Simultaneous head tissue conductivity and EEG source location estimation
Accurate electroencephalographic (EEG) source localization requires an electrical head model incorporating accurate geometries and conductivity values for the major head tissues. While consistent conductivity values have been reported for scalp, brain, and cerebrospinal fluid, measured brain-to-skul...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 124; no. Pt A; pp. 168 - 180 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.01.2016
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2015.08.032 |
Cover
Abstract | Accurate electroencephalographic (EEG) source localization requires an electrical head model incorporating accurate geometries and conductivity values for the major head tissues. While consistent conductivity values have been reported for scalp, brain, and cerebrospinal fluid, measured brain-to-skull conductivity ratio (BSCR) estimates have varied between 8 and 80, likely reflecting both inter-subject and measurement method differences. In simulations, mis-estimation of skull conductivity can produce source localization errors as large as 3cm. Here, we describe an iterative gradient-based approach to Simultaneous tissue Conductivity And source Location Estimation (SCALE). The scalp projection maps used by SCALE are obtained from near-dipolar effective EEG sources found by adequate independent component analysis (ICA) decomposition of sufficient high-density EEG data. We applied SCALE to simulated scalp projections of 15cm2-scale cortical patch sources in an MR image-based electrical head model with simulated BSCR of 30. Initialized either with a BSCR of 80 or 20, SCALE estimated BSCR as 32.6. In Adaptive Mixture ICA (AMICA) decompositions of (45-min, 128-channel) EEG data from two young adults we identified sets of 13 independent components having near-dipolar scalp maps compatible with a single cortical source patch. Again initialized with either BSCR 80 or 25, SCALE gave BSCR estimates of 34 and 54 for the two subjects respectively. The ability to accurately estimate skull conductivity non-invasively from any well-recorded EEG data in combination with a stable and non-invasively acquired MR imaging-derived electrical head model could remove a critical barrier to using EEG as a sub-cm2-scale accurate 3-D functional cortical imaging modality.
•We propose Simultaneous Conductivity And Location Estimation (SCALE) for EEG data.•SCALE uses only EEG independent component sources and a subject head MR image.•In simulation studies, SCALE accurately estimated skull conductivity.•Applied to EEG from two subjects, SCALE converged regardless of initial condition.•SCALE may make noninvasive, high-resolution EEG source imaging feasible. |
---|---|
AbstractList | Accurate electroencephalographic (EEG) source localization requires an electrical head model incorporating accurate geometries and conductivity values for the major head tissues. While consistent conductivity values have been reported for scalp, brain, and cerebrospinal fluid, measured brain-to-skull conductivity ratio (BSCR) estimates have varied between 8 and 80, likely reflecting both inter-subject and measurement method differences. In simulations, mis-estimation of skull conductivity can produce source localization errors as large as 3cm. Here, we describe an iterative gradient-based approach to Simultaneous tissue Conductivity And source Location Estimation (SCALE). The scalp projection maps used by SCALE are obtained from near-dipolar effective EEG sources found by adequate independent component analysis (ICA) decomposition of sufficient high-density EEG data. We applied SCALE to simulated scalp projections of 15cm(2)-scale cortical patch sources in an MR image-based electrical head model with simulated BSCR of 30. Initialized either with a BSCR of 80 or 20, SCALE estimated BSCR as 32.6. In Adaptive Mixture ICA (AMICA) decompositions of (45-min, 128-channel) EEG data from two young adults we identified sets of 13 independent components having near-dipolar scalp maps compatible with a single cortical source patch. Again initialized with either BSCR 80 or 25, SCALE gave BSCR estimates of 34 and 54 for the two subjects respectively. The ability to accurately estimate skull conductivity non-invasively from any well-recorded EEG data in combination with a stable and non-invasively acquired MR imaging-derived electrical head model could remove a critical barrier to using EEG as a sub-cm(2)-scale accurate 3-D functional cortical imaging modality.Accurate electroencephalographic (EEG) source localization requires an electrical head model incorporating accurate geometries and conductivity values for the major head tissues. While consistent conductivity values have been reported for scalp, brain, and cerebrospinal fluid, measured brain-to-skull conductivity ratio (BSCR) estimates have varied between 8 and 80, likely reflecting both inter-subject and measurement method differences. In simulations, mis-estimation of skull conductivity can produce source localization errors as large as 3cm. Here, we describe an iterative gradient-based approach to Simultaneous tissue Conductivity And source Location Estimation (SCALE). The scalp projection maps used by SCALE are obtained from near-dipolar effective EEG sources found by adequate independent component analysis (ICA) decomposition of sufficient high-density EEG data. We applied SCALE to simulated scalp projections of 15cm(2)-scale cortical patch sources in an MR image-based electrical head model with simulated BSCR of 30. Initialized either with a BSCR of 80 or 20, SCALE estimated BSCR as 32.6. In Adaptive Mixture ICA (AMICA) decompositions of (45-min, 128-channel) EEG data from two young adults we identified sets of 13 independent components having near-dipolar scalp maps compatible with a single cortical source patch. Again initialized with either BSCR 80 or 25, SCALE gave BSCR estimates of 34 and 54 for the two subjects respectively. The ability to accurately estimate skull conductivity non-invasively from any well-recorded EEG data in combination with a stable and non-invasively acquired MR imaging-derived electrical head model could remove a critical barrier to using EEG as a sub-cm(2)-scale accurate 3-D functional cortical imaging modality. Accurate electroencephalographic (EEG) source localization requires an electrical head model incorporating accurate geometries and conductivity values for the major head tissues. While consistent conductivity values have been reported for scalp, brain, and cerebrospinal fluid, measured brain-to-skull conductivity ratio (BSCR) estimates have varied between 8 and 80, likely reflecting both inter-subject and measurement method differences. In simulations, mis-estimation of skull conductivity can produce source localization errors as large as 3cm. Here, we describe an iterative gradient-based approach to Simultaneous tissue Conductivity And source Location Estimation (SCALE). The scalp projection maps used by SCALE are obtained from near-dipolar effective EEG sources found by adequate independent component analysis (ICA) decomposition of sufficient high-density EEG data. We applied SCALE to simulated scalp projections of 15cm2-scale cortical patch sources in an MR image-based electrical head model with simulated BSCR of 30. Initialized either with a BSCR of 80 or 20, SCALE estimated BSCR as 32.6. In Adaptive Mixture ICA (AMICA) decompositions of (45-min, 128-channel) EEG data from two young adults we identified sets of 13 independent components having near-dipolar scalp maps compatible with a single cortical source patch. Again initialized with either BSCR 80 or 25, SCALE gave BSCR estimates of 34 and 54 for the two subjects respectively. The ability to accurately estimate skull conductivity non-invasively from any well-recorded EEG data in combination with a stable and non-invasively acquired MR imaging-derived electrical head model could remove a critical barrier to using EEG as a sub-cm2-scale accurate 3-D functional cortical imaging modality. •We propose Simultaneous Conductivity And Location Estimation (SCALE) for EEG data.•SCALE uses only EEG independent component sources and a subject head MR image.•In simulation studies, SCALE accurately estimated skull conductivity.•Applied to EEG from two subjects, SCALE converged regardless of initial condition.•SCALE may make noninvasive, high-resolution EEG source imaging feasible. Accurate electroencephalographic (EEG) source localization requires an electrical head model incorporating accurate geometries and conductivity values for the major head tissues. While consistent conductivity values have been reported for scalp, brain, and cerebrospinal fluid, measured brain-to-skull conductivity ratio (BSCR) estimates have varied between 8 and 80, likely reflecting both inter-subject and measurement method differences. In simulations, mis-estimation of skull conductivity can produce source localization errors as large as 3cm. Here, we describe an iterative gradient-based approach to Simultaneous tissue Conductivity And source Location Estimation (SCALE). The scalp projection maps used by SCALE are obtained from near-dipolar effective EEG sources found by adequate independent component analysis (ICA) decomposition of sufficient high-density EEG data. We applied SCALE to simulated scalp projections of 15cm(2)-scale cortical patch sources in an MR image-based electrical head model with simulated BSCR of 30. Initialized either with a BSCR of 80 or 20, SCALE estimated BSCR as 32.6. In Adaptive Mixture ICA (AMICA) decompositions of (45-min, 128-channel) EEG data from two young adults we identified sets of 13 independent components having near-dipolar scalp maps compatible with a single cortical source patch. Again initialized with either BSCR 80 or 25, SCALE gave BSCR estimates of 34 and 54 for the two subjects respectively. The ability to accurately estimate skull conductivity non-invasively from any well-recorded EEG data in combination with a stable and non-invasively acquired MR imaging-derived electrical head model could remove a critical barrier to using EEG as a sub-cm(2)-scale accurate 3-D functional cortical imaging modality. Accurate electroencephalographic (EEG) source localization requires an electrical head model incorporating accurate geometries and conductivity values for the major head tissues. While consistent conductivity values have been reported for scalp, brain, and cerebrospinal fluid, measured brain-to-skull conductivity ratio (BSCR) estimates have varied between 8 and 80, likely reflecting both inter-subject and measurement method differences. In simulations, mis-estimation of skull conductivity can produce source localization errors as large as 3cm. Here, we describe an iterative gradient-based approach to Simultaneous tissue Conductivity And source Location Estimation (SCALE). The scalp projection maps used by SCALE are obtained from near-dipolar effective EEG sources found by adequate independent component analysis (ICA) decomposition of sufficient high-density EEG data. We applied SCALE to simulated scalp projections of 15cm2-scale cortical patch sources in an MR image-based electrical head model with simulated BSCR of 30. Initialized either with a BSCR of 80 or 20, SCALE estimated BSCR as 32.6. In Adaptive Mixture ICA (AMICA) decompositions of (45-min, 128-channel) EEG data from two young adults we identified sets of 13 independent components having near-dipolar scalp maps compatible with a single cortical source patch. Again initialized with either BSCR 80 or 25, SCALE gave BSCR estimates of 34 and 54 for the two subjects respectively. The ability to accurately estimate skull conductivity non-invasively from any well-recorded EEG data in combination with a stable and non-invasively acquired MR imaging-derived electrical head model could remove a critical barrier to using EEG as a sub-cm2-scale accurate 3-D functional cortical imaging modality. Accurate electroencephalographic (EEG) source localization requires an electrical head model incorporating accurate geometries and conductivity values for the major head tissues. While consistent conductivity values have been reported for scalp, brain, and cerebrospinal fluid, measured brain-to-skull conductivity ratio (BSCR) estimates have varied between 8 and 80, likely reflecting both inter-subject and measurement method differences. In simulations, mis-estimation of skull conductivity can produce source localization errors as large as 3 cm. Here, we describe an iterative gradient-based approach to Simultaneous tissue Conductivity And source Location Estimation (SCALE). The scalp projection maps used by SCALE are obtained from near-dipolar effective EEG sources found by adequate independent component analysis (ICA) decomposition of sufficient high-density EEG data. We applied SCALE to simulated scalp projections of 15 cm 2 -scale cortical patch sources in an MR image-based electrical head model with simulated BSCR of 30. Initialized either with a BSCR of 80 or 20, SCALE estimated BSCR as 32.6. In Adaptive Mixture ICA (AMICA) decompositions of (45-min, 128-channel) EEG data from two young adults we identified sets of 13 independent components having near-dipolar scalp maps compatible with a single cortical source patch. Again initialized with either BSCR 80 or 25, SCALE gave BSCR estimates of 34 and 54 for the two subjects respectively. The ability to accurately estimate skull conductivity non-invasively from any well-recorded EEG data in combination with a stable and non-invasively acquired MR imaging-derived electrical head model could remove a critical barrier to using EEG as a sub-cm 2 -scale accurate 3-D functional cortical imaging modality. |
Author | Acar, Can E. Makeig, Scott Akalin Acar, Zeynep |
AuthorAffiliation | a Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California, San Diego, La Jolla CA 92093-0559 b Qualcomm Technologies, Inc. 5775 Morehouse Drive, San Diego, CA 92121 |
AuthorAffiliation_xml | – name: a Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California, San Diego, La Jolla CA 92093-0559 – name: b Qualcomm Technologies, Inc. 5775 Morehouse Drive, San Diego, CA 92121 |
Author_xml | – sequence: 1 givenname: Zeynep surname: Akalin Acar fullname: Akalin Acar, Zeynep email: zeynep@sccn.ucsd.edu organization: Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California, San Diego, La Jolla, CA 92093-0559, USA – sequence: 2 givenname: Can E. surname: Acar fullname: Acar, Can E. email: canacar@canacar.net organization: Qualcomm Technologies, Inc., 5775 Morehouse Drive, San Diego, CA 92121, USA – sequence: 3 givenname: Scott surname: Makeig fullname: Makeig, Scott email: smakeig@ucsd.edu organization: Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California, San Diego, La Jolla, CA 92093-0559, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26302675$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc9vFCEcxYmpsT_0XzCTePEyUxiGGbgYbbO2Jk08qGfCwpeWdRYqMJvsfy_Tbbfa0554CY9PHu-doiMfPCBUEdwQTPrzVeNhisGt1S00LSaswbzBtH2FTggWrBZsaI9mzWjNCRHH6DSlFcZYkI6_QcdtT3HbD-wEXf9w62nMykOYUnUHylTZpTRBpYM3k85u4_K2Ut5Ui8VVlcIUNVRj0Cq74CtIuYSY5Vv02qoxwbvH8wz9-rr4eXld33y_-nb55abWTAy5ptZaomyrl4YypkRXlDDKKsssNoq0PRNLxToDVnHeKdBa8I5yPhAjlkLQM_Rpx72flmswGnyOapT3seSIWxmUk__feHcnb8NGdj0jA8cF8PEREMOfqXxArl3SMI67DiQZGGkJa_v-ACtlAve0p8X64YV1VarypYkHF8UD7ubw7_8Nv0_9tEcx8J1Bx5BSBLu3ECzn6eVKPk8v5-kl5rJM_1zM_ql2-WGaUoMbDwFc7ABQ5ts4iDJpB16DcRF0lia4QyCfX0D06LzTavwN28MQfwGsiukw |
CitedBy_id | crossref_primary_10_1177_10738584211054742 crossref_primary_10_1016_j_jneumeth_2020_108740 crossref_primary_10_1016_j_neuroimage_2015_11_023 crossref_primary_10_3389_fnins_2019_01159 crossref_primary_10_1002_mrm_26283 crossref_primary_10_3389_fnhum_2023_1216758 crossref_primary_10_1016_j_crhy_2018_02_002 crossref_primary_10_1111_psyp_13392 crossref_primary_10_1371_journal_pone_0252431 crossref_primary_10_1088_1741_2552_adab20 crossref_primary_10_1002_hbm_23688 crossref_primary_10_1016_j_neuroscience_2023_01_021 crossref_primary_10_1109_TBME_2017_2777143 crossref_primary_10_1016_j_neuroimage_2018_08_001 crossref_primary_10_1088_2057_1976_aca20b crossref_primary_10_1088_1361_6560_abc5aa crossref_primary_10_1016_j_neuroimage_2018_03_016 crossref_primary_10_1007_s10548_018_0683_2 crossref_primary_10_1109_JBHI_2023_3315974 crossref_primary_10_7554_eLife_92254 crossref_primary_10_1016_j_neuroimage_2016_09_034 crossref_primary_10_1016_j_neuroimage_2017_03_030 crossref_primary_10_1109_TBME_2018_2828336 crossref_primary_10_1016_j_neuroimage_2017_07_013 crossref_primary_10_3390_app14062495 crossref_primary_10_1007_s11517_018_1845_9 crossref_primary_10_1016_j_neuroimage_2016_12_030 crossref_primary_10_1038_micronano_2016_66 crossref_primary_10_1038_s41598_020_62097_6 crossref_primary_10_1016_j_neuroimage_2019_116361 crossref_primary_10_1109_TMI_2019_2936921 crossref_primary_10_1093_braincomms_fcad023 crossref_primary_10_1109_TBME_2019_2933836 crossref_primary_10_1016_j_neuroimage_2016_06_017 crossref_primary_10_1152_jn_00346_2021 crossref_primary_10_1016_j_neuroimage_2017_01_032 crossref_primary_10_1109_LSP_2017_2669101 crossref_primary_10_1002_ima_22239 crossref_primary_10_1111_ejn_15131 crossref_primary_10_3389_fneur_2021_722986 crossref_primary_10_3389_fnhum_2024_1335212 crossref_primary_10_1002_hbm_24754 crossref_primary_10_3390_brainsci12010114 crossref_primary_10_1109_TNSRE_2023_3281356 crossref_primary_10_3389_fnins_2019_00531 crossref_primary_10_1016_j_dcn_2022_101092 crossref_primary_10_1371_journal_pone_0174462 crossref_primary_10_3389_fnhum_2021_669915 crossref_primary_10_1109_TBME_2022_3202751 crossref_primary_10_7554_eLife_92254_3 crossref_primary_10_1155_2019_5618303 crossref_primary_10_1007_s12021_022_09574_7 crossref_primary_10_1016_j_neuroimage_2020_117353 crossref_primary_10_1016_j_neuroimage_2023_120259 crossref_primary_10_3389_fnhum_2020_00082 crossref_primary_10_1002_hbm_23812 |
Cites_doi | 10.1088/0031-9155/50/11/016 10.1007/BF02345748 10.1109/TBME.2008.923919 10.1007/s10548-013-0313-y 10.1007/s10548-012-0274-6 10.1142/S0218127403008156 10.1007/s10439-007-9343-5 10.1109/10.568913 10.1371/journal.pone.0030135 10.1007/BF02512476 10.1002/hbm.20714 10.1088/0967-3334/25/3/013 10.1097/00004691-199905000-00004 10.1023/A:1025606415858 10.1006/nimg.1998.0395 10.1371/journal.pcbi.1000092 10.1523/JNEUROSCI.0540-04.2004 10.1088/0031-9155/49/5/004 10.1007/BF02967147 10.1063/1.2398883 10.1016/S0379-0738(00)00447-3 10.1002/(SICI)1097-0193(1998)6:4<250::AID-HBM5>3.0.CO;2-2 10.1016/S1361-8415(96)80011-9 10.1023/A:1007882102297 10.1016/j.neuroimage.2012.05.006 10.1109/TBME.1980.326713 10.1109/TBME.2003.816072 10.1109/TMI.2003.812271 10.1109/TBME.2003.812164 10.1109/10.40805 10.1109/10.759053 10.1016/j.neuroimage.2006.01.029 10.1016/S1350-4533(99)00038-7 10.1109/JSTSP.2010.2042413 10.1002/hbm.10152 10.1016/j.neuroimage.2007.09.048 10.1109/TBME.2004.836507 10.1155/2010/397272 10.1016/j.cam.2013.09.001 10.1097/00001665-199909000-00004 10.1016/j.clinph.2004.08.017 10.1016/j.neuroimage.2008.02.059 10.1088/0031-9155/49/21/012 10.1016/j.neuroimage.2007.06.002 10.1109/10.887939 10.1126/science.1066168 10.1213/00000539-196811000-00016 10.1007/BF01191074 10.1109/79.962275 10.1109/TBME.2000.880100 10.1016/j.jneumeth.2010.04.031 10.1007/s00791-002-0098-0 10.1007/s11517-008-0316-0 10.1016/j.biopsych.2013.07.020 10.1016/j.tics.2004.03.008 10.1002/hbm.21114 10.1002/hbm.20159 10.1109/10.797987 10.1016/j.neuroimage.2012.01.021 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Inc. Copyright © 2015 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Jan 1, 2016 |
Copyright_xml | – notice: 2015 Elsevier Inc. – notice: Copyright © 2015 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Jan 1, 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO 5PM |
DOI | 10.1016/j.neuroimage.2015.08.032 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest One Psychology Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 180 |
ExternalDocumentID | PMC4651780 3873685551 26302675 10_1016_j_neuroimage_2015_08_032 S1053811915007442 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: 2R01 NS047293 – fundername: NINDS NIH HHS grantid: R01 NS047293 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGQPQ AGRNS AIGII AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO 5PM |
ID | FETCH-LOGICAL-c597t-3fff1af2cbd355a942cb9dafaf5f0da12659ba54defa884aecc98438871d9b993 |
IEDL.DBID | AIKHN |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Aug 21 18:18:00 EDT 2025 Thu Sep 04 18:08:44 EDT 2025 Fri Sep 05 05:05:46 EDT 2025 Wed Aug 13 04:07:05 EDT 2025 Mon Aug 11 07:11:18 EDT 2025 Tue Jul 01 03:01:44 EDT 2025 Thu Apr 24 23:09:55 EDT 2025 Fri Feb 23 02:25:08 EST 2024 Tue Aug 26 20:08:41 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt A |
Keywords | Finite Element Method Source localization EEG Sensitivity of EEG to skull conductivity Skull conductivity estimation Four-layer realistic head modeling FEM |
Language | English |
License | Copyright © 2015 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c597t-3fff1af2cbd355a942cb9dafaf5f0da12659ba54defa884aecc98438871d9b993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4651780 |
PMID | 26302675 |
PQID | 1735307049 |
PQPubID | 2031077 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4651780 proquest_miscellaneous_1751215266 proquest_miscellaneous_1735906363 proquest_journals_1735307049 pubmed_primary_26302675 crossref_primary_10_1016_j_neuroimage_2015_08_032 crossref_citationtrail_10_1016_j_neuroimage_2015_08_032 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2015_08_032 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2015_08_032 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-01 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2016 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Ataseven, Akalin-Acar, Acar, Gencer (bb0040) 2008; 46 Ollikainen, Vauhkonen, Karjalainen, Kaipio (bb0270) 1999; 21 Studholme, Hill, Hawkes (bb0320) 1996; 1 Hwang, Kim, Baik (bb0195) 1999; 10 Anderson (bb0035) 1882; 74 Baillet, Mosher, Leahy (bb0055) 2001; 18 Akalin Acar, Worrell, Makeig (bb0015) 2009 Makeig, Debener, Onton, Delorme (bb0235) 2004; 8 Akalin Acar, Palmer, Worrell, Makeig (bb0020) 2011 Rush, Driscoll (bb0310) 1968; 47 Baillet, Garnero (bb0045) 1997; 44 Akalin Acar, Makeig (bb0010) 2013; 26 Mosher, Baillet, Leahy (bb0260) 1999; 16 Lai, van Drongelen, Ding, Hecox, Towle, Frim, He (bb0200) 2005; 116 Makeig, Bell, Jung, Sejnowski (bb0225) 1996; vol. 8 Goncalves, de Munck, Jeroen, Heethaar, da Silva (bb0150) 2003; 50 Palmer, Kreutz-Delgado, Makeig (bb0280) 2006 Akalin-Acar, Gençer (bb0025) 2004; 49 Cao, Akalin Acar, Kreutz-Delgado, Makeig (bb0075) 2012 Huiskamp, Vroeijenstijn, Van Dijk, Wieneke, Van Huffelen (bb0190) 1999; 46 Ulker Karbeyaz, Gencer (bb0335) 2003; 22 Friston, Harrison, Daunizeua, Henson, Flandin, Mattout (bb0130) 2008; 39 Ferree, Eriksen, Tucker (bb0115) 2000; 47 Dannhauer, Lanfer, Wolters, Knosche (bb0095) 2011; 32 Chakkalakal, Johnson, Harper, Katz (bb0080) 1980; 27 Wipf, Nagarajan (bb0355) 2009; 44 Bashar, Li, Wen (bb0060) 2010 Hoekema, Wieneke, Leijten, van Veelen, van Rijen, Huiskamp, Ansems, van Huffelen (bb0170) 2003; 16 Lanfer, Scherg, Dannhauer, Knosche, Burger, Wolters (bb0205) 2012; 62 Chauveau, Franceries, Doyon, Rigaud, Morucci, Celsis (bb0085) 2004; 21 Vanrumste, Van Hoey, Van de Walle, D'Havé, Lemahieu, Boon (bb0345) 2000; 38 Dale, Fischl, Sereno (bb0090) 1999; 9 Gao, Zhu, He (bb0140) 2005; 50 Gençer, Acar (bb0145) 2004; 49 Delorme, Palmer, Oostenveld, Makeig (bb0105) 2012 Akalin Acar, Makeig (bb0005) 2010; 190 Marin, Guerin, Baillet, Garnero, Meunier (bb0240) 1998; 6 Akhtari, Bryant, Mamelak, Heller, Shih, Mandelkern, Matlachov, Ranken, Best, Sutherling (bb0030) 2000; 13 Goncalves, de Munck, Verbunt, Heethaar, da Silva (bb0155) 2003; 50 Sadleir, Argibay (bb0315) 2007; 35 Hämäläinen, Ilmoniemi (bb0165) 1994; 32 Ramon, Schimpf, Haueisen (bb0305) 2006; 5 Beggs, Plenz (bb0070) 2004; 24 Huang, Song, Hagler, Podgorny, Jousmaki, Cui, Gaa, Harrington, Dale, Lee, Elman, Halgren (bb0180) 2007; 37 Vallaghe, Clerc, Badier (bb0340) 2007 Nunez, Srinivasan (bb0265) 2006 Makeig, Westerfield, Jung, Enghoff, Townsend, Courchesne, Sejnovski (bb0230) 2002; 295 Fischl (bb0120) 2012; 62 Lew, Wolters, Anwander, Makeig, MacLeod (bb0215) 2009; 30 Wipf, Nagarajan (bb0360) 2010; 4 Law (bb0210) 1993; 6 Meijs, Weier, Peters (bb0250) 1989; 36 Deco, Jirsa, Robinson, Breakspear, Friston (bb0100) 2008; 4 Huiskamp (bb0185) 2008; 10 Ramirez, Makeig (bb0300) 2006 Dogdas, Shattuck, Leahy (bb0110) 2005; 26 Freeman (bb0125) 2003; 13 Fu, Lewis, Kirby, Whitaker (bb0135) 2014; 257 Lynnerup (bb0220) 2001; 117 Turovets, Salman, Malony, Poolman, Davey, Tucker (bb0330) 2007; 14 Montes-Restrepo, van Mierlo, Strobbe, Staelens, Vandenberghe, Hallez (bb0255) 2014; 27 Oostendorp, Delbeke, Stegeman (bb0275) 2000; 47 Pasqual-Marqui (bb0290) 1999; 1 Zhang, van Drongelen, He (bb0370) 2006; 89 Wendel, Vaisanen, Seemann, Hyttinen, Malmivuo (bb0350) 2010; 2010 Palmer, Kreutz-Delgado, Rao, Makeig (bb0285) 2007 Baillet, Garnero, Marin, Hugonin (bb0050) 1999; 46 Gutierrez, Nehorai, Muravchik (bb0160) 2004; 51 Pasqual-Marqui, Esslen, Kochi, Lehmann (bb0295) 2002; 24 Huang, Dale, Song, Halgren, Harrington, Podgorny, Carnive, Lewis, Lee (bb0175) 2006; 31 McLoughlin, Palmer, Rijsdijk, Makeig (bb0245) 2014; 75 Tang, Fusheng, Cheng, Gao, Fu, Yang, Dong (bb0325) 2008; 55 Wolters, Kuhn, Anwander, Reitzinger (bb0365) 2002; 5 Baysal, Haueisen (bb0065) 2004; 25 Akalin Acar (10.1016/j.neuroimage.2015.08.032_bb0015) 2009 Makeig (10.1016/j.neuroimage.2015.08.032_bb0225) 1996; vol. 8 Baysal (10.1016/j.neuroimage.2015.08.032_bb0065) 2004; 25 Beggs (10.1016/j.neuroimage.2015.08.032_bb0070) 2004; 24 Huang (10.1016/j.neuroimage.2015.08.032_bb0180) 2007; 37 Ollikainen (10.1016/j.neuroimage.2015.08.032_bb0270) 1999; 21 Nunez (10.1016/j.neuroimage.2015.08.032_bb0265) 2006 Turovets (10.1016/j.neuroimage.2015.08.032_bb0330) 2007; 14 Dannhauer (10.1016/j.neuroimage.2015.08.032_bb0095) 2011; 32 Lanfer (10.1016/j.neuroimage.2015.08.032_bb0205) 2012; 62 Cao (10.1016/j.neuroimage.2015.08.032_bb0075) 2012 Delorme (10.1016/j.neuroimage.2015.08.032_bb0105) 2012 Freeman (10.1016/j.neuroimage.2015.08.032_bb0125) 2003; 13 Oostendorp (10.1016/j.neuroimage.2015.08.032_bb0275) 2000; 47 Akalin Acar (10.1016/j.neuroimage.2015.08.032_bb0005) 2010; 190 Huang (10.1016/j.neuroimage.2015.08.032_bb0175) 2006; 31 Goncalves (10.1016/j.neuroimage.2015.08.032_bb0150) 2003; 50 Anderson (10.1016/j.neuroimage.2015.08.032_bb0035) 1882; 74 Chakkalakal (10.1016/j.neuroimage.2015.08.032_bb0080) 1980; 27 Deco (10.1016/j.neuroimage.2015.08.032_bb0100) 2008; 4 Meijs (10.1016/j.neuroimage.2015.08.032_bb0250) 1989; 36 Palmer (10.1016/j.neuroimage.2015.08.032_bb0280) 2006 Chauveau (10.1016/j.neuroimage.2015.08.032_bb0085) 2004; 21 Baillet (10.1016/j.neuroimage.2015.08.032_bb0055) 2001; 18 Ferree (10.1016/j.neuroimage.2015.08.032_bb0115) 2000; 47 Akalin Acar (10.1016/j.neuroimage.2015.08.032_bb0020) 2011 Dale (10.1016/j.neuroimage.2015.08.032_bb0090) 1999; 9 Marin (10.1016/j.neuroimage.2015.08.032_bb0240) 1998; 6 Lew (10.1016/j.neuroimage.2015.08.032_bb0215) 2009; 30 Dogdas (10.1016/j.neuroimage.2015.08.032_bb0110) 2005; 26 Ramon (10.1016/j.neuroimage.2015.08.032_bb0305) 2006; 5 Vallaghe (10.1016/j.neuroimage.2015.08.032_bb0340) 2007 Gao (10.1016/j.neuroimage.2015.08.032_bb0140) 2005; 50 Makeig (10.1016/j.neuroimage.2015.08.032_bb0230) 2002; 295 Huiskamp (10.1016/j.neuroimage.2015.08.032_bb0190) 1999; 46 Gutierrez (10.1016/j.neuroimage.2015.08.032_bb0160) 2004; 51 Wipf (10.1016/j.neuroimage.2015.08.032_bb0360) 2010; 4 Wolters (10.1016/j.neuroimage.2015.08.032_bb0365) 2002; 5 Akalin-Acar (10.1016/j.neuroimage.2015.08.032_bb0025) 2004; 49 Mosher (10.1016/j.neuroimage.2015.08.032_bb0260) 1999; 16 Friston (10.1016/j.neuroimage.2015.08.032_bb0130) 2008; 39 Lynnerup (10.1016/j.neuroimage.2015.08.032_bb0220) 2001; 117 Fu (10.1016/j.neuroimage.2015.08.032_bb0135) 2014; 257 Makeig (10.1016/j.neuroimage.2015.08.032_bb0235) 2004; 8 Akhtari (10.1016/j.neuroimage.2015.08.032_bb0030) 2000; 13 Ramirez (10.1016/j.neuroimage.2015.08.032_bb0300) 2006 Lai (10.1016/j.neuroimage.2015.08.032_bb0200) 2005; 116 Akalin Acar (10.1016/j.neuroimage.2015.08.032_bb0010) 2013; 26 Huiskamp (10.1016/j.neuroimage.2015.08.032_bb0185) 2008; 10 Ulker Karbeyaz (10.1016/j.neuroimage.2015.08.032_bb0335) 2003; 22 Law (10.1016/j.neuroimage.2015.08.032_bb0210) 1993; 6 Ataseven (10.1016/j.neuroimage.2015.08.032_bb0040) 2008; 46 Palmer (10.1016/j.neuroimage.2015.08.032_bb0285) 2007 McLoughlin (10.1016/j.neuroimage.2015.08.032_bb0245) 2014; 75 Hwang (10.1016/j.neuroimage.2015.08.032_bb0195) 1999; 10 Studholme (10.1016/j.neuroimage.2015.08.032_bb0320) 1996; 1 Goncalves (10.1016/j.neuroimage.2015.08.032_bb0155) 2003; 50 Vanrumste (10.1016/j.neuroimage.2015.08.032_bb0345) 2000; 38 Gençer (10.1016/j.neuroimage.2015.08.032_bb0145) 2004; 49 Rush (10.1016/j.neuroimage.2015.08.032_bb0310) 1968; 47 Wipf (10.1016/j.neuroimage.2015.08.032_bb0355) 2009; 44 Baillet (10.1016/j.neuroimage.2015.08.032_bb0045) 1997; 44 Tang (10.1016/j.neuroimage.2015.08.032_bb0325) 2008; 55 Pasqual-Marqui (10.1016/j.neuroimage.2015.08.032_bb0295) 2002; 24 Sadleir (10.1016/j.neuroimage.2015.08.032_bb0315) 2007; 35 Bashar (10.1016/j.neuroimage.2015.08.032_bb0060) 2010 Montes-Restrepo (10.1016/j.neuroimage.2015.08.032_bb0255) 2014; 27 Wendel (10.1016/j.neuroimage.2015.08.032_bb0350) 2010; 2010 Baillet (10.1016/j.neuroimage.2015.08.032_bb0050) 1999; 46 Zhang (10.1016/j.neuroimage.2015.08.032_bb0370) 2006; 89 Fischl (10.1016/j.neuroimage.2015.08.032_bb0120) 2012; 62 Pasqual-Marqui (10.1016/j.neuroimage.2015.08.032_bb0290) 1999; 1 Hoekema (10.1016/j.neuroimage.2015.08.032_bb0170) 2003; 16 Hämäläinen (10.1016/j.neuroimage.2015.08.032_bb0165) 1994; 32 |
References_xml | – volume: 75 start-page: 238 year: 2014 end-page: 247 ident: bb0245 article-title: Genetic overlap between evoked frontocentral theta-band phase variability, reaction time variability, and attention-deficit/hyperactivity disorder symptoms in a twin study publication-title: Biol. Psychiatry – start-page: 1036 year: 2007 end-page: 1039 ident: bb0340 article-title: In vivo conductivity estimation using somatosensory evoked potentials and cortical constraint on the source publication-title: ISBI – volume: 89 year: 2006 ident: bb0370 article-title: Estimation of in vivo brain-to-skull conductivity ratio in humans publication-title: Appl. Phys. Lett. – volume: 24 start-page: 5216 year: 2004 end-page: 5229 ident: bb0070 article-title: Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures publication-title: J. Neurosci. – start-page: 23 year: 2010 end-page: 27 ident: bb0060 article-title: Effects of the local skull and spongiosum conductivities on realistic head modeling publication-title: IEEE/ICME Int. Conf. on Complex Med. Eng. – year: 2009 ident: bb0015 article-title: Patch-Based Cortical Source Localization in Epilepsy publication-title: Proc. of IEEE EMBC – volume: 25 start-page: 737 year: 2004 end-page: 748 ident: bb0065 article-title: Use of a priori information in estimating tissue resistivities—application to human data in vivo publication-title: Physiol. Meas. – volume: 46 start-page: 1281 year: 1999 end-page: 1287 ident: bb0190 article-title: The need for correct realistic geometry in the inverse EEG problem publication-title: IEEE Trans. Biomed. Eng. – volume: 49 start-page: 701 year: 2004 end-page: 717 ident: bb0145 article-title: Sensitivity of EEG and MEG measurements to tissue conductivity publication-title: Phys. Med. Biol. – volume: 18 start-page: 14 year: 2001 end-page: 30 ident: bb0055 article-title: Electromagnetic brain mapping publication-title: IEEE Signal Process. Mag. – volume: 47 start-page: 717 year: 1968 end-page: 723 ident: bb0310 article-title: Current distribution in the brain from the surface electrodes publication-title: Anesth. Analg. – volume: 21 start-page: 143 year: 1999 end-page: 154 ident: bb0270 article-title: Effects of local skull inhomogeneities on EEG source estimation publication-title: Med. Eng. Phys. – volume: 55 start-page: 2286 year: 2008 end-page: 2292 ident: bb0325 article-title: Correlation between structure and resistivity variations of the live human skull publication-title: IEEE Trans. Biomed. Eng. – volume: 295 start-page: 690 year: 2002 end-page: 694 ident: bb0230 article-title: Dynamic brain sources of visual evoked responses publication-title: Science – year: 2007 ident: bb0285 article-title: Modeling and estimation of dependent subspaces publication-title: Proceedings of the 7th International Conference on Independent Component Analysis and Signal Separation – volume: 5 year: 2006 ident: bb0305 article-title: Influence of head models on eeg simulations and inverse source localizations publication-title: Biomed. Eng. Online – year: 2006 ident: bb0300 article-title: Neuroelectromagnetic Source Imaging Using Multiscale Geodesic Neural Bases and Sparse Bayesian Learning publication-title: Proc. of HBM – volume: 32 start-page: 1383 year: 2011 end-page: 1399 ident: bb0095 article-title: Modeling of the human skull in EEG source analysis publication-title: Hum. Brain Mapp. – volume: 6 start-page: 99 year: 1993 end-page: 109 ident: bb0210 article-title: Thickness and resistivity variations over the upper surface of the human skull publication-title: Brain Topogr. – volume: 13 start-page: 29 year: 2000 end-page: 42 ident: bb0030 article-title: Conductivities of three-layer human skull publication-title: Brain Topogr. – volume: 26 start-page: 378 year: 2013 end-page: 396 ident: bb0010 article-title: Effects of forward model errors on EEG source localization publication-title: Brain Topogr. – volume: 74 start-page: 270 year: 1882 end-page: 280 ident: bb0035 article-title: Observation on the thickness of human skull publication-title: Dublin J. Med. Sci. – volume: 50 start-page: 1124 year: 2003 end-page: 1128 ident: bb0155 article-title: In vivo measurement of the brain and skull resistivities using an EIT-based method and the combined analysis of SEF/SEP data publication-title: IEEE Trans. Biomed. Eng. – volume: 46 start-page: 671 year: 2008 end-page: 679 ident: bb0040 article-title: Parallel implementation of the accelerated BEM approach for EMSI of the human brain publication-title: Med. Biol. Eng. Comput. – volume: 39 start-page: 1104 year: 2008 end-page: 1120 ident: bb0130 article-title: Multiple sparse priors for the M/EEG inverse problem publication-title: Neuroimage – volume: 116 start-page: 456 year: 2005 end-page: 465 ident: bb0200 article-title: Estimation of in vivo human brain-to-skull conductivity ratio from simultaneous extra- and intra-cranial electrical potential recordings publication-title: Clin. Neurophysiol. – volume: 10 year: 1999 ident: bb0195 article-title: The thickness of the skull in Korean adults publication-title: J. Craniofac. Surg. – volume: 26 start-page: 273 year: 2005 end-page: 285 ident: bb0110 article-title: Segmentation of skull and scalp in 3-d human MRI using mathematical morphology publication-title: Hum. Brain Mapp. – volume: 21 start-page: 86 year: 2004 end-page: 97 ident: bb0085 article-title: Effects of skull thickness, anisotropy, and inhomogeneity on forward EEG/ERP computations using a spherical three-dimensional resistor mesh model publication-title: Hum. Brain Mapp. – volume: 50 start-page: 2675 year: 2005 end-page: 2687 ident: bb0140 article-title: Estimation of electrical conductivity distribution within the human head from magnetic flux density measurement publication-title: Phys. Med. Biol. – volume: 9 start-page: 179 year: 1999 end-page: 194 ident: bb0090 article-title: Cortical surface-based analysis: 1. segmentation and surface reconstruction publication-title: Neuroimage – volume: 1 start-page: 163 year: 1996 end-page: 175 ident: bb0320 article-title: Automated 3-D registration of MR and CT images of the head publication-title: Med. Image Anal. – volume: 31 start-page: 1025 year: 2006 end-page: 1037 ident: bb0175 article-title: Vector-based spatial–temporal minimum l1-norm solution for MEG publication-title: Neuroimage – volume: 27 start-page: 95 year: 1980 end-page: 100 ident: bb0080 article-title: Dielectric properties of fluid-saturated bone publication-title: IEEE Trans. Biomed. Eng – volume: 44 start-page: 947 year: 2009 end-page: 966 ident: bb0355 article-title: A unified Bayesian framework for MEG/EEG source imaging publication-title: Neuroimage – volume: 37 start-page: 731 year: 2007 end-page: 748 ident: bb0180 article-title: A novel integrated MEG and EEG analysis method for dipolar sources publication-title: Neuroimage – volume: 47 start-page: 1487 year: 2000 end-page: 1492 ident: bb0275 article-title: The conductivity of the human skull: results of in vivo and in vitro measurements publication-title: IEEE Trans. Biomed. Eng. – volume: 2010 year: 2010 ident: bb0350 article-title: The influence of age and skull conductivity on surface and subnormal bipolar EEG leads publication-title: Comput. Intell. Neurosci. – volume: 44 start-page: 374 year: 1997 end-page: 385 ident: bb0045 article-title: A Bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem publication-title: IEEE Trans. Biomed. Eng. – volume: 30 start-page: 2862 year: 2009 end-page: 2878 ident: bb0215 article-title: Improved EEG source analysis using low-resolution conductivity estimation in a four-compartment finite element head model publication-title: Hum. Brain Mapp. – volume: 35 start-page: 1699 year: 2007 end-page: 1712 ident: bb0315 article-title: Modeling skull electrical properties publication-title: Ann. Biomed. Eng. – volume: 4 year: 2008 ident: bb0100 article-title: The dynamic brain: from spiking neurons to neural masses and cortical fields publication-title: PLoS Comput. Biol. – year: 2006 ident: bb0280 article-title: Super-gaussian mixture source model for ICA publication-title: Proceedings of the 6th International Symposium on Independent Component Analysis – volume: 46 start-page: 522 year: 1999 end-page: 534 ident: bb0050 article-title: Electromagnetic brain mapping publication-title: IEEE Trans. Biomed. Eng. – volume: 62 start-page: 774 year: 2012 end-page: 781 ident: bb0120 article-title: Freesurfer publication-title: Neuroimage – volume: 38 start-page: 528 year: 2000 end-page: 534 ident: bb0345 article-title: Dipole location errors in electroencephalogram source analysis due to volume conductor model errors publication-title: Med. Biol. Eng. Comput. – volume: 14 start-page: 3854 year: 2007 end-page: 3857 ident: bb0330 article-title: Anatomically constrained conductivity estimation of the human head tissues in vivo: computational procedure and preliminary experiments publication-title: IFMBE Proceedings – volume: 190 start-page: 258 year: 2010 end-page: 270 ident: bb0005 article-title: Neuroelectromagnetic forward head modeling toolbox publication-title: J. Neurosci. Methods – volume: 13 start-page: 2513 year: 2003 end-page: 2535 ident: bb0125 article-title: A neurobiological theory of meaning in perception part ii: spatial patterns of phase in gamma EEGs from primary sensory cortices reveal the dynamics of mesoscopic wave packets publication-title: Int. J. Bifurcation Chaos – year: 2012 ident: bb0105 article-title: Independent EEG sources are dipolar publication-title: PLoS One – volume: 22 start-page: 627 year: 2003 end-page: 635 ident: bb0335 article-title: Electrical conductivity imaging via contactless measurements: an experimental study publication-title: IEEE Trans. Med. Imaging – volume: 27 start-page: 95 year: 2014 end-page: 111 ident: bb0255 article-title: Influence of skull modeling approaches on EEG source localization publication-title: Brain Topogr. – year: 2012 ident: bb0075 article-title: A physiologically motivated sparse, compact, and smooth (SCS) approach to EEG source localization publication-title: 34th Annual International IEEE EMBS Conference, San Diego – volume: 51 start-page: 2113 year: 2004 end-page: 2122 ident: bb0160 article-title: Estimating brain conductivities and dipole source signals with EEG arrays publication-title: IEEE Trans. Biomed. Eng. – volume: 16 start-page: 225 year: 1999 end-page: 238 ident: bb0260 article-title: EEG source localization and imaging using multiple signal classification approaches publication-title: J. Clin. Neurophysiol. – volume: 24 start-page: 91 year: 2002 end-page: 95 ident: bb0295 article-title: Functional imaging with low resolution brain electromagnetic tomography (LORETA): a review publication-title: Methods Find. Exp. Clin. Pharmacol. – volume: 1 start-page: 75 year: 1999 end-page: 86 ident: bb0290 article-title: Review of methods for solving the EEG inverse problem publication-title: Int. J. Bioelectromagn. – volume: 4 start-page: 317 year: 2010 end-page: 329 ident: bb0360 article-title: Iterative reweighted l1 and l2 methods for finding sparse solutions publication-title: IEEE J. Sel. Top. Sign. Proces. – year: 2011 ident: bb0020 article-title: Electrocortical Source Imaging of Intracranial EEG Data in Epilepsy publication-title: Proc. of IEEE EMBC – volume: 47 start-page: 1584 year: 2000 end-page: 1592 ident: bb0115 article-title: Regional head tissue conductivity estimation for improved EEG analysis publication-title: IEEE Trans. Biomed. Eng. – volume: vol. 8 year: 1996 ident: bb0225 publication-title: Independent component analysis of electroencephalographic data – year: 2006 ident: bb0265 article-title: Electric Fields of the Brain – volume: 10 start-page: 25 year: 2008 end-page: 30 ident: bb0185 article-title: Interindividual variability of skull conductivity: an EEG–MEG analysis publication-title: Int. J. Bioelectromagn. – volume: 16 start-page: 29 year: 2003 end-page: 38 ident: bb0170 article-title: Measurement of the conductivity of skull, temporarily removed during epilepsy surgery publication-title: Brain Topogr. – volume: 257 start-page: 195 year: 2014 end-page: 211 ident: bb0135 article-title: Architecting the finite element method pipeline for the GPU publication-title: J. Comput. Appl. Math. – volume: 117 start-page: 45 year: 2001 end-page: 51 ident: bb0220 article-title: Cranial thickness in relation to age, sex, and general body build in a Danish forensic sample publication-title: Forensic Sci. Int. – volume: 49 start-page: 5011 year: 2004 end-page: 5028 ident: bb0025 article-title: An advanced boundary element method (BEM) implementation for the forward problem of electromagnetic source imaging publication-title: Phys. Med. Biol. – volume: 50 start-page: 754 year: 2003 end-page: 767 ident: bb0150 article-title: In vivo measurement of the brain and skull resistivities using an EIT-based method and realistic models for the head publication-title: IEEE Trans. Biomed. Eng. – volume: 32 start-page: 35 year: 1994 end-page: 42 ident: bb0165 article-title: Interpreting magnetic fields of the brain publication-title: Med. Biol. Eng. Comput. – volume: 36 start-page: 1038 year: 1989 end-page: 1049 ident: bb0250 article-title: On the numerical accuracy of the boundary element method publication-title: IEEE Trans. Biomed. Eng. – volume: 8 start-page: 204 year: 2004 end-page: 210 ident: bb0235 article-title: Mining event-related brain dynamics publication-title: Trends Cogn. Sci. – volume: 6 start-page: 250 year: 1998 end-page: 269 ident: bb0240 article-title: Influence of skull anisotropy for the forward and inverse problem in EEG: simulation studies using fem on realistic head models publication-title: Hum. Brain Mapp. – volume: 5 start-page: 165 year: 2002 end-page: 177 ident: bb0365 article-title: A parallel algebraic multigrid solver for finite element method based source localization in the human brain publication-title: Comput. Vis. Sci. – volume: 62 start-page: 418 year: 2012 end-page: 431 ident: bb0205 article-title: Influences of skull segmentation inaccuracies on EEG source analysis publication-title: Neuroimage – volume: 50 start-page: 2675 year: 2005 ident: 10.1016/j.neuroimage.2015.08.032_bb0140 article-title: Estimation of electrical conductivity distribution within the human head from magnetic flux density measurement publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/50/11/016 – volume: 38 start-page: 528 year: 2000 ident: 10.1016/j.neuroimage.2015.08.032_bb0345 article-title: Dipole location errors in electroencephalogram source analysis due to volume conductor model errors publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02345748 – volume: 55 start-page: 2286 year: 2008 ident: 10.1016/j.neuroimage.2015.08.032_bb0325 article-title: Correlation between structure and resistivity variations of the live human skull publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.923919 – volume: 27 start-page: 95 year: 2014 ident: 10.1016/j.neuroimage.2015.08.032_bb0255 article-title: Influence of skull modeling approaches on EEG source localization publication-title: Brain Topogr. doi: 10.1007/s10548-013-0313-y – volume: 26 start-page: 378 year: 2013 ident: 10.1016/j.neuroimage.2015.08.032_bb0010 article-title: Effects of forward model errors on EEG source localization publication-title: Brain Topogr. doi: 10.1007/s10548-012-0274-6 – volume: 13 start-page: 2513 year: 2003 ident: 10.1016/j.neuroimage.2015.08.032_bb0125 article-title: A neurobiological theory of meaning in perception part ii: spatial patterns of phase in gamma EEGs from primary sensory cortices reveal the dynamics of mesoscopic wave packets publication-title: Int. J. Bifurcation Chaos doi: 10.1142/S0218127403008156 – volume: 35 start-page: 1699 issue: 10 year: 2007 ident: 10.1016/j.neuroimage.2015.08.032_bb0315 article-title: Modeling skull electrical properties publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-007-9343-5 – volume: 44 start-page: 374 year: 1997 ident: 10.1016/j.neuroimage.2015.08.032_bb0045 article-title: A Bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.568913 – year: 2012 ident: 10.1016/j.neuroimage.2015.08.032_bb0105 article-title: Independent EEG sources are dipolar publication-title: PLoS One doi: 10.1371/journal.pone.0030135 – volume: 32 start-page: 35 issue: 1 year: 1994 ident: 10.1016/j.neuroimage.2015.08.032_bb0165 article-title: Interpreting magnetic fields of the brain publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02512476 – volume: 30 start-page: 2862 year: 2009 ident: 10.1016/j.neuroimage.2015.08.032_bb0215 article-title: Improved EEG source analysis using low-resolution conductivity estimation in a four-compartment finite element head model publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20714 – volume: 25 start-page: 737 year: 2004 ident: 10.1016/j.neuroimage.2015.08.032_bb0065 article-title: Use of a priori information in estimating tissue resistivities—application to human data in vivo publication-title: Physiol. Meas. doi: 10.1088/0967-3334/25/3/013 – volume: 16 start-page: 225 year: 1999 ident: 10.1016/j.neuroimage.2015.08.032_bb0260 article-title: EEG source localization and imaging using multiple signal classification approaches publication-title: J. Clin. Neurophysiol. doi: 10.1097/00004691-199905000-00004 – year: 2011 ident: 10.1016/j.neuroimage.2015.08.032_bb0020 article-title: Electrocortical Source Imaging of Intracranial EEG Data in Epilepsy – volume: 16 start-page: 29 issue: 1 year: 2003 ident: 10.1016/j.neuroimage.2015.08.032_bb0170 article-title: Measurement of the conductivity of skull, temporarily removed during epilepsy surgery publication-title: Brain Topogr. doi: 10.1023/A:1025606415858 – volume: 9 start-page: 179 year: 1999 ident: 10.1016/j.neuroimage.2015.08.032_bb0090 article-title: Cortical surface-based analysis: 1. segmentation and surface reconstruction publication-title: Neuroimage doi: 10.1006/nimg.1998.0395 – volume: 4 issue: 8 year: 2008 ident: 10.1016/j.neuroimage.2015.08.032_bb0100 article-title: The dynamic brain: from spiking neurons to neural masses and cortical fields publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000092 – volume: 24 start-page: 5216 issue: 22 year: 2004 ident: 10.1016/j.neuroimage.2015.08.032_bb0070 article-title: Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0540-04.2004 – volume: 49 start-page: 701 year: 2004 ident: 10.1016/j.neuroimage.2015.08.032_bb0145 article-title: Sensitivity of EEG and MEG measurements to tissue conductivity publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/49/5/004 – volume: 5 year: 2006 ident: 10.1016/j.neuroimage.2015.08.032_bb0305 article-title: Influence of head models on eeg simulations and inverse source localizations publication-title: Biomed. Eng. Online – volume: vol. 8 year: 1996 ident: 10.1016/j.neuroimage.2015.08.032_bb0225 – volume: 74 start-page: 270 year: 1882 ident: 10.1016/j.neuroimage.2015.08.032_bb0035 article-title: Observation on the thickness of human skull publication-title: Dublin J. Med. Sci. doi: 10.1007/BF02967147 – volume: 89 year: 2006 ident: 10.1016/j.neuroimage.2015.08.032_bb0370 article-title: Estimation of in vivo brain-to-skull conductivity ratio in humans publication-title: Appl. Phys. Lett. doi: 10.1063/1.2398883 – volume: 117 start-page: 45 year: 2001 ident: 10.1016/j.neuroimage.2015.08.032_bb0220 article-title: Cranial thickness in relation to age, sex, and general body build in a Danish forensic sample publication-title: Forensic Sci. Int. doi: 10.1016/S0379-0738(00)00447-3 – volume: 6 start-page: 250 year: 1998 ident: 10.1016/j.neuroimage.2015.08.032_bb0240 article-title: Influence of skull anisotropy for the forward and inverse problem in EEG: simulation studies using fem on realistic head models publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1998)6:4<250::AID-HBM5>3.0.CO;2-2 – volume: 1 start-page: 163 year: 1996 ident: 10.1016/j.neuroimage.2015.08.032_bb0320 article-title: Automated 3-D registration of MR and CT images of the head publication-title: Med. Image Anal. doi: 10.1016/S1361-8415(96)80011-9 – volume: 13 start-page: 29 year: 2000 ident: 10.1016/j.neuroimage.2015.08.032_bb0030 article-title: Conductivities of three-layer human skull publication-title: Brain Topogr. doi: 10.1023/A:1007882102297 – volume: 62 start-page: 418 year: 2012 ident: 10.1016/j.neuroimage.2015.08.032_bb0205 article-title: Influences of skull segmentation inaccuracies on EEG source analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.05.006 – volume: 27 start-page: 95 year: 1980 ident: 10.1016/j.neuroimage.2015.08.032_bb0080 article-title: Dielectric properties of fluid-saturated bone publication-title: IEEE Trans. Biomed. Eng doi: 10.1109/TBME.1980.326713 – start-page: 1036 year: 2007 ident: 10.1016/j.neuroimage.2015.08.032_bb0340 article-title: In vivo conductivity estimation using somatosensory evoked potentials and cortical constraint on the source – volume: 10 start-page: 25 year: 2008 ident: 10.1016/j.neuroimage.2015.08.032_bb0185 article-title: Interindividual variability of skull conductivity: an EEG–MEG analysis publication-title: Int. J. Bioelectromagn. – volume: 50 start-page: 1124 year: 2003 ident: 10.1016/j.neuroimage.2015.08.032_bb0155 article-title: In vivo measurement of the brain and skull resistivities using an EIT-based method and the combined analysis of SEF/SEP data publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2003.816072 – volume: 22 start-page: 627 year: 2003 ident: 10.1016/j.neuroimage.2015.08.032_bb0335 article-title: Electrical conductivity imaging via contactless measurements: an experimental study publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2003.812271 – volume: 50 start-page: 754 year: 2003 ident: 10.1016/j.neuroimage.2015.08.032_bb0150 article-title: In vivo measurement of the brain and skull resistivities using an EIT-based method and realistic models for the head publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2003.812164 – volume: 36 start-page: 1038 year: 1989 ident: 10.1016/j.neuroimage.2015.08.032_bb0250 article-title: On the numerical accuracy of the boundary element method publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.40805 – volume: 46 start-page: 522 year: 1999 ident: 10.1016/j.neuroimage.2015.08.032_bb0050 article-title: Electromagnetic brain mapping publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.759053 – year: 2012 ident: 10.1016/j.neuroimage.2015.08.032_bb0075 article-title: A physiologically motivated sparse, compact, and smooth (SCS) approach to EEG source localization – volume: 31 start-page: 1025 year: 2006 ident: 10.1016/j.neuroimage.2015.08.032_bb0175 article-title: Vector-based spatial–temporal minimum l1-norm solution for MEG publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.029 – year: 2006 ident: 10.1016/j.neuroimage.2015.08.032_bb0265 – volume: 1 start-page: 75 year: 1999 ident: 10.1016/j.neuroimage.2015.08.032_bb0290 article-title: Review of methods for solving the EEG inverse problem publication-title: Int. J. Bioelectromagn. – volume: 21 start-page: 143 year: 1999 ident: 10.1016/j.neuroimage.2015.08.032_bb0270 article-title: Effects of local skull inhomogeneities on EEG source estimation publication-title: Med. Eng. Phys. doi: 10.1016/S1350-4533(99)00038-7 – volume: 14 start-page: 3854 year: 2007 ident: 10.1016/j.neuroimage.2015.08.032_bb0330 article-title: Anatomically constrained conductivity estimation of the human head tissues in vivo: computational procedure and preliminary experiments – volume: 4 start-page: 317 issue: 2 year: 2010 ident: 10.1016/j.neuroimage.2015.08.032_bb0360 article-title: Iterative reweighted l1 and l2 methods for finding sparse solutions publication-title: IEEE J. Sel. Top. Sign. Proces. doi: 10.1109/JSTSP.2010.2042413 – volume: 21 start-page: 86 year: 2004 ident: 10.1016/j.neuroimage.2015.08.032_bb0085 article-title: Effects of skull thickness, anisotropy, and inhomogeneity on forward EEG/ERP computations using a spherical three-dimensional resistor mesh model publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.10152 – volume: 39 start-page: 1104 issue: 3 year: 2008 ident: 10.1016/j.neuroimage.2015.08.032_bb0130 article-title: Multiple sparse priors for the M/EEG inverse problem publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.09.048 – volume: 51 start-page: 2113 year: 2004 ident: 10.1016/j.neuroimage.2015.08.032_bb0160 article-title: Estimating brain conductivities and dipole source signals with EEG arrays publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.836507 – volume: 2010 year: 2010 ident: 10.1016/j.neuroimage.2015.08.032_bb0350 article-title: The influence of age and skull conductivity on surface and subnormal bipolar EEG leads publication-title: Comput. Intell. Neurosci. doi: 10.1155/2010/397272 – year: 2009 ident: 10.1016/j.neuroimage.2015.08.032_bb0015 article-title: Patch-Based Cortical Source Localization in Epilepsy – volume: 257 start-page: 195 year: 2014 ident: 10.1016/j.neuroimage.2015.08.032_bb0135 article-title: Architecting the finite element method pipeline for the GPU publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2013.09.001 – volume: 10 issue: 5 year: 1999 ident: 10.1016/j.neuroimage.2015.08.032_bb0195 article-title: The thickness of the skull in Korean adults publication-title: J. Craniofac. Surg. doi: 10.1097/00001665-199909000-00004 – volume: 116 start-page: 456 year: 2005 ident: 10.1016/j.neuroimage.2015.08.032_bb0200 article-title: Estimation of in vivo human brain-to-skull conductivity ratio from simultaneous extra- and intra-cranial electrical potential recordings publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2004.08.017 – volume: 44 start-page: 947 year: 2009 ident: 10.1016/j.neuroimage.2015.08.032_bb0355 article-title: A unified Bayesian framework for MEG/EEG source imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.02.059 – volume: 49 start-page: 5011 year: 2004 ident: 10.1016/j.neuroimage.2015.08.032_bb0025 article-title: An advanced boundary element method (BEM) implementation for the forward problem of electromagnetic source imaging publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/49/21/012 – start-page: 23 year: 2010 ident: 10.1016/j.neuroimage.2015.08.032_bb0060 article-title: Effects of the local skull and spongiosum conductivities on realistic head modeling – volume: 37 start-page: 731 year: 2007 ident: 10.1016/j.neuroimage.2015.08.032_bb0180 article-title: A novel integrated MEG and EEG analysis method for dipolar sources publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.06.002 – volume: 47 start-page: 1584 year: 2000 ident: 10.1016/j.neuroimage.2015.08.032_bb0115 article-title: Regional head tissue conductivity estimation for improved EEG analysis publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.887939 – year: 2007 ident: 10.1016/j.neuroimage.2015.08.032_bb0285 article-title: Modeling and estimation of dependent subspaces – volume: 295 start-page: 690 year: 2002 ident: 10.1016/j.neuroimage.2015.08.032_bb0230 article-title: Dynamic brain sources of visual evoked responses publication-title: Science doi: 10.1126/science.1066168 – volume: 47 start-page: 717 year: 1968 ident: 10.1016/j.neuroimage.2015.08.032_bb0310 article-title: Current distribution in the brain from the surface electrodes publication-title: Anesth. Analg. doi: 10.1213/00000539-196811000-00016 – volume: 6 start-page: 99 year: 1993 ident: 10.1016/j.neuroimage.2015.08.032_bb0210 article-title: Thickness and resistivity variations over the upper surface of the human skull publication-title: Brain Topogr. doi: 10.1007/BF01191074 – volume: 18 start-page: 14 year: 2001 ident: 10.1016/j.neuroimage.2015.08.032_bb0055 article-title: Electromagnetic brain mapping publication-title: IEEE Signal Process. Mag. doi: 10.1109/79.962275 – volume: 47 start-page: 1487 year: 2000 ident: 10.1016/j.neuroimage.2015.08.032_bb0275 article-title: The conductivity of the human skull: results of in vivo and in vitro measurements publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2000.880100 – volume: 24 start-page: 91 year: 2002 ident: 10.1016/j.neuroimage.2015.08.032_bb0295 article-title: Functional imaging with low resolution brain electromagnetic tomography (LORETA): a review publication-title: Methods Find. Exp. Clin. Pharmacol. – volume: 190 start-page: 258 year: 2010 ident: 10.1016/j.neuroimage.2015.08.032_bb0005 article-title: Neuroelectromagnetic forward head modeling toolbox publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2010.04.031 – volume: 5 start-page: 165 year: 2002 ident: 10.1016/j.neuroimage.2015.08.032_bb0365 article-title: A parallel algebraic multigrid solver for finite element method based source localization in the human brain publication-title: Comput. Vis. Sci. doi: 10.1007/s00791-002-0098-0 – year: 2006 ident: 10.1016/j.neuroimage.2015.08.032_bb0300 article-title: Neuroelectromagnetic Source Imaging Using Multiscale Geodesic Neural Bases and Sparse Bayesian Learning – volume: 46 start-page: 671 year: 2008 ident: 10.1016/j.neuroimage.2015.08.032_bb0040 article-title: Parallel implementation of the accelerated BEM approach for EMSI of the human brain publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-008-0316-0 – volume: 75 start-page: 238 year: 2014 ident: 10.1016/j.neuroimage.2015.08.032_bb0245 article-title: Genetic overlap between evoked frontocentral theta-band phase variability, reaction time variability, and attention-deficit/hyperactivity disorder symptoms in a twin study publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2013.07.020 – volume: 8 start-page: 204 issue: 5 year: 2004 ident: 10.1016/j.neuroimage.2015.08.032_bb0235 article-title: Mining event-related brain dynamics publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2004.03.008 – year: 2006 ident: 10.1016/j.neuroimage.2015.08.032_bb0280 article-title: Super-gaussian mixture source model for ICA – volume: 32 start-page: 1383 year: 2011 ident: 10.1016/j.neuroimage.2015.08.032_bb0095 article-title: Modeling of the human skull in EEG source analysis publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.21114 – volume: 26 start-page: 273 year: 2005 ident: 10.1016/j.neuroimage.2015.08.032_bb0110 article-title: Segmentation of skull and scalp in 3-d human MRI using mathematical morphology publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20159 – volume: 46 start-page: 1281 year: 1999 ident: 10.1016/j.neuroimage.2015.08.032_bb0190 article-title: The need for correct realistic geometry in the inverse EEG problem publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.797987 – volume: 62 start-page: 774 year: 2012 ident: 10.1016/j.neuroimage.2015.08.032_bb0120 article-title: Freesurfer publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.021 |
SSID | ssj0009148 |
Score | 2.4444904 |
Snippet | Accurate electroencephalographic (EEG) source localization requires an electrical head model incorporating accurate geometries and conductivity values for the... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 168 |
SubjectTerms | Adult Algorithms Cerebral Cortex - physiology Conductivity Data Interpretation, Statistical EEG Electric Conductivity Electrodes Electroencephalography - methods FEM Finite Element Method Four-layer realistic head modeling Humans Image Processing, Computer-Assisted Localization Male Models, Neurological Scalp - physiology Sensitivity of EEG to skull conductivity Skull - physiology Skull conductivity estimation Source localization Tomography Young Adult |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4-QLyIb9cXEbwWt03SbvAgIquLoBcV9haSpsEVra_1_zuTpF0fKHsrNAPtZDL5knz5hpBDiJvMsW6ZZJpXCSp6QR5EilWZM2PLsjDOs3yv88EdvxyKYdxwe4-0yiYn-kRtn0vcIz9KCyYwPrk8eXlNsGoUnq7GEhqzZN5Ll0E8F8NiIrqb8nAVTsAXQIPI5An8Lq8XOXqCUYsEL-GFPFn21_T0G37-ZFF-mZbOl8lSxJP0NATACpmp6lWycBVPzNfI4GaEnEFdV7DEp5B5LR17X1NYCKPWqy8eQXVtab9_QcNePsUZDnuMogZHuNy4Tu7O-7dngyRWT0hKWCSME-acS7XLSmMBU2jJ4Ula7bQTrmt1muVCGi24rZzu9biGvpQ9ziDppFYagC0bZK5-rqstQh0somzqTGqZ5NoKmTvjuLOFySXPueyQonGaKqO0OFa4eFQNh-xBTdyt0N0Ki1-yrEPS1vIlyGtMYSObflHN9VFIeArmgClsj1vbCDECdJjSercJAxWH-ruaBGaHHLSvYZDiyUvoXd9GAhjM2X9tBCp9AGDqkM0QWa1LspxhpTABjv4Wc20DFAn__qYe3XuxcKx1X_S62_9_-g5ZhP-Me0u7ZG789lHtAdoam30_pD4BCJwtEg priority: 102 providerName: ProQuest |
Title | Simultaneous head tissue conductivity and EEG source location estimation |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811915007442 https://dx.doi.org/10.1016/j.neuroimage.2015.08.032 https://www.ncbi.nlm.nih.gov/pubmed/26302675 https://www.proquest.com/docview/1735307049 https://www.proquest.com/docview/1735906363 https://www.proquest.com/docview/1751215266 https://pubmed.ncbi.nlm.nih.gov/PMC4651780 |
Volume | 124 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZGJyFepnHvGJWReA2t40tq8bRVHeVWTRuT-mbZcawFQTZB98pv55zYySgIVImXXH2k5Phck-PvEPIS5CYPfFJmuRVVhoheYAexxKpU3PmyLFxoq3yXanEh3q3kaofMurUwWFaZbH-06a21TlfGiZvj67oen0NkAO4G8g2JflCAHd7NuVZyQHaP3r5fLG-xd5mIK-IkPAgQpIKeWObVwkbWX0F5sc5LtniePP-bl_ozCv29mPIX73SyT_ZSWEmP4pPfJztV84Dc_Zh-nD8ki_MaSwdtU0GmT8EAe7puWU4hH0bI17aHBLWNp_P5Gxo_6VN0dDhxFKE44hrHR-TiZP5ptshSE4WshFxhnfEQArMhL52H0MJqAUfa22CDDBNvWa6kdlYKXwU7nQoLU6qngoPtYV47iF4ek0Fz1VRPCQ2QS3kWHPNcC-ulVsEFEXzhlBZK6CEpOqaZMiGMY6OLL6YrJftsbtltkN0Ge2DyfEhYT3kdUTa2oNHdvJhuFSnYPQOuYAva1z3thrRtSX3YiYFJGv_dsIJLtJ_Ihhf9bdBV_AETZ7cdoyEmVPxfYyQCfkDcNCRPomT1LMkVx4ZhEhi9IXP9AMQK37zT1JctZji2vC-mk4P_evFn5B6cpS9Qh2Sw_nZTPYeYbO1G5M6rHwy2xaoYgf7Nzj6cjpIewv54vjw9-wkZfj7h |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NnQS8THxTGMNI8BhRxx-phRAC1tGxrUKwSXszThxrRZAO2gnxT_E3chcnKQMx9WVvkeKT4vP5d-f47ncAT9Bu0iAGRZI6WSbE6IU4SClWhRa5L4osD3WW70SPj-S7Y3W8Br_aWhhKq2wxsQZqPyvoH_kznglF9inNy9NvCXWNotvVtoVGNIu98ucPPLLNX-xu4_o-TdOd0eGbcdJ0FUgKDJ4XiQghcBfSIvfoa52R-GS8Cy6oMPCOp1qZ3Cnpy-CGQ-lwjmYoBW5G7k1uiHwJIX9dUkVrD9ZfjybvPyxpfrmMxXcK58y5aXKHYkZZzVA5_Yo4QSllqqYOFen_HOK_Ae_feZt_OMKd67DRRLDsVTS5G7BWVjfhykFzR38Lxh-nlKXoqnJ2NmeI9Z4t6tVlePQmdtm6XQVzlWej0VsWbw8Y-VSyEUasH7Gc8jYcXYpm70CvmlXlPWABj22eh5x7YaTzyuiQBxl8lmsjtTR9yFql2aIhM6eeGl9sm7X22S7VbUndltptirQPvJM8jYQeK8iYdl1sW7CKEGvR66wg-7yTbYKaGKysKL3ZmoFtwGVul1uhD4-71wgLdNcTV7ceYzD81OKiMYq4RTBE68PdaFmdSlItqDeZQkWfs7luANGSn39TTU9qenKpFc-Gg_sXf_ojuDo-PNi3-7uTvQdwDefc_NnahN7i-1n5EGO9Rb7VbDAGny57T_8Gh6RuAQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFA6lQvFFvLtaNYI-Dt1cZ4OIiN11a7UIWti3mEwmuKKz1d0i_jV_neckM7NWsexL3wYmByYn55bJl-8Q8hjshkcxrAruZF0goxfEQYRYVVr4UFWljwnle6Snx_L1TM22yK_uLgzCKruYmAJ1WFT4j3yPlUKhfUqzF1tYxLv9yfOTbwV2kMKT1q6dRjaRw_rnD9i-LZ8d7MNaP-F8Mv7wclq0HQaKCgrpVSFijMxFXvkAedcZCU8muOiiisPgGNfKeKdkqKMbjaSD-ZqRFOCYLBhvkIgJwv8l-LQhbvzKWbkm_GUyX8NTMHvGTIsiytiyxFU5_woRA8FlKpGICv6_1Phv6fs3gvOPlDi5Sq60tSx9kY3vGtmqm-tk5217Wn-DTN_PEa_omnpxuqQQ9QNdpXWmsAlHntnUuIK6JtDx-BXN5wgUsytaC0X-j3yx8iY5vhC93iLbzaKp7xAaYQMXWPQsCCNdUEZHH2UMpddGamkGpOyUZquW1hy7a3yxHX7ts12r26K6LTbeFHxAWC95kqk9NpAx3brY7uoqBFsL-WcD2ae9bFve5LJlQ-ndzgxsG2aWdu0UA_Kofw0BAk998uqmMQYKUS3OG6OQZQSKtQG5nS2rVwnXAruUKVD0GZvrByBB-dk3zfxTIiqXWrFyNLx7_qc_JDvgyfbNwdHhPXIZptz-4tol26vvp_V9KPpW_kHyLko-XrQ7_wb6j3DI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+head+tissue+conductivity+and+EEG+source+location+estimation&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Akalin+Acar%2C+Zeynep&rft.au=Acar%2C+Can+E&rft.au=Makeig%2C+Scott&rft.date=2016-01-01&rft.issn=1095-9572&rft.eissn=1095-9572&rft.volume=124&rft.issue=Pt+A&rft.spage=168&rft_id=info:doi/10.1016%2Fj.neuroimage.2015.08.032&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |