HESML: a real-time semantic measures library for the biomedical domain with a reproducible survey

Ontology-based semantic similarity measures based on SNOMED-CT, MeSH, and Gene Ontology are being extensively used in many applications in biomedical text mining and genomics respectively, which has encouraged the development of semantic measures libraries based on the aforementioned ontologies. How...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 23; no. 1; pp. 23 - 31
Main Authors Lastra-Díaz, Juan J., Lara-Clares, Alicia, Garcia-Serrano, Ana
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 06.01.2022
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ontology-based semantic similarity measures based on SNOMED-CT, MeSH, and Gene Ontology are being extensively used in many applications in biomedical text mining and genomics respectively, which has encouraged the development of semantic measures libraries based on the aforementioned ontologies. However, current state-of-the-art semantic measures libraries have some performance and scalability drawbacks derived from their ontology representations based on relational databases, or naive in-memory graph representations. Likewise, a recent reproducible survey on word similarity shows that one hybrid IC-based measure which integrates a shortest-path computation sets the state of the art in the family of ontology-based semantic measures. However, the lack of an efficient shortest-path algorithm for their real-time computation prevents both their practical use in any application and the use of any other path-based semantic similarity measure. To bridge the two aforementioned gaps, this work introduces for the first time an updated version of the HESML Java software library especially designed for the biomedical domain, which implements the most efficient and scalable ontology representation reported in the literature, together with a new method for the approximation of the Dijkstra's algorithm for taxonomies, called Ancestors-based Shortest-Path Length (AncSPL), which allows the real-time computation of any path-based semantic similarity measure. We introduce a set of reproducible benchmarks showing that HESML outperforms by several orders of magnitude the current state-of-the-art libraries in the three aforementioned biomedical ontologies, as well as the real-time performance and approximation quality of the new AncSPL shortest-path algorithm. Likewise, we show that AncSPL linearly scales regarding the dimension of the common ancestor subgraph regardless of the ontology size. Path-based measures based on the new AncSPL algorithm are up to six orders of magnitude faster than their exact implementation in large ontologies like SNOMED-CT and GO. Finally, we provide a detailed reproducibility protocol and dataset as supplementary material to allow the exact replication of all our experiments and results.
AbstractList Ontology-based semantic similarity measures based on SNOMED-CT, MeSH, and Gene Ontology are being extensively used in many applications in biomedical text mining and genomics respectively, which has encouraged the development of semantic measures libraries based on the aforementioned ontologies. However, current state-of-the-art semantic measures libraries have some performance and scalability drawbacks derived from their ontology representations based on relational databases, or naive in-memory graph representations. Likewise, a recent reproducible survey on word similarity shows that one hybrid IC-based measure which integrates a shortest-path computation sets the state of the art in the family of ontology-based semantic measures. However, the lack of an efficient shortest-path algorithm for their real-time computation prevents both their practical use in any application and the use of any other path-based semantic similarity measure. To bridge the two aforementioned gaps, this work introduces for the first time an updated version of the HESML Java software library especially designed for the biomedical domain, which implements the most efficient and scalable ontology representation reported in the literature, together with a new method for the approximation of the Dijkstra's algorithm for taxonomies, called Ancestors-based Shortest-Path Length (AncSPL), which allows the real-time computation of any path-based semantic similarity measure. We introduce a set of reproducible benchmarks showing that HESML outperforms by several orders of magnitude the current state-of-the-art libraries in the three aforementioned biomedical ontologies, as well as the real-time performance and approximation quality of the new AncSPL shortest-path algorithm. Likewise, we show that AncSPL linearly scales regarding the dimension of the common ancestor subgraph regardless of the ontology size. Path-based measures based on the new AncSPL algorithm are up to six orders of magnitude faster than their exact implementation in large ontologies like SNOMED-CT and GO. Finally, we provide a detailed reproducibility protocol and dataset as supplementary material to allow the exact replication of all our experiments and results.
Background Ontology-based semantic similarity measures based on SNOMED-CT, MeSH, and Gene Ontology are being extensively used in many applications in biomedical text mining and genomics respectively, which has encouraged the development of semantic measures libraries based on the aforementioned ontologies. However, current state-of-the-art semantic measures libraries have some performance and scalability drawbacks derived from their ontology representations based on relational databases, or naive in-memory graph representations. Likewise, a recent reproducible survey on word similarity shows that one hybrid IC-based measure which integrates a shortest-path computation sets the state of the art in the family of ontology-based semantic measures. However, the lack of an efficient shortest-path algorithm for their real-time computation prevents both their practical use in any application and the use of any other path-based semantic similarity measure. Results To bridge the two aforementioned gaps, this work introduces for the first time an updated version of the HESML Java software library especially designed for the biomedical domain, which implements the most efficient and scalable ontology representation reported in the literature, together with a new method for the approximation of the Dijkstra’s algorithm for taxonomies, called Ancestors-based Shortest-Path Length (AncSPL), which allows the real-time computation of any path-based semantic similarity measure. Conclusions We introduce a set of reproducible benchmarks showing that HESML outperforms by several orders of magnitude the current state-of-the-art libraries in the three aforementioned biomedical ontologies, as well as the real-time performance and approximation quality of the new AncSPL shortest-path algorithm. Likewise, we show that AncSPL linearly scales regarding the dimension of the common ancestor subgraph regardless of the ontology size. Path-based measures based on the new AncSPL algorithm are up to six orders of magnitude faster than their exact implementation in large ontologies like SNOMED-CT and GO. Finally, we provide a detailed reproducibility protocol and dataset as supplementary material to allow the exact replication of all our experiments and results.
Abstract Background Ontology-based semantic similarity measures based on SNOMED-CT, MeSH, and Gene Ontology are being extensively used in many applications in biomedical text mining and genomics respectively, which has encouraged the development of semantic measures libraries based on the aforementioned ontologies. However, current state-of-the-art semantic measures libraries have some performance and scalability drawbacks derived from their ontology representations based on relational databases, or naive in-memory graph representations. Likewise, a recent reproducible survey on word similarity shows that one hybrid IC-based measure which integrates a shortest-path computation sets the state of the art in the family of ontology-based semantic measures. However, the lack of an efficient shortest-path algorithm for their real-time computation prevents both their practical use in any application and the use of any other path-based semantic similarity measure. Results To bridge the two aforementioned gaps, this work introduces for the first time an updated version of the HESML Java software library especially designed for the biomedical domain, which implements the most efficient and scalable ontology representation reported in the literature, together with a new method for the approximation of the Dijkstra’s algorithm for taxonomies, called Ancestors-based Shortest-Path Length (AncSPL), which allows the real-time computation of any path-based semantic similarity measure. Conclusions We introduce a set of reproducible benchmarks showing that HESML outperforms by several orders of magnitude the current state-of-the-art libraries in the three aforementioned biomedical ontologies, as well as the real-time performance and approximation quality of the new AncSPL shortest-path algorithm. Likewise, we show that AncSPL linearly scales regarding the dimension of the common ancestor subgraph regardless of the ontology size. Path-based measures based on the new AncSPL algorithm are up to six orders of magnitude faster than their exact implementation in large ontologies like SNOMED-CT and GO. Finally, we provide a detailed reproducibility protocol and dataset as supplementary material to allow the exact replication of all our experiments and results.
Ontology-based semantic similarity measures based on SNOMED-CT, MeSH, and Gene Ontology are being extensively used in many applications in biomedical text mining and genomics respectively, which has encouraged the development of semantic measures libraries based on the aforementioned ontologies. However, current state-of-the-art semantic measures libraries have some performance and scalability drawbacks derived from their ontology representations based on relational databases, or naive in-memory graph representations. Likewise, a recent reproducible survey on word similarity shows that one hybrid IC-based measure which integrates a shortest-path computation sets the state of the art in the family of ontology-based semantic measures. However, the lack of an efficient shortest-path algorithm for their real-time computation prevents both their practical use in any application and the use of any other path-based semantic similarity measure. To bridge the two aforementioned gaps, this work introduces for the first time an updated version of the HESML Java software library especially designed for the biomedical domain, which implements the most efficient and scalable ontology representation reported in the literature, together with a new method for the approximation of the Dijkstra's algorithm for taxonomies, called Ancestors-based Shortest-Path Length (AncSPL), which allows the real-time computation of any path-based semantic similarity measure. We introduce a set of reproducible benchmarks showing that HESML outperforms by several orders of magnitude the current state-of-the-art libraries in the three aforementioned biomedical ontologies, as well as the real-time performance and approximation quality of the new AncSPL shortest-path algorithm. Likewise, we show that AncSPL linearly scales regarding the dimension of the common ancestor subgraph regardless of the ontology size. Path-based measures based on the new AncSPL algorithm are up to six orders of magnitude faster than their exact implementation in large ontologies like SNOMED-CT and GO. Finally, we provide a detailed reproducibility protocol and dataset as supplementary material to allow the exact replication of all our experiments and results.
Ontology-based semantic similarity measures based on SNOMED-CT, MeSH, and Gene Ontology are being extensively used in many applications in biomedical text mining and genomics respectively, which has encouraged the development of semantic measures libraries based on the aforementioned ontologies. However, current state-of-the-art semantic measures libraries have some performance and scalability drawbacks derived from their ontology representations based on relational databases, or naive in-memory graph representations. Likewise, a recent reproducible survey on word similarity shows that one hybrid IC-based measure which integrates a shortest-path computation sets the state of the art in the family of ontology-based semantic measures. However, the lack of an efficient shortest-path algorithm for their real-time computation prevents both their practical use in any application and the use of any other path-based semantic similarity measure.BACKGROUNDOntology-based semantic similarity measures based on SNOMED-CT, MeSH, and Gene Ontology are being extensively used in many applications in biomedical text mining and genomics respectively, which has encouraged the development of semantic measures libraries based on the aforementioned ontologies. However, current state-of-the-art semantic measures libraries have some performance and scalability drawbacks derived from their ontology representations based on relational databases, or naive in-memory graph representations. Likewise, a recent reproducible survey on word similarity shows that one hybrid IC-based measure which integrates a shortest-path computation sets the state of the art in the family of ontology-based semantic measures. However, the lack of an efficient shortest-path algorithm for their real-time computation prevents both their practical use in any application and the use of any other path-based semantic similarity measure.To bridge the two aforementioned gaps, this work introduces for the first time an updated version of the HESML Java software library especially designed for the biomedical domain, which implements the most efficient and scalable ontology representation reported in the literature, together with a new method for the approximation of the Dijkstra's algorithm for taxonomies, called Ancestors-based Shortest-Path Length (AncSPL), which allows the real-time computation of any path-based semantic similarity measure.RESULTSTo bridge the two aforementioned gaps, this work introduces for the first time an updated version of the HESML Java software library especially designed for the biomedical domain, which implements the most efficient and scalable ontology representation reported in the literature, together with a new method for the approximation of the Dijkstra's algorithm for taxonomies, called Ancestors-based Shortest-Path Length (AncSPL), which allows the real-time computation of any path-based semantic similarity measure.We introduce a set of reproducible benchmarks showing that HESML outperforms by several orders of magnitude the current state-of-the-art libraries in the three aforementioned biomedical ontologies, as well as the real-time performance and approximation quality of the new AncSPL shortest-path algorithm. Likewise, we show that AncSPL linearly scales regarding the dimension of the common ancestor subgraph regardless of the ontology size. Path-based measures based on the new AncSPL algorithm are up to six orders of magnitude faster than their exact implementation in large ontologies like SNOMED-CT and GO. Finally, we provide a detailed reproducibility protocol and dataset as supplementary material to allow the exact replication of all our experiments and results.CONCLUSIONSWe introduce a set of reproducible benchmarks showing that HESML outperforms by several orders of magnitude the current state-of-the-art libraries in the three aforementioned biomedical ontologies, as well as the real-time performance and approximation quality of the new AncSPL shortest-path algorithm. Likewise, we show that AncSPL linearly scales regarding the dimension of the common ancestor subgraph regardless of the ontology size. Path-based measures based on the new AncSPL algorithm are up to six orders of magnitude faster than their exact implementation in large ontologies like SNOMED-CT and GO. Finally, we provide a detailed reproducibility protocol and dataset as supplementary material to allow the exact replication of all our experiments and results.
Background Ontology-based semantic similarity measures based on SNOMED-CT, MeSH, and Gene Ontology are being extensively used in many applications in biomedical text mining and genomics respectively, which has encouraged the development of semantic measures libraries based on the aforementioned ontologies. However, current state-of-the-art semantic measures libraries have some performance and scalability drawbacks derived from their ontology representations based on relational databases, or naive in-memory graph representations. Likewise, a recent reproducible survey on word similarity shows that one hybrid IC-based measure which integrates a shortest-path computation sets the state of the art in the family of ontology-based semantic measures. However, the lack of an efficient shortest-path algorithm for their real-time computation prevents both their practical use in any application and the use of any other path-based semantic similarity measure. Results To bridge the two aforementioned gaps, this work introduces for the first time an updated version of the HESML Java software library especially designed for the biomedical domain, which implements the most efficient and scalable ontology representation reported in the literature, together with a new method for the approximation of the Dijkstra's algorithm for taxonomies, called Ancestors-based Shortest-Path Length (AncSPL), which allows the real-time computation of any path-based semantic similarity measure. Conclusions We introduce a set of reproducible benchmarks showing that HESML outperforms by several orders of magnitude the current state-of-the-art libraries in the three aforementioned biomedical ontologies, as well as the real-time performance and approximation quality of the new AncSPL shortest-path algorithm. Likewise, we show that AncSPL linearly scales regarding the dimension of the common ancestor subgraph regardless of the ontology size. Path-based measures based on the new AncSPL algorithm are up to six orders of magnitude faster than their exact implementation in large ontologies like SNOMED-CT and GO. Finally, we provide a detailed reproducibility protocol and dataset as supplementary material to allow the exact replication of all our experiments and results. Keywords: HESML, Semantic measures library, Ontology-based semantic similarity measures, Information content models, SNOMED-CT, MeSH, Gene ontology, WordNet
ArticleNumber 23
Audience Academic
Author Lastra-Díaz, Juan J.
Garcia-Serrano, Ana
Lara-Clares, Alicia
Author_xml – sequence: 1
  givenname: Juan J.
  orcidid: 0000-0003-2522-4222
  surname: Lastra-Díaz
  fullname: Lastra-Díaz, Juan J.
– sequence: 2
  givenname: Alicia
  surname: Lara-Clares
  fullname: Lara-Clares, Alicia
– sequence: 3
  givenname: Ana
  surname: Garcia-Serrano
  fullname: Garcia-Serrano, Ana
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34991460$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURB_wB1igSGzoIsWvODYLpKoqdKRBSBTWlu3czHiUxIPtFPrv65lpoVMh5IUt5zsnvkfnuDgY_QhF8RqjM4wFfx8xEbWsEMEVYjXNp2fFEWYNrghG9cGj82FxHOMKIdwIVL8oDimTEjOOjgp9dXn9Zf6h1GUA3VfJDVBGGPSYnC0H0HEKEMvemaDDbdn5UKYllMb5AVpndV-2ftBuLH-5tNyarINvJ-tMn32mcAO3L4vnne4jvLrfT4ofny6_X1xV86-fZxfn88rWskkVBwqaW2k1w13LBLGWGMKJadqOA8dCMGkI1C2xQkpgncZGWkI7bJHBDNGTYrbzbb1eqXVwQ36x8tqp7YUPC6VDnqoHhRFtmpZxBkznJIxADYLGUEM7SgTvstfHndd6MnlQC2MKut8z3f8yuqVa-BslGspIvXnMu3uD4H9OEJMaXLTQ93oEP0VF8kCEIoFkRt8-QVd-CmOOKlMkA0Jy_Jda6DyAGzuf_2s3puqcS8plzUiTqbN_UHm1MDib29O5fL8nON0TZCbB77TQU4xqdv1tn33zOJQ_aTyUKQNiB9jgYwzQKeuSTs5vMnJ9jl1teqt2vVW5t2rbW7WRkifSB_f_iO4AMbPtCA
CitedBy_id crossref_primary_10_2298_CSIS230912017M
crossref_primary_10_1016_j_mlwa_2022_100423
crossref_primary_10_1142_S0218194022500772
Cites_doi 10.1186/1471-2105-7-302
10.1109/TKDE.2003.1209005
10.1016/j.jbi.2006.06.004
10.1016/j.knosys.2015.08.019
10.1093/bioinformatics/btu144
10.1145/219717.219748
10.1101/gr.1239303
10.1093/bioinformatics/btv590
10.1145/2836167
10.1007/3-540-45715-1_11
10.1007/BF02189308
10.1186/1471-2105-14-284
10.1007/978-3-540-88873-4_25
10.1093/bioinformatics/btg153
10.1093/bioinformatics/btp569
10.1109/TSMCC.2009.2020689
10.1145/2530531
10.1371/journal.pone.0235670
10.1007/s10579-018-9431-1
10.1109/TCBB.2014.2382127
10.1016/j.jbi.2015.12.007
10.1186/s12859-019-2789-2
10.1109/FGCNS.2008.16
10.1016/j.eswa.2012.01.082
10.1186/1471-2105-9-327
10.1162/COLI_a_00237
10.1016/j.knosys.2010.10.001
10.21950/OTDA4Z
10.1007/978-3-642-17746-0_39
10.1016/j.jbi.2017.03.001
10.1093/bioinformatics/btt581
10.1093/nar/gky1055
10.1093/nar/gkp463
10.1162/tacl_a_00051
10.1186/1471-2105-8-166
10.1093/database/baaa078
10.1016/j.jbi.2013.06.013
10.1016/j.datak.2006.05.003
10.1016/j.jbi.2012.04.010
10.7551/mitpress/7287.003.0018
10.1613/jair.514
10.1002/jgt.3190130114
10.1016/j.is.2017.02.002
10.1016/j.engappai.2014.07.015
10.21950/1RRAWJ
10.1093/bioinformatics/btl042
10.1093/nar/gkp979
10.1186/1471-2105-12-S1-S42
10.1093/bioinformatics/btz070
10.1371/journal.pcbi.1000443
10.1093/bioinformatics/btq064
10.1016/j.jbi.2014.11.014
10.1093/bioinformatics/btm087
10.1038/75556
10.1007/BF01386390
10.18653/v1/N16-1018
10.1016/j.is.2020.101636
10.3115/v1/N15-1165
10.1093/bioinformatics/btk031
10.1093/bioinformatics/btp338
10.1109/TENCON.2015.7372780
10.1371/journal.pone.0248663
10.1186/1756-0381-1-11
10.1109/IMCSIT.2008.4747267
10.1016/j.engappai.2015.09.006
10.3115/1609067.1609070
10.4018/jswis.2012040102
10.1016/j.jbi.2006.01.004
10.1016/j.engappai.2014.11.009
10.1080/01690969108406936
10.1016/j.jbi.2013.08.008
10.1007/978-3-031-02156-5
10.1016/j.engappai.2019.07.010
10.1093/bioinformatics/btx238
10.18653/v1/K15-1026
10.1093/bioinformatics/btq384
10.1109/ICDMA.2011.50
10.1109/ICMLC.2007.4370741
10.1016/j.dib.2019.104432
10.3115/981732.981751
10.1016/j.jbi.2017.03.007
10.1186/1471-2105-13-261
10.1007/3-540-44676-1_3
10.1007/3-540-45483-7_8
10.1093/bioinformatics/btm195
10.1016/j.jbi.2004.02.001
10.1093/bioinformatics/btm291
10.1186/1471-2105-6-201
10.1145/1099554.1099658
10.1109/ISKE.2008.4730937
10.1109/TCBB.2005.50
10.1007/978-1-4939-3743-1_12
10.1101/gr.1910904
10.1016/j.artint.2016.07.005
10.1007/s10489-015-0739-x
10.1016/j.jbi.2011.03.013
10.1016/j.jbi.2010.09.002
10.1093/bioinformatics/18.suppl_2.S110
10.1145/500737.500762
10.1109/21.24528
10.1109/CLOUDCOM-ASIA.2013.25
10.1038/nbt1346
10.1093/bioinformatics/bts581
10.1093/nar/gkh061
10.1007/s10115-013-0672-4
10.1093/bib/bbr066
10.3115/1072228.1072318
ContentType Journal Article
Copyright 2021. The Author(s).
COPYRIGHT 2022 BioMed Central Ltd.
2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2021
Copyright_xml – notice: 2021. The Author(s).
– notice: COPYRIGHT 2022 BioMed Central Ltd.
– notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1186/s12859-021-04539-0
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database


MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 31
ExternalDocumentID oai_doaj_org_article_10377d464e4a499b8070e7b3b3f3286f
PMC8734250
A693695427
34991460
10_1186_s12859_021_04539_0
Genre Journal Article
GeographicLocations Spain
GeographicLocations_xml – name: Spain
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
-A0
3V.
ACRMQ
ADINQ
C24
CGR
CUY
CVF
ECM
EIF
M0N
NPM
PMFND
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c597t-6e3ea6c9ca41fd482cc2b262b7df6e618849b2e5d2c899e4fa1b9c23f1c0b1403
IEDL.DBID M48
ISSN 1471-2105
IngestDate Wed Aug 27 01:31:30 EDT 2025
Thu Aug 21 18:16:50 EDT 2025
Thu Jul 10 18:02:27 EDT 2025
Fri Jul 25 19:05:03 EDT 2025
Tue Jun 17 21:43:23 EDT 2025
Tue Jun 10 20:22:59 EDT 2025
Fri Jun 27 04:19:56 EDT 2025
Wed Feb 19 02:26:17 EST 2025
Tue Jul 01 03:38:33 EDT 2025
Thu Apr 24 23:12:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Gene ontology
HESML
Information content models
MeSH
Semantic measures library
Ontology-based semantic similarity measures
WordNet
SNOMED-CT
Language English
License 2021. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c597t-6e3ea6c9ca41fd482cc2b262b7df6e618849b2e5d2c899e4fa1b9c23f1c0b1403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2522-4222
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-021-04539-0
PMID 34991460
PQID 2620938961
PQPubID 44065
PageCount 31
ParticipantIDs doaj_primary_oai_doaj_org_article_10377d464e4a499b8070e7b3b3f3286f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8734250
proquest_miscellaneous_2618230809
proquest_journals_2620938961
gale_infotracmisc_A693695427
gale_infotracacademiconefile_A693695427
gale_incontextgauss_ISR_A693695427
pubmed_primary_34991460
crossref_citationtrail_10_1186_s12859_021_04539_0
crossref_primary_10_1186_s12859_021_04539_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-06
PublicationDateYYYYMMDD 2022-01-06
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-06
  day: 06
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2022
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References T Pedersen (4539_CR44) 2007; 40
4539_CR61
J Wieting (4539_CR132) 2015; 3
4539_CR63
Z Du (4539_CR24) 2009; 37
4539_CR65
M Elkin (4539_CR68) 2016; 12
JJ Lastra-Díaz (4539_CR57) 2017; 66
S Harispe (4539_CR36) 2015
4539_CR69
M Mistry (4539_CR107) 2008; 9
JJ Lastra-Díaz (4539_CR59) 2019; 26
D Sánchez (4539_CR114) 2011; 24
T Mabotuwana (4539_CR49) 2013; 46
4539_CR70
4539_CR73
4539_CR72
S Pakhomov (4539_CR37) 2010; 2010
4539_CR75
4539_CR74
4539_CR77
4539_CR76
4539_CR79
EW Dijkstra (4539_CR64) 1959; 1
O Bodenreider (4539_CR54) 2004; 32
S Zhu (4539_CR50) 2009; 25
JB Gao (4539_CR93) 2015; 39
GK Mazandu (4539_CR10) 2016; 18
H Yu (4539_CR19) 2007; 23
A Schlicker (4539_CR26) 2010; 38
A Schlicker (4539_CR15) 2010; 26
4539_CR82
4539_CR84
4539_CR86
Y Cai (4539_CR94) 2017; 51
X Ji (4539_CR52) 2017; 69
4539_CR87
4539_CR89
VN Garla (4539_CR91) 2012; 13
PW Lord (4539_CR3) 2003; 19
R Rada (4539_CR71) 1989; 19
GA Miller (4539_CR55) 1995; 38
Y Li (4539_CR78) 2003; 15
L Meng (4539_CR96) 2014; 7
C Pesquita (4539_CR8) 2009; 5
L Meng (4539_CR116) 2012; 5
4539_CR90
K Blagec (4539_CR40) 2019; 20
4539_CR92
4539_CR95
GA Miller (4539_CR137) 1991; 6
A Lara-Clares (4539_CR41) 2021; 16
4539_CR99
D-H Le (4539_CR102) 2020; 15
4539_CR13
4539_CR12
GB Melton (4539_CR47) 2006; 39
4539_CR17
MA Hadj Taieb (4539_CR83) 2014; 36
D Sánchez (4539_CR46) 2011; 44
Y Tao (4539_CR20) 2007; 23
JE Caviedes (4539_CR43) 2004; 37
M Batet (4539_CR45) 2011; 44
D Chicco (4539_CR30) 2015; 12
M Ashburner (4539_CR1) 2000; 25
D Sánchez (4539_CR115) 2012; 8
J Freudenberg (4539_CR4) 2002; 18
P Resnik (4539_CR108) 1999; 11
PH Guzzi (4539_CR9) 2012; 13
4539_CR22
4539_CR113
4539_CR112
4539_CR27
4539_CR111
4539_CR110
I Althöfer (4539_CR67) 1993; 9
A Schlicker (4539_CR88) 2006; 7
M Ben Aouicha (4539_CR121) 2016; 45
4539_CR119
G Yu (4539_CR32) 2010; 26
P Resnik (4539_CR85) 1995; 1
P Shannon (4539_CR103) 2003; 13
4539_CR117
S Harispe (4539_CR34) 2014; 30
C Pesquita (4539_CR11) 2017
D Peleg (4539_CR66) 1989; 13
K Ovaska (4539_CR101) 2008; 1
J Pennington (4539_CR129) 2014; 12
4539_CR105
4539_CR104
M Sarrouti (4539_CR51) 2017; 68
4539_CR100
GK Mazandu (4539_CR28) 2013; 14
4539_CR6
4539_CR109
C Sommer (4539_CR122) 2014; 46
4539_CR2
G Sogancioglu (4539_CR39) 2017; 33
A Schlicker (4539_CR25) 2008; 36
4539_CR130
JJ Lastra-Díaz (4539_CR35) 2015; 46
BT McInnes (4539_CR38) 2015; 54
R Kyogoku (4539_CR81) 2011; 12 Suppl 1
D Börnigen (4539_CR16) 2012; 28
4539_CR136
BT McInnes (4539_CR42) 2013; 46
4539_CR135
F Hill (4539_CR138) 2015; 41
4539_CR134
EA Adie (4539_CR14) 2006; 22
JJ Lastra-Díaz (4539_CR62) 2015; 89
4539_CR133
J Camacho-Collados (4539_CR126) 2016; 240
JL Sevilla (4539_CR5) 2005; 2
4539_CR131
H Fröhlich (4539_CR31) 2007; 8
JJ Lastra-Díaz (4539_CR60) 2021; 96
N Mrkšić (4539_CR127) 2017; 5
VN Garla (4539_CR48) 2012; 45
M Ben Aouicha (4539_CR120) 2016; 59
4539_CR139
W Ali (4539_CR18) 2009; 25
HK Lee (4539_CR106) 2004; 14
X Guo (4539_CR21) 2006; 22
H Al-Mubaid (4539_CR80) 2009; 39
GK Mazandu (4539_CR33) 2016; 32
4539_CR53
H Caniza (4539_CR29) 2014; 30
4539_CR56
4539_CR125
4539_CR124
4539_CR123
FM Couto (4539_CR7) 2007; 61
H Liu (4539_CR98) 2005; 6
JJ Lastra-Díaz (4539_CR58) 2019; 85
D Sánchez (4539_CR97) 2012; 39
4539_CR128
JZ Wang (4539_CR23) 2007; 23
MA Hadj Taieb (4539_CR118) 2014; 41
References_xml – ident: 4539_CR110
– volume: 5
  start-page: 81
  issue: 3
  year: 2012
  ident: 4539_CR116
  publication-title: Int J Grid Distrib Comput
– ident: 4539_CR27
– volume: 12
  start-page: 1532
  year: 2014
  ident: 4539_CR129
  publication-title: Proc EMNLP
– volume: 7
  start-page: 302
  year: 2006
  ident: 4539_CR88
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-7-302
– ident: 4539_CR104
– volume: 15
  start-page: 871
  issue: 4
  year: 2003
  ident: 4539_CR78
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2003.1209005
– volume: 40
  start-page: 288
  issue: 3
  year: 2007
  ident: 4539_CR44
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2006.06.004
– volume: 89
  start-page: 509
  year: 2015
  ident: 4539_CR62
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.08.019
– volume: 30
  start-page: 2235
  issue: 15
  year: 2014
  ident: 4539_CR29
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu144
– volume: 38
  start-page: 39
  issue: 11
  year: 1995
  ident: 4539_CR55
  publication-title: Commun ACM
  doi: 10.1145/219717.219748
– volume: 13
  start-page: 2498
  issue: 11
  year: 2003
  ident: 4539_CR103
  publication-title: Genome Res
  doi: 10.1101/gr.1239303
– volume: 32
  start-page: 477
  issue: 3
  year: 2016
  ident: 4539_CR33
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv590
– volume: 12
  start-page: 1
  issue: 3
  year: 2016
  ident: 4539_CR68
  publication-title: ACM Trans Algorithms
  doi: 10.1145/2836167
– ident: 4539_CR69
  doi: 10.1007/3-540-45715-1_11
– volume: 9
  start-page: 81
  issue: 1
  year: 1993
  ident: 4539_CR67
  publication-title: Discrete Comput Geom
  doi: 10.1007/BF02189308
– volume: 14
  start-page: 284
  year: 2013
  ident: 4539_CR28
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-14-284
– ident: 4539_CR89
  doi: 10.1007/978-3-540-88873-4_25
– volume: 19
  start-page: 1275
  issue: 10
  year: 2003
  ident: 4539_CR3
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg153
– volume: 25
  start-page: 3166
  issue: 23
  year: 2009
  ident: 4539_CR18
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp569
– volume: 39
  start-page: 389
  issue: 4
  year: 2009
  ident: 4539_CR80
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMCC.2009.2020689
– ident: 4539_CR139
– volume: 46
  start-page: 1
  issue: 4
  year: 2014
  ident: 4539_CR122
  publication-title: ACM Comput Surv
  doi: 10.1145/2530531
– volume: 15
  start-page: 0235670
  issue: 7
  year: 2020
  ident: 4539_CR102
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0235670
– ident: 4539_CR135
  doi: 10.1007/s10579-018-9431-1
– volume: 12
  start-page: 837
  issue: 4
  year: 2015
  ident: 4539_CR30
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2014.2382127
– volume: 59
  start-page: 258
  year: 2016
  ident: 4539_CR120
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2015.12.007
– volume: 3
  start-page: 345
  year: 2015
  ident: 4539_CR132
  publication-title: Trans ACL
– volume: 20
  start-page: 178
  year: 2019
  ident: 4539_CR40
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-019-2789-2
– ident: 4539_CR112
  doi: 10.1109/FGCNS.2008.16
– volume: 39
  start-page: 7718
  issue: 9
  year: 2012
  ident: 4539_CR97
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.01.082
– volume: 9
  start-page: 327
  year: 2008
  ident: 4539_CR107
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-9-327
– volume: 41
  start-page: 665
  issue: 4
  year: 2015
  ident: 4539_CR138
  publication-title: Comput Linguist
  doi: 10.1162/COLI_a_00237
– volume: 24
  start-page: 297
  issue: 2
  year: 2011
  ident: 4539_CR114
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2010.10.001
– ident: 4539_CR65
  doi: 10.21950/OTDA4Z
– ident: 4539_CR90
  doi: 10.1007/978-3-642-17746-0_39
– volume: 68
  start-page: 96
  year: 2017
  ident: 4539_CR51
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2017.03.001
– ident: 4539_CR12
– volume: 30
  start-page: 740
  issue: 5
  year: 2014
  ident: 4539_CR34
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt581
– ident: 4539_CR2
  doi: 10.1093/nar/gky1055
– volume: 37
  start-page: 345
  issue: 2
  year: 2009
  ident: 4539_CR24
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp463
– volume: 1
  start-page: 448
  year: 1995
  ident: 4539_CR85
  publication-title: Proc IJCAI
– ident: 4539_CR99
– volume: 51
  start-page: 1
  year: 2017
  ident: 4539_CR94
  publication-title: J Intell Inf Syst
– ident: 4539_CR109
– ident: 4539_CR128
  doi: 10.1162/tacl_a_00051
– volume: 8
  start-page: 166
  year: 2007
  ident: 4539_CR31
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-8-166
– ident: 4539_CR13
  doi: 10.1093/database/baaa078
– volume: 46
  start-page: 857
  issue: 5
  year: 2013
  ident: 4539_CR49
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2013.06.013
– volume: 61
  start-page: 137
  issue: 1
  year: 2007
  ident: 4539_CR7
  publication-title: Data Knowl Eng
  doi: 10.1016/j.datak.2006.05.003
– volume: 45
  start-page: 992
  issue: 5
  year: 2012
  ident: 4539_CR48
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2012.04.010
– ident: 4539_CR73
  doi: 10.7551/mitpress/7287.003.0018
– volume: 11
  start-page: 95
  year: 1999
  ident: 4539_CR108
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.514
– volume: 13
  start-page: 99
  issue: 1
  year: 1989
  ident: 4539_CR66
  publication-title: J Graph Theory
  doi: 10.1002/jgt.3190130114
– ident: 4539_CR123
– volume: 66
  start-page: 97
  year: 2017
  ident: 4539_CR57
  publication-title: Inf Syst
  doi: 10.1016/j.is.2017.02.002
– volume: 36
  start-page: 238
  year: 2014
  ident: 4539_CR83
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2014.07.015
– ident: 4539_CR63
  doi: 10.21950/1RRAWJ
– ident: 4539_CR75
– volume: 22
  start-page: 967
  issue: 8
  year: 2006
  ident: 4539_CR21
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl042
– volume: 38
  start-page: 244
  issue: Database issue
  year: 2010
  ident: 4539_CR26
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp979
– volume: 12 Suppl 1
  start-page: 42
  year: 2011
  ident: 4539_CR81
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-12-S1-S42
– ident: 4539_CR136
  doi: 10.1093/bioinformatics/btz070
– volume: 5
  start-page: 1000443
  issue: 7
  year: 2009
  ident: 4539_CR8
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000443
– volume: 26
  start-page: 976
  issue: 7
  year: 2010
  ident: 4539_CR32
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq064
– volume: 54
  start-page: 329
  year: 2015
  ident: 4539_CR38
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2014.11.014
– volume: 23
  start-page: 1274
  issue: 10
  year: 2007
  ident: 4539_CR23
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm087
– volume: 25
  start-page: 25
  issue: 1
  year: 2000
  ident: 4539_CR1
  publication-title: Nat Genet
  doi: 10.1038/75556
– volume: 36
  start-page: 434
  issue: Database issue
  year: 2008
  ident: 4539_CR25
  publication-title: Nucleic Acids Res
– ident: 4539_CR61
– volume: 1
  start-page: 269
  issue: 1
  year: 1959
  ident: 4539_CR64
  publication-title: Numer Math
  doi: 10.1007/BF01386390
– ident: 4539_CR133
  doi: 10.18653/v1/N16-1018
– volume: 96
  start-page: 101636
  year: 2021
  ident: 4539_CR60
  publication-title: Inf Syst
  doi: 10.1016/j.is.2020.101636
– ident: 4539_CR134
  doi: 10.3115/v1/N15-1165
– volume: 22
  start-page: 773
  issue: 6
  year: 2006
  ident: 4539_CR14
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btk031
– volume: 25
  start-page: 1944
  issue: 15
  year: 2009
  ident: 4539_CR50
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp338
– ident: 4539_CR119
  doi: 10.1109/TENCON.2015.7372780
– ident: 4539_CR111
– volume: 16
  start-page: 0248663
  issue: 3
  year: 2021
  ident: 4539_CR41
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0248663
– volume: 1
  start-page: 11
  issue: 1
  year: 2008
  ident: 4539_CR101
  publication-title: BioData Min
  doi: 10.1186/1756-0381-1-11
– ident: 4539_CR113
  doi: 10.1109/IMCSIT.2008.4747267
– volume: 46
  start-page: 140
  year: 2015
  ident: 4539_CR35
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2015.09.006
– ident: 4539_CR125
  doi: 10.3115/1609067.1609070
– volume: 8
  start-page: 34
  issue: 2
  year: 2012
  ident: 4539_CR115
  publication-title: Int J Seman Web Inf Syst (ISWIS)
  doi: 10.4018/jswis.2012040102
– ident: 4539_CR86
– volume: 39
  start-page: 697
  issue: 6
  year: 2006
  ident: 4539_CR47
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2006.01.004
– volume: 2010
  start-page: 572
  year: 2010
  ident: 4539_CR37
  publication-title: Proc Annu Symp AMIA
– volume: 39
  start-page: 80
  year: 2015
  ident: 4539_CR93
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2014.11.009
– volume: 6
  start-page: 1
  issue: 1
  year: 1991
  ident: 4539_CR137
  publication-title: Lang Cognit Process
  doi: 10.1080/01690969108406936
– ident: 4539_CR17
– ident: 4539_CR100
– volume: 46
  start-page: 1116
  issue: 6
  year: 2013
  ident: 4539_CR42
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2013.08.008
– volume-title: Semantic similarity from natural language and ontology analysis. Synthesis lectures on HLT
  year: 2015
  ident: 4539_CR36
  doi: 10.1007/978-3-031-02156-5
– volume: 85
  start-page: 645
  year: 2019
  ident: 4539_CR58
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2019.07.010
– volume: 33
  start-page: 49
  issue: 14
  year: 2017
  ident: 4539_CR39
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx238
– ident: 4539_CR131
  doi: 10.18653/v1/K15-1026
– volume: 18
  start-page: 886
  issue: 5
  year: 2016
  ident: 4539_CR10
  publication-title: Brief Bioinform
– volume: 26
  start-page: 561
  issue: 18
  year: 2010
  ident: 4539_CR15
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq384
– ident: 4539_CR82
  doi: 10.1109/ICDMA.2011.50
– ident: 4539_CR79
  doi: 10.1109/ICMLC.2007.4370741
– volume: 26
  start-page: 104432
  year: 2019
  ident: 4539_CR59
  publication-title: Data Brief
  doi: 10.1016/j.dib.2019.104432
– ident: 4539_CR72
  doi: 10.3115/981732.981751
– volume: 5
  start-page: 309
  year: 2017
  ident: 4539_CR127
  publication-title: Trans ACL
– volume: 69
  start-page: 33
  year: 2017
  ident: 4539_CR52
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2017.03.007
– volume: 13
  start-page: 261
  year: 2012
  ident: 4539_CR91
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-13-261
– ident: 4539_CR124
  doi: 10.1007/3-540-44676-1_3
– ident: 4539_CR76
  doi: 10.1007/3-540-45483-7_8
– volume: 23
  start-page: 529
  issue: 13
  year: 2007
  ident: 4539_CR20
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm195
– ident: 4539_CR87
– volume: 37
  start-page: 77
  issue: 2
  year: 2004
  ident: 4539_CR43
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2004.02.001
– volume: 23
  start-page: 2163
  issue: 16
  year: 2007
  ident: 4539_CR19
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm291
– volume: 6
  start-page: 201
  year: 2005
  ident: 4539_CR98
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-6-201
– ident: 4539_CR92
– volume: 7
  start-page: 183
  issue: 3
  year: 2014
  ident: 4539_CR96
  publication-title: Int J Fut Gener Commun Netw
– ident: 4539_CR53
– ident: 4539_CR6
  doi: 10.1145/1099554.1099658
– ident: 4539_CR22
– ident: 4539_CR95
  doi: 10.1109/ISKE.2008.4730937
– volume: 2
  start-page: 330
  issue: 4
  year: 2005
  ident: 4539_CR5
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2005.50
– start-page: 161
  volume-title: Chap. 12. The gene ontology handbook. methods in molecular biology
  year: 2017
  ident: 4539_CR11
  doi: 10.1007/978-1-4939-3743-1_12
– ident: 4539_CR105
– volume: 14
  start-page: 1085
  issue: 6
  year: 2004
  ident: 4539_CR106
  publication-title: Genome Res
  doi: 10.1101/gr.1910904
– ident: 4539_CR130
– volume: 240
  start-page: 36
  year: 2016
  ident: 4539_CR126
  publication-title: Artif Intell
  doi: 10.1016/j.artint.2016.07.005
– volume: 45
  start-page: 1
  year: 2016
  ident: 4539_CR121
  publication-title: Appl Intell
  doi: 10.1007/s10489-015-0739-x
– volume: 44
  start-page: 749
  issue: 5
  year: 2011
  ident: 4539_CR46
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2011.03.013
– volume: 44
  start-page: 118
  issue: 1
  year: 2011
  ident: 4539_CR45
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2010.09.002
– ident: 4539_CR84
– volume: 18
  start-page: 110
  issue: Suppl 2
  year: 2002
  ident: 4539_CR4
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.suppl_2.S110
– ident: 4539_CR74
  doi: 10.1145/500737.500762
– volume: 19
  start-page: 17
  issue: 1
  year: 1989
  ident: 4539_CR71
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/21.24528
– ident: 4539_CR117
  doi: 10.1109/CLOUDCOM-ASIA.2013.25
– ident: 4539_CR56
  doi: 10.1038/nbt1346
– volume: 28
  start-page: 3081
  issue: 23
  year: 2012
  ident: 4539_CR16
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts581
– volume: 32
  start-page: 267
  issue: Database issue
  year: 2004
  ident: 4539_CR54
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh061
– volume: 41
  start-page: 467
  issue: 2
  year: 2014
  ident: 4539_CR118
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-013-0672-4
– ident: 4539_CR70
– volume: 13
  start-page: 569
  issue: 5
  year: 2012
  ident: 4539_CR9
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbr066
– ident: 4539_CR77
  doi: 10.3115/1072228.1072318
SSID ssj0017805
Score 2.399429
Snippet Ontology-based semantic similarity measures based on SNOMED-CT, MeSH, and Gene Ontology are being extensively used in many applications in biomedical text...
Background Ontology-based semantic similarity measures based on SNOMED-CT, MeSH, and Gene Ontology are being extensively used in many applications in...
Abstract Background Ontology-based semantic similarity measures based on SNOMED-CT, MeSH, and Gene Ontology are being extensively used in many applications in...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 23
SubjectTerms Algorithms
Analysis
Approximation
Benchmarks
Biological Ontologies
Biomedical engineering
Biomedical materials
Computing time
Data libraries
Data mining
Domains
Gene expression
Genetic aspects
Genomics
Graph representations
Graph theory
Graphical representations
HESML
Hypotheses
Information content models
Java
Knowledge representation
Libraries
Mathematical analysis
Medical Subject Headings
Medical Subject Headings-MeSH
MeSH
Methods
Ontology
Ontology-based semantic similarity measures
Polls & surveys
Proteins
Quality management
Real time
Relational data bases
Reproducibility
Reproducibility of Results
Semantic measures library
Semantic networks
Semantics
Shortest-path problems
Similarity
Similarity measures
SNOMED-CT
Software
Software upgrading
Systematized Nomenclature of Medicine
Taxonomy
Time measurement
Word sense disambiguation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kIPgiav2I1rKK4IOEZj9us_GtlZZTrA_WQt-W3cmuHtzlSnMn9L93JskdFwT74tuRnYTbmcnM7GTmN4y9q0EDnnwgT8ZArjHAyKuUUq6tCT74CDpRQv_8m5le6i9Xk6udUV9UE9bDA_eMO6I-trLWRkftMToPFnU0lkEFlZS0JpH1RZ-3OUwN3w8IqX_TImPNUSsIpy2ncgQMYRT-GrmhDq3_b5u845TGBZM7HujsEXs4hI78uP_Lj9m92Dxh9_thkrf7zE9PL86_fuSeYxw4z2loPG_jAjk3A77oU4EtH7I2HGNVjrEf79vvSVK8Xi78rOGUme0ect2Bwc7CHJ-zvvkdb5-yy7PTH5-m-TBAIQc8J6xyE1X0BirwWqRaWwkggzQylHUy0QhrdRVknNQS8NgVdfIiVCBVElAEAvJ7xvaaZRNfMA6lglJGG4saAyhTeBv8BA1AEEpHL8qMiQ0_HQzo4jTkYu66U4Y1rpeBQxm4TgauyNiH7T3XPbbGP6lPSExbSsLF7i6gtrhBW9xd2pKxtyRkR8gXDZXW_PTrtnWfL767Y0OzDSda4l7eD0RpiXsAP3QqICcILGtEeTCixFcTxssbXXKDaWgdTQCoMEw0ImNvtst0J5W7NXG5JhpBH0BtUWXsea96230r3Be6N-RHOVLKEWPGK83sVwccbkuFJrp4-T84-Yo9kNQJQtkoc8D2Vjfr-Brjs1U47F7FP-vfNQ0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgCIkXxDfZBjIIiQdkLU5cx-EFDbRSEOOBMWlvlu3Yo1KblKZF2n_PXeKGRUh7q-JLVN_Z9-Xz7wh5UznhIPJxLEjpmAAHg5UhBCaUtMYa70TAhP7pdzk7F18vJhcx4dbGssqdTuwUddU4zJEfIXB6CdZV8g-r3wy7RuHpamyhcZvc4WBpsKRLTT8PpwiI17-7KKPkUcsRrY1hUQI4Mjn8GhmjDrP_f818zTSNyyav2aHpA3I_OpD0uJf4Q3LL14_I3b6l5NVjYmYnZ6ff3lNDwRtcMGwdT1u_BP7NHV32CcGWxtwNBY-VggdI-0v4KC9aNUszrynmZ7uPrDpI2LldwHe26z_-6gk5n578_DRjsY0CcxAtbJj0uTfSlc4IHiqhMucyC-y0RRWkl1wpUdrMT6rMQfDlRTDcli7LA3epRTi_p2Svbmr_nFBX5K7IvPJpBW6UTI2yZgJqwPJceMOLhPAdP7WLGOPY6mKhu1hDSd3LQIMMdCcDnSbk3fDOqkfYuJH6I4ppoER07O5Bs77UcbNpvPtYVEIKLwxEdFaBXvOFzW0e8kzJkJDXKGSN-Bc1Fthcmm3b6i9nP_SxxA6HE5HBXN5GotDAHJyJ9xWAEwiZNaI8HFHCBnXj4d1a0lFBtPrfck7Iq2EY38Sit9o3W6TheAyq0jIhz_qlN8w7h3mBkQN-FKNFOWLMeKSe_-rgw1WRg6JO92_-WwfkXoY3PTDbJA_J3ma99S_A_9rYl90m-wuc9C2N
  priority: 102
  providerName: ProQuest
Title HESML: a real-time semantic measures library for the biomedical domain with a reproducible survey
URI https://www.ncbi.nlm.nih.gov/pubmed/34991460
https://www.proquest.com/docview/2620938961
https://www.proquest.com/docview/2618230809
https://pubmed.ncbi.nlm.nih.gov/PMC8734250
https://doaj.org/article/10377d464e4a499b8070e7b3b3f3286f
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3rixMxEA_3QPCL-L7qWaIIfpDVfaRJVhDpSWst9pCrhX4LSTY5C-327LZi_3tndrf1Fo_7sl2aybKZRzIzm_yGkNeZZRYiHxt4zm3AwMEIUu99wCQ32mhnmceE_uicDyZsOO1MD8iu3FHNwOLG0A7rSU1W83d_fm0_gcF_LA1e8vdFhChsAW42AAclgbtDcgwrk8CKBiP276sC4vfvDs7c2K-xOJUY_v_P1NeWquY2ymvrUv8-uVc7lLRbacADcuDyh-ROVWJy-4joQW88-vaBagre4TzAUvK0cAvg58zSRZUgLGidy6HgwVLwCGl1KB_lR7PlQs9yivna8iFXJUTszMzhOZvVb7d9TCb93o_Pg6AuqxBYiB7WAXeJ09ymVrPIZ0zG1sYm5rERmeeOR1Ky1MSuk8UWgjHHvI5MauPERzY0CO_3hBzly9ydEGpFYkXspAszcKt4qKXRHZgWTJQwpyPRItGOn8rWmONY-mKuythDclXJQIEMVCkDFbbI232fqwpx41bqMxTTnhLRsss_lqtLVRufwrOQImOcOaYhwjMS5jknTGISn8SS-xZ5hUJWiIeR44abS70pCvV1fKG6HCsedlgMY3lTE_kljMHq-vwCcAIhtBqUpw1KMFjbbN7pktrpu8K6ACk4jzxqkZf7ZuyJm-Byt9wgTYSfRWWYtsjTSvX2405gXLDoAT9EQykbjGm25LOfJZy4FAlM3OGz21_rObkb48kPzD7xU3K0Xm3cC_DH1qZNDsVUwFX2v7TJcbc7HA_h96x3_v2iXeY42qUZ_gUZhzag
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BpDCF4Q3wQGGATiAUXLh-s4SAgNWGlZuwe2SXvzbMceldqkNC2of4rfyF0-yiKkve0tii9WfHe-L_vuCHmdGWbA8zG-49z4DAwMP3XO-UxwrbSyhjkM6I8P-eCEfTvtnW6RP20uDF6rbGViJaizwmCMfBcLp6egXXn4cf7Tx65ReLrattCo2eLArn-Dy1Z-GH4B-r6Jov7-8eeB33QV8A0Yz0uf29gqblKjWOgyJiJjIg2z6yRz3PJQCJbqyPayyIAvYplToU5NFLvQBBqr28G818h1FoMmx8z0_tfNqQX2B2gTcwTfLUOsDufjJQgwnGJ46ii_qkfA_5rggirsXtO8oPf6d8jtxmClezWH3SVbNr9HbtQtLNf3iRrsH41H76miYH1OfWxVT0s7A3pNDJ3VAciSNrEiChYyBYuT1kn_yB80K2ZqklOMB1eTzKsStBM9hXlWi192_YCcXAmCH5LtvMjtY0JNEpskssIGGZhtPFBCqx6IHR3GzKow8UjY4lOapqY5ttaYysq3EVzWNJBAA1nRQAYeebf5Zl5X9LgU-hOSaQOJ1birF8XiXDabW2KuZZIxzixT4EFqAXLUJjrWsYsjwZ1HXiGRJdbbyPFCz7lalaUcHn2Xexw7KvZYBGt52wC5AtZgVJMfAZjAEl0dyJ0OJAgE0x1ueUk2AqmU_7aPR15uhvFLvGSX22KFMCEeu4og9cijmvU2645hXaBUAR9Jhyk7iOmO5JMfVblykcSgGIInl__WC3JzcDweydHw8OApuRVhlglGuvgO2V4uVvYZ2H5L_bzacJScXfUO_wt17Wtn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HESML%3A+a+real-time+semantic+measures+library+for+the+biomedical+domain+with+a+reproducible+survey&rft.jtitle=BMC+bioinformatics&rft.au=Lastra-D%C3%ADaz%2C+Juan+J&rft.au=Lara-Clares%2C+Alicia&rft.au=Garcia-Serrano%2C+Ana&rft.date=2022-01-06&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=23&rft.spage=1&rft_id=info:doi/10.1186%2Fs12859-021-04539-0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon