Surface chemistry governs the sub-organ transfer, clearance and toxicity of functional gold nanoparticles in the liver and kidney
To effectively applied nanomaterials (NMs) in medicine, one of the top priorities is to address a better understanding of the possible sub-organ transfer, clearance routes, and potential toxicity of the NMs in the liver and kidney. Here we explored how the surface chemistry of polyethylene glycol (P...
Saved in:
Published in | Journal of nanobiotechnology Vol. 18; no. 1; pp. 45 - 16 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
14.03.2020
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To effectively applied nanomaterials (NMs) in medicine, one of the top priorities is to address a better understanding of the possible sub-organ transfer, clearance routes, and potential toxicity of the NMs in the liver and kidney.
Here we explored how the surface chemistry of polyethylene glycol (PEG), chitosan (CS), and polyethylenimine (PEI) capped gold nanoparticles (GNPs) governs their sub-organ biodistribution, transfer, and clearance profiles in the liver and kidney after intravenous injection in mice. The PEG-GNPs maintained dispersion properties in vivo, facilitating passage through the liver sinusoidal endothelium and Disse space, and were captured by hepatocytes and eliminated via the hepatobiliary route. While, the agglomeration/aggregation of CS-GNPs and PEI-GNPs in hepatic Kupffer and endothelial cells led to their long-term accumulation, impeding their elimination. The gene microarray analysis shows that the accumulation of CS-GNPs and PEI-GNPs in the liver induced obvious down-regulation of Cyp4a or Cyp2b related genes, suggesting CS-GNP and PEI-GNP treatment impacted metabolic processes, while the PEI-GNP treatment is related with immune responses.
This study demonstrates that manipulation of nanoparticle surface chemistry can help NPs selectively access distinct cell types and elimination pathways, which help to clinical potential of non-biodegradable NPs. |
---|---|
AbstractList | Background To effectively applied nanomaterials (NMs) in medicine, one of the top priorities is to address a better understanding of the possible sub-organ transfer, clearance routes, and potential toxicity of the NMs in the liver and kidney. Results Here we explored how the surface chemistry of polyethylene glycol (PEG), chitosan (CS), and polyethylenimine (PEI) capped gold nanoparticles (GNPs) governs their sub-organ biodistribution, transfer, and clearance profiles in the liver and kidney after intravenous injection in mice. The PEG-GNPs maintained dispersion properties in vivo, facilitating passage through the liver sinusoidal endothelium and Disse space, and were captured by hepatocytes and eliminated via the hepatobiliary route. While, the agglomeration/aggregation of CS-GNPs and PEI-GNPs in hepatic Kupffer and endothelial cells led to their long-term accumulation, impeding their elimination. The gene microarray analysis shows that the accumulation of CS-GNPs and PEI-GNPs in the liver induced obvious down-regulation of Cyp4a or Cyp2b related genes, suggesting CS-GNP and PEI-GNP treatment impacted metabolic processes, while the PEI-GNP treatment is related with immune responses. Conclusions This study demonstrates that manipulation of nanoparticle surface chemistry can help NPs selectively access distinct cell types and elimination pathways, which help to clinical potential of non-biodegradable NPs. To effectively applied nanomaterials (NMs) in medicine, one of the top priorities is to address a better understanding of the possible sub-organ transfer, clearance routes, and potential toxicity of the NMs in the liver and kidney. Here we explored how the surface chemistry of polyethylene glycol (PEG), chitosan (CS), and polyethylenimine (PEI) capped gold nanoparticles (GNPs) governs their sub-organ biodistribution, transfer, and clearance profiles in the liver and kidney after intravenous injection in mice. The PEG-GNPs maintained dispersion properties in vivo, facilitating passage through the liver sinusoidal endothelium and Disse space, and were captured by hepatocytes and eliminated via the hepatobiliary route. While, the agglomeration/aggregation of CS-GNPs and PEI-GNPs in hepatic Kupffer and endothelial cells led to their long-term accumulation, impeding their elimination. The gene microarray analysis shows that the accumulation of CS-GNPs and PEI-GNPs in the liver induced obvious down-regulation of Cyp4a or Cyp2b related genes, suggesting CS-GNP and PEI-GNP treatment impacted metabolic processes, while the PEI-GNP treatment is related with immune responses. This study demonstrates that manipulation of nanoparticle surface chemistry can help NPs selectively access distinct cell types and elimination pathways, which help to clinical potential of non-biodegradable NPs. Abstract Background To effectively applied nanomaterials (NMs) in medicine, one of the top priorities is to address a better understanding of the possible sub-organ transfer, clearance routes, and potential toxicity of the NMs in the liver and kidney. Results Here we explored how the surface chemistry of polyethylene glycol (PEG), chitosan (CS), and polyethylenimine (PEI) capped gold nanoparticles (GNPs) governs their sub-organ biodistribution, transfer, and clearance profiles in the liver and kidney after intravenous injection in mice. The PEG-GNPs maintained dispersion properties in vivo, facilitating passage through the liver sinusoidal endothelium and Disse space, and were captured by hepatocytes and eliminated via the hepatobiliary route. While, the agglomeration/aggregation of CS-GNPs and PEI-GNPs in hepatic Kupffer and endothelial cells led to their long-term accumulation, impeding their elimination. The gene microarray analysis shows that the accumulation of CS-GNPs and PEI-GNPs in the liver induced obvious down-regulation of Cyp4a or Cyp2b related genes, suggesting CS-GNP and PEI-GNP treatment impacted metabolic processes, while the PEI-GNP treatment is related with immune responses. Conclusions This study demonstrates that manipulation of nanoparticle surface chemistry can help NPs selectively access distinct cell types and elimination pathways, which help to clinical potential of non-biodegradable NPs. Background To effectively applied nanomaterials (NMs) in medicine, one of the top priorities is to address a better understanding of the possible sub-organ transfer, clearance routes, and potential toxicity of the NMs in the liver and kidney. Results Here we explored how the surface chemistry of polyethylene glycol (PEG), chitosan (CS), and polyethylenimine (PEI) capped gold nanoparticles (GNPs) governs their sub-organ biodistribution, transfer, and clearance profiles in the liver and kidney after intravenous injection in mice. The PEG-GNPs maintained dispersion properties in vivo, facilitating passage through the liver sinusoidal endothelium and Disse space, and were captured by hepatocytes and eliminated via the hepatobiliary route. While, the agglomeration/aggregation of CS-GNPs and PEI-GNPs in hepatic Kupffer and endothelial cells led to their long-term accumulation, impeding their elimination. The gene microarray analysis shows that the accumulation of CS-GNPs and PEI-GNPs in the liver induced obvious down-regulation of Cyp4a or Cyp2b related genes, suggesting CS-GNP and PEI-GNP treatment impacted metabolic processes, while the PEI-GNP treatment is related with immune responses. Conclusions This study demonstrates that manipulation of nanoparticle surface chemistry can help NPs selectively access distinct cell types and elimination pathways, which help to clinical potential of non-biodegradable NPs. Keywords: Surface chemistry, Gold nanoparticles, Sub-organ transfer, Clearance To effectively applied nanomaterials (NMs) in medicine, one of the top priorities is to address a better understanding of the possible sub-organ transfer, clearance routes, and potential toxicity of the NMs in the liver and kidney.BACKGROUNDTo effectively applied nanomaterials (NMs) in medicine, one of the top priorities is to address a better understanding of the possible sub-organ transfer, clearance routes, and potential toxicity of the NMs in the liver and kidney.Here we explored how the surface chemistry of polyethylene glycol (PEG), chitosan (CS), and polyethylenimine (PEI) capped gold nanoparticles (GNPs) governs their sub-organ biodistribution, transfer, and clearance profiles in the liver and kidney after intravenous injection in mice. The PEG-GNPs maintained dispersion properties in vivo, facilitating passage through the liver sinusoidal endothelium and Disse space, and were captured by hepatocytes and eliminated via the hepatobiliary route. While, the agglomeration/aggregation of CS-GNPs and PEI-GNPs in hepatic Kupffer and endothelial cells led to their long-term accumulation, impeding their elimination. The gene microarray analysis shows that the accumulation of CS-GNPs and PEI-GNPs in the liver induced obvious down-regulation of Cyp4a or Cyp2b related genes, suggesting CS-GNP and PEI-GNP treatment impacted metabolic processes, while the PEI-GNP treatment is related with immune responses.RESULTSHere we explored how the surface chemistry of polyethylene glycol (PEG), chitosan (CS), and polyethylenimine (PEI) capped gold nanoparticles (GNPs) governs their sub-organ biodistribution, transfer, and clearance profiles in the liver and kidney after intravenous injection in mice. The PEG-GNPs maintained dispersion properties in vivo, facilitating passage through the liver sinusoidal endothelium and Disse space, and were captured by hepatocytes and eliminated via the hepatobiliary route. While, the agglomeration/aggregation of CS-GNPs and PEI-GNPs in hepatic Kupffer and endothelial cells led to their long-term accumulation, impeding their elimination. The gene microarray analysis shows that the accumulation of CS-GNPs and PEI-GNPs in the liver induced obvious down-regulation of Cyp4a or Cyp2b related genes, suggesting CS-GNP and PEI-GNP treatment impacted metabolic processes, while the PEI-GNP treatment is related with immune responses.This study demonstrates that manipulation of nanoparticle surface chemistry can help NPs selectively access distinct cell types and elimination pathways, which help to clinical potential of non-biodegradable NPs.CONCLUSIONSThis study demonstrates that manipulation of nanoparticle surface chemistry can help NPs selectively access distinct cell types and elimination pathways, which help to clinical potential of non-biodegradable NPs. To effectively applied nanomaterials (NMs) in medicine, one of the top priorities is to address a better understanding of the possible sub-organ transfer, clearance routes, and potential toxicity of the NMs in the liver and kidney. Here we explored how the surface chemistry of polyethylene glycol (PEG), chitosan (CS), and polyethylenimine (PEI) capped gold nanoparticles (GNPs) governs their sub-organ biodistribution, transfer, and clearance profiles in the liver and kidney after intravenous injection in mice. The PEG-GNPs maintained dispersion properties in vivo, facilitating passage through the liver sinusoidal endothelium and Disse space, and were captured by hepatocytes and eliminated via the hepatobiliary route. While, the agglomeration/aggregation of CS-GNPs and PEI-GNPs in hepatic Kupffer and endothelial cells led to their long-term accumulation, impeding their elimination. The gene microarray analysis shows that the accumulation of CS-GNPs and PEI-GNPs in the liver induced obvious down-regulation of Cyp4a or Cyp2b related genes, suggesting CS-GNP and PEI-GNP treatment impacted metabolic processes, while the PEI-GNP treatment is related with immune responses. This study demonstrates that manipulation of nanoparticle surface chemistry can help NPs selectively access distinct cell types and elimination pathways, which help to clinical potential of non-biodegradable NPs. |
ArticleNumber | 45 |
Audience | Academic |
Author | Chen, Wei Li, Xue Chen, Hanqing Yu, Hongyang Chai, Zhifang Wang, Bing Zhou, Shuang Wang, Meng Feng, Weiyue Chu, Runxuan Zheng, Lingna Liang, Shanshan |
Author_xml | – sequence: 1 givenname: Xue surname: Li fullname: Li, Xue – sequence: 2 givenname: Bing surname: Wang fullname: Wang, Bing – sequence: 3 givenname: Shuang surname: Zhou fullname: Zhou, Shuang – sequence: 4 givenname: Wei surname: Chen fullname: Chen, Wei – sequence: 5 givenname: Hanqing surname: Chen fullname: Chen, Hanqing – sequence: 6 givenname: Shanshan surname: Liang fullname: Liang, Shanshan – sequence: 7 givenname: Lingna surname: Zheng fullname: Zheng, Lingna – sequence: 8 givenname: Hongyang surname: Yu fullname: Yu, Hongyang – sequence: 9 givenname: Runxuan surname: Chu fullname: Chu, Runxuan – sequence: 10 givenname: Meng surname: Wang fullname: Wang, Meng – sequence: 11 givenname: Zhifang surname: Chai fullname: Chai, Zhifang – sequence: 12 givenname: Weiyue surname: Feng fullname: Feng, Weiyue |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32169073$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhSNURB_wB1igSGxAIsWPxI43SFXFY6RKSBTW1o1jz3jI2IOdoM6Sf87tzFA6FUJZJLG_c3J9ck6LoxCDLYrnlJxT2oq3mTLV0IowUhHSKFXRR8UJraWsOG2ao3vPx8VpzktCGKtZ_aQ45owKRSQ_KX5dT8mBsaVZ2JXPY9qU8_jTppDLcWHLPHVVTHMI5ZggZGfTm9IMFvAFNRD6cow33vhxU0ZXuimY0ccAA5oMfRkgxDWk0aMklz5sLQeP9lvpd98Hu3laPHYwZPtsfz8rvn14__XyU3X1-ePs8uKqMo2SY9Xg5B1re-g6kDg7E10LStXKtJQIJyVuCtYbBbxzqjO9FJyIxpGeMVObjp8Vs51vH2Gp18mvIG10BK-3C3hKvR9VE6e46IxtmLC1BQKWSUut7KiD1hCFXu92XuupW9ne2IDxDAemhzvBLzTmqiWRVJIaDV7tDVL8Mdk8agzf2GGAYOOUNeNScl5z0iD68gG6jFPCjLdUqzhRTP6l5oAH8MFF_K65NdUXgraSC1ILpM7_QeHV48832C7ncf1A8PpAgMxob8Y5TDnr2fWXQ_bF_VDu0vhTNgTYDjAp5pysu0Mo0beN1rtGa2y03jZaUxS1D0TYNrhtGY7uh_9JfwPhQvpb |
CitedBy_id | crossref_primary_10_1002_adtp_202200149 crossref_primary_10_1016_j_colsurfa_2023_131316 crossref_primary_10_3390_genes14030590 crossref_primary_10_1002_ppsc_202300001 crossref_primary_10_1007_s13404_024_00343_9 crossref_primary_10_3389_fphar_2025_1526502 crossref_primary_10_3390_ijms25094964 crossref_primary_10_2147_IJN_S469217 crossref_primary_10_1016_j_jiec_2021_10_029 crossref_primary_10_1002_wnan_1787 crossref_primary_10_1016_j_heliyon_2024_e25521 crossref_primary_10_1063_9_0000638 crossref_primary_10_3390_polym14214582 crossref_primary_10_1016_j_biomaterials_2022_121434 crossref_primary_10_1016_j_bioadv_2024_214117 crossref_primary_10_1016_j_ijpharm_2024_123852 crossref_primary_10_1021_cbmi_4c00082 crossref_primary_10_3390_molecules28155757 crossref_primary_10_1016_j_partic_2021_11_007 crossref_primary_10_1039_D3TB00970J crossref_primary_10_1002_smll_202204293 crossref_primary_10_3390_ijms222312789 crossref_primary_10_1016_j_matchemphys_2024_129260 crossref_primary_10_1038_s41598_022_14814_6 crossref_primary_10_1186_s12951_024_02363_1 crossref_primary_10_3389_fbioe_2024_1491581 crossref_primary_10_1016_j_biopha_2024_116375 crossref_primary_10_1021_acsabm_4c00348 crossref_primary_10_1002_adfm_202417353 crossref_primary_10_1016_j_impact_2022_100419 crossref_primary_10_1016_j_nantod_2024_102537 crossref_primary_10_3389_fbioe_2022_912178 crossref_primary_10_1039_D2EN00469K crossref_primary_10_1016_j_jhazmat_2024_133800 crossref_primary_10_1016_j_nantod_2021_101234 crossref_primary_10_2174_0118715206268664231004040210 crossref_primary_10_1016_j_addr_2023_115049 crossref_primary_10_1021_acsanm_2c03297 crossref_primary_10_1021_acsnano_2c02269 crossref_primary_10_1088_1748_605X_ad5484 crossref_primary_10_1134_S0003683823060029 crossref_primary_10_1016_j_jconrel_2024_11_004 crossref_primary_10_1038_s41392_024_01745_z crossref_primary_10_1002_jbm_b_34994 crossref_primary_10_1016_j_aca_2023_341114 crossref_primary_10_1016_j_impact_2023_100469 crossref_primary_10_3389_fbioe_2024_1474711 crossref_primary_10_1016_j_envint_2022_107349 crossref_primary_10_2174_1389450122666210118105122 crossref_primary_10_1186_s12989_023_00529_7 crossref_primary_10_1016_j_mtcomm_2024_109929 crossref_primary_10_2147_IJN_S394666 crossref_primary_10_3389_fmats_2022_931682 crossref_primary_10_1016_j_apsadv_2021_100163 crossref_primary_10_1016_j_ijpharm_2024_124920 crossref_primary_10_1016_j_msec_2021_112308 crossref_primary_10_52775_1810_200X_2023_99_3_70_86 crossref_primary_10_1080_17435390_2021_1919329 crossref_primary_10_1016_j_impact_2020_100259 crossref_primary_10_1016_j_jddst_2023_104731 crossref_primary_10_1002_adhm_202302604 crossref_primary_10_3390_nano14221805 crossref_primary_10_3390_pharmaceutics17030298 crossref_primary_10_1016_j_mtbio_2025_101653 crossref_primary_10_1039_D4RA03837A crossref_primary_10_3390_nano10050995 crossref_primary_10_1002_med_21981 crossref_primary_10_1016_j_jddst_2024_106087 crossref_primary_10_1039_D2BM01701F crossref_primary_10_1016_j_nantod_2022_101516 crossref_primary_10_1021_acsomega_1c00475 crossref_primary_10_3390_cancers13081825 crossref_primary_10_1016_j_hazl_2024_100125 crossref_primary_10_1021_acsbiomaterials_0c01764 crossref_primary_10_1038_s41598_022_20761_z crossref_primary_10_3389_fphar_2021_706791 crossref_primary_10_1002_adhm_202405103 crossref_primary_10_1039_D3CS00673E crossref_primary_10_1016_j_jconrel_2025_02_006 crossref_primary_10_3390_ijms24054312 crossref_primary_10_1016_j_addr_2024_115481 crossref_primary_10_1016_j_mtbio_2024_101400 |
Cites_doi | 10.1038/s41419-018-0889-y 10.1021/acsnano.7b01744 10.1021/acsnano.6b02086 10.1021/acsnano.9b01383 10.1016/j.pharmthera.2012.12.007 10.1021/ar2003336 10.2217/nnm.11.19 10.1021/acsomega.7b01355 10.2174/156652412800619978 10.1002/adma.201704307 10.1016/j.ijpharm.2016.12.016 10.1021/acsnano.5b06487 10.1038/ncomms2655 10.1016/j.devcel.2004.05.005 10.1038/nmat4718 10.1021/acsami.8b01546 10.1021/acs.chemrev.5b00148 10.1038/s41467-017-00600-w 10.1021/nn501668a 10.1038/nnano.2017.170 10.1016/0309-1651(91)90080-3 10.1007/s12274-015-0780-4 10.1016/j.nantod.2011.10.001 10.2217/nnm.13.191 10.1038/s41578-018-0038-3 10.1073/pnas.1233634100 10.1021/acsami.7b18648 10.1038/nrc.2016.108 10.1038/nnano.2008.114 10.1016/j.drudis.2006.07.005 10.1159/000495087 10.1039/C0CS00018C 10.1021/acsnano.5b01320 10.1002/adma.201805740 10.1016/j.jhep.2019.02.012 10.1039/c1jm11913c 10.1016/0142-9612(86)90091-8 10.1021/nl052396o 10.1021/am508094e 10.1016/j.taap.2008.12.023 10.1021/acs.chemrev.5b00193 10.1002/anie.201609043 10.1016/j.biomaterials.2010.03.048 10.1007/s11095-016-1958-5 10.1002/anie.200904359 10.1007/s11095-007-9257-9 10.1038/s41565-018-0356-z 10.1093/toxsci/kfl173 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 BioMed Central Ltd. 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2020 |
Copyright_xml | – notice: COPYRIGHT 2020 BioMed Central Ltd. – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2020 |
DBID | AAYXX CITATION NPM ISR 3V. 7QO 7TB 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. LK8 M0S M1P M7P P64 PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s12951-020-00599-1 |
DatabaseName | CrossRef PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Mechanical & Transportation Engineering Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Materials Science Database Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1477-3155 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_0f936bce526e4ea0ae27e1e7b1fa8c09 PMC7071704 A618736046 32169073 10_1186_s12951_020_00599_1 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11775234 – fundername: National Natural Science Foundation of China grantid: 11575209 – fundername: National Natural Science Foundation of China grantid: 11875268 – fundername: National Basic Research Program of China (973 Program) grantid: 2016YFA0201603 – fundername: National Natural Science Foundation of China grantid: 11975251 – fundername: ; grantid: 11775234; 11575209; 11875268; 11975251 – fundername: ; grantid: 2016YFA0201603 |
GroupedDBID | --- 0R~ 29L 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABDBF ABJCF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADDVE ADMLS ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 D1I DIK DU5 E3Z EBD EBLON EBS EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE I-F IAO IHR INH INR ISR ITC ITG ITH KB. KQ8 LK8 M1P M48 M7P MM. M~E O5R O5S OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV RVI SCM SOJ SV3 TR2 TUS UKHRP WOQ WOW XSB ~8M -A0 3V. ACRMQ ADINQ C24 FRP NPM PMFND 7QO 7TB 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c597t-5424b28dabba790726b8a9949c8106f77b2862dc9a3bf9bcd763065f0d22c4cb3 |
IEDL.DBID | 7X7 |
ISSN | 1477-3155 |
IngestDate | Wed Aug 27 01:14:07 EDT 2025 Thu Aug 21 18:17:45 EDT 2025 Fri Jul 11 08:31:52 EDT 2025 Fri Jul 25 19:22:51 EDT 2025 Tue Jun 17 21:02:09 EDT 2025 Tue Jun 10 20:32:59 EDT 2025 Fri Jun 27 03:45:24 EDT 2025 Wed Feb 19 02:30:38 EST 2025 Tue Jul 01 01:26:43 EDT 2025 Thu Apr 24 23:12:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Clearance Gold nanoparticles Sub-organ transfer Surface chemistry |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c597t-5424b28dabba790726b8a9949c8106f77b2862dc9a3bf9bcd763065f0d22c4cb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2378930927?pq-origsite=%requestingapplication% |
PMID | 32169073 |
PQID | 2378930927 |
PQPubID | 44676 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0f936bce526e4ea0ae27e1e7b1fa8c09 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7071704 proquest_miscellaneous_2377334305 proquest_journals_2378930927 gale_infotracmisc_A618736046 gale_infotracacademiconefile_A618736046 gale_incontextgauss_ISR_A618736046 pubmed_primary_32169073 crossref_primary_10_1186_s12951_020_00599_1 crossref_citationtrail_10_1186_s12951_020_00599_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-14 |
PublicationDateYYYYMMDD | 2020-03-14 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Journal of nanobiotechnology |
PublicationTitleAlternate | J Nanobiotechnology |
PublicationYear | 2020 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | J Shi (599_CR1) 2017; 17 N Khlebtsov (599_CR7) 2011; 40 B Du (599_CR38) 2017; 12 JV Jokerst (599_CR17) 2011; 6 WS Cho (599_CR25) 2009; 236 JS Jang (599_CR28) 2018; 9 B Wang (599_CR8) 2013; 46 R Cai (599_CR40) 2018; 31 MI Setyawati (599_CR33) 2017; 11 UM Zanger (599_CR46) 2013; 138 KM Tsoi (599_CR31) 2016; 15 HV Duong (599_CR18) 2018; 3 J Bourquin (599_CR5) 2018; 30 DA Giljohann (599_CR15) 2010; 49 MI Setyawati (599_CR32) 2016; 10 F Peng (599_CR36) 2019; 14 M Thomas (599_CR24) 2003; 100 N Bertrand (599_CR41) 2017; 8 S Jeong (599_CR21) 2011; 21 BJ Du (599_CR39) 2018; 3 A Hammoutene (599_CR48) 2019; 70 L Seymour (599_CR43) 1991; 15 A Regiel-Futyra (599_CR22) 2015; 7 BD Chithrani (599_CR11) 2006; 6 AK Iyer (599_CR23) 2006; 11 L Yildirimer (599_CR6) 2011; 6 RE Tamura (599_CR27) 2012; 12 G Stepien (599_CR42) 2018; 10 R Toy (599_CR10) 2014; 9 JS Souris (599_CR45) 2010; 31 N Oh (599_CR35) 2014; 8 H Kawaguchi (599_CR44) 1986; 7 X Yang (599_CR2) 2015; 115 MM Saber (599_CR19) 2017; 517 Q Xuan (599_CR30) 2018; 50 DR Bhumkar (599_CR20) 2007; 24 B Peter (599_CR12) 2018; 10 G Chen (599_CR16) 2016; 116 W Poon (599_CR37) 2019; 13 D Bobo (599_CR3) 2016; 33 RA Roberts (599_CR47) 2007; 96 JL Rinn (599_CR29) 2004; 6 MI Setyawati (599_CR34) 2013; 4 SH Tang (599_CR9) 2016; 55 WR Sanhai (599_CR4) 2008; 3 SG Elci (599_CR13) 2016; 10 M Yu (599_CR14) 2015; 9 R Cukalevski (599_CR26) 2015; 8 |
References_xml | – volume: 9 start-page: 823 year: 2018 ident: 599_CR28 publication-title: Cell Death Dis doi: 10.1038/s41419-018-0889-y – volume: 11 start-page: 5020 year: 2017 ident: 599_CR33 publication-title: ACS Nano doi: 10.1021/acsnano.7b01744 – volume: 10 start-page: 5536 year: 2016 ident: 599_CR13 publication-title: ACS Nano doi: 10.1021/acsnano.6b02086 – volume: 13 start-page: 5785 year: 2019 ident: 599_CR37 publication-title: ACS Nano doi: 10.1021/acsnano.9b01383 – volume: 138 start-page: 103 year: 2013 ident: 599_CR46 publication-title: Pharmacol Ther doi: 10.1016/j.pharmthera.2012.12.007 – volume: 46 start-page: 761 year: 2013 ident: 599_CR8 publication-title: Acc Chem Res doi: 10.1021/ar2003336 – volume: 6 start-page: 715 year: 2011 ident: 599_CR17 publication-title: Nanomedicine doi: 10.2217/nnm.11.19 – volume: 3 start-page: 86 year: 2018 ident: 599_CR18 publication-title: ACS Omega doi: 10.1021/acsomega.7b01355 – volume: 12 start-page: 634 year: 2012 ident: 599_CR27 publication-title: Curr Mol Med doi: 10.2174/156652412800619978 – volume: 30 start-page: e1704307 year: 2018 ident: 599_CR5 publication-title: Adv Mater doi: 10.1002/adma.201704307 – volume: 517 start-page: 269 year: 2017 ident: 599_CR19 publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2016.12.016 – volume: 10 start-page: 1170 year: 2016 ident: 599_CR32 publication-title: ACS Nano doi: 10.1021/acsnano.5b06487 – volume: 4 start-page: 1673 year: 2013 ident: 599_CR34 publication-title: Nat Commun doi: 10.1038/ncomms2655 – volume: 6 start-page: 791 year: 2004 ident: 599_CR29 publication-title: Dev Cell doi: 10.1016/j.devcel.2004.05.005 – volume: 15 start-page: 1212 year: 2016 ident: 599_CR31 publication-title: Nat Mater doi: 10.1038/nmat4718 – volume: 10 start-page: 26841 year: 2018 ident: 599_CR12 publication-title: ACS Appl Mater Inter doi: 10.1021/acsami.8b01546 – volume: 116 start-page: 2826 year: 2016 ident: 599_CR16 publication-title: Chem Rev doi: 10.1021/acs.chemrev.5b00148 – volume: 8 start-page: 777 year: 2017 ident: 599_CR41 publication-title: Nat Commun doi: 10.1038/s41467-017-00600-w – volume: 8 start-page: 6232 year: 2014 ident: 599_CR35 publication-title: ACS Nano doi: 10.1021/nn501668a – volume: 12 start-page: 1096 year: 2017 ident: 599_CR38 publication-title: Nat Nanotechnol doi: 10.1038/nnano.2017.170 – volume: 15 start-page: 37 year: 1991 ident: 599_CR43 publication-title: Cell Biol Int Rep doi: 10.1016/0309-1651(91)90080-3 – volume: 8 start-page: 2733 year: 2015 ident: 599_CR26 publication-title: Nano Res doi: 10.1007/s12274-015-0780-4 – volume: 6 start-page: 585 year: 2011 ident: 599_CR6 publication-title: Nano Today doi: 10.1016/j.nantod.2011.10.001 – volume: 9 start-page: 121 year: 2014 ident: 599_CR10 publication-title: Nanomedicine doi: 10.2217/nnm.13.191 – volume: 3 start-page: 358 year: 2018 ident: 599_CR39 publication-title: Nat Rev Mater doi: 10.1038/s41578-018-0038-3 – volume: 100 start-page: 9138 year: 2003 ident: 599_CR24 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1233634100 – volume: 10 start-page: 4548 year: 2018 ident: 599_CR42 publication-title: ACS Appl Mater Inter doi: 10.1021/acsami.7b18648 – volume: 17 start-page: 20 year: 2017 ident: 599_CR1 publication-title: Nat Rev Cancer doi: 10.1038/nrc.2016.108 – volume: 3 start-page: 242 year: 2008 ident: 599_CR4 publication-title: Nat Nanotechnol doi: 10.1038/nnano.2008.114 – volume: 11 start-page: 812 year: 2006 ident: 599_CR23 publication-title: Drug Discov Today doi: 10.1016/j.drudis.2006.07.005 – volume: 50 start-page: 2272 year: 2018 ident: 599_CR30 publication-title: Cell Physiol Biochem doi: 10.1159/000495087 – volume: 40 start-page: 1647 year: 2011 ident: 599_CR7 publication-title: Chem Soc Rev doi: 10.1039/C0CS00018C – volume: 9 start-page: 6655 year: 2015 ident: 599_CR14 publication-title: ACS Nano doi: 10.1021/acsnano.5b01320 – volume: 31 start-page: e1805740 year: 2018 ident: 599_CR40 publication-title: Adv Mater doi: 10.1002/adma.201805740 – volume: 70 start-page: 1278 year: 2019 ident: 599_CR48 publication-title: J Hepatol doi: 10.1016/j.jhep.2019.02.012 – volume: 21 start-page: 13853 year: 2011 ident: 599_CR21 publication-title: J Mater Chem doi: 10.1039/c1jm11913c – volume: 7 start-page: 61 year: 1986 ident: 599_CR44 publication-title: Biomaterials doi: 10.1016/0142-9612(86)90091-8 – volume: 6 start-page: 662 year: 2006 ident: 599_CR11 publication-title: Nano Lett doi: 10.1021/nl052396o – volume: 7 start-page: 1087 year: 2015 ident: 599_CR22 publication-title: ACS Appl Mater Inter doi: 10.1021/am508094e – volume: 236 start-page: 16 year: 2009 ident: 599_CR25 publication-title: Toxicol Appl Pharmacol doi: 10.1016/j.taap.2008.12.023 – volume: 115 start-page: 10410 year: 2015 ident: 599_CR2 publication-title: Chem Rev doi: 10.1021/acs.chemrev.5b00193 – volume: 55 start-page: 16039 year: 2016 ident: 599_CR9 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201609043 – volume: 31 start-page: 5564 year: 2010 ident: 599_CR45 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.03.048 – volume: 33 start-page: 2373 year: 2016 ident: 599_CR3 publication-title: Pharm Res doi: 10.1007/s11095-016-1958-5 – volume: 49 start-page: 3280 year: 2010 ident: 599_CR15 publication-title: Angew Chem Int Ed doi: 10.1002/anie.200904359 – volume: 24 start-page: 1415 year: 2007 ident: 599_CR20 publication-title: Pharm Res doi: 10.1007/s11095-007-9257-9 – volume: 14 start-page: 279 year: 2019 ident: 599_CR36 publication-title: Nat Nanotechnol doi: 10.1038/s41565-018-0356-z – volume: 96 start-page: 2 year: 2007 ident: 599_CR47 publication-title: Toxicol Sci doi: 10.1093/toxsci/kfl173 |
SSID | ssj0022424 |
Score | 2.5312917 |
Snippet | To effectively applied nanomaterials (NMs) in medicine, one of the top priorities is to address a better understanding of the possible sub-organ transfer,... Background To effectively applied nanomaterials (NMs) in medicine, one of the top priorities is to address a better understanding of the possible sub-organ... Abstract Background To effectively applied nanomaterials (NMs) in medicine, one of the top priorities is to address a better understanding of the possible... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 45 |
SubjectTerms | Adsorption Bioaccumulation Clearance Drug delivery systems Gene expression Gold nanoparticles Health aspects Innovations Kidney transplantation Kidneys Ligands Liver Liver transplantation Nanoparticles Physiology Polyethylene glycol Proteins Spleen Sub-organ transfer Surface chemistry Surface science Toxicity |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAlGegIIOQOEDU-BE_jgVRFSQ4UCr1ZtmOXVasHLTZlcqRf87Yya42QoIL13gcJTMTz3y7M98g9NJRR4R34LyR6prL1tVOO1FH5TmL3KpW5W7kT5_F2QX_eNle7o36yjVhIz3wqLjjJmomnA8tFYEH29hAZSBBOhKt8mPrHsS8LZiaoFZueti2yChxPEBUawE209xF3Wpdk1kYKmz9f57Je0FpXjC5F4FO76DbU-qIT8ZHPkQ3QrqLbu0RCt5Dv843q2h9wH47xw1flWG6A4ZEDw8bV5cxTnhd8tWweoN9nhuRTY9t6vC6v154SMxxH3EOeeMvhXCTZYeTTYCwp0I6vEjllstc11G2fl90Kfy8jy5O3399d1ZPQxZqD1hiXbegKUdVZ52zEpAyFU5Zrbn2CtBilBIWBe28tsxF7XwHBxKkLbHpKPXcO_YAHaQ-hUcIe64Ii42lwVsurXCROk6cp7ZpLHGhQmSrc-MnBvI8CGNpChJRwox2MmAnU-xkSIVe7_b8GPk3_ir9NptyJ5m5s8sF0K2ZFGT-5VEVepEdwWR2jJTLb67sZhjMh_Mv5kQQJZlouKjQq0ko9vAO3k7dDKCJTKg1kzyaSYL1_Xx5629mOj4GQ5mEPLLRVFbo-W4578wlcSn0myIjGcuMbRV6OLrn7r0Zzf9-SlYhOXPcmWLmK2nxrZCLywzwG_74f2jyCbpJyzfHasKP0MF6tQlPIYdbu2flc_0NhjJGVQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELaqcoEDKu9AQQYhcYBAYjt-HBAqiKoglQNlpd4s27HbFStv2exK7ZF_ztibrDai6jUeR8k8MvPF80DotSW25s6C8gaiSiYaW1pleRmkYzQwIxuZqpGPf_CjCft-2pzuoGHcUc_A7lpol-ZJTRaz95d_rj6BwX_MBi_5hw58VgOgmKQa6UapEtDQLfBMIhnqMducKpBUCjEUzly7b-Sccg___7_UW65qnEa55ZcO99DdPqDEB2sNuId2fLyP7my1GXyA_p6sFsE4j90w3Q2f5RG7HYbwD3crW-bhTniZo1i_eIddmiaRFAKb2OLl_HLqIFzH84CTI1z_P4SbzFocTQTc3afX4WnMt5ylbI-89fe0jf7qIZocfv315ajsRy-UDhDGsmyAU5bI1lhrBOBnwq00SjHlJGDIIAQsctI6ZagNyroWPlMQzISqJcQxZ-kjtBvn0T9B2DFZ01AZ4p1hwnAbiGW1dcRUlamtL1A98Fy7vi95Go8x0xmfSK7XctIgJ53lpOsCvd3suVh35biR-nMS5YYyddTOF4C3umeQroKi3DrfEO6ZN5XxRPjaC1sHI12lCvQqKYJOPTNiSso5M6uu099OfuoDXktBecV4gd70RGEO7-BMX-MAnEhttkaU-yNKkL4bLw_6pgeb0IQKiC4rRUSBXm6W086UKBf9fJVpBKWpj1uBHq_Vc_PelKQzUUELJEaKO2LMeCVOz3PLcZFgf8We3vxYz9Btkq2JljXbR7vLxco_h5htaV9kQ_wHTyc_2A priority: 102 providerName: Scholars Portal |
Title | Surface chemistry governs the sub-organ transfer, clearance and toxicity of functional gold nanoparticles in the liver and kidney |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32169073 https://www.proquest.com/docview/2378930927 https://www.proquest.com/docview/2377334305 https://pubmed.ncbi.nlm.nih.gov/PMC7071704 https://doaj.org/article/0f936bce526e4ea0ae27e1e7b1fa8c09 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdge4EHxPcCozIIiQeIltiOP57QhlYG0ia0Malvlu3Yo6JKRtNK8Mh_js9Nu0ZIe8lDfY6au8t9OHe_Q-itJbbkzkblDUTlTFQ2t8ryPEjHaGBGVhK6kU_P-Mkl-zqpJv2BW9eXVa5tYjLUdevgjPyAUBFda6GI-Hj9K4epUfB1tR-hcRftAnQZlHSJyU3CBa0P60YZyQ-66NuqmDwT6KWulMrLgTNKmP3_W-Yt1zQsm9zyQ-OH6EEfQOLDlcQfoTu-eYzub8EKPkF_L5bzYJzHbj3NDV-lkbodjuEe7pY2T8Oc8CJFrX7-ATuYHgEKgE1T40X7e-pieI7bgMHxrc4L401mNW5ME_PsvpwOT5t0yxlUd6StP6d14_88RZfj4--fTvJ-1ELuYkaxyKvIKUtkbaw1IubLhFtplGLKyZgzBiHiIie1U4baoKyro1mKwUsoakIcc5Y-QztN2_g9hB2TJQ2FId4ZJgy3gVhWWkdMUZjS-gyVa55r1-OQwziMmU75iOR6JScd5aSTnHSZofebPdcrFI5bqY9AlBtKQNBOP0Te6p5BugiKcut8Rbhn3hTGE-FLL2wZjHSFytAbUAQNGBkNFOFcmWXX6S8X5_qQl1JQXjCeoXc9UWjjMzjT9zRETgCs1oByf0AZpe-Gy2t9070R6fSNymfo9WYZdkJhXOPbZaIRlAJuW4aer9Rz89yUwDdQQTMkBoo7YMxwpZn-SBDjAtL8gr24_W-9RPdIeptoXrJ9tLOYL_2rGKMt7Ci9iPEqx59HaPfo-Ozb-Sidd8TrKZP_ANN1QQk |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CrlABwQbwIFDAJxgKiJ7djJAaHyqHbp40BbaW_GduyyYpWUza6gR36Ib8TjJNtGSL31Go-teB6eGXseCL3URKfcaM-8jhQxE5mOdaF57HLDqGMqz3LIRt7b56Mj9mWSTdbQ3z4XBsIq-zMxHNRlbeCOfJNQ4VVrUhDx_uRnDF2j4HW1b6HRssWOPf3lXbbm3fiTp-8rQrY_H34cxV1Xgdh443kRZ4wwTfJSaa2Edw0J17kqClaY3LtHTgg_yElpCkW1K7QpvQR6Pe2SkhDDjKZ-3Svoqle8CUiUmJw5eJBq0Sfm5Hyz8bo08846gdztrCjidKD8Qo-A_zXBOVU4DNM8p_e2b6GbncGKt1oOu43WbHUH3ThXxvAu-nOwnDtlLDZ99zh8HFr4Ntibl7hZ6jg0j8KLYCXb-VtsoFsFMBxWVYkX9e-p8e4Arh0GRdveT_pFZiWuVOX9-i58D0-rsOQMoknC1B_TsrKn99DRpRDhPlqv6so-RNiwPKUuUcQaxYTi2hHNUm2IShKVahuhtMe5NF3dc2i_MZPB_8m5bOkkPZ1koJNMI_RmNeekrfpxIfQHIOUKEip2hw8et7JDkExcQbk2NiPcMqsSZYmwqRU6dSo3SRGhF8AIEmpyVBD0c6yWTSPHB1_lFk9zQXnCeIRed0Cu9nswqsuh8JiAMl4DyI0BpKe-GQ73_Ca7Q6uRZyIWoeerYZgJgXiVrZcBRlAKdeIi9KBlz9W-KYE3V0EjJAaMO0DMcKSafg8lzQVcKyTs0cW_9QxdGx3u7crd8f7OY3SdBMmicco20PpivrRPvH240E-DUGL07bJPgX-HRnl3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+chemistry+governs+the+sub-organ+transfer%2C+clearance+and+toxicity+of+functional+gold+nanoparticles+in+the+liver+and+kidney&rft.jtitle=Journal+of+nanobiotechnology&rft.au=Li%2C+Xue&rft.au=Wang%2C+Bing&rft.au=Zhou%2C+Shuang&rft.au=Chen%2C+Wei&rft.date=2020-03-14&rft.pub=BioMed+Central&rft.eissn=1477-3155&rft.volume=18&rft.spage=1&rft_id=info:doi/10.1186%2Fs12951-020-00599-1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-3155&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-3155&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-3155&client=summon |