Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data

Analysis of incomplete data is a big challenge when integrating large-scale brain imaging datasets from different imaging modalities. In the Alzheimer's Disease Neuroimaging Initiative (ADNI), for example, over half of the subjects lack cerebrospinal fluid (CSF) measurements; an independent hal...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 61; no. 3; pp. 622 - 632
Main Authors Yuan, Lei, Wang, Yalin, Thompson, Paul M., Narayan, Vaibhav A., Ye, Jieping
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 02.07.2012
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Analysis of incomplete data is a big challenge when integrating large-scale brain imaging datasets from different imaging modalities. In the Alzheimer's Disease Neuroimaging Initiative (ADNI), for example, over half of the subjects lack cerebrospinal fluid (CSF) measurements; an independent half of the subjects do not have fluorodeoxyglucose positron emission tomography (FDG-PET) scans; many lack proteomics measurements. Traditionally, subjects with missing measures are discarded, resulting in a severe loss of available information. In this paper, we address this problem by proposing an incomplete Multi-Source Feature (iMSF) learning method where all the samples (with at least one available data source) can be used. To illustrate the proposed approach, we classify patients from the ADNI study into groups with Alzheimer's disease (AD), mild cognitive impairment (MCI) and normal controls, based on the multi-modality data. At baseline, ADNI's 780 participants (172AD, 397 MCI, 211 NC), have at least one of four data types: magnetic resonance imaging (MRI), FDG-PET, CSF and proteomics. These data are used to test our algorithm. Depending on the problem being solved, we divide our samples according to the availability of data sources, and we learn shared sets of features with state-of-the-art sparse learning methods. To build a practical and robust system, we construct a classifier ensemble by combining our method with four other methods for missing value estimation. Comprehensive experiments with various parameters show that our proposed iMSF method and the ensemble model yield stable and promising results.
AbstractList Analysis of incomplete data is a big challenge when integrating large-scale brain imaging datasets from different imaging modalities. In the Alzheimer’s Disease Neuroimaging Initiative (ADNI), for example, over half of the subjects lack cerebrospinal fluid (CSF) measurements; an independent half of the subjects do not have fluorodeoxyglucose positron emission tomography (FDG-PET) scans; many lack proteomics measurements. Traditionally, subjects with missing measures are discarded, resulting in a severe loss of available information. In this paper, we address this problem by proposing an incomplete Multi-Source Feature (iMSF) learning method where all the samples (with at least one available data source) can be used. To illustrate the proposed approach, we classify patients from the ADNI study into groups with Alzheimer’s disease (AD), mild cognitive impairment (MCI) and normal controls, based on the multi-modality data. At baseline, ADNI’s 780 participants (172 AD, 397 MCI, 211 NC), have at least one of four data types: magnetic resonance imaging (MRI), FDG-PET, CSF and proteomics. These data are used to test our algorithm. Depending on the problem being solved, we divide our samples according to the availability of data sources, and we learn shared sets of features with state-of-the-art sparse learning methods. To build a practical and robust system, we construct a classifier ensemble by combining our method with four other methods for missing value estimation. Comprehensive experiments with various parameters show that our proposed iMSF method and the ensemble model yield stable and promising results.
Analysis of incomplete data is a big challenge when integrating large-scale brain imaging datasets from different imaging modalities. In the Alzheimer's Disease Neuroimaging Initiative (ADNI), for example, over half of the subjects lack cerebrospinal fluid (CSF) measurements; an independent half of the subjects do not have fluorodeoxyglucose positron emission tomography (FDG-PET) scans; many lack proteomics measurements. Traditionally, subjects with missing measures are discarded, resulting in a severe loss of available information. In this paper, we address this problem by proposing an incomplete Multi-Source Feature (iMSF) learning method where all the samples (with at least one available data source) can be used. To illustrate the proposed approach, we classify patients from the ADNI study into groups with Alzheimer's disease (AD), mild cognitive impairment (MCI) and normal controls, based on the multi-modality data. At baseline, ADNI's 780 participants (172AD, 397 MCI, 211 NC), have at least one of four data types: magnetic resonance imaging (MRI), FDG-PET, CSF and proteomics. These data are used to test our algorithm. Depending on the problem being solved, we divide our samples according to the availability of data sources, and we learn shared sets of features with state-of-the-art sparse learning methods. To build a practical and robust system, we construct a classifier ensemble by combining our method with four other methods for missing value estimation. Comprehensive experiments with various parameters show that our proposed iMSF method and the ensemble model yield stable and promising results.
Analysis of incomplete data is a big challenge when integrating large-scale brain imaging datasets from different imaging modalities. In the Alzheimer's Disease Neuroimaging Initiative (ADNI), for example, over half of the subjects lack cerebrospinal fluid (CSF) measurements; an independent half of the subjects do not have fluorodeoxyglucose positron emission tomography (FDG-PET) scans; many lack proteomics measurements. Traditionally, subjects with missing measures are discarded, resulting in a severe loss of available information. In this paper, we address this problem by proposing an incomplete Multi-Source Feature (iMSF) learning method where all the samples (with at least one available data source) can be used. To illustrate the proposed approach, we classify patients from the ADNI study into groups with Alzheimer's disease (AD), mild cognitive impairment (MCI) and normal controls, based on the multi-modality data. At baseline, ADNI's 780 participants (172AD, 397 MCI, 211 NC), have at least one of four data types: magnetic resonance imaging (MRI), FDG-PET, CSF and proteomics. These data are used to test our algorithm. Depending on the problem being solved, we divide our samples according to the availability of data sources, and we learn shared sets of features with state-of-the-art sparse learning methods. To build a practical and robust system, we construct a classifier ensemble by combining our method with four other methods for missing value estimation. Comprehensive experiments with various parameters show that our proposed iMSF method and the ensemble model yield stable and promising results.Analysis of incomplete data is a big challenge when integrating large-scale brain imaging datasets from different imaging modalities. In the Alzheimer's Disease Neuroimaging Initiative (ADNI), for example, over half of the subjects lack cerebrospinal fluid (CSF) measurements; an independent half of the subjects do not have fluorodeoxyglucose positron emission tomography (FDG-PET) scans; many lack proteomics measurements. Traditionally, subjects with missing measures are discarded, resulting in a severe loss of available information. In this paper, we address this problem by proposing an incomplete Multi-Source Feature (iMSF) learning method where all the samples (with at least one available data source) can be used. To illustrate the proposed approach, we classify patients from the ADNI study into groups with Alzheimer's disease (AD), mild cognitive impairment (MCI) and normal controls, based on the multi-modality data. At baseline, ADNI's 780 participants (172AD, 397 MCI, 211 NC), have at least one of four data types: magnetic resonance imaging (MRI), FDG-PET, CSF and proteomics. These data are used to test our algorithm. Depending on the problem being solved, we divide our samples according to the availability of data sources, and we learn shared sets of features with state-of-the-art sparse learning methods. To build a practical and robust system, we construct a classifier ensemble by combining our method with four other methods for missing value estimation. Comprehensive experiments with various parameters show that our proposed iMSF method and the ensemble model yield stable and promising results.
Author Yuan, Lei
Ye, Jieping
Wang, Yalin
Thompson, Paul M.
Narayan, Vaibhav A.
AuthorAffiliation 1 School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
3 Laboratory of Neuro Imaging, UCLA Dept. of Neurology, Los Angeles, CA, USA
2 Center for Evolutionary Medicine and Informatics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
4 Johnson & Johnson Pharmaceutical Research & Development, LLC, Titusville, NJ, USA
AuthorAffiliation_xml – name: 2 Center for Evolutionary Medicine and Informatics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
– name: 3 Laboratory of Neuro Imaging, UCLA Dept. of Neurology, Los Angeles, CA, USA
– name: 4 Johnson & Johnson Pharmaceutical Research & Development, LLC, Titusville, NJ, USA
– name: 1 School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
Author_xml – sequence: 1
  givenname: Lei
  surname: Yuan
  fullname: Yuan, Lei
  organization: School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
– sequence: 2
  givenname: Yalin
  surname: Wang
  fullname: Wang, Yalin
  organization: School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
– sequence: 3
  givenname: Paul M.
  surname: Thompson
  fullname: Thompson, Paul M.
  organization: Laboratory of Neuro Imaging, UCLA Dept. of Neurology, Los Angeles, CA, USA
– sequence: 4
  givenname: Vaibhav A.
  surname: Narayan
  fullname: Narayan, Vaibhav A.
  organization: Johnson & Johnson Pharmaceutical Research & Development, LLC, Titusville, NJ, USA
– sequence: 5
  givenname: Jieping
  surname: Ye
  fullname: Ye, Jieping
  email: jieping.ye@asu.edu
  organization: School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22498655$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv3CAUha0qVfNo_0KF1E03dgCDDZuqTdSXlKqbdo0wvp4wZWAKONL8--JOOkmzmhUXcfg43HvOqxMfPFQVIrghmHSX68bDHIPd6BU0FBPa4LbBXD6rzgiWvJa8pydLzdtaECJPq_OU1hhjSZh4UZ1SyqToOD-rVt9ml22dwhwNoAl0niMgBzp661doChGtg_UZaa_dLtmEwoSsN2GzdZABbZbrpUS3ZRfDCjyEOaGDvQUy6qxfVs8n7RK8ul8vqp-fPv64_lLffP_89frDTW247HPNBiP6fiCtodPYaz4QJoENsmeYaSbxoCdKGBVy7AfKGXDZTRomLvU0dMLQ9qJ6t-du52EDowGfo3ZqG4uZuFNBW_X_ibe3ahXuVNtywYgsgLf3gBh-z5Cy2thkwDn992eK4JaJ8jQjR0gpw1JiJor0zRPpunS8tLSoOO5E3xLeFtXrx-YPrv-NqwjEXmBiSCnCdJAQrJZkqLV6SIZakqFwq0oyHhpzuGps1tmGpQ3WHQO42gOgjO_OQlTJWPAGRhvBZDUGewzk_ROIcdZbo90v2B2H-AMPbvRy
CitedBy_id crossref_primary_10_1016_j_jneumeth_2020_108988
crossref_primary_10_1007_s11682_015_9480_7
crossref_primary_10_1016_j_tics_2013_08_007
crossref_primary_10_1088_1755_1315_769_4_042075
crossref_primary_10_1016_j_jneumeth_2013_09_001
crossref_primary_10_1186_s40708_018_0080_3
crossref_primary_10_1109_TNNLS_2023_3260349
crossref_primary_10_1016_j_cmpb_2017_07_003
crossref_primary_10_1016_j_ins_2021_09_035
crossref_primary_10_1016_j_jprocont_2017_11_006
crossref_primary_10_1038_s41746_022_00712_8
crossref_primary_10_1016_j_neuroimage_2013_02_011
crossref_primary_10_1016_j_neuroimage_2013_08_049
crossref_primary_10_3389_fnins_2021_634124
crossref_primary_10_1155_2022_5799354
crossref_primary_10_1016_j_nicl_2013_05_004
crossref_primary_10_1016_j_media_2016_11_002
crossref_primary_10_1080_01621459_2020_1751176
crossref_primary_10_1016_j_pscychresns_2014_08_005
crossref_primary_10_1145_3481299
crossref_primary_10_1016_j_ifacol_2020_12_717
crossref_primary_10_1016_j_patcog_2016_10_009
crossref_primary_10_1080_07350015_2021_1922120
crossref_primary_10_1007_s10044_024_01268_x
crossref_primary_10_1016_j_ins_2023_119466
crossref_primary_10_1053_j_semnuclmed_2018_02_011
crossref_primary_10_1177_09622802221084596
crossref_primary_10_1016_j_jalz_2014_11_001
crossref_primary_10_1097_AOG_0000000000001865
crossref_primary_10_1080_24725854_2020_1798569
crossref_primary_10_1109_TCYB_2019_2904186
crossref_primary_10_1016_j_media_2019_101567
crossref_primary_10_1109_TPAMI_2021_3091214
crossref_primary_10_1002_hbm_23301
crossref_primary_10_1016_j_neunet_2024_106111
crossref_primary_10_1109_JBHI_2021_3097721
crossref_primary_10_1109_TMI_2019_2913158
crossref_primary_10_1111_sjos_12632
crossref_primary_10_1016_j_neuroimage_2012_12_052
crossref_primary_10_1080_10618600_2022_2070172
crossref_primary_10_1145_3610885
crossref_primary_10_1080_00949655_2022_2109636
crossref_primary_10_3389_fgene_2023_1162690
crossref_primary_10_1016_j_neuroimage_2013_04_018
crossref_primary_10_1109_JBHI_2024_3355111
crossref_primary_10_1016_j_jneumeth_2019_108544
crossref_primary_10_1109_ACCESS_2019_2894366
crossref_primary_10_1109_TMI_2014_2314712
crossref_primary_10_1287_ijds_2022_9016
crossref_primary_10_1016_j_neurobiolaging_2014_05_038
crossref_primary_10_1109_JBHI_2018_2872581
crossref_primary_10_1016_j_csda_2021_107348
crossref_primary_10_1016_j_media_2016_07_012
crossref_primary_10_1080_01621459_2019_1632079
crossref_primary_10_1109_JBHI_2017_2732287
crossref_primary_10_1016_j_neuroimage_2013_10_005
crossref_primary_10_1016_j_media_2018_01_002
crossref_primary_10_1016_j_neucom_2019_07_010
crossref_primary_10_1093_biostatistics_kxy052
crossref_primary_10_1155_2020_8015156
crossref_primary_10_1016_j_trsl_2018_01_001
crossref_primary_10_1007_s10489_021_02225_5
crossref_primary_10_1007_s11042_018_6463_x
crossref_primary_10_1038_nn_3718
crossref_primary_10_1007_s00429_013_0687_3
crossref_primary_10_1016_j_artmed_2020_101859
crossref_primary_10_1016_j_jbi_2017_07_003
crossref_primary_10_1016_j_neuroimage_2017_06_072
crossref_primary_10_1007_s00371_024_03710_x
crossref_primary_10_1109_TMI_2018_2874964
crossref_primary_10_1002_hbm_23326
crossref_primary_10_1080_01621459_2019_1585254
crossref_primary_10_1002_wsbm_1310
crossref_primary_10_1109_TMI_2016_2515021
crossref_primary_10_1109_TRPMS_2021_3104297
crossref_primary_10_1016_j_neuroimage_2014_06_077
crossref_primary_10_1109_TKDE_2021_3109581
crossref_primary_10_1109_TFUZZ_2021_3099696
crossref_primary_10_1159_000484248
crossref_primary_10_1007_s00429_015_1059_y
crossref_primary_10_1007_s11336_023_09918_5
crossref_primary_10_1016_j_neunet_2024_106748
crossref_primary_10_1016_j_neuroimage_2013_08_015
crossref_primary_10_1142_S0129065718500429
crossref_primary_10_1109_TPAMI_2021_3116948
crossref_primary_10_1038_nrd4395
crossref_primary_10_1016_j_media_2019_101630
crossref_primary_10_1016_j_neuroimage_2018_04_052
crossref_primary_10_1016_j_neuroimage_2014_01_033
crossref_primary_10_1109_TPAMI_2019_2895608
crossref_primary_10_1109_TCYB_2021_3126727
crossref_primary_10_1080_01621459_2021_1938083
crossref_primary_10_1016_j_cmpb_2022_107165
crossref_primary_10_1038_srep41069
crossref_primary_10_1016_j_neuroimage_2013_05_013
crossref_primary_10_1016_j_neurobiolaging_2014_02_032
crossref_primary_10_1109_TPAMI_2023_3234553
crossref_primary_10_1016_j_ins_2024_120388
crossref_primary_10_1016_j_neucom_2013_11_027
crossref_primary_10_1080_24725579_2017_1403520
crossref_primary_10_1016_j_neuroimage_2013_08_020
crossref_primary_10_1016_j_neunet_2024_106674
crossref_primary_10_1002_wics_1626
crossref_primary_10_1109_TMI_2021_3070780
crossref_primary_10_1007_s10844_020_00606_9
crossref_primary_10_3390_math12070951
crossref_primary_10_1007_s10489_013_0508_7
crossref_primary_10_1145_2408736_2408739
crossref_primary_10_1016_j_biotechadv_2020_107546
crossref_primary_10_1109_JBHI_2022_3219123
crossref_primary_10_1016_j_jneumeth_2018_09_028
crossref_primary_10_1155_2021_8890513
crossref_primary_10_1002_hbm_22642
crossref_primary_10_1016_j_isci_2024_110509
crossref_primary_10_1371_journal_pone_0096458
crossref_primary_10_1002_hbm_24428
Cites_doi 10.1016/j.neuroimage.2004.03.038
10.1109/TITB.2008.923773
10.1111/j.1532-5415.2008.02168.x
10.1016/j.neuroimage.2010.09.073
10.1002/hbm.20744
10.1002/jmri.21049
10.1212/WNL.0b013e3181af79e5
10.1093/bioinformatics/btn347
10.1016/j.neuroimage.2011.01.079
10.1016/j.neurobiolaging.2008.09.012
10.1016/j.neuroimage.2011.05.055
10.1006/nimg.1997.0294
10.1016/j.neurobiolaging.2010.04.011
10.1016/j.neurobiolaging.2010.04.022
10.1109/TMI.2009.2021941
10.1006/nimg.1997.0290
10.1111/j.1532-5415.2010.03053.x
10.1016/j.jclinepi.2007.03.006
10.1006/nimg.2001.0978
10.3389/fnhum.2010.00192
10.1016/j.neuroimage.2010.11.004
10.1016/j.neuroimage.2010.06.013
10.1109/TIT.2010.2044061
10.1137/080738970
10.1016/j.neurobiolaging.2009.07.002
10.1212/WNL.0b013e3181af79fb
10.3389/fneur.2010.00004
10.1016/j.mri.2009.12.021
10.1016/j.neuroimage.2011.01.008
10.1016/j.neucom.2010.06.025
10.1016/j.neuroimage.2008.02.043
10.2217/bmm.09.91
10.1175/1520-0442(2001)014<0853:AOICDE>2.0.CO;2
10.1016/j.neuroimage.2009.12.092
10.1109/MSP.2010.936725
10.1016/j.neuroimage.2009.04.053
10.1016/j.nic.2005.09.008
10.1016/j.jalz.2011.04.007
10.1002/sim.1710
10.1111/j.1467-9868.2005.00532.x
10.1212/WNL.50.6.1585
10.1212/01.wnl.0000256697.20968.d7
10.1093/brain/awm336
10.1007/s10994-007-5040-8
10.1016/j.neuroimage.2006.09.011
ContentType Journal Article
Contributor Jack, Jr, Clifford R
Romirowsky, Aliza
Schuff, Norbert
Roberts, Peggy
Shaw, Les
Johnson, Kris
Doody, Rachelle S
Frank, Richard
Molchan, Susan
Chen, Kewei
Duara, Ranjan
Jagust, William
Mintun, Mark A
Green, Robert C
Grossman, Hillel
Felmlee, Joel
Pawluczyk, Sonia
Weiner, Michael
Montine, Tom
Dolen, Sara
Varon, Daniel
Thompson, Paul
Trojanowki, John Q
DeCarli, Charles
Fox, Nick
Griffith, Randall
Kachaturian, Zaven
Mitsis, Effie
Lind, Betty
Korecka, Magdalena
Schneider, Stacy
Walter, Sarah
Quinn, Joseph
Bell, Karen L
Villanueva-Meyer, Javier
Liu, Enchi
Bandy, Dan
Neu, Scott
Sather, Tamie
Aisen, Paul
Morris, John
Stern, Yaakov
Lord, Joanne L
Marson, Daniel
Heidebrink, Judith L
Reiman, Eric M
Trojanowki, J Q
Morris, John C
Shah, Raj C
Kornak, John
Foster, Norm
Mathis, Chet
Foroud, Tatiana M
Lee, Virginia M Y
Kaye, Jeffrey
Saykin, Andrew J
Chowdhury, Munir
Harvey, Danielle
Leon, Sue
Koeppe, Robert A
Potkin, Steven
Gessert, Devon
Carroll, Maria
Petersen, Ronald
Gamst, Anthony
Donohue, Michael
Schneider, Lon S
Thomas, Ronald G
Donohue, Donohue
Alexander, Gene
Sh
Contributor_xml – sequence: 1
  givenname: Michael
  surname: Weiner
  fullname: Weiner, Michael
– sequence: 2
  givenname: Paul
  surname: Aisen
  fullname: Aisen, Paul
– sequence: 3
  givenname: Ronald
  surname: Petersen
  fullname: Petersen, Ronald
– sequence: 4
  givenname: Clifford R
  surname: Jack, Jr
  fullname: Jack, Jr, Clifford R
– sequence: 5
  givenname: William
  surname: Jagust
  fullname: Jagust, William
– sequence: 6
  givenname: John Q
  surname: Trojanowki
  fullname: Trojanowki, John Q
– sequence: 7
  givenname: Arthur W
  surname: Toga
  fullname: Toga, Arthur W
– sequence: 8
  givenname: Laurel
  surname: Beckett
  fullname: Beckett, Laurel
– sequence: 9
  givenname: Robert C
  surname: Green
  fullname: Green, Robert C
– sequence: 10
  givenname: Andrew J
  surname: Saykin
  fullname: Saykin, Andrew J
– sequence: 11
  givenname: John
  surname: Morris
  fullname: Morris, John
– sequence: 12
  givenname: Enchi
  surname: Liu
  fullname: Liu, Enchi
– sequence: 13
  givenname: Tom
  surname: Montine
  fullname: Montine, Tom
– sequence: 14
  givenname: Anthony
  surname: Gamst
  fullname: Gamst, Anthony
– sequence: 15
  givenname: Ronald G
  surname: Thomas
  fullname: Thomas, Ronald G
– sequence: 16
  givenname: Michael
  surname: Donohue
  fullname: Donohue, Michael
– sequence: 17
  givenname: Sarah
  surname: Walter
  fullname: Walter, Sarah
– sequence: 18
  givenname: Devon
  surname: Gessert
  fullname: Gessert, Devon
– sequence: 19
  givenname: Tamie
  surname: Sather
  fullname: Sather, Tamie
– sequence: 20
  givenname: Danielle
  surname: Harvey
  fullname: Harvey, Danielle
– sequence: 21
  givenname: Donohue
  surname: Donohue
  fullname: Donohue, Donohue
– sequence: 22
  givenname: John
  surname: Kornak
  fullname: Kornak, John
– sequence: 23
  givenname: Anders
  surname: Dale
  fullname: Dale, Anders
– sequence: 24
  givenname: Matthew
  surname: Bernstein
  fullname: Bernstein, Matthew
– sequence: 25
  givenname: Joel
  surname: Felmlee
  fullname: Felmlee, Joel
– sequence: 26
  givenname: Nick
  surname: Fox
  fullname: Fox, Nick
– sequence: 27
  givenname: Paul
  surname: Thompson
  fullname: Thompson, Paul
– sequence: 28
  givenname: Norbert
  surname: Schuff
  fullname: Schuff, Norbert
– sequence: 29
  givenname: Gene
  surname: Alexander
  fullname: Alexander, Gene
– sequence: 30
  givenname: Charles
  surname: DeCarli
  fullname: DeCarli, Charles
– sequence: 31
  givenname: Dan
  surname: Bandy
  fullname: Bandy, Dan
– sequence: 32
  givenname: Robert A
  surname: Koeppe
  fullname: Koeppe, Robert A
– sequence: 33
  givenname: Norm
  surname: Foster
  fullname: Foster, Norm
– sequence: 34
  givenname: Eric M
  surname: Reiman
  fullname: Reiman, Eric M
– sequence: 35
  givenname: Kewei
  surname: Chen
  fullname: Chen, Kewei
– sequence: 36
  givenname: Chet
  surname: Mathis
  fullname: Mathis, Chet
– sequence: 37
  givenname: Nigel J
  surname: Cairns
  fullname: Cairns, Nigel J
– sequence: 38
  givenname: Lisa
  surname: Taylor-Reinwald
  fullname: Taylor-Reinwald, Lisa
– sequence: 39
  givenname: J Q
  surname: Trojanowki
  fullname: Trojanowki, J Q
– sequence: 40
  givenname: Les
  surname: Shaw
  fullname: Shaw, Les
– sequence: 41
  givenname: Virginia M Y
  surname: Lee
  fullname: Lee, Virginia M Y
– sequence: 42
  givenname: Magdalena
  surname: Korecka
  fullname: Korecka, Magdalena
– sequence: 43
  givenname: Karen
  surname: Crawford
  fullname: Crawford, Karen
– sequence: 44
  givenname: Scott
  surname: Neu
  fullname: Neu, Scott
– sequence: 45
  givenname: Tatiana M
  surname: Foroud
  fullname: Foroud, Tatiana M
– sequence: 46
  givenname: Steven
  surname: Potkin
  fullname: Potkin, Steven
– sequence: 47
  givenname: Li
  surname: Shen
  fullname: Shen, Li
– sequence: 48
  givenname: Zaven
  surname: Kachaturian
  fullname: Kachaturian, Zaven
– sequence: 49
  givenname: Richard
  surname: Frank
  fullname: Frank, Richard
– sequence: 50
  givenname: Peter J
  surname: Snyder
  fullname: Snyder, Peter J
– sequence: 51
  givenname: Susan
  surname: Molchan
  fullname: Molchan, Susan
– sequence: 52
  givenname: Jeffrey
  surname: Kaye
  fullname: Kaye, Jeffrey
– sequence: 53
  givenname: Joseph
  surname: Quinn
  fullname: Quinn, Joseph
– sequence: 54
  givenname: Betty
  surname: Lind
  fullname: Lind, Betty
– sequence: 55
  givenname: Sara
  surname: Dolen
  fullname: Dolen, Sara
– sequence: 56
  givenname: Lon S
  surname: Schneider
  fullname: Schneider, Lon S
– sequence: 57
  givenname: Sonia
  surname: Pawluczyk
  fullname: Pawluczyk, Sonia
– sequence: 58
  givenname: Bryan M
  surname: Spann
  fullname: Spann, Bryan M
– sequence: 59
  givenname: James
  surname: Brewer
  fullname: Brewer, James
– sequence: 60
  givenname: Helen
  surname: Vanderswag
  fullname: Vanderswag, Helen
– sequence: 61
  givenname: Judith L
  surname: Heidebrink
  fullname: Heidebrink, Judith L
– sequence: 62
  givenname: Joanne L
  surname: Lord
  fullname: Lord, Joanne L
– sequence: 63
  givenname: Kris
  surname: Johnson
  fullname: Johnson, Kris
– sequence: 64
  givenname: Rachelle S
  surname: Doody
  fullname: Doody, Rachelle S
– sequence: 65
  givenname: Javier
  surname: Villanueva-Meyer
  fullname: Villanueva-Meyer, Javier
– sequence: 66
  givenname: Munir
  surname: Chowdhury
  fullname: Chowdhury, Munir
– sequence: 67
  givenname: Yaakov
  surname: Stern
  fullname: Stern, Yaakov
– sequence: 68
  givenname: Lawrence S
  surname: Honig
  fullname: Honig, Lawrence S
– sequence: 69
  givenname: Karen L
  surname: Bell
  fullname: Bell, Karen L
– sequence: 70
  givenname: John C
  surname: Morris
  fullname: Morris, John C
– sequence: 71
  givenname: Beau
  surname: Ances
  fullname: Ances, Beau
– sequence: 72
  givenname: Maria
  surname: Carroll
  fullname: Carroll, Maria
– sequence: 73
  givenname: Sue
  surname: Leon
  fullname: Leon, Sue
– sequence: 74
  givenname: Mark A
  surname: Mintun
  fullname: Mintun, Mark A
– sequence: 75
  givenname: Stacy
  surname: Schneider
  fullname: Schneider, Stacy
– sequence: 76
  givenname: Daniel
  surname: Marson
  fullname: Marson, Daniel
– sequence: 77
  givenname: Randall
  surname: Griffith
  fullname: Griffith, Randall
– sequence: 78
  givenname: David
  surname: Clark
  fullname: Clark, David
– sequence: 79
  givenname: Hillel
  surname: Grossman
  fullname: Grossman, Hillel
– sequence: 80
  givenname: Effie
  surname: Mitsis
  fullname: Mitsis, Effie
– sequence: 81
  givenname: Aliza
  surname: Romirowsky
  fullname: Romirowsky, Aliza
– sequence: 82
  givenname: Leyla
  surname: deToledo-Morrell
  fullname: deToledo-Morrell, Leyla
– sequence: 83
  givenname: Raj C
  surname: Shah
  fullname: Shah, Raj C
– sequence: 84
  givenname: Ranjan
  surname: Duara
  fullname: Duara, Ranjan
– sequence: 85
  givenname: Daniel
  surname: Varon
  fullname: Varon, Daniel
– sequence: 86
  givenname: Peggy
  surname: Roberts
  fullname: Roberts, Peggy
– sequence: 87
  givenname: Marilyn
  surname: Albert
  fullname: Albert, Marilyn
Copyright 2012 Elsevier Inc.
Copyright © 2012 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Jul 2, 2012
2012 Elsevier Inc. All rights reserved. 2012
Copyright_xml – notice: 2012 Elsevier Inc.
– notice: Copyright © 2012 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Jul 2, 2012
– notice: 2012 Elsevier Inc. All rights reserved. 2012
CorporateAuthor for the Alzheimer's Disease Neuroimaging Initiative
Alzheimer's Disease Neuroimaging Initiative
CorporateAuthor_xml – name: for the Alzheimer's Disease Neuroimaging Initiative
– name: Alzheimer's Disease Neuroimaging Initiative
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
5PM
DOI 10.1016/j.neuroimage.2012.03.059
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList


MEDLINE - Academic
Engineering Research Database
MEDLINE
ProQuest One Psychology
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 632
ExternalDocumentID PMC3358419
3245015341
22498655
10_1016_j_neuroimage_2012_03_059
S1053811912003400
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH097268
– fundername: NIA NIH HHS
  grantid: AG016570
– fundername: NIBIB NIH HHS
  grantid: EB01651
– fundername: NLM NIH HHS
  grantid: R01 LM005639
– fundername: NCRR NIH HHS
  grantid: RR019771
– fundername: NLM NIH HHS
  grantid: R01 LM010730
– fundername: NIA NIH HHS
  grantid: P30 AG019610
– fundername: NIA NIH HHS
  grantid: P30 AG013846
– fundername: NIA NIH HHS
  grantid: U01 AG024904
– fundername: NIA NIH HHS
  grantid: K01 AG030514
– fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB
  grantid: R21 EB001561-03 || EB
– fundername: National Center for Research Resources : NCRR
  grantid: R21 RR019771-02 || RR
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ABMZM
ADFGL
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
OK1
R2-
SEW
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7QO
5PM
ID FETCH-LOGICAL-c597t-4bc877b13c2fd7a5b149e4b97404a490baf214289d7b254e596faef59afb68c23
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Thu Aug 21 18:17:07 EDT 2025
Tue Aug 05 09:04:03 EDT 2025
Fri Jul 11 01:27:03 EDT 2025
Wed Aug 13 07:29:48 EDT 2025
Mon Jul 21 05:18:42 EDT 2025
Thu Apr 24 22:52:50 EDT 2025
Tue Jul 01 02:14:46 EDT 2025
Fri Feb 23 02:36:03 EST 2024
Tue Aug 26 16:36:49 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Multi-source feature learning
Incomplete data
Multi-task learning
Ensemble
Language English
License Copyright © 2012 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c597t-4bc877b13c2fd7a5b149e4b97404a490baf214289d7b254e596faef59afb68c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3358419
PMID 22498655
PQID 1506873153
PQPubID 2031077
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3358419
proquest_miscellaneous_1034825441
proquest_miscellaneous_1024099048
proquest_journals_1506873153
pubmed_primary_22498655
crossref_primary_10_1016_j_neuroimage_2012_03_059
crossref_citationtrail_10_1016_j_neuroimage_2012_03_059
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2012_03_059
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2012_03_059
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-07-02
PublicationDateYYYYMMDD 2012-07-02
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-07-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2012
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Argyriou, Evgeniou, Pontil (bb0015) 2008; 73
Landau, Harvey, Madison, Koeppe, Reiman, Foster, Weiner, Jagust (bb0165) 2011; 32
Yuan, Liu, Ye (bb0295) 2011
Sui, Pearlson, Caprihan, Adali, Kiehl, Liu, Yamamoto, Calhoun (bb0240) 2011; 57
López, Ramírez, Górriz, Álvarez, Salas-Gonzalez, Segovia, Chaves, Padilla, Gómez-Río (bb0400) 2011; 74
Liu, Ye (bb0175) 2010
Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bb0250) 2002; 15
Ibanez, Pietrini, Alexander, Furey, Teichberg, Rajapakse, Rapoport, Schapiro, Horwitz (bb0120) 1998; 50
Chen, Reiman, Huan, Caselli, Bandy, Ayutyanont, Alexander (bb0055) 2009; 47
Yuan, Lin (bb0290) 2006; 68
Liu, Ji, Ye (bb0180) 2009
Jack, Lowe, Senjem, Weigand, Kemp, Shiung, Knopman, Boeve, Klunk, Mathis, Petersen (bb0130) 2008; 131
Ando, Zhang (bb0010) 2005; 6
Hardy, Allore, Studenski (bb0105) 2009; 57
Nesterov (bb0215) 2007
Yang, Liu, Sui, Pearlson, Calhoun (bb0280) 2010; 4
Dietterich (bb0080) 2000
Braskie, Klunder, Hayashi, Protas, Kepe, Miller, Huang, Barrio, Ercoli, Siddarth, Satyamurthy, Liu, Toga, Bookheimer, Small, Thompson (bb0025) 2008; 31
Kohannim, Hua, Hibar, Lee, Chou, Toga, Jack, Weiner, Thompson (bb0150) 2010; 31
Ji, Sun, Jin, Kumar, Ye (bb0140) 2008; 24
Ashburner, Friston (bb0020) 1997; 6
Vemuri, Wiste, Weigand, Shaw, Trojanowski, Weiner, Knopman, Petersen, Jack (bb0265) 2009; 73
Schott, Bartlett, Barnes, Leung, Ourselin, Fox (bb0235) 2010; 31
Cuingnet, Gerardin, Tessieras, Auzias, Lehericy, Habert, Chupin, Benali, Colliot (bb0070) 2011; 56
Fennema-Notestine, Hagler, McEvoy, Fleisher, Wu, Karow, Dale (bb0090) 2009; 30
Kuncheva, Rodríguez (bb0160) 2010; 28
Casanova, Srikanth, Baer, Laurienti, Burdette, Hayasaka, Flowers, Wood, Maldjian (bb0050) 2007; 34
Candes, Tao (bb0045) 2010; 56
Mueller, Weiner, Thal, Petersen, Jack, Jagust, Trojanowski, Toga, Beckett (bb0205) 2005; 15
Calhoun, Adali (bb0040) 2009; 13
Morra, Tu, Apostolova, Green, Toga, Thompson (bb0200) 2010; 29
Nesterov (bb0210) 2003
Fan, Resnick, Wu, Davatzikos (bb0085) 2008; 41
Ji, Yuan, Li, Zhou, Kumar, Ye (bb0145) 2009
Jack, Bernstein, Fox, Thompson, Alexander, Harvey, Borowski, Britson, Whitwell, Ward, Dale, Felmlee, Gunter, Hill, Killiany, Schuff, Fox-Bosetti, Lin, Studholme, DeCarli, Krueger, Ward, Metzger, Scott, Mallozzi, Blezek, Levy, Debbins, Fleisher, Albert, Green, Bartzokis, Glover, Mugler, Weiner (bb0125) 2008; 27
Van Ness, Murphy, Araujo, Pisani, Allore (bb0255) 2007; 60
Hastie, Tibshirani, Sherlock, Eisen, Brown, Botstein (bb0110) 1999
Liu, Yuan, Ye (bb0190) 2010
Vemuri, Wiste, Weigand, Shaw, Trojanowski, Weiner, Knopman, Petersen, Jack (bb0260) 2009; 73
Worsley, Poline, Friston, Evans (bb0275) 1997; 6
Reiman, Langbaum, Tariot (bb0225) 2010; 4
Liu, Ji, Ye (bb0185) 2009
Cai, Candes, Shen (bb0035) 2010; 20
Gao (bb0095) 2004; 23
Zhang, Wang, Zhou, Yuan, Shen (bb0300) 2011; 55
Ye, Chen, Wu, Li, Zhao, Patel, Bae, Janardan, Liu, Alexander, Reiman (bb0285) 2008
Devanand, Pradhaban, Liu, Khandji, De Santi, Segal, Rusinek, Pelton, Honig, Mayeux, Stern, Tabert, de Leon (bb0075) 2007; 68
Palmer, Royall (bb0220) 2010; 58
Schneider (bb0230) 2001; 14
Wang, Fan, Bhatt, Davatzikos (bb0270) 2010; 50
Sun, Patel, Liu, Chen, Wu, Li, Reiman, Ye (bb0245) 2009
Groves, Beckmann, Smith, Woolrich (bb0100) 2011; 54
Lemm, Blankertz, Dickhaus, Muller (bb0170) 2011; 56
Jack, Barkhof, Bernstein, Cantillon, Cole, Decarli, Dubois, Duchesne, Fox, Frisoni, Hampel, Hill, Johnson, Mangin, Scheltens, Schwarz, Sperling, Suhy, Thompson, Weiner, Foster (bb0135) 2011; 7
Hua, Gutman, Boyle, Rajagopalan, Leow, Yanovsky, Kumar, Toga, Jack, Schuff, Alexander, Chen, Reiman, Weiner, Thompson (bb0115) 2011; 57
Kuljis (bb0155) 2010; 1
Combettes, Pesquet (bb0060) 2009
Correa, Adali, Li, Calhoun (bb0065) 2010; 27
Martinez-Montes, Valdes-Sosa, Miwakeichi, Goldman, Cohen (bb0195) 2004; 22
Dietterich (10.1016/j.neuroimage.2012.03.059_bb0080) 2000
Schott (10.1016/j.neuroimage.2012.03.059_bb0235) 2010; 31
Sui (10.1016/j.neuroimage.2012.03.059_bb0240) 2011; 57
Combettes (10.1016/j.neuroimage.2012.03.059_bb0060)
Hardy (10.1016/j.neuroimage.2012.03.059_bb0105) 2009; 57
Van Ness (10.1016/j.neuroimage.2012.03.059_bb0255) 2007; 60
Jack (10.1016/j.neuroimage.2012.03.059_bb0135) 2011; 7
Chen (10.1016/j.neuroimage.2012.03.059_bb0055) 2009; 47
Jack (10.1016/j.neuroimage.2012.03.059_bb0125) 2008; 27
Cai (10.1016/j.neuroimage.2012.03.059_bb0035) 2010; 20
Schneider (10.1016/j.neuroimage.2012.03.059_bb0230) 2001; 14
Lemm (10.1016/j.neuroimage.2012.03.059_bb0170) 2011; 56
Nesterov (10.1016/j.neuroimage.2012.03.059_bb0215) 2007
Casanova (10.1016/j.neuroimage.2012.03.059_bb0050) 2007; 34
Liu (10.1016/j.neuroimage.2012.03.059_bb0190) 2010
Vemuri (10.1016/j.neuroimage.2012.03.059_bb0265) 2009; 73
Ibanez (10.1016/j.neuroimage.2012.03.059_bb0120) 1998; 50
Worsley (10.1016/j.neuroimage.2012.03.059_bb0275) 1997; 6
Braskie (10.1016/j.neuroimage.2012.03.059_bb0025) 2008; 31
Fan (10.1016/j.neuroimage.2012.03.059_bb0085) 2008; 41
Fennema-Notestine (10.1016/j.neuroimage.2012.03.059_bb0090) 2009; 30
Devanand (10.1016/j.neuroimage.2012.03.059_bb0075) 2007; 68
Sun (10.1016/j.neuroimage.2012.03.059_bb0245) 2009
Ji (10.1016/j.neuroimage.2012.03.059_bb0140) 2008; 24
Ji (10.1016/j.neuroimage.2012.03.059_bb0145) 2009
Hua (10.1016/j.neuroimage.2012.03.059_bb0115) 2011; 57
Kohannim (10.1016/j.neuroimage.2012.03.059_bb0150) 2010; 31
López (10.1016/j.neuroimage.2012.03.059_bb0400) 2011; 74
Yang (10.1016/j.neuroimage.2012.03.059_bb0280) 2010; 4
Hastie (10.1016/j.neuroimage.2012.03.059_bb0110) 1999
Martinez-Montes (10.1016/j.neuroimage.2012.03.059_bb0195) 2004; 22
Ando (10.1016/j.neuroimage.2012.03.059_bb0010) 2005; 6
Tzourio-Mazoyer (10.1016/j.neuroimage.2012.03.059_bb0250) 2002; 15
Ashburner (10.1016/j.neuroimage.2012.03.059_bb0020) 1997; 6
Yuan (10.1016/j.neuroimage.2012.03.059_bb0295) 2011
Liu (10.1016/j.neuroimage.2012.03.059_bb0180) 2009
Groves (10.1016/j.neuroimage.2012.03.059_bb0100) 2011; 54
Candes (10.1016/j.neuroimage.2012.03.059_bb0045) 2010; 56
Jack (10.1016/j.neuroimage.2012.03.059_bb0130) 2008; 131
Kuljis (10.1016/j.neuroimage.2012.03.059_bb0155) 2010; 1
Liu (10.1016/j.neuroimage.2012.03.059_bb0185)
Ye (10.1016/j.neuroimage.2012.03.059_bb0285) 2008
Morra (10.1016/j.neuroimage.2012.03.059_bb0200) 2010; 29
Correa (10.1016/j.neuroimage.2012.03.059_bb0065) 2010; 27
Gao (10.1016/j.neuroimage.2012.03.059_bb0095) 2004; 23
Argyriou (10.1016/j.neuroimage.2012.03.059_bb0015) 2008; 73
Reiman (10.1016/j.neuroimage.2012.03.059_bb0225) 2010; 4
Palmer (10.1016/j.neuroimage.2012.03.059_bb0220) 2010; 58
Vemuri (10.1016/j.neuroimage.2012.03.059_bb0260) 2009; 73
Kuncheva (10.1016/j.neuroimage.2012.03.059_bb0160) 2010; 28
Liu (10.1016/j.neuroimage.2012.03.059_bb0175) 2010
Landau (10.1016/j.neuroimage.2012.03.059_bb0165) 2011; 32
Calhoun (10.1016/j.neuroimage.2012.03.059_bb0040) 2009; 13
Nesterov (10.1016/j.neuroimage.2012.03.059_bb0210) 2003
Zhang (10.1016/j.neuroimage.2012.03.059_bb0300) 2011; 55
Yuan (10.1016/j.neuroimage.2012.03.059_bb0290) 2006; 68
Wang (10.1016/j.neuroimage.2012.03.059_bb0270) 2010; 50
Cuingnet (10.1016/j.neuroimage.2012.03.059_bb0070) 2011; 56
Mueller (10.1016/j.neuroimage.2012.03.059_bb0205) 2005; 15
References_xml – volume: 24
  start-page: 1881
  year: 2008
  end-page: 1888
  ident: bb0140
  article-title: Automated annotation of Drosophila gene expression patterns using a controlled vocabulary
  publication-title: Bioinformatics
– volume: 32
  start-page: 1207
  year: 2011
  end-page: 1218
  ident: bb0165
  article-title: Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI
  publication-title: Neurobiol. Aging
– volume: 50
  start-page: 1519
  year: 2010
  end-page: 1535
  ident: bb0270
  article-title: High-dimensional pattern regression using machine learning: from medical images to continuous clinical variables
  publication-title: Neuroimage
– volume: 57
  start-page: 722
  year: 2009
  end-page: 729
  ident: bb0105
  article-title: Missing data: a special challenge in aging research
  publication-title: J. Am. Geriatr. Soc.
– volume: 50
  start-page: 1585
  year: 1998
  end-page: 1593
  ident: bb0120
  article-title: Regional glucose metabolic abnormalities are not the result of atrophy in Alzheimer's disease
  publication-title: Neurology
– volume: 14
  start-page: 853
  year: 2001
  end-page: 871
  ident: bb0230
  article-title: Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values
  publication-title: J. Climate
– volume: 47
  start-page: 602
  year: 2009
  end-page: 610
  ident: bb0055
  article-title: Linking functional and structural brain images with multivariate network analyses: a novel application of the partial least square method
  publication-title: Neuroimage
– volume: 58
  start-page: S343
  year: 2010
  end-page: 348
  ident: bb0220
  article-title: Missing data? Plan on it!
  publication-title: J. Am. Geriatr. Soc.
– volume: 57
  start-page: 839
  year: 2011
  end-page: 855
  ident: bb0240
  article-title: Discriminating schizophrenia and bipolar disorder by fusing fMRI and DTI in a multimodal CCA+ joint ICA model
  publication-title: Neuroimage
– start-page: 407
  year: 2009
  end-page: 415
  ident: bb0145
  article-title: Drosophila gene expression pattern annotation using sparse features and term-term interactions
  publication-title: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining
– volume: 41
  start-page: 277
  year: 2008
  end-page: 285
  ident: bb0085
  article-title: Structural and functional biomarkers of prodromal Alzheimer's disease: a high-dimensional pattern classification study
  publication-title: Neuroimage
– start-page: 1335
  year: 2009
  end-page: 1344
  ident: bb0245
  article-title: Mining brain region connectivity for Alzheimer's disease study via sparse inverse covariance estimation
  publication-title: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining
– volume: 4
  start-page: 192
  year: 2010
  ident: bb0280
  article-title: A hybrid machine learning method for fusing fMRI and genetic data: combining both improves classification of schizophrenia
  publication-title: Front. Hum. Neurosci.
– volume: 31
  start-page: 1429
  year: 2010
  end-page: 1442
  ident: bb0150
  article-title: Boosting power for clinical trials using classifiers based on multiple biomarkers
  publication-title: Neurobiol. Aging
– start-page: 1
  year: 2000
  end-page: 15
  ident: bb0080
  article-title: Ensemble Methods in Machine Learning
  publication-title: International Workshop on Multiple Classifier Systems
– volume: 4
  start-page: 3
  year: 2010
  end-page: 14
  ident: bb0225
  article-title: Alzheimer's prevention initiative: a proposal to evaluate presymptomatic treatments as quickly as possible
  publication-title: Biomark. Med.
– volume: 31
  start-page: 1669
  year: 2008
  end-page: 1678
  ident: bb0025
  article-title: Plaque and tangle imaging and cognition in normal aging and Alzheimer's disease
  publication-title: Neurobiol. Aging
– year: 1999
  ident: bb0110
  article-title: Imputing missing data for gene expression arrays
  publication-title: Technical Report, Division of Biostatistics
– volume: 68
  start-page: 828
  year: 2007
  end-page: 836
  ident: bb0075
  article-title: Hippocampal and entorhinal atrophy in mild cognitive impairment: prediction of Alzheimer disease
  publication-title: Neurology
– start-page: 1459
  year: 2010
  end-page: 1467
  ident: bb0175
  article-title: Moreau–Yosida regularization for grouped tree structure learning
  publication-title: Advances in Neural Information Processing Systems
– year: 2003
  ident: bb0210
  article-title: Introductory Lectures on Convex Optimization: A Basic Course (Applied Optimization)
– volume: 60
  start-page: 1239
  year: 2007
  end-page: 1245
  ident: bb0255
  article-title: The use of missingness screens in clinical epidemiologic research has implications for regression modeling
  publication-title: J. Clin. Epidemiol.
– volume: 29
  start-page: 30
  year: 2010
  end-page: 43
  ident: bb0200
  article-title: Comparison of AdaBoost and support vector machines for detecting Alzheimer's disease through automated hippocampal segmentation
  publication-title: IEEE Trans. Med. Imaging
– start-page: 323
  year: 2010
  end-page: 332
  ident: bb0190
  article-title: An efficient algorithm for a class of fused lasso problems
  publication-title: Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining
– volume: 57
  start-page: 5
  year: 2011
  end-page: 14
  ident: bb0115
  article-title: Accurate measurement of brain changes in longitudinal MRI scans using tensor-based morphometry
  publication-title: Neuroimage
– volume: 55
  start-page: 856
  year: 2011
  end-page: 867
  ident: bb0300
  article-title: Multimodal classification of Alzheimer's disease and mild cognitive impairment
  publication-title: Neuroimage
– volume: 56
  start-page: 2053
  year: 2010
  end-page: 2080
  ident: bb0045
  article-title: The power of convex relaxation: near-optimal matrix completion
  publication-title: IEEE Trans. Inf. Theory
– volume: 30
  start-page: 3238
  year: 2009
  end-page: 3253
  ident: bb0090
  article-title: Structural MRI biomarkers for preclinical and mild Alzheimer's disease
  publication-title: Hum. Brain Mapp.
– volume: 6
  start-page: 1817
  year: 2005
  end-page: 1853
  ident: bb0010
  article-title: A framework for learning predictive structures from multiple tasks and unlabeled data
  publication-title: J. Mach. Learn. Res.
– volume: 28
  start-page: 583
  year: 2010
  end-page: 593
  ident: bb0160
  article-title: Classifier ensembles for fMRI data analysis: an experiment
  publication-title: Magn. Reson. Imaging
– volume: 27
  start-page: 685
  year: 2008
  end-page: 691
  ident: bb0125
  article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods
  publication-title: J. Magn. Reson. Imaging
– volume: 73
  start-page: 287
  year: 2009
  end-page: 293
  ident: bb0260
  article-title: MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnostic discrimination and cognitive correlations
  publication-title: Neurology
– volume: 131
  start-page: 665
  year: 2008
  end-page: 680
  ident: bb0130
  article-title: 11C PiB and structural MRI provide complementary information in imaging of Alzheimer's disease and amnestic mild cognitive impairment
  publication-title: Brain
– volume: 13
  start-page: 711
  year: 2009
  end-page: 720
  ident: bb0040
  article-title: Feature-based fusion of medical imaging data
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– start-page: 352
  year: 2011
  end-page: 360
  ident: bb0295
  article-title: Efficient methods for overlapping group lasso
  publication-title: Advances in Neural Information Processing Systems (NIPS)
– volume: 74
  start-page: 1260
  year: 2011
  end-page: 1271
  ident: bb0400
  article-title: Principal component analysis-based techniques and supervised classification schemes for the early detection of the Alzheimer’s disease
  publication-title: Neurocomputing
– volume: 15
  start-page: 869
  year: 2005
  end-page: 877
  ident: bb0205
  article-title: The Alzheimer's disease neuroimaging initiative
  publication-title: Neuroimaging Clin. N. Am.
– volume: 73
  start-page: 243
  year: 2008
  end-page: 272
  ident: bb0015
  article-title: Convex multi-task feature learning
  publication-title: Mach. Learn.
– volume: 1
  start-page: 4
  year: 2010
  ident: bb0155
  article-title: Grand challenges in dementia 2010
  publication-title: Front. Neurol.
– volume: 68
  start-page: 49
  year: 2006
  end-page: 67
  ident: bb0290
  article-title: Model selection and estimation in regression with grouped variables
  publication-title: J. R. Stat. Soc. B Stat. Methodol.
– volume: 22
  start-page: 1023
  year: 2004
  end-page: 1034
  ident: bb0195
  article-title: Concurrent EEG/fMRI analysis by multiway Partial Least Squares
  publication-title: Neuroimage
– start-page: 1025
  year: 2008
  end-page: 1033
  ident: bb0285
  article-title: Heterogeneous data fusion for Alzheimer's disease study
  publication-title: Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining
– volume: 54
  start-page: 2198
  year: 2011
  end-page: 2217
  ident: bb0100
  article-title: Linked independent component analysis for multimodal data fusion
  publication-title: Neuroimage
– volume: 23
  start-page: 211
  year: 2004
  end-page: 219
  ident: bb0095
  article-title: A shared random effect parameter approach for longitudinal dementia data with non-ignorable missing data
  publication-title: Stat. Med.
– volume: 73
  start-page: 294
  year: 2009
  end-page: 301
  ident: bb0265
  article-title: MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change
  publication-title: Neurology
– volume: 6
  start-page: 305
  year: 1997
  end-page: 319
  ident: bb0275
  article-title: Characterizing the response of PET and fMRI data using multivariate linear models
  publication-title: Neuroimage
– start-page: 339
  year: 2009
  end-page: 348
  ident: bb0180
  article-title: Multi-task feature learning via efficient l 2, 1-norm minimization
– volume: 34
  start-page: 137
  year: 2007
  end-page: 143
  ident: bb0050
  article-title: Biological parametric mapping: a statistical toolbox for multimodality brain image analysis
  publication-title: Neuroimage
– year: 2009
  ident: bb0060
  article-title: Proximal splitting methods in signal processing
– volume: 15
  start-page: 273
  year: 2002
  end-page: 289
  ident: bb0250
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
– volume: 20
  start-page: 1956
  year: 2010
  end-page: 1982
  ident: bb0035
  article-title: A singular value thresholding algorithm for matrix completion
  publication-title: SIAM J. Optim.
– volume: 7
  start-page: 474
  year: 2011
  end-page: 485
  ident: bb0135
  article-title: Steps to standardization and validation of hippocampal volumetry as a biomarker in clinical trials and diagnostic criterion for Alzheimer's disease
  publication-title: Alzheimers Dement.
– year: 2007
  ident: bb0215
  article-title: Gradient methods for minimizing composite objective function
  publication-title: ReCALL 76
– volume: 56
  start-page: 1
  year: 2011
  end-page: 4
  ident: bb0070
  article-title: Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database
  publication-title: Neuroimage
– volume: 31
  start-page: 1452
  year: 2010
  end-page: 1462
  ident: bb0235
  article-title: Reduced sample sizes for atrophy outcomes in Alzheimer's disease trials: baseline adjustment
  publication-title: Neurobiol. Aging
– volume: 27
  start-page: 39
  year: 2010
  end-page: 50
  ident: bb0065
  article-title: Canonical correlation analysis for data fusion and group inferences: examining applications of medical imaging data
  publication-title: IEEE Signal Process. Mag.
– volume: 56
  start-page: 387
  year: 2011
  end-page: 399
  ident: bb0170
  article-title: Introduction to machine learning for brain imaging
  publication-title: Neuroimage
– volume: 6
  start-page: 209
  year: 1997
  end-page: 217
  ident: bb0020
  article-title: Multimodal image coregistration and partitioning—a unified framework
  publication-title: Neuroimage
– year: 2009
  ident: bb0185
  article-title: SLEP: A Sparse Learning Package
– volume: 22
  start-page: 1023
  year: 2004
  ident: 10.1016/j.neuroimage.2012.03.059_bb0195
  article-title: Concurrent EEG/fMRI analysis by multiway Partial Least Squares
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.03.038
– volume: 13
  start-page: 711
  year: 2009
  ident: 10.1016/j.neuroimage.2012.03.059_bb0040
  article-title: Feature-based fusion of medical imaging data
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2008.923773
– volume: 57
  start-page: 722
  year: 2009
  ident: 10.1016/j.neuroimage.2012.03.059_bb0105
  article-title: Missing data: a special challenge in aging research
  publication-title: J. Am. Geriatr. Soc.
  doi: 10.1111/j.1532-5415.2008.02168.x
– volume: 54
  start-page: 2198
  year: 2011
  ident: 10.1016/j.neuroimage.2012.03.059_bb0100
  article-title: Linked independent component analysis for multimodal data fusion
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.09.073
– volume: 30
  start-page: 3238
  year: 2009
  ident: 10.1016/j.neuroimage.2012.03.059_bb0090
  article-title: Structural MRI biomarkers for preclinical and mild Alzheimer's disease
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20744
– volume: 27
  start-page: 685
  year: 2008
  ident: 10.1016/j.neuroimage.2012.03.059_bb0125
  article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.21049
– volume: 73
  start-page: 287
  year: 2009
  ident: 10.1016/j.neuroimage.2012.03.059_bb0260
  article-title: MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnostic discrimination and cognitive correlations
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181af79e5
– volume: 24
  start-page: 1881
  year: 2008
  ident: 10.1016/j.neuroimage.2012.03.059_bb0140
  article-title: Automated annotation of Drosophila gene expression patterns using a controlled vocabulary
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn347
– volume: 57
  start-page: 5
  issue: 1
  year: 2011
  ident: 10.1016/j.neuroimage.2012.03.059_bb0115
  article-title: Accurate measurement of brain changes in longitudinal MRI scans using tensor-based morphometry
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.01.079
– volume: 31
  start-page: 1669
  year: 2008
  ident: 10.1016/j.neuroimage.2012.03.059_bb0025
  article-title: Plaque and tangle imaging and cognition in normal aging and Alzheimer's disease
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2008.09.012
– start-page: 1
  year: 2000
  ident: 10.1016/j.neuroimage.2012.03.059_bb0080
  article-title: Ensemble Methods in Machine Learning
– ident: 10.1016/j.neuroimage.2012.03.059_bb0060
– volume: 57
  start-page: 839
  year: 2011
  ident: 10.1016/j.neuroimage.2012.03.059_bb0240
  article-title: Discriminating schizophrenia and bipolar disorder by fusing fMRI and DTI in a multimodal CCA+ joint ICA model
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.05.055
– volume: 6
  start-page: 305
  year: 1997
  ident: 10.1016/j.neuroimage.2012.03.059_bb0275
  article-title: Characterizing the response of PET and fMRI data using multivariate linear models
  publication-title: Neuroimage
  doi: 10.1006/nimg.1997.0294
– start-page: 407
  year: 2009
  ident: 10.1016/j.neuroimage.2012.03.059_bb0145
  article-title: Drosophila gene expression pattern annotation using sparse features and term-term interactions
– start-page: 323
  year: 2010
  ident: 10.1016/j.neuroimage.2012.03.059_bb0190
  article-title: An efficient algorithm for a class of fused lasso problems
– volume: 31
  start-page: 1452
  year: 2010
  ident: 10.1016/j.neuroimage.2012.03.059_bb0235
  article-title: Reduced sample sizes for atrophy outcomes in Alzheimer's disease trials: baseline adjustment
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2010.04.011
– volume: 31
  start-page: 1429
  year: 2010
  ident: 10.1016/j.neuroimage.2012.03.059_bb0150
  article-title: Boosting power for clinical trials using classifiers based on multiple biomarkers
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2010.04.022
– volume: 29
  start-page: 30
  year: 2010
  ident: 10.1016/j.neuroimage.2012.03.059_bb0200
  article-title: Comparison of AdaBoost and support vector machines for detecting Alzheimer's disease through automated hippocampal segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2021941
– volume: 6
  start-page: 209
  year: 1997
  ident: 10.1016/j.neuroimage.2012.03.059_bb0020
  article-title: Multimodal image coregistration and partitioning—a unified framework
  publication-title: Neuroimage
  doi: 10.1006/nimg.1997.0290
– volume: 58
  start-page: S343
  issue: Suppl. 2
  year: 2010
  ident: 10.1016/j.neuroimage.2012.03.059_bb0220
  article-title: Missing data? Plan on it!
  publication-title: J. Am. Geriatr. Soc.
  doi: 10.1111/j.1532-5415.2010.03053.x
– volume: 60
  start-page: 1239
  year: 2007
  ident: 10.1016/j.neuroimage.2012.03.059_bb0255
  article-title: The use of missingness screens in clinical epidemiologic research has implications for regression modeling
  publication-title: J. Clin. Epidemiol.
  doi: 10.1016/j.jclinepi.2007.03.006
– start-page: 339
  year: 2009
  ident: 10.1016/j.neuroimage.2012.03.059_bb0180
  article-title: Multi-task feature learning via efficient l 2, 1-norm minimization
– year: 2003
  ident: 10.1016/j.neuroimage.2012.03.059_bb0210
– volume: 15
  start-page: 273
  year: 2002
  ident: 10.1016/j.neuroimage.2012.03.059_bb0250
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
– volume: 4
  start-page: 192
  year: 2010
  ident: 10.1016/j.neuroimage.2012.03.059_bb0280
  article-title: A hybrid machine learning method for fusing fMRI and genetic data: combining both improves classification of schizophrenia
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2010.00192
– volume: 56
  start-page: 387
  year: 2011
  ident: 10.1016/j.neuroimage.2012.03.059_bb0170
  article-title: Introduction to machine learning for brain imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.11.004
– volume: 56
  start-page: 1
  year: 2011
  ident: 10.1016/j.neuroimage.2012.03.059_bb0070
  article-title: Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.06.013
– volume: 56
  start-page: 2053
  year: 2010
  ident: 10.1016/j.neuroimage.2012.03.059_bb0045
  article-title: The power of convex relaxation: near-optimal matrix completion
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2010.2044061
– ident: 10.1016/j.neuroimage.2012.03.059_bb0185
– volume: 20
  start-page: 1956
  year: 2010
  ident: 10.1016/j.neuroimage.2012.03.059_bb0035
  article-title: A singular value thresholding algorithm for matrix completion
  publication-title: SIAM J. Optim.
  doi: 10.1137/080738970
– volume: 32
  start-page: 1207
  year: 2011
  ident: 10.1016/j.neuroimage.2012.03.059_bb0165
  article-title: Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2009.07.002
– volume: 73
  start-page: 294
  year: 2009
  ident: 10.1016/j.neuroimage.2012.03.059_bb0265
  article-title: MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181af79fb
– start-page: 1335
  year: 2009
  ident: 10.1016/j.neuroimage.2012.03.059_bb0245
  article-title: Mining brain region connectivity for Alzheimer's disease study via sparse inverse covariance estimation
– volume: 1
  start-page: 4
  year: 2010
  ident: 10.1016/j.neuroimage.2012.03.059_bb0155
  article-title: Grand challenges in dementia 2010
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2010.00004
– volume: 6
  start-page: 1817
  year: 2005
  ident: 10.1016/j.neuroimage.2012.03.059_bb0010
  article-title: A framework for learning predictive structures from multiple tasks and unlabeled data
  publication-title: J. Mach. Learn. Res.
– year: 1999
  ident: 10.1016/j.neuroimage.2012.03.059_bb0110
  article-title: Imputing missing data for gene expression arrays
– start-page: 1025
  year: 2008
  ident: 10.1016/j.neuroimage.2012.03.059_bb0285
  article-title: Heterogeneous data fusion for Alzheimer's disease study
– start-page: 352
  year: 2011
  ident: 10.1016/j.neuroimage.2012.03.059_bb0295
  article-title: Efficient methods for overlapping group lasso
– volume: 28
  start-page: 583
  year: 2010
  ident: 10.1016/j.neuroimage.2012.03.059_bb0160
  article-title: Classifier ensembles for fMRI data analysis: an experiment
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2009.12.021
– volume: 55
  start-page: 856
  year: 2011
  ident: 10.1016/j.neuroimage.2012.03.059_bb0300
  article-title: Multimodal classification of Alzheimer's disease and mild cognitive impairment
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.01.008
– volume: 74
  start-page: 1260
  issue: 8
  year: 2011
  ident: 10.1016/j.neuroimage.2012.03.059_bb0400
  article-title: Principal component analysis-based techniques and supervised classification schemes for the early detection of the Alzheimer’s disease
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.06.025
– volume: 41
  start-page: 277
  year: 2008
  ident: 10.1016/j.neuroimage.2012.03.059_bb0085
  article-title: Structural and functional biomarkers of prodromal Alzheimer's disease: a high-dimensional pattern classification study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.02.043
– volume: 4
  start-page: 3
  year: 2010
  ident: 10.1016/j.neuroimage.2012.03.059_bb0225
  article-title: Alzheimer's prevention initiative: a proposal to evaluate presymptomatic treatments as quickly as possible
  publication-title: Biomark. Med.
  doi: 10.2217/bmm.09.91
– volume: 14
  start-page: 853
  year: 2001
  ident: 10.1016/j.neuroimage.2012.03.059_bb0230
  article-title: Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values
  publication-title: J. Climate
  doi: 10.1175/1520-0442(2001)014<0853:AOICDE>2.0.CO;2
– volume: 50
  start-page: 1519
  year: 2010
  ident: 10.1016/j.neuroimage.2012.03.059_bb0270
  article-title: High-dimensional pattern regression using machine learning: from medical images to continuous clinical variables
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.12.092
– start-page: 1459
  year: 2010
  ident: 10.1016/j.neuroimage.2012.03.059_bb0175
  article-title: Moreau–Yosida regularization for grouped tree structure learning
– volume: 27
  start-page: 39
  year: 2010
  ident: 10.1016/j.neuroimage.2012.03.059_bb0065
  article-title: Canonical correlation analysis for data fusion and group inferences: examining applications of medical imaging data
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2010.936725
– volume: 47
  start-page: 602
  year: 2009
  ident: 10.1016/j.neuroimage.2012.03.059_bb0055
  article-title: Linking functional and structural brain images with multivariate network analyses: a novel application of the partial least square method
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.04.053
– volume: 15
  start-page: 869
  year: 2005
  ident: 10.1016/j.neuroimage.2012.03.059_bb0205
  article-title: The Alzheimer's disease neuroimaging initiative
  publication-title: Neuroimaging Clin. N. Am.
  doi: 10.1016/j.nic.2005.09.008
– volume: 7
  start-page: 474
  year: 2011
  ident: 10.1016/j.neuroimage.2012.03.059_bb0135
  article-title: Steps to standardization and validation of hippocampal volumetry as a biomarker in clinical trials and diagnostic criterion for Alzheimer's disease
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.jalz.2011.04.007
– volume: 23
  start-page: 211
  year: 2004
  ident: 10.1016/j.neuroimage.2012.03.059_bb0095
  article-title: A shared random effect parameter approach for longitudinal dementia data with non-ignorable missing data
  publication-title: Stat. Med.
  doi: 10.1002/sim.1710
– volume: 68
  start-page: 49
  year: 2006
  ident: 10.1016/j.neuroimage.2012.03.059_bb0290
  article-title: Model selection and estimation in regression with grouped variables
  publication-title: J. R. Stat. Soc. B Stat. Methodol.
  doi: 10.1111/j.1467-9868.2005.00532.x
– volume: 50
  start-page: 1585
  year: 1998
  ident: 10.1016/j.neuroimage.2012.03.059_bb0120
  article-title: Regional glucose metabolic abnormalities are not the result of atrophy in Alzheimer's disease
  publication-title: Neurology
  doi: 10.1212/WNL.50.6.1585
– year: 2007
  ident: 10.1016/j.neuroimage.2012.03.059_bb0215
  article-title: Gradient methods for minimizing composite objective function
– volume: 68
  start-page: 828
  year: 2007
  ident: 10.1016/j.neuroimage.2012.03.059_bb0075
  article-title: Hippocampal and entorhinal atrophy in mild cognitive impairment: prediction of Alzheimer disease
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000256697.20968.d7
– volume: 131
  start-page: 665
  year: 2008
  ident: 10.1016/j.neuroimage.2012.03.059_bb0130
  article-title: 11C PiB and structural MRI provide complementary information in imaging of Alzheimer's disease and amnestic mild cognitive impairment
  publication-title: Brain
  doi: 10.1093/brain/awm336
– volume: 73
  start-page: 243
  year: 2008
  ident: 10.1016/j.neuroimage.2012.03.059_bb0015
  article-title: Convex multi-task feature learning
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-007-5040-8
– volume: 34
  start-page: 137
  year: 2007
  ident: 10.1016/j.neuroimage.2012.03.059_bb0050
  article-title: Biological parametric mapping: a statistical toolbox for multimodality brain image analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.09.011
SSID ssj0009148
Score 2.4793472
Snippet Analysis of incomplete data is a big challenge when integrating large-scale brain imaging datasets from different imaging modalities. In the Alzheimer's...
Analysis of incomplete data is a big challenge when integrating large-scale brain imaging datasets from different imaging modalities. In the Alzheimer’s...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 622
SubjectTerms Accuracy
Aged
Algorithms
Alzheimer Disease - cerebrospinal fluid
Alzheimer Disease - pathology
Alzheimer's disease
Artificial Intelligence
Biomarkers
Brain research
Classification
Cognitive Dysfunction - cerebrospinal fluid
Cognitive Dysfunction - pathology
Databases, Factual
Ensemble
Female
Fluorodeoxyglucose F18
Humans
Image Processing, Computer-Assisted - methods
Image Processing, Computer-Assisted - statistics & numerical data
Incomplete data
Magnetic Resonance Imaging
Male
Medical imaging
Methods
Middle Aged
Multi-source feature learning
Multi-task learning
Neuroimaging - instrumentation
Neuroimaging - methods
NMR
Nuclear magnetic resonance
Pathology
Positron-Emission Tomography
Proteomics
Radiopharmaceuticals
Studies
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZ4SBUXREtbFihyJa4ReTixLQ4IIRBCoqci7c2yHRsWtQmw4f8z4zhZoBXaSy7OWIlnbH9jz3xDyKHQzBnLHfgmqU6YrYpEZNbDw5RVLQomPOYOX_-qLm_Y1bScxgO3eQyrHNbEsFDXrcUz8iNkwhO8gAl68vCYYNUovF2NJTRWyTpSl6FV8ylfkO5mrE-FK_ELMhkjefr4rsAXOfsLsxYDvPJAdYqMpf_fnv6Fn--jKF9tSxdbZDPiSXraG8BnsuKaL-TTdbwx3ya3IcM26c_oqXeBx5PGWhG3FCArvW9nTUd1ZCehrafI2ICswZ2jQ8AhvcO4mRbMzbXPczr-FnaCUaZfyc3F-e-zyyQWV0gs-BBdwowVnJussLmvuS4NuEqOGXAvUqaZTI32gY1N1tyAE-lKWXntfCm1N5WwefGNrDVt43YIBZenAp3a1NYG8J8UaeXSuualLPNKZ9mE8GFMlY3M41gA448aQszu1UIbCrWh0kJBTxOSjZIPPfvGEjJyUJsaskthPVSwRSwhezzKRgTSI4slpfcHK1FxJZirhd1OyM-xGeYwXszooDPoFXAVwAImPnoHaYiwYtyEfO8NbxwSgGESE4xhoN-Y5PgCcoi_bWlmd4FLvCgAgWZy9-NP3yMb-J8hTDnfJ2vd07P7AWCsMwdhxr0ABOg38w
  priority: 102
  providerName: ProQuest
Title Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811912003400
https://dx.doi.org/10.1016/j.neuroimage.2012.03.059
https://www.ncbi.nlm.nih.gov/pubmed/22498655
https://www.proquest.com/docview/1506873153
https://www.proquest.com/docview/1024099048
https://www.proquest.com/docview/1034825441
https://pubmed.ncbi.nlm.nih.gov/PMC3358419
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqVkJcUHlvKZWRuIbNw4ltcWqrVguoKwRU2ptlO3abCpKKpld-OzOOk7KA0EpcEmUTO4lnPI_NN58JeS00c8ZyB7lJqhNmqyIRmfWwMWVVi4IJj7XDZ8tqcc7er8rVFjkea2EQVhlt_2DTg7WOv8zjaM6vm2b-GSIDcDeQbyC-Cm6FFeyMo5a_-XEH85AZG8rhSnyKTEY0z4DxCpyRzTeYuQjyygPdKbKW_t1F_RmC_o6k_MU1ne6SBzGmpIfDYz8kW659RO6dxa_mj8lFqLJNhv_pqXeBy5PG9SIuKISt9Kpr2p7qyFBCO0-RtQGZg3tHR9AhvUTsTAcq57rbGzq9FnaCSNMn5Pz05MvxIokLLCQW8og-YcYKzk1W2NzXXJcG0iXHDKQYKdNMpkb7wMgma24gkXSlrLx2vpTam0rYvHhKttuudc8JhbSnArna1NYGYkAp0sqldc1LWeaVzrIZ4eOYKhvZx3ERjK9qhJldqTtpKJSGSgsFPc1INrW8Hhg4NmgjR7GpscIUbKICN7FB27dT2zVN3LD1_qglKlqDG4UsjoIX4Fxm5NV0GuYxfpzRQWbQK8RWEBow8a9rkIoIV42bkWeD4k1DAqGYxCJjGOg1lZwuQB7x9TNtcxn4xIsCotBM7v3Xi78g9_EoIJnzfbLdf791LyFe681BmJCw5St-QHYO331YLGF_dLL8-OknAV9HVw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgEXxLsLBYwEx4g8nNgWQggB1ZZ2e2qlvRnbsdutIClsKsSf4jcy4zhZCqjaSy97ScZae8bjb-KZbwh5ITRzxnIHsUmqE2arIhGZ9fBjyqoWBRMea4dnB9X0iH2al_MN8muohcG0ysEnBkddtxa_kb9CJjzBC9igb8--Jdg1Cm9XhxYavVnsuZ8_IGRbvtn9APp9mec7Hw_fT5PYVSCxAJ67hBkrODdZYXNfc10aiBEcM4CrU6aZTI32gYZM1txA9ORKWXntfCm1N5WwSHQALv8aHLwpBnt8zlckvxnrS-9KnHEmY-ZQn08W-CkXX8FLYEJZHqhVkSH1_8fhv3D376zNP47BndvkVsSv9F1vcHfIhmvukuuzeEN_jxyHit6kvxOg3gXeUBp7UxxTgMj0tF00HdWRDYW2niJDBLIUd44OCY70BPN0WjBv154v6TgtHASzWu-ToytZ9gdks2kbt0UohFgV2JBNbW0Ab0qRVi6ta17KMq90lk0IH9ZU2ch0jg03vqghpe1UrbShUBsqLRSMNCHZKHnWs32sISMHtamhmhX8r4IjaQ3Z16NsRDw9kllTenuwEhU9z1Kt9smEPB8fg8_AiyAddAajAo4DGMLEZe8g7RF2qJuQh73hjUsCsE9iQTMs9AWTHF9AzvKLT5rFSeAuLwpAvJl8dPlff0ZuTA9n-2p_92DvMbmJcw4p0vk22ey-n7snAAQ78zTsPko-X_V2_w0QV3Ue
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VW6nignizbQEjwTFqHs7DQggB7aqldFUhKvVmbMdut6JJYVMh_hq_jpnEyVJA1V562Utia22Px9_E33wD8KJQ3GqTW4xNQhVwkyVBERmHPzrNyiLhhaPc4YNptnvEPxynxyvwq8-FIVpl7xNbR13Whr6Rb5ESXpEnuEG3nKdFHG5P3lx8C6iCFN209uU0OhPZtz9_YPg2f723jWv9Mo4nO5_f7wa-wkBgEEg3AdemyHMdJSZ2Za5SjfGC5RoxdsgVF6FWrpUkE2WuMZKyqcicsi4VyumsMCR6gO5_NaeoaASr73amh58Wkr8R7xLxUhp_JDyPqGOXtWqVs3P0GUQvi1uhVdJL_f_h-C_4_ZvD-cehOLkDtz2aZW8787sLK7a6B2sH_r7-Ppy0-b1Bd0PAnG1VRJmvVHHCEDCzs3pWNUx5bRRWO0Z6EaRZ3FjW0x3ZKbF2ajR2W1_O2TAs6oQ4rg_g6EYm_iGMqrqyj4FhwJWhRZnQlBrRpyjCzIZlmacijTMVRWPI-zmVxuueU_mNr7InuJ3JxWpIWg0ZJhJ7GkM0tLzotD-WaCP6ZZN9bit6Y4kH1BJtXw1tPf7pcM2SrTd7K5HeD83lYteM4fnwGD0IXQupds2wV0R1CEp4cd07JIJE9erG8KgzvGFKEAQKSm_Gib5iksMLpGB-9Uk1O22VzJME8W8k1q__689gDbe6_Lg33d-AWzTkli8db8Ko-X5pnyAqbPRTv_0YfLnpHf8blDR6uQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-source+feature+learning+for+joint+analysis+of+incomplete+multiple+heterogeneous+neuroimaging+data&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Yuan%2C+Lei&rft.au=Wang%2C+Yalin&rft.au=Thompson%2C+Paul+M.&rft.au=Narayan%2C+Vaibhav+A.&rft.date=2012-07-02&rft.issn=1053-8119&rft.volume=61&rft.issue=3&rft.spage=622&rft.epage=632&rft_id=info:doi/10.1016%2Fj.neuroimage.2012.03.059&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2012_03_059
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon