Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data
Analysis of incomplete data is a big challenge when integrating large-scale brain imaging datasets from different imaging modalities. In the Alzheimer's Disease Neuroimaging Initiative (ADNI), for example, over half of the subjects lack cerebrospinal fluid (CSF) measurements; an independent hal...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 61; no. 3; pp. 622 - 632 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
02.07.2012
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Analysis of incomplete data is a big challenge when integrating large-scale brain imaging datasets from different imaging modalities. In the Alzheimer's Disease Neuroimaging Initiative (ADNI), for example, over half of the subjects lack cerebrospinal fluid (CSF) measurements; an independent half of the subjects do not have fluorodeoxyglucose positron emission tomography (FDG-PET) scans; many lack proteomics measurements. Traditionally, subjects with missing measures are discarded, resulting in a severe loss of available information. In this paper, we address this problem by proposing an incomplete Multi-Source Feature (iMSF) learning method where all the samples (with at least one available data source) can be used. To illustrate the proposed approach, we classify patients from the ADNI study into groups with Alzheimer's disease (AD), mild cognitive impairment (MCI) and normal controls, based on the multi-modality data. At baseline, ADNI's 780 participants (172AD, 397 MCI, 211 NC), have at least one of four data types: magnetic resonance imaging (MRI), FDG-PET, CSF and proteomics. These data are used to test our algorithm. Depending on the problem being solved, we divide our samples according to the availability of data sources, and we learn shared sets of features with state-of-the-art sparse learning methods. To build a practical and robust system, we construct a classifier ensemble by combining our method with four other methods for missing value estimation. Comprehensive experiments with various parameters show that our proposed iMSF method and the ensemble model yield stable and promising results. |
---|---|
AbstractList | Analysis of incomplete data is a big challenge when integrating large-scale brain imaging datasets from different imaging modalities. In the Alzheimer’s Disease Neuroimaging Initiative (ADNI), for example, over half of the subjects lack cerebrospinal fluid (CSF) measurements; an independent half of the subjects do not have fluorodeoxyglucose positron emission tomography (FDG-PET) scans; many lack proteomics measurements. Traditionally, subjects with missing measures are discarded, resulting in a severe loss of available information. In this paper, we address this problem by proposing an incomplete Multi-Source Feature (iMSF) learning method where all the samples (with at least one available data source) can be used. To illustrate the proposed approach, we classify patients from the ADNI study into groups with Alzheimer’s disease (AD), mild cognitive impairment (MCI) and normal controls, based on the multi-modality data. At baseline, ADNI’s 780 participants (172 AD, 397 MCI, 211 NC), have at least one of four data types: magnetic resonance imaging (MRI), FDG-PET, CSF and proteomics. These data are used to test our algorithm. Depending on the problem being solved, we divide our samples according to the availability of data sources, and we learn shared sets of features with state-of-the-art sparse learning methods. To build a practical and robust system, we construct a classifier ensemble by combining our method with four other methods for missing value estimation. Comprehensive experiments with various parameters show that our proposed iMSF method and the ensemble model yield stable and promising results. Analysis of incomplete data is a big challenge when integrating large-scale brain imaging datasets from different imaging modalities. In the Alzheimer's Disease Neuroimaging Initiative (ADNI), for example, over half of the subjects lack cerebrospinal fluid (CSF) measurements; an independent half of the subjects do not have fluorodeoxyglucose positron emission tomography (FDG-PET) scans; many lack proteomics measurements. Traditionally, subjects with missing measures are discarded, resulting in a severe loss of available information. In this paper, we address this problem by proposing an incomplete Multi-Source Feature (iMSF) learning method where all the samples (with at least one available data source) can be used. To illustrate the proposed approach, we classify patients from the ADNI study into groups with Alzheimer's disease (AD), mild cognitive impairment (MCI) and normal controls, based on the multi-modality data. At baseline, ADNI's 780 participants (172AD, 397 MCI, 211 NC), have at least one of four data types: magnetic resonance imaging (MRI), FDG-PET, CSF and proteomics. These data are used to test our algorithm. Depending on the problem being solved, we divide our samples according to the availability of data sources, and we learn shared sets of features with state-of-the-art sparse learning methods. To build a practical and robust system, we construct a classifier ensemble by combining our method with four other methods for missing value estimation. Comprehensive experiments with various parameters show that our proposed iMSF method and the ensemble model yield stable and promising results. Analysis of incomplete data is a big challenge when integrating large-scale brain imaging datasets from different imaging modalities. In the Alzheimer's Disease Neuroimaging Initiative (ADNI), for example, over half of the subjects lack cerebrospinal fluid (CSF) measurements; an independent half of the subjects do not have fluorodeoxyglucose positron emission tomography (FDG-PET) scans; many lack proteomics measurements. Traditionally, subjects with missing measures are discarded, resulting in a severe loss of available information. In this paper, we address this problem by proposing an incomplete Multi-Source Feature (iMSF) learning method where all the samples (with at least one available data source) can be used. To illustrate the proposed approach, we classify patients from the ADNI study into groups with Alzheimer's disease (AD), mild cognitive impairment (MCI) and normal controls, based on the multi-modality data. At baseline, ADNI's 780 participants (172AD, 397 MCI, 211 NC), have at least one of four data types: magnetic resonance imaging (MRI), FDG-PET, CSF and proteomics. These data are used to test our algorithm. Depending on the problem being solved, we divide our samples according to the availability of data sources, and we learn shared sets of features with state-of-the-art sparse learning methods. To build a practical and robust system, we construct a classifier ensemble by combining our method with four other methods for missing value estimation. Comprehensive experiments with various parameters show that our proposed iMSF method and the ensemble model yield stable and promising results.Analysis of incomplete data is a big challenge when integrating large-scale brain imaging datasets from different imaging modalities. In the Alzheimer's Disease Neuroimaging Initiative (ADNI), for example, over half of the subjects lack cerebrospinal fluid (CSF) measurements; an independent half of the subjects do not have fluorodeoxyglucose positron emission tomography (FDG-PET) scans; many lack proteomics measurements. Traditionally, subjects with missing measures are discarded, resulting in a severe loss of available information. In this paper, we address this problem by proposing an incomplete Multi-Source Feature (iMSF) learning method where all the samples (with at least one available data source) can be used. To illustrate the proposed approach, we classify patients from the ADNI study into groups with Alzheimer's disease (AD), mild cognitive impairment (MCI) and normal controls, based on the multi-modality data. At baseline, ADNI's 780 participants (172AD, 397 MCI, 211 NC), have at least one of four data types: magnetic resonance imaging (MRI), FDG-PET, CSF and proteomics. These data are used to test our algorithm. Depending on the problem being solved, we divide our samples according to the availability of data sources, and we learn shared sets of features with state-of-the-art sparse learning methods. To build a practical and robust system, we construct a classifier ensemble by combining our method with four other methods for missing value estimation. Comprehensive experiments with various parameters show that our proposed iMSF method and the ensemble model yield stable and promising results. |
Author | Yuan, Lei Ye, Jieping Wang, Yalin Thompson, Paul M. Narayan, Vaibhav A. |
AuthorAffiliation | 1 School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA 3 Laboratory of Neuro Imaging, UCLA Dept. of Neurology, Los Angeles, CA, USA 2 Center for Evolutionary Medicine and Informatics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA 4 Johnson & Johnson Pharmaceutical Research & Development, LLC, Titusville, NJ, USA |
AuthorAffiliation_xml | – name: 2 Center for Evolutionary Medicine and Informatics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA – name: 3 Laboratory of Neuro Imaging, UCLA Dept. of Neurology, Los Angeles, CA, USA – name: 4 Johnson & Johnson Pharmaceutical Research & Development, LLC, Titusville, NJ, USA – name: 1 School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA |
Author_xml | – sequence: 1 givenname: Lei surname: Yuan fullname: Yuan, Lei organization: School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA – sequence: 2 givenname: Yalin surname: Wang fullname: Wang, Yalin organization: School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA – sequence: 3 givenname: Paul M. surname: Thompson fullname: Thompson, Paul M. organization: Laboratory of Neuro Imaging, UCLA Dept. of Neurology, Los Angeles, CA, USA – sequence: 4 givenname: Vaibhav A. surname: Narayan fullname: Narayan, Vaibhav A. organization: Johnson & Johnson Pharmaceutical Research & Development, LLC, Titusville, NJ, USA – sequence: 5 givenname: Jieping surname: Ye fullname: Ye, Jieping email: jieping.ye@asu.edu organization: School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22498655$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv3CAUha0qVfNo_0KF1E03dgCDDZuqTdSXlKqbdo0wvp4wZWAKONL8--JOOkmzmhUXcfg43HvOqxMfPFQVIrghmHSX68bDHIPd6BU0FBPa4LbBXD6rzgiWvJa8pydLzdtaECJPq_OU1hhjSZh4UZ1SyqToOD-rVt9ml22dwhwNoAl0niMgBzp661doChGtg_UZaa_dLtmEwoSsN2GzdZABbZbrpUS3ZRfDCjyEOaGDvQUy6qxfVs8n7RK8ul8vqp-fPv64_lLffP_89frDTW247HPNBiP6fiCtodPYaz4QJoENsmeYaSbxoCdKGBVy7AfKGXDZTRomLvU0dMLQ9qJ6t-du52EDowGfo3ZqG4uZuFNBW_X_ibe3ahXuVNtywYgsgLf3gBh-z5Cy2thkwDn992eK4JaJ8jQjR0gpw1JiJor0zRPpunS8tLSoOO5E3xLeFtXrx-YPrv-NqwjEXmBiSCnCdJAQrJZkqLV6SIZakqFwq0oyHhpzuGps1tmGpQ3WHQO42gOgjO_OQlTJWPAGRhvBZDUGewzk_ROIcdZbo90v2B2H-AMPbvRy |
CitedBy_id | crossref_primary_10_1016_j_jneumeth_2020_108988 crossref_primary_10_1007_s11682_015_9480_7 crossref_primary_10_1016_j_tics_2013_08_007 crossref_primary_10_1088_1755_1315_769_4_042075 crossref_primary_10_1016_j_jneumeth_2013_09_001 crossref_primary_10_1186_s40708_018_0080_3 crossref_primary_10_1109_TNNLS_2023_3260349 crossref_primary_10_1016_j_cmpb_2017_07_003 crossref_primary_10_1016_j_ins_2021_09_035 crossref_primary_10_1016_j_jprocont_2017_11_006 crossref_primary_10_1038_s41746_022_00712_8 crossref_primary_10_1016_j_neuroimage_2013_02_011 crossref_primary_10_1016_j_neuroimage_2013_08_049 crossref_primary_10_3389_fnins_2021_634124 crossref_primary_10_1155_2022_5799354 crossref_primary_10_1016_j_nicl_2013_05_004 crossref_primary_10_1016_j_media_2016_11_002 crossref_primary_10_1080_01621459_2020_1751176 crossref_primary_10_1016_j_pscychresns_2014_08_005 crossref_primary_10_1145_3481299 crossref_primary_10_1016_j_ifacol_2020_12_717 crossref_primary_10_1016_j_patcog_2016_10_009 crossref_primary_10_1080_07350015_2021_1922120 crossref_primary_10_1007_s10044_024_01268_x crossref_primary_10_1016_j_ins_2023_119466 crossref_primary_10_1053_j_semnuclmed_2018_02_011 crossref_primary_10_1177_09622802221084596 crossref_primary_10_1016_j_jalz_2014_11_001 crossref_primary_10_1097_AOG_0000000000001865 crossref_primary_10_1080_24725854_2020_1798569 crossref_primary_10_1109_TCYB_2019_2904186 crossref_primary_10_1016_j_media_2019_101567 crossref_primary_10_1109_TPAMI_2021_3091214 crossref_primary_10_1002_hbm_23301 crossref_primary_10_1016_j_neunet_2024_106111 crossref_primary_10_1109_JBHI_2021_3097721 crossref_primary_10_1109_TMI_2019_2913158 crossref_primary_10_1111_sjos_12632 crossref_primary_10_1016_j_neuroimage_2012_12_052 crossref_primary_10_1080_10618600_2022_2070172 crossref_primary_10_1145_3610885 crossref_primary_10_1080_00949655_2022_2109636 crossref_primary_10_3389_fgene_2023_1162690 crossref_primary_10_1016_j_neuroimage_2013_04_018 crossref_primary_10_1109_JBHI_2024_3355111 crossref_primary_10_1016_j_jneumeth_2019_108544 crossref_primary_10_1109_ACCESS_2019_2894366 crossref_primary_10_1109_TMI_2014_2314712 crossref_primary_10_1287_ijds_2022_9016 crossref_primary_10_1016_j_neurobiolaging_2014_05_038 crossref_primary_10_1109_JBHI_2018_2872581 crossref_primary_10_1016_j_csda_2021_107348 crossref_primary_10_1016_j_media_2016_07_012 crossref_primary_10_1080_01621459_2019_1632079 crossref_primary_10_1109_JBHI_2017_2732287 crossref_primary_10_1016_j_neuroimage_2013_10_005 crossref_primary_10_1016_j_media_2018_01_002 crossref_primary_10_1016_j_neucom_2019_07_010 crossref_primary_10_1093_biostatistics_kxy052 crossref_primary_10_1155_2020_8015156 crossref_primary_10_1016_j_trsl_2018_01_001 crossref_primary_10_1007_s10489_021_02225_5 crossref_primary_10_1007_s11042_018_6463_x crossref_primary_10_1038_nn_3718 crossref_primary_10_1007_s00429_013_0687_3 crossref_primary_10_1016_j_artmed_2020_101859 crossref_primary_10_1016_j_jbi_2017_07_003 crossref_primary_10_1016_j_neuroimage_2017_06_072 crossref_primary_10_1007_s00371_024_03710_x crossref_primary_10_1109_TMI_2018_2874964 crossref_primary_10_1002_hbm_23326 crossref_primary_10_1080_01621459_2019_1585254 crossref_primary_10_1002_wsbm_1310 crossref_primary_10_1109_TMI_2016_2515021 crossref_primary_10_1109_TRPMS_2021_3104297 crossref_primary_10_1016_j_neuroimage_2014_06_077 crossref_primary_10_1109_TKDE_2021_3109581 crossref_primary_10_1109_TFUZZ_2021_3099696 crossref_primary_10_1159_000484248 crossref_primary_10_1007_s00429_015_1059_y crossref_primary_10_1007_s11336_023_09918_5 crossref_primary_10_1016_j_neunet_2024_106748 crossref_primary_10_1016_j_neuroimage_2013_08_015 crossref_primary_10_1142_S0129065718500429 crossref_primary_10_1109_TPAMI_2021_3116948 crossref_primary_10_1038_nrd4395 crossref_primary_10_1016_j_media_2019_101630 crossref_primary_10_1016_j_neuroimage_2018_04_052 crossref_primary_10_1016_j_neuroimage_2014_01_033 crossref_primary_10_1109_TPAMI_2019_2895608 crossref_primary_10_1109_TCYB_2021_3126727 crossref_primary_10_1080_01621459_2021_1938083 crossref_primary_10_1016_j_cmpb_2022_107165 crossref_primary_10_1038_srep41069 crossref_primary_10_1016_j_neuroimage_2013_05_013 crossref_primary_10_1016_j_neurobiolaging_2014_02_032 crossref_primary_10_1109_TPAMI_2023_3234553 crossref_primary_10_1016_j_ins_2024_120388 crossref_primary_10_1016_j_neucom_2013_11_027 crossref_primary_10_1080_24725579_2017_1403520 crossref_primary_10_1016_j_neuroimage_2013_08_020 crossref_primary_10_1016_j_neunet_2024_106674 crossref_primary_10_1002_wics_1626 crossref_primary_10_1109_TMI_2021_3070780 crossref_primary_10_1007_s10844_020_00606_9 crossref_primary_10_3390_math12070951 crossref_primary_10_1007_s10489_013_0508_7 crossref_primary_10_1145_2408736_2408739 crossref_primary_10_1016_j_biotechadv_2020_107546 crossref_primary_10_1109_JBHI_2022_3219123 crossref_primary_10_1016_j_jneumeth_2018_09_028 crossref_primary_10_1155_2021_8890513 crossref_primary_10_1002_hbm_22642 crossref_primary_10_1016_j_isci_2024_110509 crossref_primary_10_1371_journal_pone_0096458 crossref_primary_10_1002_hbm_24428 |
Cites_doi | 10.1016/j.neuroimage.2004.03.038 10.1109/TITB.2008.923773 10.1111/j.1532-5415.2008.02168.x 10.1016/j.neuroimage.2010.09.073 10.1002/hbm.20744 10.1002/jmri.21049 10.1212/WNL.0b013e3181af79e5 10.1093/bioinformatics/btn347 10.1016/j.neuroimage.2011.01.079 10.1016/j.neurobiolaging.2008.09.012 10.1016/j.neuroimage.2011.05.055 10.1006/nimg.1997.0294 10.1016/j.neurobiolaging.2010.04.011 10.1016/j.neurobiolaging.2010.04.022 10.1109/TMI.2009.2021941 10.1006/nimg.1997.0290 10.1111/j.1532-5415.2010.03053.x 10.1016/j.jclinepi.2007.03.006 10.1006/nimg.2001.0978 10.3389/fnhum.2010.00192 10.1016/j.neuroimage.2010.11.004 10.1016/j.neuroimage.2010.06.013 10.1109/TIT.2010.2044061 10.1137/080738970 10.1016/j.neurobiolaging.2009.07.002 10.1212/WNL.0b013e3181af79fb 10.3389/fneur.2010.00004 10.1016/j.mri.2009.12.021 10.1016/j.neuroimage.2011.01.008 10.1016/j.neucom.2010.06.025 10.1016/j.neuroimage.2008.02.043 10.2217/bmm.09.91 10.1175/1520-0442(2001)014<0853:AOICDE>2.0.CO;2 10.1016/j.neuroimage.2009.12.092 10.1109/MSP.2010.936725 10.1016/j.neuroimage.2009.04.053 10.1016/j.nic.2005.09.008 10.1016/j.jalz.2011.04.007 10.1002/sim.1710 10.1111/j.1467-9868.2005.00532.x 10.1212/WNL.50.6.1585 10.1212/01.wnl.0000256697.20968.d7 10.1093/brain/awm336 10.1007/s10994-007-5040-8 10.1016/j.neuroimage.2006.09.011 |
ContentType | Journal Article |
Contributor | Jack, Jr, Clifford R Romirowsky, Aliza Schuff, Norbert Roberts, Peggy Shaw, Les Johnson, Kris Doody, Rachelle S Frank, Richard Molchan, Susan Chen, Kewei Duara, Ranjan Jagust, William Mintun, Mark A Green, Robert C Grossman, Hillel Felmlee, Joel Pawluczyk, Sonia Weiner, Michael Montine, Tom Dolen, Sara Varon, Daniel Thompson, Paul Trojanowki, John Q DeCarli, Charles Fox, Nick Griffith, Randall Kachaturian, Zaven Mitsis, Effie Lind, Betty Korecka, Magdalena Schneider, Stacy Walter, Sarah Quinn, Joseph Bell, Karen L Villanueva-Meyer, Javier Liu, Enchi Bandy, Dan Neu, Scott Sather, Tamie Aisen, Paul Morris, John Stern, Yaakov Lord, Joanne L Marson, Daniel Heidebrink, Judith L Reiman, Eric M Trojanowki, J Q Morris, John C Shah, Raj C Kornak, John Foster, Norm Mathis, Chet Foroud, Tatiana M Lee, Virginia M Y Kaye, Jeffrey Saykin, Andrew J Chowdhury, Munir Harvey, Danielle Leon, Sue Koeppe, Robert A Potkin, Steven Gessert, Devon Carroll, Maria Petersen, Ronald Gamst, Anthony Donohue, Michael Schneider, Lon S Thomas, Ronald G Donohue, Donohue Alexander, Gene Sh |
Contributor_xml | – sequence: 1 givenname: Michael surname: Weiner fullname: Weiner, Michael – sequence: 2 givenname: Paul surname: Aisen fullname: Aisen, Paul – sequence: 3 givenname: Ronald surname: Petersen fullname: Petersen, Ronald – sequence: 4 givenname: Clifford R surname: Jack, Jr fullname: Jack, Jr, Clifford R – sequence: 5 givenname: William surname: Jagust fullname: Jagust, William – sequence: 6 givenname: John Q surname: Trojanowki fullname: Trojanowki, John Q – sequence: 7 givenname: Arthur W surname: Toga fullname: Toga, Arthur W – sequence: 8 givenname: Laurel surname: Beckett fullname: Beckett, Laurel – sequence: 9 givenname: Robert C surname: Green fullname: Green, Robert C – sequence: 10 givenname: Andrew J surname: Saykin fullname: Saykin, Andrew J – sequence: 11 givenname: John surname: Morris fullname: Morris, John – sequence: 12 givenname: Enchi surname: Liu fullname: Liu, Enchi – sequence: 13 givenname: Tom surname: Montine fullname: Montine, Tom – sequence: 14 givenname: Anthony surname: Gamst fullname: Gamst, Anthony – sequence: 15 givenname: Ronald G surname: Thomas fullname: Thomas, Ronald G – sequence: 16 givenname: Michael surname: Donohue fullname: Donohue, Michael – sequence: 17 givenname: Sarah surname: Walter fullname: Walter, Sarah – sequence: 18 givenname: Devon surname: Gessert fullname: Gessert, Devon – sequence: 19 givenname: Tamie surname: Sather fullname: Sather, Tamie – sequence: 20 givenname: Danielle surname: Harvey fullname: Harvey, Danielle – sequence: 21 givenname: Donohue surname: Donohue fullname: Donohue, Donohue – sequence: 22 givenname: John surname: Kornak fullname: Kornak, John – sequence: 23 givenname: Anders surname: Dale fullname: Dale, Anders – sequence: 24 givenname: Matthew surname: Bernstein fullname: Bernstein, Matthew – sequence: 25 givenname: Joel surname: Felmlee fullname: Felmlee, Joel – sequence: 26 givenname: Nick surname: Fox fullname: Fox, Nick – sequence: 27 givenname: Paul surname: Thompson fullname: Thompson, Paul – sequence: 28 givenname: Norbert surname: Schuff fullname: Schuff, Norbert – sequence: 29 givenname: Gene surname: Alexander fullname: Alexander, Gene – sequence: 30 givenname: Charles surname: DeCarli fullname: DeCarli, Charles – sequence: 31 givenname: Dan surname: Bandy fullname: Bandy, Dan – sequence: 32 givenname: Robert A surname: Koeppe fullname: Koeppe, Robert A – sequence: 33 givenname: Norm surname: Foster fullname: Foster, Norm – sequence: 34 givenname: Eric M surname: Reiman fullname: Reiman, Eric M – sequence: 35 givenname: Kewei surname: Chen fullname: Chen, Kewei – sequence: 36 givenname: Chet surname: Mathis fullname: Mathis, Chet – sequence: 37 givenname: Nigel J surname: Cairns fullname: Cairns, Nigel J – sequence: 38 givenname: Lisa surname: Taylor-Reinwald fullname: Taylor-Reinwald, Lisa – sequence: 39 givenname: J Q surname: Trojanowki fullname: Trojanowki, J Q – sequence: 40 givenname: Les surname: Shaw fullname: Shaw, Les – sequence: 41 givenname: Virginia M Y surname: Lee fullname: Lee, Virginia M Y – sequence: 42 givenname: Magdalena surname: Korecka fullname: Korecka, Magdalena – sequence: 43 givenname: Karen surname: Crawford fullname: Crawford, Karen – sequence: 44 givenname: Scott surname: Neu fullname: Neu, Scott – sequence: 45 givenname: Tatiana M surname: Foroud fullname: Foroud, Tatiana M – sequence: 46 givenname: Steven surname: Potkin fullname: Potkin, Steven – sequence: 47 givenname: Li surname: Shen fullname: Shen, Li – sequence: 48 givenname: Zaven surname: Kachaturian fullname: Kachaturian, Zaven – sequence: 49 givenname: Richard surname: Frank fullname: Frank, Richard – sequence: 50 givenname: Peter J surname: Snyder fullname: Snyder, Peter J – sequence: 51 givenname: Susan surname: Molchan fullname: Molchan, Susan – sequence: 52 givenname: Jeffrey surname: Kaye fullname: Kaye, Jeffrey – sequence: 53 givenname: Joseph surname: Quinn fullname: Quinn, Joseph – sequence: 54 givenname: Betty surname: Lind fullname: Lind, Betty – sequence: 55 givenname: Sara surname: Dolen fullname: Dolen, Sara – sequence: 56 givenname: Lon S surname: Schneider fullname: Schneider, Lon S – sequence: 57 givenname: Sonia surname: Pawluczyk fullname: Pawluczyk, Sonia – sequence: 58 givenname: Bryan M surname: Spann fullname: Spann, Bryan M – sequence: 59 givenname: James surname: Brewer fullname: Brewer, James – sequence: 60 givenname: Helen surname: Vanderswag fullname: Vanderswag, Helen – sequence: 61 givenname: Judith L surname: Heidebrink fullname: Heidebrink, Judith L – sequence: 62 givenname: Joanne L surname: Lord fullname: Lord, Joanne L – sequence: 63 givenname: Kris surname: Johnson fullname: Johnson, Kris – sequence: 64 givenname: Rachelle S surname: Doody fullname: Doody, Rachelle S – sequence: 65 givenname: Javier surname: Villanueva-Meyer fullname: Villanueva-Meyer, Javier – sequence: 66 givenname: Munir surname: Chowdhury fullname: Chowdhury, Munir – sequence: 67 givenname: Yaakov surname: Stern fullname: Stern, Yaakov – sequence: 68 givenname: Lawrence S surname: Honig fullname: Honig, Lawrence S – sequence: 69 givenname: Karen L surname: Bell fullname: Bell, Karen L – sequence: 70 givenname: John C surname: Morris fullname: Morris, John C – sequence: 71 givenname: Beau surname: Ances fullname: Ances, Beau – sequence: 72 givenname: Maria surname: Carroll fullname: Carroll, Maria – sequence: 73 givenname: Sue surname: Leon fullname: Leon, Sue – sequence: 74 givenname: Mark A surname: Mintun fullname: Mintun, Mark A – sequence: 75 givenname: Stacy surname: Schneider fullname: Schneider, Stacy – sequence: 76 givenname: Daniel surname: Marson fullname: Marson, Daniel – sequence: 77 givenname: Randall surname: Griffith fullname: Griffith, Randall – sequence: 78 givenname: David surname: Clark fullname: Clark, David – sequence: 79 givenname: Hillel surname: Grossman fullname: Grossman, Hillel – sequence: 80 givenname: Effie surname: Mitsis fullname: Mitsis, Effie – sequence: 81 givenname: Aliza surname: Romirowsky fullname: Romirowsky, Aliza – sequence: 82 givenname: Leyla surname: deToledo-Morrell fullname: deToledo-Morrell, Leyla – sequence: 83 givenname: Raj C surname: Shah fullname: Shah, Raj C – sequence: 84 givenname: Ranjan surname: Duara fullname: Duara, Ranjan – sequence: 85 givenname: Daniel surname: Varon fullname: Varon, Daniel – sequence: 86 givenname: Peggy surname: Roberts fullname: Roberts, Peggy – sequence: 87 givenname: Marilyn surname: Albert fullname: Albert, Marilyn |
Copyright | 2012 Elsevier Inc. Copyright © 2012 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Jul 2, 2012 2012 Elsevier Inc. All rights reserved. 2012 |
Copyright_xml | – notice: 2012 Elsevier Inc. – notice: Copyright © 2012 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Jul 2, 2012 – notice: 2012 Elsevier Inc. All rights reserved. 2012 |
CorporateAuthor | for the Alzheimer's Disease Neuroimaging Initiative Alzheimer's Disease Neuroimaging Initiative |
CorporateAuthor_xml | – name: for the Alzheimer's Disease Neuroimaging Initiative – name: Alzheimer's Disease Neuroimaging Initiative |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO 5PM |
DOI | 10.1016/j.neuroimage.2012.03.059 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | MEDLINE - Academic Engineering Research Database MEDLINE ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 632 |
ExternalDocumentID | PMC3358419 3245015341 22498655 10_1016_j_neuroimage_2012_03_059 S1053811912003400 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH097268 – fundername: NIA NIH HHS grantid: AG016570 – fundername: NIBIB NIH HHS grantid: EB01651 – fundername: NLM NIH HHS grantid: R01 LM005639 – fundername: NCRR NIH HHS grantid: RR019771 – fundername: NLM NIH HHS grantid: R01 LM010730 – fundername: NIA NIH HHS grantid: P30 AG019610 – fundername: NIA NIH HHS grantid: P30 AG013846 – fundername: NIA NIH HHS grantid: U01 AG024904 – fundername: NIA NIH HHS grantid: K01 AG030514 – fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB grantid: R21 EB001561-03 || EB – fundername: National Center for Research Resources : NCRR grantid: R21 RR019771-02 || RR |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABMZM ADFGL ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF OK1 R2- SEW WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO 5PM |
ID | FETCH-LOGICAL-c597t-4bc877b13c2fd7a5b149e4b97404a490baf214289d7b254e596faef59afb68c23 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Aug 21 18:17:07 EDT 2025 Tue Aug 05 09:04:03 EDT 2025 Fri Jul 11 01:27:03 EDT 2025 Wed Aug 13 07:29:48 EDT 2025 Mon Jul 21 05:18:42 EDT 2025 Thu Apr 24 22:52:50 EDT 2025 Tue Jul 01 02:14:46 EDT 2025 Fri Feb 23 02:36:03 EST 2024 Tue Aug 26 16:36:49 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Multi-source feature learning Incomplete data Multi-task learning Ensemble |
Language | English |
License | Copyright © 2012 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c597t-4bc877b13c2fd7a5b149e4b97404a490baf214289d7b254e596faef59afb68c23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3358419 |
PMID | 22498655 |
PQID | 1506873153 |
PQPubID | 2031077 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3358419 proquest_miscellaneous_1034825441 proquest_miscellaneous_1024099048 proquest_journals_1506873153 pubmed_primary_22498655 crossref_primary_10_1016_j_neuroimage_2012_03_059 crossref_citationtrail_10_1016_j_neuroimage_2012_03_059 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2012_03_059 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2012_03_059 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-07-02 |
PublicationDateYYYYMMDD | 2012-07-02 |
PublicationDate_xml | – month: 07 year: 2012 text: 2012-07-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2012 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Argyriou, Evgeniou, Pontil (bb0015) 2008; 73 Landau, Harvey, Madison, Koeppe, Reiman, Foster, Weiner, Jagust (bb0165) 2011; 32 Yuan, Liu, Ye (bb0295) 2011 Sui, Pearlson, Caprihan, Adali, Kiehl, Liu, Yamamoto, Calhoun (bb0240) 2011; 57 López, Ramírez, Górriz, Álvarez, Salas-Gonzalez, Segovia, Chaves, Padilla, Gómez-Río (bb0400) 2011; 74 Liu, Ye (bb0175) 2010 Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bb0250) 2002; 15 Ibanez, Pietrini, Alexander, Furey, Teichberg, Rajapakse, Rapoport, Schapiro, Horwitz (bb0120) 1998; 50 Chen, Reiman, Huan, Caselli, Bandy, Ayutyanont, Alexander (bb0055) 2009; 47 Yuan, Lin (bb0290) 2006; 68 Liu, Ji, Ye (bb0180) 2009 Jack, Lowe, Senjem, Weigand, Kemp, Shiung, Knopman, Boeve, Klunk, Mathis, Petersen (bb0130) 2008; 131 Ando, Zhang (bb0010) 2005; 6 Hardy, Allore, Studenski (bb0105) 2009; 57 Nesterov (bb0215) 2007 Yang, Liu, Sui, Pearlson, Calhoun (bb0280) 2010; 4 Dietterich (bb0080) 2000 Braskie, Klunder, Hayashi, Protas, Kepe, Miller, Huang, Barrio, Ercoli, Siddarth, Satyamurthy, Liu, Toga, Bookheimer, Small, Thompson (bb0025) 2008; 31 Kohannim, Hua, Hibar, Lee, Chou, Toga, Jack, Weiner, Thompson (bb0150) 2010; 31 Ji, Sun, Jin, Kumar, Ye (bb0140) 2008; 24 Ashburner, Friston (bb0020) 1997; 6 Vemuri, Wiste, Weigand, Shaw, Trojanowski, Weiner, Knopman, Petersen, Jack (bb0265) 2009; 73 Schott, Bartlett, Barnes, Leung, Ourselin, Fox (bb0235) 2010; 31 Cuingnet, Gerardin, Tessieras, Auzias, Lehericy, Habert, Chupin, Benali, Colliot (bb0070) 2011; 56 Fennema-Notestine, Hagler, McEvoy, Fleisher, Wu, Karow, Dale (bb0090) 2009; 30 Kuncheva, Rodríguez (bb0160) 2010; 28 Casanova, Srikanth, Baer, Laurienti, Burdette, Hayasaka, Flowers, Wood, Maldjian (bb0050) 2007; 34 Candes, Tao (bb0045) 2010; 56 Mueller, Weiner, Thal, Petersen, Jack, Jagust, Trojanowski, Toga, Beckett (bb0205) 2005; 15 Calhoun, Adali (bb0040) 2009; 13 Morra, Tu, Apostolova, Green, Toga, Thompson (bb0200) 2010; 29 Nesterov (bb0210) 2003 Fan, Resnick, Wu, Davatzikos (bb0085) 2008; 41 Ji, Yuan, Li, Zhou, Kumar, Ye (bb0145) 2009 Jack, Bernstein, Fox, Thompson, Alexander, Harvey, Borowski, Britson, Whitwell, Ward, Dale, Felmlee, Gunter, Hill, Killiany, Schuff, Fox-Bosetti, Lin, Studholme, DeCarli, Krueger, Ward, Metzger, Scott, Mallozzi, Blezek, Levy, Debbins, Fleisher, Albert, Green, Bartzokis, Glover, Mugler, Weiner (bb0125) 2008; 27 Van Ness, Murphy, Araujo, Pisani, Allore (bb0255) 2007; 60 Hastie, Tibshirani, Sherlock, Eisen, Brown, Botstein (bb0110) 1999 Liu, Yuan, Ye (bb0190) 2010 Vemuri, Wiste, Weigand, Shaw, Trojanowski, Weiner, Knopman, Petersen, Jack (bb0260) 2009; 73 Worsley, Poline, Friston, Evans (bb0275) 1997; 6 Reiman, Langbaum, Tariot (bb0225) 2010; 4 Liu, Ji, Ye (bb0185) 2009 Cai, Candes, Shen (bb0035) 2010; 20 Gao (bb0095) 2004; 23 Zhang, Wang, Zhou, Yuan, Shen (bb0300) 2011; 55 Ye, Chen, Wu, Li, Zhao, Patel, Bae, Janardan, Liu, Alexander, Reiman (bb0285) 2008 Devanand, Pradhaban, Liu, Khandji, De Santi, Segal, Rusinek, Pelton, Honig, Mayeux, Stern, Tabert, de Leon (bb0075) 2007; 68 Palmer, Royall (bb0220) 2010; 58 Schneider (bb0230) 2001; 14 Wang, Fan, Bhatt, Davatzikos (bb0270) 2010; 50 Sun, Patel, Liu, Chen, Wu, Li, Reiman, Ye (bb0245) 2009 Groves, Beckmann, Smith, Woolrich (bb0100) 2011; 54 Lemm, Blankertz, Dickhaus, Muller (bb0170) 2011; 56 Jack, Barkhof, Bernstein, Cantillon, Cole, Decarli, Dubois, Duchesne, Fox, Frisoni, Hampel, Hill, Johnson, Mangin, Scheltens, Schwarz, Sperling, Suhy, Thompson, Weiner, Foster (bb0135) 2011; 7 Hua, Gutman, Boyle, Rajagopalan, Leow, Yanovsky, Kumar, Toga, Jack, Schuff, Alexander, Chen, Reiman, Weiner, Thompson (bb0115) 2011; 57 Kuljis (bb0155) 2010; 1 Combettes, Pesquet (bb0060) 2009 Correa, Adali, Li, Calhoun (bb0065) 2010; 27 Martinez-Montes, Valdes-Sosa, Miwakeichi, Goldman, Cohen (bb0195) 2004; 22 Dietterich (10.1016/j.neuroimage.2012.03.059_bb0080) 2000 Schott (10.1016/j.neuroimage.2012.03.059_bb0235) 2010; 31 Sui (10.1016/j.neuroimage.2012.03.059_bb0240) 2011; 57 Combettes (10.1016/j.neuroimage.2012.03.059_bb0060) Hardy (10.1016/j.neuroimage.2012.03.059_bb0105) 2009; 57 Van Ness (10.1016/j.neuroimage.2012.03.059_bb0255) 2007; 60 Jack (10.1016/j.neuroimage.2012.03.059_bb0135) 2011; 7 Chen (10.1016/j.neuroimage.2012.03.059_bb0055) 2009; 47 Jack (10.1016/j.neuroimage.2012.03.059_bb0125) 2008; 27 Cai (10.1016/j.neuroimage.2012.03.059_bb0035) 2010; 20 Schneider (10.1016/j.neuroimage.2012.03.059_bb0230) 2001; 14 Lemm (10.1016/j.neuroimage.2012.03.059_bb0170) 2011; 56 Nesterov (10.1016/j.neuroimage.2012.03.059_bb0215) 2007 Casanova (10.1016/j.neuroimage.2012.03.059_bb0050) 2007; 34 Liu (10.1016/j.neuroimage.2012.03.059_bb0190) 2010 Vemuri (10.1016/j.neuroimage.2012.03.059_bb0265) 2009; 73 Ibanez (10.1016/j.neuroimage.2012.03.059_bb0120) 1998; 50 Worsley (10.1016/j.neuroimage.2012.03.059_bb0275) 1997; 6 Braskie (10.1016/j.neuroimage.2012.03.059_bb0025) 2008; 31 Fan (10.1016/j.neuroimage.2012.03.059_bb0085) 2008; 41 Fennema-Notestine (10.1016/j.neuroimage.2012.03.059_bb0090) 2009; 30 Devanand (10.1016/j.neuroimage.2012.03.059_bb0075) 2007; 68 Sun (10.1016/j.neuroimage.2012.03.059_bb0245) 2009 Ji (10.1016/j.neuroimage.2012.03.059_bb0140) 2008; 24 Ji (10.1016/j.neuroimage.2012.03.059_bb0145) 2009 Hua (10.1016/j.neuroimage.2012.03.059_bb0115) 2011; 57 Kohannim (10.1016/j.neuroimage.2012.03.059_bb0150) 2010; 31 López (10.1016/j.neuroimage.2012.03.059_bb0400) 2011; 74 Yang (10.1016/j.neuroimage.2012.03.059_bb0280) 2010; 4 Hastie (10.1016/j.neuroimage.2012.03.059_bb0110) 1999 Martinez-Montes (10.1016/j.neuroimage.2012.03.059_bb0195) 2004; 22 Ando (10.1016/j.neuroimage.2012.03.059_bb0010) 2005; 6 Tzourio-Mazoyer (10.1016/j.neuroimage.2012.03.059_bb0250) 2002; 15 Ashburner (10.1016/j.neuroimage.2012.03.059_bb0020) 1997; 6 Yuan (10.1016/j.neuroimage.2012.03.059_bb0295) 2011 Liu (10.1016/j.neuroimage.2012.03.059_bb0180) 2009 Groves (10.1016/j.neuroimage.2012.03.059_bb0100) 2011; 54 Candes (10.1016/j.neuroimage.2012.03.059_bb0045) 2010; 56 Jack (10.1016/j.neuroimage.2012.03.059_bb0130) 2008; 131 Kuljis (10.1016/j.neuroimage.2012.03.059_bb0155) 2010; 1 Liu (10.1016/j.neuroimage.2012.03.059_bb0185) Ye (10.1016/j.neuroimage.2012.03.059_bb0285) 2008 Morra (10.1016/j.neuroimage.2012.03.059_bb0200) 2010; 29 Correa (10.1016/j.neuroimage.2012.03.059_bb0065) 2010; 27 Gao (10.1016/j.neuroimage.2012.03.059_bb0095) 2004; 23 Argyriou (10.1016/j.neuroimage.2012.03.059_bb0015) 2008; 73 Reiman (10.1016/j.neuroimage.2012.03.059_bb0225) 2010; 4 Palmer (10.1016/j.neuroimage.2012.03.059_bb0220) 2010; 58 Vemuri (10.1016/j.neuroimage.2012.03.059_bb0260) 2009; 73 Kuncheva (10.1016/j.neuroimage.2012.03.059_bb0160) 2010; 28 Liu (10.1016/j.neuroimage.2012.03.059_bb0175) 2010 Landau (10.1016/j.neuroimage.2012.03.059_bb0165) 2011; 32 Calhoun (10.1016/j.neuroimage.2012.03.059_bb0040) 2009; 13 Nesterov (10.1016/j.neuroimage.2012.03.059_bb0210) 2003 Zhang (10.1016/j.neuroimage.2012.03.059_bb0300) 2011; 55 Yuan (10.1016/j.neuroimage.2012.03.059_bb0290) 2006; 68 Wang (10.1016/j.neuroimage.2012.03.059_bb0270) 2010; 50 Cuingnet (10.1016/j.neuroimage.2012.03.059_bb0070) 2011; 56 Mueller (10.1016/j.neuroimage.2012.03.059_bb0205) 2005; 15 |
References_xml | – volume: 24 start-page: 1881 year: 2008 end-page: 1888 ident: bb0140 article-title: Automated annotation of Drosophila gene expression patterns using a controlled vocabulary publication-title: Bioinformatics – volume: 32 start-page: 1207 year: 2011 end-page: 1218 ident: bb0165 article-title: Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI publication-title: Neurobiol. Aging – volume: 50 start-page: 1519 year: 2010 end-page: 1535 ident: bb0270 article-title: High-dimensional pattern regression using machine learning: from medical images to continuous clinical variables publication-title: Neuroimage – volume: 57 start-page: 722 year: 2009 end-page: 729 ident: bb0105 article-title: Missing data: a special challenge in aging research publication-title: J. Am. Geriatr. Soc. – volume: 50 start-page: 1585 year: 1998 end-page: 1593 ident: bb0120 article-title: Regional glucose metabolic abnormalities are not the result of atrophy in Alzheimer's disease publication-title: Neurology – volume: 14 start-page: 853 year: 2001 end-page: 871 ident: bb0230 article-title: Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values publication-title: J. Climate – volume: 47 start-page: 602 year: 2009 end-page: 610 ident: bb0055 article-title: Linking functional and structural brain images with multivariate network analyses: a novel application of the partial least square method publication-title: Neuroimage – volume: 58 start-page: S343 year: 2010 end-page: 348 ident: bb0220 article-title: Missing data? Plan on it! publication-title: J. Am. Geriatr. Soc. – volume: 57 start-page: 839 year: 2011 end-page: 855 ident: bb0240 article-title: Discriminating schizophrenia and bipolar disorder by fusing fMRI and DTI in a multimodal CCA+ joint ICA model publication-title: Neuroimage – start-page: 407 year: 2009 end-page: 415 ident: bb0145 article-title: Drosophila gene expression pattern annotation using sparse features and term-term interactions publication-title: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining – volume: 41 start-page: 277 year: 2008 end-page: 285 ident: bb0085 article-title: Structural and functional biomarkers of prodromal Alzheimer's disease: a high-dimensional pattern classification study publication-title: Neuroimage – start-page: 1335 year: 2009 end-page: 1344 ident: bb0245 article-title: Mining brain region connectivity for Alzheimer's disease study via sparse inverse covariance estimation publication-title: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining – volume: 4 start-page: 192 year: 2010 ident: bb0280 article-title: A hybrid machine learning method for fusing fMRI and genetic data: combining both improves classification of schizophrenia publication-title: Front. Hum. Neurosci. – volume: 31 start-page: 1429 year: 2010 end-page: 1442 ident: bb0150 article-title: Boosting power for clinical trials using classifiers based on multiple biomarkers publication-title: Neurobiol. Aging – start-page: 1 year: 2000 end-page: 15 ident: bb0080 article-title: Ensemble Methods in Machine Learning publication-title: International Workshop on Multiple Classifier Systems – volume: 4 start-page: 3 year: 2010 end-page: 14 ident: bb0225 article-title: Alzheimer's prevention initiative: a proposal to evaluate presymptomatic treatments as quickly as possible publication-title: Biomark. Med. – volume: 31 start-page: 1669 year: 2008 end-page: 1678 ident: bb0025 article-title: Plaque and tangle imaging and cognition in normal aging and Alzheimer's disease publication-title: Neurobiol. Aging – year: 1999 ident: bb0110 article-title: Imputing missing data for gene expression arrays publication-title: Technical Report, Division of Biostatistics – volume: 68 start-page: 828 year: 2007 end-page: 836 ident: bb0075 article-title: Hippocampal and entorhinal atrophy in mild cognitive impairment: prediction of Alzheimer disease publication-title: Neurology – start-page: 1459 year: 2010 end-page: 1467 ident: bb0175 article-title: Moreau–Yosida regularization for grouped tree structure learning publication-title: Advances in Neural Information Processing Systems – year: 2003 ident: bb0210 article-title: Introductory Lectures on Convex Optimization: A Basic Course (Applied Optimization) – volume: 60 start-page: 1239 year: 2007 end-page: 1245 ident: bb0255 article-title: The use of missingness screens in clinical epidemiologic research has implications for regression modeling publication-title: J. Clin. Epidemiol. – volume: 29 start-page: 30 year: 2010 end-page: 43 ident: bb0200 article-title: Comparison of AdaBoost and support vector machines for detecting Alzheimer's disease through automated hippocampal segmentation publication-title: IEEE Trans. Med. Imaging – start-page: 323 year: 2010 end-page: 332 ident: bb0190 article-title: An efficient algorithm for a class of fused lasso problems publication-title: Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining – volume: 57 start-page: 5 year: 2011 end-page: 14 ident: bb0115 article-title: Accurate measurement of brain changes in longitudinal MRI scans using tensor-based morphometry publication-title: Neuroimage – volume: 55 start-page: 856 year: 2011 end-page: 867 ident: bb0300 article-title: Multimodal classification of Alzheimer's disease and mild cognitive impairment publication-title: Neuroimage – volume: 56 start-page: 2053 year: 2010 end-page: 2080 ident: bb0045 article-title: The power of convex relaxation: near-optimal matrix completion publication-title: IEEE Trans. Inf. Theory – volume: 30 start-page: 3238 year: 2009 end-page: 3253 ident: bb0090 article-title: Structural MRI biomarkers for preclinical and mild Alzheimer's disease publication-title: Hum. Brain Mapp. – volume: 6 start-page: 1817 year: 2005 end-page: 1853 ident: bb0010 article-title: A framework for learning predictive structures from multiple tasks and unlabeled data publication-title: J. Mach. Learn. Res. – volume: 28 start-page: 583 year: 2010 end-page: 593 ident: bb0160 article-title: Classifier ensembles for fMRI data analysis: an experiment publication-title: Magn. Reson. Imaging – volume: 27 start-page: 685 year: 2008 end-page: 691 ident: bb0125 article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods publication-title: J. Magn. Reson. Imaging – volume: 73 start-page: 287 year: 2009 end-page: 293 ident: bb0260 article-title: MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnostic discrimination and cognitive correlations publication-title: Neurology – volume: 131 start-page: 665 year: 2008 end-page: 680 ident: bb0130 article-title: 11C PiB and structural MRI provide complementary information in imaging of Alzheimer's disease and amnestic mild cognitive impairment publication-title: Brain – volume: 13 start-page: 711 year: 2009 end-page: 720 ident: bb0040 article-title: Feature-based fusion of medical imaging data publication-title: IEEE Trans. Inf. Technol. Biomed. – start-page: 352 year: 2011 end-page: 360 ident: bb0295 article-title: Efficient methods for overlapping group lasso publication-title: Advances in Neural Information Processing Systems (NIPS) – volume: 74 start-page: 1260 year: 2011 end-page: 1271 ident: bb0400 article-title: Principal component analysis-based techniques and supervised classification schemes for the early detection of the Alzheimer’s disease publication-title: Neurocomputing – volume: 15 start-page: 869 year: 2005 end-page: 877 ident: bb0205 article-title: The Alzheimer's disease neuroimaging initiative publication-title: Neuroimaging Clin. N. Am. – volume: 73 start-page: 243 year: 2008 end-page: 272 ident: bb0015 article-title: Convex multi-task feature learning publication-title: Mach. Learn. – volume: 1 start-page: 4 year: 2010 ident: bb0155 article-title: Grand challenges in dementia 2010 publication-title: Front. Neurol. – volume: 68 start-page: 49 year: 2006 end-page: 67 ident: bb0290 article-title: Model selection and estimation in regression with grouped variables publication-title: J. R. Stat. Soc. B Stat. Methodol. – volume: 22 start-page: 1023 year: 2004 end-page: 1034 ident: bb0195 article-title: Concurrent EEG/fMRI analysis by multiway Partial Least Squares publication-title: Neuroimage – start-page: 1025 year: 2008 end-page: 1033 ident: bb0285 article-title: Heterogeneous data fusion for Alzheimer's disease study publication-title: Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining – volume: 54 start-page: 2198 year: 2011 end-page: 2217 ident: bb0100 article-title: Linked independent component analysis for multimodal data fusion publication-title: Neuroimage – volume: 23 start-page: 211 year: 2004 end-page: 219 ident: bb0095 article-title: A shared random effect parameter approach for longitudinal dementia data with non-ignorable missing data publication-title: Stat. Med. – volume: 73 start-page: 294 year: 2009 end-page: 301 ident: bb0265 article-title: MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change publication-title: Neurology – volume: 6 start-page: 305 year: 1997 end-page: 319 ident: bb0275 article-title: Characterizing the response of PET and fMRI data using multivariate linear models publication-title: Neuroimage – start-page: 339 year: 2009 end-page: 348 ident: bb0180 article-title: Multi-task feature learning via efficient l 2, 1-norm minimization – volume: 34 start-page: 137 year: 2007 end-page: 143 ident: bb0050 article-title: Biological parametric mapping: a statistical toolbox for multimodality brain image analysis publication-title: Neuroimage – year: 2009 ident: bb0060 article-title: Proximal splitting methods in signal processing – volume: 15 start-page: 273 year: 2002 end-page: 289 ident: bb0250 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage – volume: 20 start-page: 1956 year: 2010 end-page: 1982 ident: bb0035 article-title: A singular value thresholding algorithm for matrix completion publication-title: SIAM J. Optim. – volume: 7 start-page: 474 year: 2011 end-page: 485 ident: bb0135 article-title: Steps to standardization and validation of hippocampal volumetry as a biomarker in clinical trials and diagnostic criterion for Alzheimer's disease publication-title: Alzheimers Dement. – year: 2007 ident: bb0215 article-title: Gradient methods for minimizing composite objective function publication-title: ReCALL 76 – volume: 56 start-page: 1 year: 2011 end-page: 4 ident: bb0070 article-title: Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database publication-title: Neuroimage – volume: 31 start-page: 1452 year: 2010 end-page: 1462 ident: bb0235 article-title: Reduced sample sizes for atrophy outcomes in Alzheimer's disease trials: baseline adjustment publication-title: Neurobiol. Aging – volume: 27 start-page: 39 year: 2010 end-page: 50 ident: bb0065 article-title: Canonical correlation analysis for data fusion and group inferences: examining applications of medical imaging data publication-title: IEEE Signal Process. Mag. – volume: 56 start-page: 387 year: 2011 end-page: 399 ident: bb0170 article-title: Introduction to machine learning for brain imaging publication-title: Neuroimage – volume: 6 start-page: 209 year: 1997 end-page: 217 ident: bb0020 article-title: Multimodal image coregistration and partitioning—a unified framework publication-title: Neuroimage – year: 2009 ident: bb0185 article-title: SLEP: A Sparse Learning Package – volume: 22 start-page: 1023 year: 2004 ident: 10.1016/j.neuroimage.2012.03.059_bb0195 article-title: Concurrent EEG/fMRI analysis by multiway Partial Least Squares publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.03.038 – volume: 13 start-page: 711 year: 2009 ident: 10.1016/j.neuroimage.2012.03.059_bb0040 article-title: Feature-based fusion of medical imaging data publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2008.923773 – volume: 57 start-page: 722 year: 2009 ident: 10.1016/j.neuroimage.2012.03.059_bb0105 article-title: Missing data: a special challenge in aging research publication-title: J. Am. Geriatr. Soc. doi: 10.1111/j.1532-5415.2008.02168.x – volume: 54 start-page: 2198 year: 2011 ident: 10.1016/j.neuroimage.2012.03.059_bb0100 article-title: Linked independent component analysis for multimodal data fusion publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.09.073 – volume: 30 start-page: 3238 year: 2009 ident: 10.1016/j.neuroimage.2012.03.059_bb0090 article-title: Structural MRI biomarkers for preclinical and mild Alzheimer's disease publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20744 – volume: 27 start-page: 685 year: 2008 ident: 10.1016/j.neuroimage.2012.03.059_bb0125 article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.21049 – volume: 73 start-page: 287 year: 2009 ident: 10.1016/j.neuroimage.2012.03.059_bb0260 article-title: MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnostic discrimination and cognitive correlations publication-title: Neurology doi: 10.1212/WNL.0b013e3181af79e5 – volume: 24 start-page: 1881 year: 2008 ident: 10.1016/j.neuroimage.2012.03.059_bb0140 article-title: Automated annotation of Drosophila gene expression patterns using a controlled vocabulary publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn347 – volume: 57 start-page: 5 issue: 1 year: 2011 ident: 10.1016/j.neuroimage.2012.03.059_bb0115 article-title: Accurate measurement of brain changes in longitudinal MRI scans using tensor-based morphometry publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.01.079 – volume: 31 start-page: 1669 year: 2008 ident: 10.1016/j.neuroimage.2012.03.059_bb0025 article-title: Plaque and tangle imaging and cognition in normal aging and Alzheimer's disease publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2008.09.012 – start-page: 1 year: 2000 ident: 10.1016/j.neuroimage.2012.03.059_bb0080 article-title: Ensemble Methods in Machine Learning – ident: 10.1016/j.neuroimage.2012.03.059_bb0060 – volume: 57 start-page: 839 year: 2011 ident: 10.1016/j.neuroimage.2012.03.059_bb0240 article-title: Discriminating schizophrenia and bipolar disorder by fusing fMRI and DTI in a multimodal CCA+ joint ICA model publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.05.055 – volume: 6 start-page: 305 year: 1997 ident: 10.1016/j.neuroimage.2012.03.059_bb0275 article-title: Characterizing the response of PET and fMRI data using multivariate linear models publication-title: Neuroimage doi: 10.1006/nimg.1997.0294 – start-page: 407 year: 2009 ident: 10.1016/j.neuroimage.2012.03.059_bb0145 article-title: Drosophila gene expression pattern annotation using sparse features and term-term interactions – start-page: 323 year: 2010 ident: 10.1016/j.neuroimage.2012.03.059_bb0190 article-title: An efficient algorithm for a class of fused lasso problems – volume: 31 start-page: 1452 year: 2010 ident: 10.1016/j.neuroimage.2012.03.059_bb0235 article-title: Reduced sample sizes for atrophy outcomes in Alzheimer's disease trials: baseline adjustment publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2010.04.011 – volume: 31 start-page: 1429 year: 2010 ident: 10.1016/j.neuroimage.2012.03.059_bb0150 article-title: Boosting power for clinical trials using classifiers based on multiple biomarkers publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2010.04.022 – volume: 29 start-page: 30 year: 2010 ident: 10.1016/j.neuroimage.2012.03.059_bb0200 article-title: Comparison of AdaBoost and support vector machines for detecting Alzheimer's disease through automated hippocampal segmentation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2021941 – volume: 6 start-page: 209 year: 1997 ident: 10.1016/j.neuroimage.2012.03.059_bb0020 article-title: Multimodal image coregistration and partitioning—a unified framework publication-title: Neuroimage doi: 10.1006/nimg.1997.0290 – volume: 58 start-page: S343 issue: Suppl. 2 year: 2010 ident: 10.1016/j.neuroimage.2012.03.059_bb0220 article-title: Missing data? Plan on it! publication-title: J. Am. Geriatr. Soc. doi: 10.1111/j.1532-5415.2010.03053.x – volume: 60 start-page: 1239 year: 2007 ident: 10.1016/j.neuroimage.2012.03.059_bb0255 article-title: The use of missingness screens in clinical epidemiologic research has implications for regression modeling publication-title: J. Clin. Epidemiol. doi: 10.1016/j.jclinepi.2007.03.006 – start-page: 339 year: 2009 ident: 10.1016/j.neuroimage.2012.03.059_bb0180 article-title: Multi-task feature learning via efficient l 2, 1-norm minimization – year: 2003 ident: 10.1016/j.neuroimage.2012.03.059_bb0210 – volume: 15 start-page: 273 year: 2002 ident: 10.1016/j.neuroimage.2012.03.059_bb0250 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage doi: 10.1006/nimg.2001.0978 – volume: 4 start-page: 192 year: 2010 ident: 10.1016/j.neuroimage.2012.03.059_bb0280 article-title: A hybrid machine learning method for fusing fMRI and genetic data: combining both improves classification of schizophrenia publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2010.00192 – volume: 56 start-page: 387 year: 2011 ident: 10.1016/j.neuroimage.2012.03.059_bb0170 article-title: Introduction to machine learning for brain imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.11.004 – volume: 56 start-page: 1 year: 2011 ident: 10.1016/j.neuroimage.2012.03.059_bb0070 article-title: Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.06.013 – volume: 56 start-page: 2053 year: 2010 ident: 10.1016/j.neuroimage.2012.03.059_bb0045 article-title: The power of convex relaxation: near-optimal matrix completion publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2010.2044061 – ident: 10.1016/j.neuroimage.2012.03.059_bb0185 – volume: 20 start-page: 1956 year: 2010 ident: 10.1016/j.neuroimage.2012.03.059_bb0035 article-title: A singular value thresholding algorithm for matrix completion publication-title: SIAM J. Optim. doi: 10.1137/080738970 – volume: 32 start-page: 1207 year: 2011 ident: 10.1016/j.neuroimage.2012.03.059_bb0165 article-title: Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2009.07.002 – volume: 73 start-page: 294 year: 2009 ident: 10.1016/j.neuroimage.2012.03.059_bb0265 article-title: MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change publication-title: Neurology doi: 10.1212/WNL.0b013e3181af79fb – start-page: 1335 year: 2009 ident: 10.1016/j.neuroimage.2012.03.059_bb0245 article-title: Mining brain region connectivity for Alzheimer's disease study via sparse inverse covariance estimation – volume: 1 start-page: 4 year: 2010 ident: 10.1016/j.neuroimage.2012.03.059_bb0155 article-title: Grand challenges in dementia 2010 publication-title: Front. Neurol. doi: 10.3389/fneur.2010.00004 – volume: 6 start-page: 1817 year: 2005 ident: 10.1016/j.neuroimage.2012.03.059_bb0010 article-title: A framework for learning predictive structures from multiple tasks and unlabeled data publication-title: J. Mach. Learn. Res. – year: 1999 ident: 10.1016/j.neuroimage.2012.03.059_bb0110 article-title: Imputing missing data for gene expression arrays – start-page: 1025 year: 2008 ident: 10.1016/j.neuroimage.2012.03.059_bb0285 article-title: Heterogeneous data fusion for Alzheimer's disease study – start-page: 352 year: 2011 ident: 10.1016/j.neuroimage.2012.03.059_bb0295 article-title: Efficient methods for overlapping group lasso – volume: 28 start-page: 583 year: 2010 ident: 10.1016/j.neuroimage.2012.03.059_bb0160 article-title: Classifier ensembles for fMRI data analysis: an experiment publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2009.12.021 – volume: 55 start-page: 856 year: 2011 ident: 10.1016/j.neuroimage.2012.03.059_bb0300 article-title: Multimodal classification of Alzheimer's disease and mild cognitive impairment publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.01.008 – volume: 74 start-page: 1260 issue: 8 year: 2011 ident: 10.1016/j.neuroimage.2012.03.059_bb0400 article-title: Principal component analysis-based techniques and supervised classification schemes for the early detection of the Alzheimer’s disease publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.06.025 – volume: 41 start-page: 277 year: 2008 ident: 10.1016/j.neuroimage.2012.03.059_bb0085 article-title: Structural and functional biomarkers of prodromal Alzheimer's disease: a high-dimensional pattern classification study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.02.043 – volume: 4 start-page: 3 year: 2010 ident: 10.1016/j.neuroimage.2012.03.059_bb0225 article-title: Alzheimer's prevention initiative: a proposal to evaluate presymptomatic treatments as quickly as possible publication-title: Biomark. Med. doi: 10.2217/bmm.09.91 – volume: 14 start-page: 853 year: 2001 ident: 10.1016/j.neuroimage.2012.03.059_bb0230 article-title: Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values publication-title: J. Climate doi: 10.1175/1520-0442(2001)014<0853:AOICDE>2.0.CO;2 – volume: 50 start-page: 1519 year: 2010 ident: 10.1016/j.neuroimage.2012.03.059_bb0270 article-title: High-dimensional pattern regression using machine learning: from medical images to continuous clinical variables publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.12.092 – start-page: 1459 year: 2010 ident: 10.1016/j.neuroimage.2012.03.059_bb0175 article-title: Moreau–Yosida regularization for grouped tree structure learning – volume: 27 start-page: 39 year: 2010 ident: 10.1016/j.neuroimage.2012.03.059_bb0065 article-title: Canonical correlation analysis for data fusion and group inferences: examining applications of medical imaging data publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2010.936725 – volume: 47 start-page: 602 year: 2009 ident: 10.1016/j.neuroimage.2012.03.059_bb0055 article-title: Linking functional and structural brain images with multivariate network analyses: a novel application of the partial least square method publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.04.053 – volume: 15 start-page: 869 year: 2005 ident: 10.1016/j.neuroimage.2012.03.059_bb0205 article-title: The Alzheimer's disease neuroimaging initiative publication-title: Neuroimaging Clin. N. Am. doi: 10.1016/j.nic.2005.09.008 – volume: 7 start-page: 474 year: 2011 ident: 10.1016/j.neuroimage.2012.03.059_bb0135 article-title: Steps to standardization and validation of hippocampal volumetry as a biomarker in clinical trials and diagnostic criterion for Alzheimer's disease publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2011.04.007 – volume: 23 start-page: 211 year: 2004 ident: 10.1016/j.neuroimage.2012.03.059_bb0095 article-title: A shared random effect parameter approach for longitudinal dementia data with non-ignorable missing data publication-title: Stat. Med. doi: 10.1002/sim.1710 – volume: 68 start-page: 49 year: 2006 ident: 10.1016/j.neuroimage.2012.03.059_bb0290 article-title: Model selection and estimation in regression with grouped variables publication-title: J. R. Stat. Soc. B Stat. Methodol. doi: 10.1111/j.1467-9868.2005.00532.x – volume: 50 start-page: 1585 year: 1998 ident: 10.1016/j.neuroimage.2012.03.059_bb0120 article-title: Regional glucose metabolic abnormalities are not the result of atrophy in Alzheimer's disease publication-title: Neurology doi: 10.1212/WNL.50.6.1585 – year: 2007 ident: 10.1016/j.neuroimage.2012.03.059_bb0215 article-title: Gradient methods for minimizing composite objective function – volume: 68 start-page: 828 year: 2007 ident: 10.1016/j.neuroimage.2012.03.059_bb0075 article-title: Hippocampal and entorhinal atrophy in mild cognitive impairment: prediction of Alzheimer disease publication-title: Neurology doi: 10.1212/01.wnl.0000256697.20968.d7 – volume: 131 start-page: 665 year: 2008 ident: 10.1016/j.neuroimage.2012.03.059_bb0130 article-title: 11C PiB and structural MRI provide complementary information in imaging of Alzheimer's disease and amnestic mild cognitive impairment publication-title: Brain doi: 10.1093/brain/awm336 – volume: 73 start-page: 243 year: 2008 ident: 10.1016/j.neuroimage.2012.03.059_bb0015 article-title: Convex multi-task feature learning publication-title: Mach. Learn. doi: 10.1007/s10994-007-5040-8 – volume: 34 start-page: 137 year: 2007 ident: 10.1016/j.neuroimage.2012.03.059_bb0050 article-title: Biological parametric mapping: a statistical toolbox for multimodality brain image analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.09.011 |
SSID | ssj0009148 |
Score | 2.4793472 |
Snippet | Analysis of incomplete data is a big challenge when integrating large-scale brain imaging datasets from different imaging modalities. In the Alzheimer's... Analysis of incomplete data is a big challenge when integrating large-scale brain imaging datasets from different imaging modalities. In the Alzheimer’s... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 622 |
SubjectTerms | Accuracy Aged Algorithms Alzheimer Disease - cerebrospinal fluid Alzheimer Disease - pathology Alzheimer's disease Artificial Intelligence Biomarkers Brain research Classification Cognitive Dysfunction - cerebrospinal fluid Cognitive Dysfunction - pathology Databases, Factual Ensemble Female Fluorodeoxyglucose F18 Humans Image Processing, Computer-Assisted - methods Image Processing, Computer-Assisted - statistics & numerical data Incomplete data Magnetic Resonance Imaging Male Medical imaging Methods Middle Aged Multi-source feature learning Multi-task learning Neuroimaging - instrumentation Neuroimaging - methods NMR Nuclear magnetic resonance Pathology Positron-Emission Tomography Proteomics Radiopharmaceuticals Studies |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZ4SBUXREtbFihyJa4ReTixLQ4IIRBCoqci7c2yHRsWtQmw4f8z4zhZoBXaSy7OWIlnbH9jz3xDyKHQzBnLHfgmqU6YrYpEZNbDw5RVLQomPOYOX_-qLm_Y1bScxgO3eQyrHNbEsFDXrcUz8iNkwhO8gAl68vCYYNUovF2NJTRWyTpSl6FV8ylfkO5mrE-FK_ELMhkjefr4rsAXOfsLsxYDvPJAdYqMpf_fnv6Fn--jKF9tSxdbZDPiSXraG8BnsuKaL-TTdbwx3ya3IcM26c_oqXeBx5PGWhG3FCArvW9nTUd1ZCehrafI2ICswZ2jQ8AhvcO4mRbMzbXPczr-FnaCUaZfyc3F-e-zyyQWV0gs-BBdwowVnJussLmvuS4NuEqOGXAvUqaZTI32gY1N1tyAE-lKWXntfCm1N5WwefGNrDVt43YIBZenAp3a1NYG8J8UaeXSuualLPNKZ9mE8GFMlY3M41gA448aQszu1UIbCrWh0kJBTxOSjZIPPfvGEjJyUJsaskthPVSwRSwhezzKRgTSI4slpfcHK1FxJZirhd1OyM-xGeYwXszooDPoFXAVwAImPnoHaYiwYtyEfO8NbxwSgGESE4xhoN-Y5PgCcoi_bWlmd4FLvCgAgWZy9-NP3yMb-J8hTDnfJ2vd07P7AWCsMwdhxr0ABOg38w priority: 102 providerName: ProQuest |
Title | Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811912003400 https://dx.doi.org/10.1016/j.neuroimage.2012.03.059 https://www.ncbi.nlm.nih.gov/pubmed/22498655 https://www.proquest.com/docview/1506873153 https://www.proquest.com/docview/1024099048 https://www.proquest.com/docview/1034825441 https://pubmed.ncbi.nlm.nih.gov/PMC3358419 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqVkJcUHlvKZWRuIbNw4ltcWqrVguoKwRU2ptlO3abCpKKpld-OzOOk7KA0EpcEmUTO4lnPI_NN58JeS00c8ZyB7lJqhNmqyIRmfWwMWVVi4IJj7XDZ8tqcc7er8rVFjkea2EQVhlt_2DTg7WOv8zjaM6vm2b-GSIDcDeQbyC-Cm6FFeyMo5a_-XEH85AZG8rhSnyKTEY0z4DxCpyRzTeYuQjyygPdKbKW_t1F_RmC_o6k_MU1ne6SBzGmpIfDYz8kW659RO6dxa_mj8lFqLJNhv_pqXeBy5PG9SIuKISt9Kpr2p7qyFBCO0-RtQGZg3tHR9AhvUTsTAcq57rbGzq9FnaCSNMn5Pz05MvxIokLLCQW8og-YcYKzk1W2NzXXJcG0iXHDKQYKdNMpkb7wMgma24gkXSlrLx2vpTam0rYvHhKttuudc8JhbSnArna1NYGYkAp0sqldc1LWeaVzrIZ4eOYKhvZx3ERjK9qhJldqTtpKJSGSgsFPc1INrW8Hhg4NmgjR7GpscIUbKICN7FB27dT2zVN3LD1_qglKlqDG4UsjoIX4Fxm5NV0GuYxfpzRQWbQK8RWEBow8a9rkIoIV42bkWeD4k1DAqGYxCJjGOg1lZwuQB7x9TNtcxn4xIsCotBM7v3Xi78g9_EoIJnzfbLdf791LyFe681BmJCw5St-QHYO331YLGF_dLL8-OknAV9HVw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgEXxLsLBYwEx4g8nNgWQggB1ZZ2e2qlvRnbsdutIClsKsSf4jcy4zhZCqjaSy97ScZae8bjb-KZbwh5ITRzxnIHsUmqE2arIhGZ9fBjyqoWBRMea4dnB9X0iH2al_MN8muohcG0ysEnBkddtxa_kb9CJjzBC9igb8--Jdg1Cm9XhxYavVnsuZ8_IGRbvtn9APp9mec7Hw_fT5PYVSCxAJ67hBkrODdZYXNfc10aiBEcM4CrU6aZTI32gYZM1txA9ORKWXntfCm1N5WwSHQALv8aHLwpBnt8zlckvxnrS-9KnHEmY-ZQn08W-CkXX8FLYEJZHqhVkSH1_8fhv3D376zNP47BndvkVsSv9F1vcHfIhmvukuuzeEN_jxyHit6kvxOg3gXeUBp7UxxTgMj0tF00HdWRDYW2niJDBLIUd44OCY70BPN0WjBv154v6TgtHASzWu-ToytZ9gdks2kbt0UohFgV2JBNbW0Ab0qRVi6ta17KMq90lk0IH9ZU2ch0jg03vqghpe1UrbShUBsqLRSMNCHZKHnWs32sISMHtamhmhX8r4IjaQ3Z16NsRDw9kllTenuwEhU9z1Kt9smEPB8fg8_AiyAddAajAo4DGMLEZe8g7RF2qJuQh73hjUsCsE9iQTMs9AWTHF9AzvKLT5rFSeAuLwpAvJl8dPlff0ZuTA9n-2p_92DvMbmJcw4p0vk22ey-n7snAAQ78zTsPko-X_V2_w0QV3Ue |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VW6nignizbQEjwTFqHs7DQggB7aqldFUhKvVmbMdut6JJYVMh_hq_jpnEyVJA1V562Utia22Px9_E33wD8KJQ3GqTW4xNQhVwkyVBERmHPzrNyiLhhaPc4YNptnvEPxynxyvwq8-FIVpl7xNbR13Whr6Rb5ESXpEnuEG3nKdFHG5P3lx8C6iCFN209uU0OhPZtz9_YPg2f723jWv9Mo4nO5_f7wa-wkBgEEg3AdemyHMdJSZ2Za5SjfGC5RoxdsgVF6FWrpUkE2WuMZKyqcicsi4VyumsMCR6gO5_NaeoaASr73amh58Wkr8R7xLxUhp_JDyPqGOXtWqVs3P0GUQvi1uhVdJL_f_h-C_4_ZvD-cehOLkDtz2aZW8787sLK7a6B2sH_r7-Ppy0-b1Bd0PAnG1VRJmvVHHCEDCzs3pWNUx5bRRWO0Z6EaRZ3FjW0x3ZKbF2ajR2W1_O2TAs6oQ4rg_g6EYm_iGMqrqyj4FhwJWhRZnQlBrRpyjCzIZlmacijTMVRWPI-zmVxuueU_mNr7InuJ3JxWpIWg0ZJhJ7GkM0tLzotD-WaCP6ZZN9bit6Y4kH1BJtXw1tPf7pcM2SrTd7K5HeD83lYteM4fnwGD0IXQupds2wV0R1CEp4cd07JIJE9erG8KgzvGFKEAQKSm_Gib5iksMLpGB-9Uk1O22VzJME8W8k1q__689gDbe6_Lg33d-AWzTkli8db8Ko-X5pnyAqbPRTv_0YfLnpHf8blDR6uQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-source+feature+learning+for+joint+analysis+of+incomplete+multiple+heterogeneous+neuroimaging+data&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Yuan%2C+Lei&rft.au=Wang%2C+Yalin&rft.au=Thompson%2C+Paul+M.&rft.au=Narayan%2C+Vaibhav+A.&rft.date=2012-07-02&rft.issn=1053-8119&rft.volume=61&rft.issue=3&rft.spage=622&rft.epage=632&rft_id=info:doi/10.1016%2Fj.neuroimage.2012.03.059&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2012_03_059 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |