1007/s00122-008-0710-x
10.1007/BF00011864
10.1007/s00122-006-0494-9
10.1081/PLN-120024280
10.1007/s00122-006-0385-0
10.1023/A:1004799120896
10.1080/01904168409363215
10.1007/BF00011058
10.1073/pnas.96.12.7098
10.1038/nature06148
10.1007/s00122-003-1445-3
10.1080/01904168209362979
10.1080/00380768.2004.10408566
10.1111/j.1469-1809.1943.tb02321.x
10.1007/s00122-010-1294-9
10.1016/j.jplph.2004.06.011
10.1016/S1161-0301(01)00125-3
10.1002/1522-2624(200202)165:1<111::AID-JPLN111>3.0.CO;2-B
10.1021/cr900112r
10.1007/s10681-005-9061-8
10.1111/j.1365-313X.2006.02803.x
10.1081/PLN-200034708
10.1016/j.eja.2004.02.001
10.1007/s00122-006-0264-8
10.1016/j.plaphy.2011.01.026
10.1007/s11032-007-9097-7
10.1093/aob/mcn207
10.1007/s11104-006-9166-4
10.1081/PLN-120024272
10.1093/mp/ssr065
10.1007/s00122-007-0670-6
10.1007/s00122-008-0741-3
10.1104/pp.110.161398
10.5344/ajev.2002.53.1.19
10.1186/1471-2229-8-38
10.1007/s00122-006-0295-1
10.21273/HORTSCI.21.6.1449
10.17660/ActaHortic.1987.206.6
10.5344/ajev.2010.61.2.186
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2012
COPYRIGHT 2013 Springer
Springer-Verlag Berlin Heidelberg 2013
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2012
– notice: COPYRIGHT 2013 Springer
– notice: Springer-Verlag Berlin Heidelberg 2013
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7SS
7TK
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
7S9
L.6
1XC
DOI 10.1007/s00122-012-1993-5
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Genetics Abstracts


MEDLINE - Academic
AGRICOLA
MEDLINE
ProQuest Central Student


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
– sequence: 4
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
Environmental Sciences
EISSN 1432-2242
EndPage 473
ExternalDocumentID oai_HAL_hal_02647543v1
2874753621
A337287686
23139142
10_1007_s00122_012_1993_5
US201400012862
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations France
GeographicLocations_xml – name: France
GroupedDBID ---
-4W
-56
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29Q
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67N
67Z
6NX
78A
7X7
88A
88E
8AO
8FE
8FH
8FI
8FJ
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANXM
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABELW
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACTTH
ACVWB
ACWMK
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOAH
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHMBA
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKMHD
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
AOSHJ
ARMRJ
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
ESTFP
F5P
FBQ
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IFM
IHE
IHR
IJ-
IKXTQ
INH
INR
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M0L
M1P
M4Y
M7P
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P0-
P19
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
Y6R
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7Y
Z83
Z85
Z87
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8S
Z8W
Z8Z
Z91
ZMTXR
ZOVNA
~EX
AACDK
AAHBH
AAJBT
AASML
AAYZH
ABAKF
ABQSL
ACAOD
ACDTI
ACPIV
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
ALIPV
BSONS
H13
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
AEIIB
PMFND
7SS
7TK
7XB
8FD
8FK
ABRTQ
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
7S9
L.6
1XC
ID FETCH-LOGICAL-c597t-70a2d7f3bcc531589775a616507a65364c49347f33a88250453b8c9a11fb38db3
IEDL.DBID 7X7
ISSN 0040-5752
1432-2242
IngestDate Fri May 09 12:20:28 EDT 2025
Tue Aug 05 10:46:35 EDT 2025
Mon Jul 21 11:54:32 EDT 2025
Fri Jul 11 11:22:10 EDT 2025
Fri Jul 25 19:26:11 EDT 2025
Tue Jun 17 21:18:35 EDT 2025
Tue Jun 10 20:36:32 EDT 2025
Fri Jun 27 04:15:11 EDT 2025
Wed Feb 19 02:31:28 EST 2025
Thu Apr 24 23:07:56 EDT 2025
Tue Jul 01 04:18:14 EDT 2025
Fri Feb 21 02:38:55 EST 2025
Wed Dec 27 19:21:02 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Leaf Chlorophyll Content
Major Quantitative Trait Locus
Quantitative Trait Locus
Common Quantitative Trait Locus
Quantitative Trait Locus Analysis
Language English
License http://www.springer.com/tdm
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c597t-70a2d7f3bcc531589775a616507a65364c49347f33a88250453b8c9a11fb38db3
Notes http://dx.doi.org/10.1007/s00122-012-1993-5
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6182-9686
PMID 23139142
PQID 1277031286
PQPubID 54040
PageCount 23
ParticipantIDs hal_primary_oai_HAL_hal_02647543v1
proquest_miscellaneous_1999945528
proquest_miscellaneous_1291601740
proquest_miscellaneous_1282515326
proquest_journals_1277031286
gale_infotracmisc_A337287686
gale_infotracacademiconefile_A337287686
gale_incontextgauss_ISR_A337287686
pubmed_primary_23139142
crossref_citationtrail_10_1007_s00122_012_1993_5
crossref_primary_10_1007_s00122_012_1993_5
springer_journals_10_1007_s00122_012_1993_5
fao_agris_US201400012862
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-02-01
PublicationDateYYYYMMDD 2013-02-01
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationSubtitle International Journal of Plant Breeding Research
PublicationTitle Theoretical and applied genetics
PublicationTitleAbbrev Theor Appl Genet
PublicationTitleAlternate Theor Appl Genet
PublicationYear 2013
Publisher Springer-Verlag
Springer
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer-Verlag
– name: Springer
– name: Springer Nature B.V
– name: Springer Verlag
References Jaillon, Aury, Noel, Policriti, Clepet, Casagrande, Choisne, Aubourg, Vitulo, Jubin, Vezzi, Legeai, Hugueney, Dasilva, Horner, Mica, Jublot, Poulain, Bruyere, Billault, Segurens, Gouyvenoux, Ugarte, Cattonaro, Anthouard, Vico, DelFabbro, Alaux, DiGaspero, Dumas, Felice, Paillard, Juman, Moroldo, Scalabrin, Canaguier, LeClainche, Malacrida, Durand, Pesole, Laucou, Chatelet, Merdinoglu, Delledonne, Pezotti, Lecharny, Scarpelli, Artiguenave, Pe, Valle, Morgante, Caboche, Adam-Blondon, Weissenbach, Quetier, Wincker (CR35) 2007; 449
Villalta, Bernet, Carbonnell, Asins (CR78) 2007; 114
Ivanov, Brumbarova, Bauer (CR34) 2012; 5
Varanini, Maggioni (CR75) 1982; 5
Wang, McClean, Lee, Goos, Helms (CR80) 2008; 116
Schmidt, Barton, Abadia (CR66) 2006
Blair, Knewston, Astudillo, Li, Fernandez, Grusak (CR15) 2010; 10
Estan, Villalta, Bolarin, Carbonell, Asins (CR26) 2009; 118
Fanizza, Lamaj, Costantini, Chaabane, Grando (CR27) 2005; 111
May (CR49) 1994
Peryea, Kammereck (CR54) 1997; 20
Srinives, Kitsanachandee, Chalee, Sommanas, Chanprane (CR70) 2010; 335
Rivero, Ruiz, Romero (CR62) 2004; 27
Brand, Tang, Graham (CR17) 2000; 219
Vert, Briat, Curie (CR76) 2003; 132
Bavaresco (CR8) 1995; 68
Jeong, Connolly (CR36) 2009; 176
Asins, Bolarin, Perez-Alfocea, Estan, Martinez-Andujar, Albacete, Villalta, Bernet, Dodd, Carbonnell (CR5) 2010; 121
Ksouri, Gharsalli, Lachaâl (CR40) 2005; 162
Morrissey, Guerinot (CR51) 2009; 109
Römheld, Marschner (CR64) 1986; 2
Doligez, Adam-Blondon, Cipriani, Di Gaspero, Laucou, Merdinoglu, Meredith, Riaz, Roux, This (CR23) 2006; 113
Bavaresco, Franchini, Ferino (CR11) 1993; 157
Anwar, McKenry, Ramming (CR4) 2002; 53
Rombolà, Tagliavini, Barton, Abadia (CR63) 2006
Jimenez, Gogorcena, Hévin, Rombolà, Ollat (CR37) 2007; 290
Van Ooijen, Voorrips (CR74) 2001
Bavaresco, Fregoni, Perino (CR12) 1994; 33
Salmaso, Malacarne, Troggio, Faes, Stefanini, Grando, Velasco (CR65) 2008; 116
Lin, Grant, Cianzio, Shoemaker (CR42) 2000; 23
Pouget, Ottenwælter (CR57) 1978; 12
Bavaresco, Zeller de Macedo Basto Gonçalves, Civardi, Gatti, Ferrari (CR14) 2010; 61
Bauer, Bereczky, Brumbarova, Klatte, Wang (CR6) 2004; 50
Enomoto, Goto (CR25) 2008; 3
Gruber, Kosegarten (CR32) 2002; 165
Mandl, Santiago, Hack, Fardossi, Regner (CR46) 2006; 149
Nourse, Elings, Brewbaker (CR52) 1999; 44
Vezzulli, Troggio, Coppola, Jermakow, Cartwright, Zharkikh, Stefanini, Grando, Viola, Adam-Blondon, Thomas, This, Velasco (CR77) 2008; 117
Mengel (CR50) 1994; 165
Simko, van den Berg, Vreugdenhil, Ewing (CR68) 2008; 162
Voorrips (CR79) 2002; 93
Klein, Lopez-Millan, Grusak (CR38) 2012; 351
Xu, Riaz, Roncoroni, Jin, Hu, Zhou, Walker (CR82) 2008; 116
Fischer, Salakhutdinov, Akkurt, Eibach, Edwards, Toepfer, Zyprian (CR28) 2004; 108
Marguerit, Némorin, Manicki, Boury, Donnart, Butterlin, Merdinoglu, Ollat, Decroocq (CR47) 2009; 118
Lowe, Walker (CR45) 2006; 112
Lindsay (CR43) 1984; 7
Zhang, Hausmann, Eibach, Welter, Töpfer, Zyprian (CR84) 2009
Fournier-Level, Le Cunff, Gomez, Doligez, Ageorges, Roux, Bertrand, Souquet, Cheynier, This (CR29) 2009; 183
Yadava (CR83) 1986; 21
Durret, Connolly, Rogers (CR24) 2006; 47
Ling, Koch, Baumlein, Ganal (CR44) 1999; 96
Prinzenberg, Barbier, Salt, Stich, Reymond (CR58) 2010; 154
Álvarez-Fernández, García-Marco, Lucena (CR3) 2005; 22
Riaz, Tenscher, Ramming, Walker (CR61) 2011; 122
Pouget, Ottenwælter (CR56) 1973; 23
Bavaresco, Fregoni, Fraschini (CR10) 1991; 130
Buhtz, Pieritz, Springer, Kehr (CR18) 2010; 10
Ollat, Laborde, Neveux, Diakou-Verdin, Renaud, Moing (CR53) 2003; 26
Grattapaglia, Sederoff (CR31) 1994; 137
Charlson, Cianzio, Shoemaker (CR19) 2003; 26
Van Ooijen (CR73) 2000
Curie, Cassin, Couch, Divol, Higuchi, Le Jean, Misson, Schikora, Czernic, Mari (CR21) 2009; 103
CR69
Gonzalo, Dirlewanger, Moreno, Gogorcena (CR30) 2012
Séguéla, Briat, Vert, Curie (CR67) 2008; 55
Riaz, Tenscher, Rubin, Graziani, Pao, Walker (CR60) 2008; 117
Tagliavini, Rombolà (CR71) 2001; 15
Riaz, Krivanek, Xu, Walker (CR59) 2006; 113
CR20
Kosambi (CR39) 1944; 12
Pouget (CR55) 1987; 206
Abadia, Vazquez, Rellan-Alvarez, El-Jendoubi, Abadia, Álvarez-Fernández, Lopez-Millan (CR1) 2011; 49
Bavaresco, Lovisolo (CR9) 2000; 39
Troggio, Malacarne, Coppola, Segala, Cartwright, Pindo, Stefanini, Mank, Moroldo, Morgante, Grando, Velasco (CR72) 2007; 176
Welter, Göktürk-Baydar, Akkurt, Maul, Eibach, Töpfer, Zyprian (CR81) 2007; 20
Blasi, Blanc, Wiedemann-Merdinoglu, Prado, Rühl, Mestre, Merdinoglu (CR16) 2011; 123
Marguerit, Brendel, Lebon, Van Leeuwen, Ollat (CR48) 2012; 194
Bauer, Ling, Guerinot (CR7) 2007; 45
Lin, Cianzio, Shoemaker (CR41) 1997; 3
Dasgan, Abak, Cakmak, Römheld, Sensoy (CR22) 2004; 139
Holland, Nyquist, Cervantes-Martinez (CR33) 2003; 22
Adam-Blondon, Roux, Claux, Butterlin, Merdinoglu, This (CR2) 2004; 109
M Troggio (1993_CR72) 2007; 176
J Jeong (1993_CR36) 2009; 176
MA Klein (1993_CR38) 2012; 351
TP Durret (1993_CR24) 2006; 47
AF Adam-Blondon (1993_CR2) 2004; 109
P Blasi (1993_CR16) 2011; 123
E Marguerit (1993_CR47) 2009; 118
LJ Welter (1993_CR81) 2007; 20
S Vezzulli (1993_CR77) 2008; 117
S Jimenez (1993_CR37) 2007; 290
RM Rivero (1993_CR62) 2004; 27
S Lin (1993_CR42) 2000; 23
P Bauer (1993_CR6) 2004; 50
A Fournier-Level (1993_CR29) 2009; 183
AE Prinzenberg (1993_CR58) 2010; 154
SA Anwar (1993_CR4) 2002; 53
S Riaz (1993_CR61) 2011; 122
MT Estan (1993_CR26) 2009; 118
R Pouget (1993_CR55) 1987; 206
L Bavaresco (1993_CR9) 2000; 39
P Srinives (1993_CR70) 2010; 335
L Bavaresco (1993_CR11) 1993; 157
Z Varanini (1993_CR75) 1982; 5
JB Holland (1993_CR33) 2003; 22
R Pouget (1993_CR57) 1978; 12
I Simko (1993_CR68) 2008; 162
JW Ooijen Van (1993_CR73) 2000
K Mandl (1993_CR46) 2006; 149
P Bauer (1993_CR7) 2007; 45
1993_CR20
P May (1993_CR49) 1994
1993_CR23
1993_CR69
J Morrissey (1993_CR51) 2009; 109
M Tagliavini (1993_CR71) 2001; 15
L Bavaresco (1993_CR14) 2010; 61
SM Nourse (1993_CR52) 1999; 44
MJ Gonzalo (1993_CR30) 2012
K Mengel (1993_CR50) 1994; 165
JW Ooijen Van (1993_CR74) 2001
MW Blair (1993_CR15) 2010; 10
B Fischer (1993_CR28) 2004; 108
O Jaillon (1993_CR35) 2007; 449
RE Voorrips (1993_CR79) 2002; 93
HY Dasgan (1993_CR22) 2004; 139
DD Kosambi (1993_CR39) 1944; 12
W Schmidt (1993_CR66) 2006
Y Enomoto (1993_CR25) 2008; 3
J Abadia (1993_CR1) 2011; 49
MJ Asins (1993_CR5) 2010; 121
FJ Peryea (1993_CR54) 1997; 20
M Salmaso (1993_CR65) 2008; 116
N Ollat (1993_CR53) 2003; 26
A Buhtz (1993_CR18) 2010; 10
C Curie (1993_CR21) 2009; 103
WL Lindsay (1993_CR43) 1984; 7
S Riaz (1993_CR60) 2008; 117
JD Brand (1993_CR17) 2000; 219
L Bavaresco (1993_CR12) 1994; 33
R Ksouri (1993_CR40) 2005; 162
A Rombolà (1993_CR63) 2006
I Villalta (1993_CR78) 2007; 114
L Bavaresco (1993_CR10) 1991; 130
DV Charlson (1993_CR19) 2003; 26
J Wang (1993_CR80) 2008; 116
G Fanizza (1993_CR27) 2005; 111
UL Yadava (1993_CR83) 1986; 21
V Römheld (1993_CR64) 1986; 2
HQ Ling (1993_CR44) 1999; 96
L Bavaresco (1993_CR8) 1995; 68
E Marguerit (1993_CR48) 2012; 194
K Xu (1993_CR82) 2008; 116
A Álvarez-Fernández (1993_CR3) 2005; 22
J Zhang (1993_CR84) 2009
D Grattapaglia (1993_CR31) 1994; 137
B Gruber (1993_CR32) 2002; 165
S Lin (1993_CR41) 1997; 3
R Pouget (1993_CR56) 1973; 23
GA Vert (1993_CR76) 2003; 132
KM Lowe (1993_CR45) 2006; 112
R Ivanov (1993_CR34) 2012; 5
S Riaz (1993_CR59) 2006; 113
M Séguéla (1993_CR67) 2008; 55
References_xml – volume: 123
  start-page: 43
  year: 2011
  end-page: 53
  ident: CR16
  article-title: Construction of a reference linkage map of and genetic mapping of , a locus conferring resistance to grapevine downy mildew
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-011-1565-0
– volume: 137
  start-page: 1121
  year: 1994
  end-page: 1137
  ident: CR31
  article-title: Genetic linkage maps of and using a pseudo-testcross: mapping strategies and RAPD markers
  publication-title: Theor Appl Genet
– volume: 10
  start-page: 64
  year: 2010
  ident: CR18
  article-title: Phloem small RNAs, nutrient stress responses, and systemic mobility
  publication-title: BMC Plant Biol
  doi: 10.1186/1471-2229-10-64
– start-page: 229
  year: 2006
  end-page: 250
  ident: CR66
  article-title: Iron stress responses in roots of strategy I plants
  publication-title: Iron nutrition in plants and rhizosphere microorganisms
  doi: 10.1007/1-4020-4743-6_11
– volume: 117
  start-page: 499
  year: 2008
  end-page: 511
  ident: CR77
  article-title: A reference integrated map for cultivated grapevine ( L.) from three crosses, based on 283 SSR and 501 SNP-based markers
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-008-0794-3
– volume: 165
  start-page: 275
  year: 1994
  end-page: 283
  ident: CR50
  article-title: Iron availability in plant tissues—iron chlorosis on calcareous soils
  publication-title: Plant Soil
  doi: 10.1007/BF00008070
– volume: 111
  start-page: 658
  year: 2005
  end-page: 664
  ident: CR27
  article-title: QTL analysis for fruit yield components in table grapes ( )
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-005-2016-6
– volume: 183
  start-page: 1127
  year: 2009
  end-page: 1139
  ident: CR29
  article-title: Quantitative genetic bases of anthocyanin variation in grape ( L. ssp. ) berry: a quantitative trait locus to quantitative trait nucleotide integrated study
  publication-title: Genetics
  doi: 10.1534/genetics.109.103929
– volume: 118
  start-page: 1261
  year: 2009
  end-page: 1278
  ident: CR47
  article-title: Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-009-0979-4
– volume: 118
  start-page: 305
  year: 2009
  end-page: 312
  ident: CR26
  article-title: Identification of fruit yield loci controlling the salt tolerance conferred by solanum rootstocks
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-008-0900-6
– volume: 22
  start-page: 9
  year: 2003
  end-page: 112
  ident: CR33
  article-title: Estimating and interpreting heritability for plant breeding: an update
  publication-title: Plant Breeding Rev
– start-page: 61
  year: 2006
  end-page: 83
  ident: CR63
  article-title: Iron nutrition of fruit tree crops
  publication-title: Iron nutrition in plants and rhizospheric microorganisms
  doi: 10.1007/1-4020-4743-6_3
– volume: 10
  start-page: 215
  year: 2010
  end-page: 227
  ident: CR15
  article-title: Variation and inheritance of iron reductase activity in the roots of common bean ( L.) and association with seed iron accumulation QTL
  publication-title: BMC Plant Biol
  doi: 10.1186/1471-2229-10-215
– volume: 132
  start-page: 796
  year: 2003
  end-page: 804
  ident: CR76
  article-title: Dual regulation of the Arabidopsis high-affinity root iron uptake system by local and long-distance signals
  publication-title: Plant Physiol
  doi: 10.1104/pp.102.016089
– volume: 176
  start-page: 709
  year: 2009
  end-page: 714
  ident: CR36
  article-title: Iron uptake mechanisms in plants: functions of the FRO family of ferruc reductases
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2009.02.011
– year: 2009
  ident: CR84
  article-title: A framework map from grapevine V3125 ( ‘Schiava grossa’ × ‘Riesling’) × rootstock cultivar ‘Börner’ (  ×  ) to localize genetic determinants of phylloxera root resistance
  publication-title: Theor Appl Genet
– volume: 162
  start-page: 99
  year: 2008
  end-page: 107
  ident: CR68
  article-title: Mapping loci for chlorosis associated with chlorophyll deficiency in potato
  publication-title: Euphytica
  doi: 10.1007/s10681-007-9595-z
– volume: 194
  start-page: 416
  year: 2012
  end-page: 429
  ident: CR48
  article-title: Rootstock control of scion transpiration and its acclimation to water deficit are controlled by different genes
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2012.04059.x
– volume: 3
  start-page: 396
  year: 2008
  end-page: 397
  ident: CR25
  article-title: Long-distance signaling of iron deficiency in plants
  publication-title: Plant Signal Behav
  doi: 10.4161/psb.3.6.5419
– volume: 55
  start-page: 289
  year: 2008
  end-page: 300
  ident: CR67
  article-title: Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependant pathway
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2008.03502.x
– volume: 21
  start-page: 1449
  year: 1986
  end-page: 1450
  ident: CR83
  article-title: A rapid nondestructive method to determine chlorophyll in intact leaves
  publication-title: HortScience
– volume: 139
  start-page: 51
  year: 2004
  end-page: 57
  ident: CR22
  article-title: Inheritance of tolerance to leaf iron deficiency chlorosis in tomato
  publication-title: Euphytica
  doi: 10.1007/s10681-004-2033-6
– volume: 39
  start-page: 89
  year: 2000
  end-page: 92
  ident: CR9
  article-title: Effect of grafting on grapevine chlorosis and hydraulic conductivity
  publication-title: Vitis
– volume: 206
  start-page: 109
  year: 1987
  end-page: 118
  ident: CR55
  article-title: Rootstocks for controlling vine vigour and improving wine quality
  publication-title: Acta Hortic
– year: 2001
  ident: CR74
  publication-title: JoinMap® version 3.0: software for the calculation of genetic linkage maps
– year: 2000
  ident: CR73
  publication-title: MapQTL version 4.0: user friendly power in QTL mapping. Addendum to the manual of version 3.0
– volume: 109
  start-page: 1017
  issue: 5
  year: 2004
  end-page: 1027
  ident: CR2
  article-title: Mapping 245 SSR markers on the genome: a tool for grape genetics
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-004-1704-y
– volume: 53
  start-page: 19
  year: 2002
  end-page: 23
  ident: CR4
  article-title: A search for more durable grape rootstock resistance to root-knot nematode
  publication-title: Am J Enol Vitic
– volume: 23
  start-page: 1929
  year: 2000
  end-page: 1939
  ident: CR42
  article-title: Molecular characterization of iron deficiency chlorosis in soybean
  publication-title: J Plant Nutr
  doi: 10.1080/01904160009382154
– volume: 117
  start-page: 671
  year: 2008
  end-page: 681
  ident: CR60
  article-title: Fine-scale genetic mapping of two Pierce’s disease resistance loci and a major segregation distortion region on chromosome 14 of grape
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-008-0802-7
– volume: 335
  start-page: 423
  year: 2010
  end-page: 437
  ident: CR70
  article-title: Inheritance of resistance to iron deficiency and identification of AFLP markers associated with the resistance in mungbean ( (L.) Wilczek)
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0431-1
– volume: 122
  start-page: 1059
  issue: 6
  year: 2011
  end-page: 1073
  ident: CR61
  article-title: Using a limited mapping strategy to identify major QTLs for resistance to grapevine powdery mildew ( ) and their use in marker-assisted breeding
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-010-1511-6
– volume: 93
  start-page: 77
  year: 2002
  end-page: 78
  ident: CR79
  article-title: MAPCHART: software for the graphical presentation of linkage maps and QTLs
  publication-title: Heredity
  doi: 10.1093/jhered/93.1.77
– volume: 45
  start-page: 260
  year: 2007
  end-page: 261
  ident: CR7
  article-title: FIT, the FER-like iron deficiency induced transcription factor in
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2007.03.006
– volume: 176
  start-page: 2637
  year: 2007
  end-page: 2650
  ident: CR72
  article-title: A dense single-nucleotide polymorphism-based genetic linkage map of grapevine ( L.) anchoring Pinot Noir bacterial artificial chromosome contigs
  publication-title: Genetics
  doi: 10.1534/genetics.106.067462
– volume: 33
  start-page: 123
  year: 1994
  end-page: 126
  ident: CR12
  article-title: Physiological aspects of lime-induced chlorosis in some species. II. Pot trial on calcareous soil
  publication-title: Vitis
– volume: 61
  start-page: 186
  year: 2010
  end-page: 190
  ident: CR14
  article-title: Effects of traditional and new methods on overcoming lime-indudec chlorosis of grapevine
  publication-title: Am J Enol Vitic
– volume: 44
  start-page: 293
  year: 1999
  end-page: 299
  ident: CR52
  article-title: Quantitative trait loci associated with lime-induced chlorosis in recombinant inbred lines of maize
  publication-title: Maydica
– volume: 351
  start-page: 363
  year: 2012
  end-page: 376
  ident: CR38
  article-title: Quantitative trait locus analysis of root ferric reductase activity and leaf chlorosis in the model legume,
  publication-title: Plant Soil
  doi: 10.1007/s11104-011-0972-y
– volume: 3
  start-page: 219
  year: 1997
  end-page: 229
  ident: CR41
  article-title: Mapping genetic loci for iron deficiency chlorosis in soybean
  publication-title: Mol Breed
  doi: 10.1023/A:1009637320805
– volume: 20
  start-page: 1457
  year: 1997
  end-page: 1463
  ident: CR54
  article-title: Use of Minolta SPAD-502 chlorophyll meter to quantify the effectiveness of mid-summer trunk injection of iron on chlorotic pear trees
  publication-title: J Plant Nutr
  doi: 10.1080/01904169709365348
– volume: 116
  start-page: 777
  year: 2008
  end-page: 787
  ident: CR80
  article-title: Association mapping of iron deficiency chlorosis loci in soybean ( L. Merr.) advanced breeding lines
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-008-0710-x
– volume: 130
  start-page: 109
  year: 1991
  end-page: 113
  ident: CR10
  article-title: Investigations on iron uptake and reduction by excised roots of different grapevine rootstocks and a cultivar
  publication-title: Plant Soil
  doi: 10.1007/BF00011864
– volume: 68
  start-page: 404
  year: 1995
  end-page: 414
  ident: CR8
  article-title: Utilization of a non-destructive chlorophyll meter to assess chlorophyll concentration in grapevine leaves
  publication-title: Bull. OIV
– volume: 114
  start-page: 1001
  year: 2007
  end-page: 1017
  ident: CR78
  article-title: Comparative QTL analysis of salinity tolerance in terms of fruit yield using two solanum populations of F lines
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-006-0494-9
– volume: 26
  start-page: 2267
  year: 2003
  end-page: 2276
  ident: CR19
  article-title: Associating SSR markers with soybean resistance to iron deficiency chlorosis
  publication-title: J Plant Nutr
  doi: 10.1081/PLN-120024280
– volume: 12
  start-page: 167
  year: 1978
  end-page: 175
  ident: CR57
  article-title: Etude de l’adaptation de nouvelles variétés de porte-greffes à des sols très chlorosants
  publication-title: Conn Vigne Vin
– volume: 2
  start-page: 155
  year: 1986
  end-page: 204
  ident: CR64
  article-title: Mobilization of iron in the rhizosphere of different plant species
  publication-title: Adv Plant Nutr
– volume: 113
  start-page: 1317
  year: 2006
  end-page: 1329
  ident: CR59
  article-title: Refined mapping of the Pierce’s disease resistance locus, , and sex on the extended genetic map of  × 
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-006-0385-0
– volume: 219
  start-page: 263
  year: 2000
  end-page: 271
  ident: CR17
  article-title: The effect of soil moisture on the tolerance of genotypes to a calcareous soil
  publication-title: Plant Soil
  doi: 10.1023/A:1004799120896
– volume: 7
  start-page: 489
  year: 1984
  end-page: 500
  ident: CR43
  article-title: Soil and plant relationships associated with iron deficiency with emphasis on nutrient interactions
  publication-title: J Plant Nutr
  doi: 10.1080/01904168409363215
– volume: 157
  start-page: 303
  year: 1993
  end-page: 311
  ident: CR11
  article-title: Effect of the rootstock on the occurrence of lime-induced chlorosis of potted L. cv. Pinot Blanc
  publication-title: Plant Soil
  doi: 10.1007/BF00011058
– volume: 96
  start-page: 7098
  year: 1999
  end-page: 7103
  ident: CR44
  article-title: Map-based cloning of , a gene involved in iron uptake of higher plants encoding nicotianamine synthase
  publication-title: Proc Acad Sci USA
  doi: 10.1073/pnas.96.12.7098
– volume: 113
  start-page: 369
  issue: 3
  year: 2006
  end-page: 382
  ident: CR23
  article-title: An integrated SSR map of grapevine based on five mapping populations
  publication-title: Theor Appl Genet
– volume: 449
  start-page: 463
  year: 2007
  end-page: 468
  ident: CR35
  article-title: The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla
  publication-title: Nature
  doi: 10.1038/nature06148
– volume: 108
  start-page: 505
  year: 2004
  end-page: 515
  ident: CR28
  article-title: Quantitative trait locus analysis of fungal disease resistance factor on a molecular map of grapevine
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-003-1445-3
– volume: 23
  start-page: 347
  year: 1973
  end-page: 356
  ident: CR56
  article-title: Etude méthodologique de la résistance à la chlorose calcaire chez la vigne: principe de la méthode des greffages réciproques et application à la recherche de porte-greffes résistants
  publication-title: Annales Amélioration des Plantes
– volume: 5
  start-page: 521
  year: 1982
  end-page: 529
  ident: CR75
  article-title: Iron reduction and uptake by grapevine roots
  publication-title: J Plant Nutr
  doi: 10.1080/01904168209362979
– ident: CR69
– volume: 50
  start-page: 997
  year: 2004
  end-page: 1001
  ident: CR6
  article-title: Molecular regulation of the iron uptake in the dicot species and
  publication-title: Soil Sci Plant Nut
  doi: 10.1080/00380768.2004.10408566
– volume: 12
  start-page: 172
  year: 1944
  end-page: 175
  ident: CR39
  article-title: The estimation of distances from recombination values
  publication-title: Ann Eugenet
  doi: 10.1111/j.1469-1809.1943.tb02321.x
– volume: 121
  start-page: 105
  year: 2010
  end-page: 115
  ident: CR5
  article-title: Genetic analysis of physiological components of salt tolerance conferred by rootstocks. What is the rootstock doing for the scion?
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-010-1294-9
– volume: 162
  start-page: 335
  year: 2005
  end-page: 341
  ident: CR40
  article-title: Physiological responses of Tunisian grapevine varieties to bicarbonate-induced iron deficiency
  publication-title: J Plant Physiol
  doi: 10.1016/j.jplph.2004.06.011
– volume: 15
  start-page: 71
  year: 2001
  end-page: 92
  ident: CR71
  article-title: Iron deficiency and chlorosis in orchards and vineyard ecosystems
  publication-title: Eur J Agron
  doi: 10.1016/S1161-0301(01)00125-3
– year: 1994
  ident: CR49
  publication-title: Using grapevine rootstocks—the Australian perspective
– volume: 165
  start-page: 111
  year: 2002
  end-page: 117
  ident: CR32
  article-title: Depressed growth of non-chlorotic vine grown in calcareous soil is an iron deficiency symptom prior to leaf chlorosis
  publication-title: J Plant Nutr Soil Sci
  doi: 10.1002/1522-2624(200202)165:1<111::AID-JPLN111>3.0.CO;2-B
– volume: 109
  start-page: 4553
  year: 2009
  end-page: 4567
  ident: CR51
  article-title: Iron uptake and transport on plants: the good, the bad, and the ionome
  publication-title: Chem Rev
  doi: 10.1021/cr900112r
– volume: 149
  start-page: 133
  year: 2006
  end-page: 144
  ident: CR46
  article-title: A genetic map of Welschriesling × Sirius for the identification of magnesium-deficiency by QTL analysis
  publication-title: Euphytica
  doi: 10.1007/s10681-005-9061-8
– volume: 47
  start-page: 467
  year: 2006
  end-page: 479
  ident: CR24
  article-title: cpFtsY mutants exhibit pleiotropic defects including an inability to increase iron-deficiency-inducible root Fe(III) chelate reductase activity
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2006.02803.x
– volume: 27
  start-page: 2221
  year: 2004
  end-page: 2234
  ident: CR62
  article-title: Iron metabolism in tomato and watermelon plants: influence of grafting
  publication-title: J Plant Nutr
  doi: 10.1081/PLN-200034708
– year: 2012
  ident: CR30
  article-title: Genetic analysis of iron chlorosis tolerance in rootstocks
  publication-title: Tree Genet Genomes
– volume: 22
  start-page: 119
  year: 2005
  end-page: 130
  ident: CR3
  article-title: Evaluation of synthetic iron(III)-chelates (EDDHA/Fe , EDDHMA/Fe and the novel EDDHSA/Fe ) to correct iron chlorosis
  publication-title: Eur J Agron
  doi: 10.1016/j.eja.2004.02.001
– volume: 112
  start-page: 1582
  year: 2006
  end-page: 1592
  ident: CR45
  article-title: Genetic linkage map of the interspecific grape rootstock cross Ramsey ( ) × Riparia Gloire ( )
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-006-0264-8
– volume: 49
  start-page: 471
  year: 2011
  end-page: 482
  ident: CR1
  article-title: Towards a knowledge-based correction of iron chlorosis
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2011.01.026
– volume: 20
  start-page: 359
  year: 2007
  end-page: 374
  ident: CR81
  article-title: Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine ( L.)
  publication-title: Mol Breed
  doi: 10.1007/s11032-007-9097-7
– volume: 103
  start-page: 1
  year: 2009
  end-page: 11
  ident: CR21
  article-title: Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters
  publication-title: Ann Bot
  doi: 10.1093/aob/mcn207
– volume: 290
  start-page: 343
  year: 2007
  end-page: 355
  ident: CR37
  article-title: Nitrogen nutrition influences Strategy I responses to iron deficiency in tolerant and sensitive genotypes of
  publication-title: Plant Soil
  doi: 10.1007/s11104-006-9166-4
– volume: 26
  start-page: 2165
  year: 2003
  end-page: 2176
  ident: CR53
  article-title: Organic acid metabolism in roots of various grapevine ( ) rootstocks submitted to iron deficiency and bicarbonate nutrition
  publication-title: J Plant Nutr
  doi: 10.1081/PLN-120024272
– volume: 5
  start-page: 27
  year: 2012
  end-page: 42
  ident: CR34
  article-title: Fitting into the harsh reality: regulation of iron-deficiency responses in dicotyledonous plants
  publication-title: Mol Plant
  doi: 10.1093/mp/ssr065
– volume: 116
  start-page: 305
  year: 2008
  end-page: 311
  ident: CR82
  article-title: Genetic and QTL analysis of resistance to Xiphinema index in a grapevine cross
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-007-0670-6
– volume: 116
  start-page: 1129
  year: 2008
  end-page: 1143
  ident: CR65
  article-title: A grapevine ( L.) genetic map integrating the position of 139 expressed genes
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-008-0741-3
– ident: CR20
– volume: 154
  start-page: 1361
  year: 2010
  end-page: 1371
  ident: CR58
  article-title: Relationships between growth, growth response to nutrient supply, and ion content using a recombinant inbred line population in Arabidopsis
  publication-title: Plant Physiol
  doi: 10.1104/pp.110.161398
– volume: 351
  start-page: 363
  year: 2012
  ident: 1993_CR38
  publication-title: Plant Soil
  doi: 10.1007/s11104-011-0972-y
– year: 2012
  ident: 1993_CR30
  publication-title: Tree Genet Genomes
– volume: 10
  start-page: 215
  year: 2010
  ident: 1993_CR15
  publication-title: BMC Plant Biol
  doi: 10.1186/1471-2229-10-215
– volume: 112
  start-page: 1582
  year: 2006
  ident: 1993_CR45
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-006-0264-8
– volume: 33
  start-page: 123
  year: 1994
  ident: 1993_CR12
  publication-title: Vitis
– volume: 23
  start-page: 347
  year: 1973
  ident: 1993_CR56
  publication-title: Annales Amélioration des Plantes
– volume: 113
  start-page: 1317
  year: 2006
  ident: 1993_CR59
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-006-0385-0
– volume-title: JoinMap® version 3.0: software for the calculation of genetic linkage maps
  year: 2001
  ident: 1993_CR74
– volume: 116
  start-page: 305
  year: 2008
  ident: 1993_CR82
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-007-0670-6
– volume: 53
  start-page: 19
  year: 2002
  ident: 1993_CR4
  publication-title: Am J Enol Vitic
  doi: 10.5344/ajev.2002.53.1.19
– volume: 116
  start-page: 777
  year: 2008
  ident: 1993_CR80
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-008-0710-x
– volume-title: Using grapevine rootstocks—the Australian perspective
  year: 1994
  ident: 1993_CR49
– volume: 116
  start-page: 1129
  year: 2008
  ident: 1993_CR65
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-008-0741-3
– volume: 162
  start-page: 99
  year: 2008
  ident: 1993_CR68
  publication-title: Euphytica
  doi: 10.1007/s10681-007-9595-z
– volume-title: MapQTL version 4.0: user friendly power in QTL mapping. Addendum to the manual of version 3.0
  year: 2000
  ident: 1993_CR73
– volume: 109
  start-page: 1017
  issue: 5
  year: 2004
  ident: 1993_CR2
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-004-1704-y
– volume: 194
  start-page: 416
  year: 2012
  ident: 1993_CR48
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2012.04059.x
– ident: 1993_CR20
  doi: 10.1186/1471-2229-8-38
– volume: 132
  start-page: 796
  year: 2003
  ident: 1993_CR76
  publication-title: Plant Physiol
  doi: 10.1104/pp.102.016089
– volume: 123
  start-page: 43
  year: 2011
  ident: 1993_CR16
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-011-1565-0
– volume: 122
  start-page: 1059
  issue: 6
  year: 2011
  ident: 1993_CR61
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-010-1511-6
– volume: 137
  start-page: 1121
  year: 1994
  ident: 1993_CR31
  publication-title: Theor Appl Genet
– volume: 449
  start-page: 463
  year: 2007
  ident: 1993_CR35
  publication-title: Nature
  doi: 10.1038/nature06148
– volume: 39
  start-page: 89
  year: 2000
  ident: 1993_CR9
  publication-title: Vitis
– volume: 109
  start-page: 4553
  year: 2009
  ident: 1993_CR51
  publication-title: Chem Rev
  doi: 10.1021/cr900112r
– volume: 93
  start-page: 77
  year: 2002
  ident: 1993_CR79
  publication-title: Heredity
  doi: 10.1093/jhered/93.1.77
– volume: 3
  start-page: 396
  year: 2008
  ident: 1993_CR25
  publication-title: Plant Signal Behav
  doi: 10.4161/psb.3.6.5419
– year: 2009
  ident: 1993_CR84
  publication-title: Theor Appl Genet
– ident: 1993_CR23
  doi: 10.1007/s00122-006-0295-1
– volume: 117
  start-page: 499
  year: 2008
  ident: 1993_CR77
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-008-0794-3
– volume: 114
  start-page: 1001
  year: 2007
  ident: 1993_CR78
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-006-0494-9
– volume: 165
  start-page: 111
  year: 2002
  ident: 1993_CR32
  publication-title: J Plant Nutr Soil Sci
  doi: 10.1002/1522-2624(200202)165:1<111::AID-JPLN111>3.0.CO;2-B
– volume: 22
  start-page: 119
  year: 2005
  ident: 1993_CR3
  publication-title: Eur J Agron
  doi: 10.1016/j.eja.2004.02.001
– volume: 121
  start-page: 105
  year: 2010
  ident: 1993_CR5
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-010-1294-9
– volume: 22
  start-page: 9
  year: 2003
  ident: 1993_CR33
  publication-title: Plant Breeding Rev
– volume: 21
  start-page: 1449
  year: 1986
  ident: 1993_CR83
  publication-title: HortScience
  doi: 10.21273/HORTSCI.21.6.1449
– volume: 118
  start-page: 1261
  year: 2009
  ident: 1993_CR47
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-009-0979-4
– volume: 103
  start-page: 1
  year: 2009
  ident: 1993_CR21
  publication-title: Ann Bot
  doi: 10.1093/aob/mcn207
– volume: 96
  start-page: 7098
  year: 1999
  ident: 1993_CR44
  publication-title: Proc Acad Sci USA
  doi: 10.1073/pnas.96.12.7098
– volume: 206
  start-page: 109
  year: 1987
  ident: 1993_CR55
  publication-title: Acta Hortic
  doi: 10.17660/ActaHortic.1987.206.6
– volume: 5
  start-page: 27
  year: 2012
  ident: 1993_CR34
  publication-title: Mol Plant
  doi: 10.1093/mp/ssr065
– volume: 15
  start-page: 71
  year: 2001
  ident: 1993_CR71
  publication-title: Eur J Agron
  doi: 10.1016/S1161-0301(01)00125-3
– volume: 219
  start-page: 263
  year: 2000
  ident: 1993_CR17
  publication-title: Plant Soil
  doi: 10.1023/A:1004799120896
– volume: 117
  start-page: 671
  year: 2008
  ident: 1993_CR60
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-008-0802-7
– start-page: 61
  volume-title: Iron nutrition in plants and rhizospheric microorganisms
  year: 2006
  ident: 1993_CR63
  doi: 10.1007/1-4020-4743-6_3
– volume: 50
  start-page: 997
  year: 2004
  ident: 1993_CR6
  publication-title: Soil Sci Plant Nut
  doi: 10.1080/00380768.2004.10408566
– volume: 7
  start-page: 489
  year: 1984
  ident: 1993_CR43
  publication-title: J Plant Nutr
  doi: 10.1080/01904168409363215
– volume: 149
  start-page: 133
  year: 2006
  ident: 1993_CR46
  publication-title: Euphytica
  doi: 10.1007/s10681-005-9061-8
– start-page: 229
  volume-title: Iron nutrition in plants and rhizosphere microorganisms
  year: 2006
  ident: 1993_CR66
  doi: 10.1007/1-4020-4743-6_11
– volume: 165
  start-page: 275
  year: 1994
  ident: 1993_CR50
  publication-title: Plant Soil
  doi: 10.1007/BF00008070
– volume: 139
  start-page: 51
  year: 2004
  ident: 1993_CR22
  publication-title: Euphytica
  doi: 10.1007/s10681-004-2033-6
– volume: 45
  start-page: 260
  year: 2007
  ident: 1993_CR7
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2007.03.006
– volume: 10
  start-page: 64
  year: 2010
  ident: 1993_CR18
  publication-title: BMC Plant Biol
  doi: 10.1186/1471-2229-10-64
– volume: 111
  start-page: 658
  year: 2005
  ident: 1993_CR27
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-005-2016-6
– volume: 108
  start-page: 505
  year: 2004
  ident: 1993_CR28
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-003-1445-3
– volume: 157
  start-page: 303
  year: 1993
  ident: 1993_CR11
  publication-title: Plant Soil
  doi: 10.1007/BF00011058
– volume: 118
  start-page: 305
  year: 2009
  ident: 1993_CR26
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-008-0900-6
– volume: 49
  start-page: 471
  year: 2011
  ident: 1993_CR1
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2011.01.026
– volume: 183
  start-page: 1127
  year: 2009
  ident: 1993_CR29
  publication-title: Genetics
  doi: 10.1534/genetics.109.103929
– volume: 68
  start-page: 404
  year: 1995
  ident: 1993_CR8
  publication-title: Bull. OIV
– volume: 130
  start-page: 109
  year: 1991
  ident: 1993_CR10
  publication-title: Plant Soil
  doi: 10.1007/BF00011864
– volume: 154
  start-page: 1361
  year: 2010
  ident: 1993_CR58
  publication-title: Plant Physiol
  doi: 10.1104/pp.110.161398
– volume: 61
  start-page: 186
  year: 2010
  ident: 1993_CR14
  publication-title: Am J Enol Vitic
  doi: 10.5344/ajev.2010.61.2.186
– volume: 47
  start-page: 467
  year: 2006
  ident: 1993_CR24
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2006.02803.x
– volume: 55
  start-page: 289
  year: 2008
  ident: 1993_CR67
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2008.03502.x
– volume: 20
  start-page: 359
  year: 2007
  ident: 1993_CR81
  publication-title: Mol Breed
  doi: 10.1007/s11032-007-9097-7
– volume: 290
  start-page: 343
  year: 2007
  ident: 1993_CR37
  publication-title: Plant Soil
  doi: 10.1007/s11104-006-9166-4
– volume: 335
  start-page: 423
  year: 2010
  ident: 1993_CR70
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0431-1
– volume: 20
  start-page: 1457
  year: 1997
  ident: 1993_CR54
  publication-title: J Plant Nutr
  doi: 10.1080/01904169709365348
– volume: 27
  start-page: 2221
  year: 2004
  ident: 1993_CR62
  publication-title: J Plant Nutr
  doi: 10.1081/PLN-200034708
– volume: 162
  start-page: 335
  year: 2005
  ident: 1993_CR40
  publication-title: J Plant Physiol
  doi: 10.1016/j.jplph.2004.06.011
– volume: 2
  start-page: 155
  year: 1986
  ident: 1993_CR64
  publication-title: Adv Plant Nutr
– volume: 5
  start-page: 521
  year: 1982
  ident: 1993_CR75
  publication-title: J Plant Nutr
  doi: 10.1080/01904168209362979
– volume: 3
  start-page: 219
  year: 1997
  ident: 1993_CR41
  publication-title: Mol Breed
  doi: 10.1023/A:1009637320805
– volume: 12
  start-page: 172
  year: 1944
  ident: 1993_CR39
  publication-title: Ann Eugenet
  doi: 10.1111/j.1469-1809.1943.tb02321.x
– volume: 23
  start-page: 1929
  year: 2000
  ident: 1993_CR42
  publication-title: J Plant Nutr
  doi: 10.1080/01904160009382154
– volume: 176
  start-page: 709
  year: 2009
  ident: 1993_CR36
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2009.02.011
– volume: 26
  start-page: 2267
  year: 2003
  ident: 1993_CR19
  publication-title: J Plant Nutr
  doi: 10.1081/PLN-120024280
– volume: 12
  start-page: 167
  year: 1978
  ident: 1993_CR57
  publication-title: Conn Vigne Vin
– volume: 44
  start-page: 293
  year: 1999
  ident: 1993_CR52
  publication-title: Maydica
– volume: 26
  start-page: 2165
  year: 2003
  ident: 1993_CR53
  publication-title: J Plant Nutr
  doi: 10.1081/PLN-120024272
– ident: 1993_CR69
– volume: 176
  start-page: 2637
  year: 2007
  ident: 1993_CR72
  publication-title: Genetics
  doi: 10.1534/genetics.106.067462
SSID ssj0002503
Score 2.2481198
Snippet Iron is essential to plants for chlorophyll formation as well as for the functioning of various iron-containing enzymes. Iron deficiency chlorosis is a...
SourceID hal
proquest
gale
pubmed
crossref
springer
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 451
SubjectTerms Adaptation, Physiological
Adaptation, Physiological - drug effects
Adaptation, Physiological - physiology
adverse effects
Agriculture
Anemia, Hypochromic
Biochemistry
Biomedical and Life Sciences
Biotechnology
calcareous soils
Calcium Compounds
Calcium Compounds - adverse effects
chemically induced
Chlorophyll
Chlorophyll - metabolism
chlorosis
Chromosome Mapping
Crops
Dental Materials
Dental Materials - adverse effects
Disease Resistance
Disease Resistance - genetics
Diseases and pests
drug effects
Environmental Sciences
fruit trees
Gene loci
Genes, Plant
Genes, Plant - genetics
Genetic aspects
Genetic Markers
genetics
genotype
Grapes
growth & development
immunology
Iron
Iron - deficiency
Iron Deficiencies
Iron deficiency diseases
leaves
Life Sciences
loci
metabolism
Original Paper
Oxides
Oxides - adverse effects
Phenotype
Physiological aspects
physiology
Plant Biochemistry
Plant Breeding/Biotechnology
plant development
Plant Diseases
Plant Diseases - genetics
Plant Diseases - immunology
Plant Genetics and Genomics
Plant immunology
Plant Roots
Plant Roots - drug effects
Plant Roots - genetics
Plant Roots - growth & development
Quantitative Trait Loci
Riparia
root systems
roots
rootstocks
scions
shoots
soil properties
Vegetal Biology
Vitaceae
Vitis
Vitis - drug effects
Vitis - genetics
Vitis - growth & development
Vitis vinifera
Wineries & vineyards
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfoEBJ7QDA-VhjITEh8KSiJ7Xw8RoipIMYDo2hvluM4XUWXVEuLxH_P79IkohpU4qWqmqvl-O7s38l3v2PsReRiE4mA6rbgTVLaBD6XW68MIt9FrnB-2yXi9Es0mcpP5-q8q-Nu-mz3_kqy3amHYrf2Fgihb-i1SWdqxG4qCt1hxNMwG7ZfnOlDqhywSNhfZf5tiK3DaFSaetiYRxeUF3kddF67MG3PoZO77E4HIHm20fg9dsNVB2w_m111JBrugN3aNJj8dZ8tTw3xL8w4zISqFTmOrjkHTuWreuGop4bDN76YXzoPwTnUXHCqe-OFI2YJKsvk9gIhfd3MGz6vOPFb4yitHAfiXgE42h8Nf_WdiJF4s3z3-gGbnnz49n7idT0WPItQYuXFvgmLuBS5tfBGlQAOKhMFwG3QoRKRtDIVEgLCAIsrAECRJzY1QVDmIily8ZDtVXXlDhm3FuFRAQRZJClAWp4StY0pZEDyLi7HzO8XW9uOgJz6YCz0QJ3c6kfjQ5N-tBqzN8Nflhv2jV3Ch9CgNljwRk_PQood25vCKByzY1KrJsKLijJqZmbdNPrj2VedCREjaoySaMxedkJljXlZ0xUo4O2II2tL8mhLEh5ptx4fw3qGCROB9yT7rOk3RLwyVlL8DDBGb1y62zYaHYQx9RMIaYznw2ManlLhKlevSYaqjRVg9y4ZoH7stdLfIYPQIJVKhcmYPdoY9zBlgH6RBhLr9ra39j8m-S8FPP4v6Sfsdti2FiGHPGJ7q6u1ewqAt8qftQ79G_MuPo0
  priority: 102
  providerName: Springer Nature
Title Mapping genetic loci for tolerance to lime-induced iron deficiency chlorosis in grapevine rootstocks (Vitis sp.)
URI https://link.springer.com/article/10.1007/s00122-012-1993-5
https://www.ncbi.nlm.nih.gov/pubmed/23139142
https://www.proquest.com/docview/1277031286
https://www.proquest.com/docview/1282515326
https://www.proquest.com/docview/1291601740
https://www.proquest.com/docview/1999945528
https://hal.inrae.fr/hal-02647543
Volume 126
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9NAEF6RVkj0AUE5aijVUiFxyWDvZfsJGZQSjlaoJSg8rdbrdRo12KFOkPj3zDiOIarISxLZE2vtmdn9xjvzDSFPlIuM4iHWbYE3CWFj8LnM-kWoAqdc7oKmS8TxiRoMxceRHLUv3Oo2rXI1JzYTdV5ZfEf-OmQRUq2zWL2Z_fSxaxTurrYtNHpkG6nLMKUrGnUBFy7vXdYcwBK22tUMGhLRkGFSAvObFDa5ti71ClN1c3TvHFMkr-LPK3unzZJ0dIvcbLEkTZfKv02uuXKX7KTjy5ZPw-2S68tek7_vkNmxQSqGMQWLwcJFCqvYhAJkpfNq6rC9hoNfdDr54XyI00HjOcUSOJo7JJnACk1qzyG6r-pJTSclRaprWFVLRwF8zwFD2ouaPvuGHEm0nr16fpcMj_pf3w38tt2CbyGqmPtRYFgeFTyzFhxTxoAMpVEhQDhQp-RKWJFwAQLcACyXgAV5FtvEhGGR8TjP-D2yVVal2yPUWoiUcgCTeZwAXssSZLkxuQhR3kWFR4LVw9a25SLHlhhT3bEoN_rR8KFRP1p65EX3l9mSiGOT8B5oUBt44LUenjEMI5tNQ8U8cohq1ch9UWJyzdgs6lp_ODvVKecRBJAqVh552goVFYzLmrZWAe4O6bLWJPfXJME57drpQ7CebsDI5T1IP2s8BsGviKTgv0K4xsq4dDuD1PqvvXvkcXcaL49ZcaWrFiiDhccSEPgmGQgAYNoVwQYZiBISISWLPXJ_adzdkAH_8yQU8Nxerqz9n0H-TwEPNt_SQ3KDNW1F0AP3ydb8cuEeAbibZweNBx-Q7fT99099-H7bP_lyCkeHLP0DS79GKQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe2Tgh4QDA-FhhgJhBfCiS24yQPCBXY1LK2mrYV7c0kjtNVlKQsLWj_FH8jd2kSqCb6tpeqaq6R4zuffxff_Y6Qp9L4keQu1m3BahJCB7DmYm2nrnSMNIlxyi4R_YHsDMXnE-9kjfyua2EwrbL2iaWjTnKN78jfusxHqnUWyPfTHzZ2jcLT1bqFxsIs9s35LwjZinfdT6DfZ4zt7R5_7NhVVwFbA3ie2b4TscRPeaw12J8XAADyIukCUoFRe1wKLUIuQIBHgD49gDw8DnQYuW4a8yCJOdx3nWwIDqFMi2x82B0cHDa-H-SbPD0AQqw-R3VK2lKXYRoEs8ukOW9pJ1xPo7zZFdZPMSnzIuK9cFpbboJ7N8mNCr3S9sLcbpE1k22S6-3RWcXgYTbJlUV3y_PbZNqPkPxhRMFGsVSSwr45pgCS6SyfGGzoYeAbnYy_G3ucJWBjCcWiO5oYpLXAmlCqTyc5jH5c0HFGkVwb9vHMUID7M0Ct-ltBX3xBViZaTN-8vEOGl6KKu6SV5ZnZIlRriM0SgK9JEAJCjEPk1YkS4aK88VOLOPVkK12xn2MTjolqeJtL_Sj4UKgf5VnkVfOX6YL6Y5XwFmhQRTDhhRoeMQxcy2NKySyyg2pVyLaRYTrPKJoXheoeHao25z6ErDKQFnleCaU5jEtHVXUEPB0SdC1Jbi9JgjvQS5d3wHqaASN7eKfdU_gbhNvC9wT_6cI9auNSlc8q1N8VZpEnzWW8PebhZSafowyWOnuA-VfJQMgBjl44K2QgLgmF57HAIvcWxt0MGSIOHroC5u11be3_DPJ_Cri_-pEek6ud435P9bqD_QfkGiubmuBq3Cat2dncPARoOYsfVeuZkq-X7UL-ACPcffU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF61RSA4ICiPGgosFYiXTO192T4gFFGihD6EKEG5LfZ6nUYEO9QJqH-NX8eMYxuiitx6iaJ4Yu16Zme_8c58Q8gTZYNYcR_rtmA1CWFCWHOJcTNfeVbZ1HpVl4jDI9UbiA9DOVwjv5taGEyrbHxi5ajTwuA78l2fBUi1zkK1m9VpER_3um-nP1zsIIUnrU07jYWJ7NuzXxC-lW_6e6Drp4x1339-13PrDgOuASA9cwMvZmmQ8cQYsEUZAhiSsfIBtcAMJFfCiIgLEOAxIFEJ8IcnoYli388SHqYJh_uuk0sBlz6usWDYBnsILdqMPYBErDlR9SoCU59hQgRzq_Q5ubQnrmdx0e4P6yeYnnke-547t622w-4Ncr3GsbSzMLybZM3mm-RaZ3Rac3nYTXJ50efy7BaZHsZIAzGiYK1YNElhBx1TgMt0Vkwstvaw8I1Oxt-tO85TsLaUYvkdTS0SXGB1KDUnkwJGPy7pOKdIsw07em4pAP8Z4FfzraTPvyA_Ey2nr1_cJoMLUcQdspEXud0i1BiI0lIAsmkYAVZMImTYiVPho7wNMod4zcPWpuZBx3YcE90yOFf60fChUT9aOuRl-5fpggRklfAWaFDH8MBLPThmGMJWB5aKOWQH1aqRdyNHCx7F87LU_eNPusN5AMGrCpVDntVCWQHjMnFdJwGzQ6quJcntJUlwDGbp8g5YTztg5BHvdQ40_gaBtwik4D99uEdjXLr2XqX-u9Yc8ri9jLfHjLzcFnOUwaJnCeh_lQwEH-DyhbdCBiKUSEjJQofcXRh3O2SIPXjkC3hurxpr_2eQ_1PAvdVTekSugOPQB_2j_fvkKqu6m-Bi3CYbs9O5fQAYc5Y8rBYzJV8v2nv8ATNegMU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+genetic+loci+for+tolerance+to+lime-induced+iron+deficiency+chlorosis+in+grapevine+rootstocks&rft.jtitle=Theoretical+and+applied+genetics&rft.au=Bert%2C+Pierre-Francois&rft.au=Bordenave%2C+Louis&rft.au=Donnart%2C+Ma&rft.au=Hevin%2C+Cyril&rft.date=2013-02-01&rft.pub=Springer&rft.issn=0040-5752&rft.volume=126&rft.issue=2&rft.spage=451&rft_id=info:doi/10.1007%2Fs00122-012-1993-5&rft.externalDocID=A337287686
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-5752&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-5752&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-5752&client=summon