Systematic identification of type I and type II interferon-induced antiviral factors
Type I and type II interferons (IFNs) are cytokines that establish the cellular antiviral state through the induction of IFN-stimulated genes (ISGs). We sought to understand the basis of the antiviral activity induced by type I and II IFNs in relation to the functions of their ISGs. Based on gene ex...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 109; no. 11; pp. 4239 - 4244 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
13.03.2012
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Type I and type II interferons (IFNs) are cytokines that establish the cellular antiviral state through the induction of IFN-stimulated genes (ISGs). We sought to understand the basis of the antiviral activity induced by type I and II IFNs in relation to the functions of their ISGs. Based on gene expression studies, we systematically identified antiviral ISGs by performing blinded, functional screens on 288 type I and type II ISGs. We assessed and validated the antiviral activity of these ISGs against an RNA virus, vesicular stomatitis virus (VSV), and a DNA virus, murine gammaherpes virus (MHV-68). Overall, we identified 34 ISGs that elicited an antiviral effect on the replication of either one or both viruses. Fourteen ISGs have uncharacterized antiviral functions. We further defined ISGs that affect critical life-cycle processes in expression of VSV protein and MHV-68 immediate-early genes. Two previously undescribed antiviral ISGs, TAP1 and BMP2, were further validated. TAP1-deficient fibroblasts were more susceptible to VSV infection but less so to MHV-68 infection. On the other hand, exogenous BMP2 inhibits MHV-68 lytic growth but did not affect VSV growth. These results delineate common and distinct sets of type I and type II IFN-induced genes as well as identify unique ISGs that have either broad or specific antiviral effects on these viruses. |
---|---|
AbstractList | Type I and type II interferons (IFNs) are cytokines that establish the cellular antiviral state through the induction of IFN-stimulated genes (ISGs). We sought to understand the basis of the antiviral activity induced by type I and II IFNs in relation to the functions of their ISGs. Based on gene expression studies, we systematically identified antiviral ISGs by performing blinded, functional screens on 288 type I and type II ISGs. We assessed and validated the antiviral activity of these ISGs against an RNA virus, vesicular stomatitis virus (VSV), and a DNA virus, murine gammaherpes virus (MHV-68). Overall, we identified 34 ISGs that elicited an antiviral effect on the replication of either one or both viruses. Fourteen ISGs have uncharacterized antiviral functions. We further defined ISGs that affect critical life-cycle processes in expression of VSV protein and MHV-68 immediate-early genes. Two previously undescribed antiviral ISGs, TAP1 and BMP2, were further validated. TAP1-deficient fibroblasts were more susceptible to VSV infection but less so to MHV-68 infection. On the other hand, exogenous BMP2 inhibits MHV-68 lytic growth but did not affect VSV growth. These results delineate common and distinct sets of type I and type II IFN-induced genes as well as identify unique ISGs that have either broad or specific antiviral effects on these viruses. [PUBLICATION ABSTRACT] Type I and type II interferons (IFNs) are cytokines that establish the cellular antiviral state through the induction of IFN-stimulated genes (ISGs). We sought to understand the basis of the antiviral activity induced by type I and II IFNs in relation to the functions of their ISGs. Based on gene expression studies, we systematically identified antiviral ISGs by performing blinded, functional screens on 288 type I and type II ISGs. We assessed and validated the antiviral activity of these ISGs against an RNA virus, vesicular stomatitis virus (VSV), and a DNA virus, murine gammaherpes virus (MHV-68). Overall, we identified 34 ISGs that elicited an antiviral effect on the replication of either one or both viruses. Fourteen ISGs have uncharacterized antiviral functions. We further defined ISGs that affect critical life-cycle processes in expression of VSV protein and MHV-68 immediate-early genes. Two previously undescribed antiviral ISGs, TAP1 and BMP2, were further validated. TAP1-deficient fibroblasts were more susceptible to VSV infection but less so to MHV-68 infection. On the other hand, exogenous BMP2 inhibits MHV-68 lytic growth but did not affect VSV growth. These results delineate common and distinct sets of type I and type II IFN-induced genes as well as identify unique ISGs that have either broad or specific antiviral effects on these viruses. Type I and type II interferons (IFNs) are cytokines that establish the cellular antiviral state through the induction of IFN-stimulated genes (ISGs). We sought to understand the basis of the antiviral activity induced by type I and II IFNs in relation to the functions of their ISGs. Based on gene expression studies, we systematically identified antiviral ISGs by performing blinded, functional screens on 288 type I and type II ISGs. We assessed and validated the antiviral activity of these ISGs against an RNA virus, vesicular stomatitis virus (VSV), and a DNA virus, murine gammaherpes virus (MHV-68). Overall, we identified 34 ISGs that elicited an antiviral effect on the replication of either one or both viruses. Fourteen ISGs have uncharacterized antiviral functions. We further defined ISGs that affect critical life-cycle processes in expression of VSV protein and MHV-68 immediate-early genes. Two previously undescribed antiviral ISGs, TAP1 and BMP2, were further validated. TAP1-deficient fibroblasts were more susceptible to VSV infection but less so to MHV-68 infection. On the other hand, exogenous BMP2 inhibits MHV-68 lytic growth but did not affect VSV growth. These results delineate common and distinct sets of type I and type II IFN-induced genes as well as identify unique ISGs that have either broad or specific antiviral effects on these viruses.Type I and type II interferons (IFNs) are cytokines that establish the cellular antiviral state through the induction of IFN-stimulated genes (ISGs). We sought to understand the basis of the antiviral activity induced by type I and II IFNs in relation to the functions of their ISGs. Based on gene expression studies, we systematically identified antiviral ISGs by performing blinded, functional screens on 288 type I and type II ISGs. We assessed and validated the antiviral activity of these ISGs against an RNA virus, vesicular stomatitis virus (VSV), and a DNA virus, murine gammaherpes virus (MHV-68). Overall, we identified 34 ISGs that elicited an antiviral effect on the replication of either one or both viruses. Fourteen ISGs have uncharacterized antiviral functions. We further defined ISGs that affect critical life-cycle processes in expression of VSV protein and MHV-68 immediate-early genes. Two previously undescribed antiviral ISGs, TAP1 and BMP2, were further validated. TAP1-deficient fibroblasts were more susceptible to VSV infection but less so to MHV-68 infection. On the other hand, exogenous BMP2 inhibits MHV-68 lytic growth but did not affect VSV growth. These results delineate common and distinct sets of type I and type II IFN-induced genes as well as identify unique ISGs that have either broad or specific antiviral effects on these viruses. |
Author | Cheng, Genhong Lu, Sun Liu, Su-Yang Sanchez, David Jesse Aliyari, Roghiyh |
Author_xml | – sequence: 1 givenname: Su-Yang surname: Liu fullname: Liu, Su-Yang – sequence: 2 givenname: David Jesse surname: Sanchez fullname: Sanchez, David Jesse – sequence: 3 givenname: Roghiyh surname: Aliyari fullname: Aliyari, Roghiyh – sequence: 4 givenname: Sun surname: Lu fullname: Lu, Sun – sequence: 5 givenname: Genhong surname: Cheng fullname: Cheng, Genhong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22371602$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkslvEzEUhy1URNPCmRMw4gKXaZ-3sX1BQhVLpEocKGfL4_GAo8QOtqdS_ns8JKTQQ7l40fve_jtDJyEGh9BzDBcYBL3cBpMvMMZMSYxBPUKLeuK2YwpO0AKAiFYywk7RWc4rAFBcwhN0SggVuAOyQDdfd7m4jSneNn5wofjR2_qLoYljU3Zb1ywbE4bDc9n4UFwaXYqh9WGYrBuqufhbn8y6GY0tMeWn6PFo1tk9O9zn6NvHDzdXn9vrL5-WV--vW8uVKC11vHfCytER7hjheBwU5r2gnBMqjRqVASUG1lFlOmd6KmEQUioGdBhE39Fz9G4fdzv1GzfYWn6tQm-T35i009F4_a8l-B_6e7zVlELXqTnAm0OAFH9OLhe98dm69doEF6esFZFUcIlJJd8-SGJOFeO8U_L_KGCGgTNCK_r6HrqKUwp1ZnNqoAqLGXr5d5fH9v4ssQKXe8CmmHNy4xHBoGeZ6Fkm-k4m1YPf87C-_N56HZNfP-D36lDKbLjLoiqka0Mz8WJPrHJVwhFhmIPApKO_ABb41KU |
CitedBy_id | crossref_primary_10_1016_j_immuni_2012_11_004 crossref_primary_10_1016_j_immuni_2012_11_005 crossref_primary_10_1016_j_ebiom_2021_103642 crossref_primary_10_3389_fmicb_2022_1007295 crossref_primary_10_3389_fimmu_2023_1279245 crossref_primary_10_1007_s13365_017_0583_3 crossref_primary_10_1099_jgv_0_001697 crossref_primary_10_1128_mbio_02998_23 crossref_primary_10_1371_journal_ppat_1007614 crossref_primary_10_1177_1753425918803674 crossref_primary_10_1016_j_celrep_2019_11_041 crossref_primary_10_3390_v7072794 crossref_primary_10_3389_fimmu_2021_712021 crossref_primary_10_1038_s41419_018_0906_1 crossref_primary_10_3389_fimmu_2020_02030 crossref_primary_10_1371_journal_ppat_1005311 crossref_primary_10_1038_nature12862 crossref_primary_10_3389_fnins_2020_577744 crossref_primary_10_4049_jimmunol_2100664 crossref_primary_10_1038_ncomms8090 crossref_primary_10_1128_mbio_01598_24 crossref_primary_10_3389_fimmu_2018_02151 crossref_primary_10_1016_j_cytogfr_2018_02_006 crossref_primary_10_1093_intimm_dxt050 crossref_primary_10_1016_j_coviro_2022_101202 crossref_primary_10_3389_fcell_2023_1084068 crossref_primary_10_4049_immunohorizons_2200025 crossref_primary_10_1128_JVI_01444_16 crossref_primary_10_1186_s13059_020_02050_y crossref_primary_10_4049_jimmunol_1202920 crossref_primary_10_1016_j_antiviral_2019_104703 crossref_primary_10_1002_smll_201906206 crossref_primary_10_1016_j_vetmic_2023_109706 crossref_primary_10_1038_s41564_018_0301_9 crossref_primary_10_1016_j_omto_2020_06_017 crossref_primary_10_1038_s41467_020_16768_7 crossref_primary_10_1002_eji_202451651 crossref_primary_10_1038_s41590_020_0712_7 crossref_primary_10_3390_ph17040465 crossref_primary_10_1038_s41598_022_21393_z crossref_primary_10_1128_JVI_02071_18 crossref_primary_10_3389_fmicb_2021_663534 crossref_primary_10_1016_j_immuni_2022_12_009 crossref_primary_10_3390_cells8091047 crossref_primary_10_3390_v15010060 crossref_primary_10_1007_s12016_015_8520_9 crossref_primary_10_1073_pnas_2406421121 crossref_primary_10_1371_journal_pone_0262051 crossref_primary_10_1007_s13365_014_0262_6 crossref_primary_10_1016_j_rvsc_2013_08_008 crossref_primary_10_1016_j_biochi_2018_04_014 crossref_primary_10_1182_blood_2022017262 crossref_primary_10_1016_j_clim_2024_110324 crossref_primary_10_1038_mto_2016_1 crossref_primary_10_1128_IAI_00385_17 crossref_primary_10_1186_1476_4598_13_132 crossref_primary_10_4049_jimmunol_2000478 crossref_primary_10_1038_mto_2016_5 crossref_primary_10_1371_journal_ppat_1005408 crossref_primary_10_1038_s41591_022_01724_3 crossref_primary_10_3390_v10010036 crossref_primary_10_1016_j_virol_2017_07_014 crossref_primary_10_1016_j_cell_2014_12_033 crossref_primary_10_1016_j_scr_2015_08_003 crossref_primary_10_3390_v9080223 crossref_primary_10_1016_j_ijbiomac_2023_125461 crossref_primary_10_1016_j_medj_2024_09_007 crossref_primary_10_3390_ijms25094677 crossref_primary_10_1038_s42003_025_07790_w crossref_primary_10_3390_pathogens11050538 crossref_primary_10_1038_embor_2013_172 crossref_primary_10_3389_fimmu_2024_1424374 crossref_primary_10_1016_j_dci_2019_103604 crossref_primary_10_1074_jbc_RA119_012439 crossref_primary_10_1128_jvi_00885_23 crossref_primary_10_1007_s12250_019_00085_5 crossref_primary_10_1111_tbed_13364 crossref_primary_10_4049_jimmunol_1500204 crossref_primary_10_1007_s00018_022_04290_6 crossref_primary_10_1080_21623945_2022_2091206 crossref_primary_10_1002_eji_202048777 crossref_primary_10_1016_j_virusres_2021_198650 crossref_primary_10_4049_jimmunol_2300085 crossref_primary_10_1128_JVI_03202_15 crossref_primary_10_1128_mBio_00385_19 crossref_primary_10_1016_j_ccell_2020_11_006 crossref_primary_10_3390_vaccines4030023 crossref_primary_10_1016_j_immuni_2018_12_013 crossref_primary_10_3390_ijms232113656 crossref_primary_10_1016_j_molimm_2017_08_025 crossref_primary_10_1111_joim_12855 crossref_primary_10_1016_j_tim_2013_10_003 crossref_primary_10_1016_j_jmb_2021_167389 crossref_primary_10_1126_sciimmunol_aba6087 crossref_primary_10_1016_j_apsb_2022_02_019 crossref_primary_10_3390_jcm12186079 crossref_primary_10_1093_molbev_msu193 crossref_primary_10_3389_fimmu_2019_00836 crossref_primary_10_4049_jimmunol_1401249 crossref_primary_10_1371_journal_ppat_1006288 crossref_primary_10_1128_JVI_00587_15 crossref_primary_10_1128_spectrum_02198_22 crossref_primary_10_1111_cmi_12340 crossref_primary_10_1128_JVI_01056_18 crossref_primary_10_1038_nrmicro3449 crossref_primary_10_1002_art_40589 crossref_primary_10_3389_fviro_2021_759655 crossref_primary_10_1016_j_imbio_2022_152279 crossref_primary_10_3390_vaccines12070724 crossref_primary_10_1128_JVI_02710_12 crossref_primary_10_1038_s44318_024_00092_7 crossref_primary_10_1097_BOR_0000000000000816 crossref_primary_10_1128_JVI_02208_20 crossref_primary_10_1128_JVI_02282_16 crossref_primary_10_1128_jvi_01260_22 crossref_primary_10_1016_j_mib_2015_06_001 crossref_primary_10_3389_fimmu_2017_00410 crossref_primary_10_1186_s13567_023_01188_4 crossref_primary_10_1186_s13567_019_0638_y crossref_primary_10_1186_s13578_024_01202_y crossref_primary_10_1186_s12865_021_00471_3 crossref_primary_10_1016_j_jgg_2020_11_009 crossref_primary_10_1186_s12977_014_0129_1 crossref_primary_10_1016_j_antiviral_2019_104598 crossref_primary_10_1101_gad_334425_119 crossref_primary_10_1016_j_celrep_2020_108342 crossref_primary_10_1038_s41577_024_01079_5 crossref_primary_10_1155_2024_6631882 crossref_primary_10_1159_000521724 crossref_primary_10_1016_j_imbio_2016_11_003 crossref_primary_10_1371_journal_ppat_1005727 crossref_primary_10_1016_j_celrep_2019_11_021 crossref_primary_10_3390_cells11172685 crossref_primary_10_1016_j_intimp_2020_106941 crossref_primary_10_1038_s41577_021_00626_8 crossref_primary_10_3390_vaccines10122106 crossref_primary_10_7554_eLife_34273 crossref_primary_10_1093_molbev_mst080 crossref_primary_10_1016_j_bbrc_2024_150534 crossref_primary_10_1038_s41568_024_00674_x crossref_primary_10_1016_j_coviro_2021_08_005 crossref_primary_10_1128_JVI_01773_12 crossref_primary_10_1016_j_mucimm_2023_02_006 crossref_primary_10_1038_srep07242 crossref_primary_10_1128_JVI_01866_18 crossref_primary_10_3390_v14122729 crossref_primary_10_1016_j_chom_2013_09_010 crossref_primary_10_18632_oncotarget_20248 crossref_primary_10_1371_journal_pone_0133190 crossref_primary_10_1016_j_jmb_2021_167277 crossref_primary_10_1016_j_virol_2021_01_017 crossref_primary_10_3390_v14020441 crossref_primary_10_3390_v14020442 crossref_primary_10_1016_j_bbagrm_2016_09_005 crossref_primary_10_3390_pathogens4030529 crossref_primary_10_1016_j_biopha_2023_114702 crossref_primary_10_1371_journal_pbio_2006134 crossref_primary_10_1371_journal_pbio_3001352 crossref_primary_10_1016_j_celrep_2022_110914 crossref_primary_10_1016_j_coviro_2013_10_002 crossref_primary_10_1016_j_isci_2021_102078 crossref_primary_10_1093_ecco_jcc_jjad166 crossref_primary_10_1371_journal_ppat_1003663 crossref_primary_10_3390_microorganisms12091840 crossref_primary_10_3390_vaccines11050930 crossref_primary_10_1128_JVI_00827_17 crossref_primary_10_1111_resp_12606 crossref_primary_10_1136_annrheumdis_2016_209454 crossref_primary_10_1038_s42003_023_04841_y crossref_primary_10_1016_j_jaci_2015_05_049 crossref_primary_10_3390_v11060498 crossref_primary_10_1016_j_cytox_2021_100053 crossref_primary_10_1016_j_jaci_2015_01_020 crossref_primary_10_1038_s41541_017_0039_z crossref_primary_10_3390_v12121381 crossref_primary_10_1038_s41580_021_00418_x crossref_primary_10_1042_CS20160259 crossref_primary_10_1016_j_coviro_2022_101271 crossref_primary_10_1016_j_immuni_2024_06_005 crossref_primary_10_1002_adhm_202403493 crossref_primary_10_3390_v15091921 crossref_primary_10_1186_s12964_022_00903_6 crossref_primary_10_1371_journal_ppat_1004863 crossref_primary_10_1146_annurev_virology_100114_055249 crossref_primary_10_1038_s41423_021_00824_3 crossref_primary_10_1186_s13567_020_00793_x crossref_primary_10_1128_JVI_00006_18 crossref_primary_10_1016_j_jaci_2023_06_020 crossref_primary_10_1007_s00705_019_04362_2 crossref_primary_10_1016_j_jaci_2015_08_013 crossref_primary_10_3390_challe9010024 crossref_primary_10_1016_j_celrep_2021_109364 crossref_primary_10_1016_j_immuni_2014_05_007 crossref_primary_10_1177_17534259231225611 crossref_primary_10_1089_vim_2013_0004 crossref_primary_10_1186_s13059_015_0722_1 crossref_primary_10_1080_00218839_2022_2147710 crossref_primary_10_1159_000504888 crossref_primary_10_1016_j_chembiol_2024_05_012 crossref_primary_10_1053_j_gastro_2013_02_026 crossref_primary_10_1093_nar_gkv389 crossref_primary_10_3390_ijms22020523 crossref_primary_10_1126_scisignal_adf8016 crossref_primary_10_1038_nri3755 crossref_primary_10_1146_annurev_virology_100114_055238 crossref_primary_10_1146_annurev_virology_092818_015756 crossref_primary_10_3390_v4102049 crossref_primary_10_1016_j_virusres_2015_06_014 crossref_primary_10_1371_journal_ppat_1005263 crossref_primary_10_1016_j_coviro_2012_10_007 crossref_primary_10_1016_j_jtbi_2022_111293 crossref_primary_10_3390_molecules30020351 crossref_primary_10_1002_art_38628 crossref_primary_10_1038_s41467_018_04379_2 crossref_primary_10_3390_biology11010143 crossref_primary_10_1371_journal_pone_0081953 crossref_primary_10_1080_2162402X_2022_2049486 crossref_primary_10_3389_fimmu_2022_839455 crossref_primary_10_3390_v15081652 crossref_primary_10_1128_mbio_00549_23 crossref_primary_10_1371_journal_pone_0305582 crossref_primary_10_1128_mbio_02100_24 crossref_primary_10_1128_mbio_02107_22 crossref_primary_10_1016_j_it_2024_09_013 crossref_primary_10_3390_v15122406 crossref_primary_10_1038_nri_2017_63 crossref_primary_10_3389_fimmu_2023_1139358 crossref_primary_10_1016_j_virol_2018_07_017 crossref_primary_10_1038_s41435_018_0028_x crossref_primary_10_1126_science_1254790 crossref_primary_10_1016_j_celrep_2022_110549 crossref_primary_10_1371_journal_ppat_1004840 crossref_primary_10_3390_v11111020 crossref_primary_10_1016_j_jbc_2023_102990 crossref_primary_10_1371_journal_ppat_1006102 crossref_primary_10_1016_j_neuron_2020_03_005 crossref_primary_10_1074_jbc_M116_755819 crossref_primary_10_1126_scisignal_aas9332 crossref_primary_10_3389_fmicb_2018_01611 crossref_primary_10_1038_s41467_018_06000_y crossref_primary_10_1002_mco2_390 crossref_primary_10_1128_AAC_00394_19 crossref_primary_10_3389_fimmu_2023_1279439 crossref_primary_10_1093_nar_gku713 crossref_primary_10_4049_jimmunol_1800848 crossref_primary_10_12688_wellcomeopenres_16569_2 crossref_primary_10_1111_jfd_12727 crossref_primary_10_1016_j_virol_2013_05_009 crossref_primary_10_1007_s00430_018_0574_x crossref_primary_10_1073_pnas_2218825120 crossref_primary_10_1128_JVI_00053_18 crossref_primary_10_12688_wellcomeopenres_16569_1 crossref_primary_10_1002_hep_27913 crossref_primary_10_1128_mbio_00677_22 crossref_primary_10_7554_eLife_82244 crossref_primary_10_1016_j_chom_2013_08_015 crossref_primary_10_3389_fimmu_2017_01006 crossref_primary_10_1016_j_chom_2013_08_014 crossref_primary_10_1128_JVI_00859_21 crossref_primary_10_1371_journal_pone_0059701 crossref_primary_10_3389_fmicb_2019_02382 crossref_primary_10_7554_eLife_76804 crossref_primary_10_1038_s41392_020_00311_7 crossref_primary_10_1186_s12864_018_5411_5 crossref_primary_10_1002_dneu_22778 crossref_primary_10_1016_j_rinim_2015_10_001 crossref_primary_10_1016_j_coviro_2015_01_010 crossref_primary_10_1128_JVI_00709_18 crossref_primary_10_1177_17534259211051364 crossref_primary_10_1155_2018_5906819 crossref_primary_10_15252_embr_202356901 crossref_primary_10_3389_fimmu_2019_01088 crossref_primary_10_1128_JVI_01554_20 crossref_primary_10_17352_aaa_000010 crossref_primary_10_1002_jcb_28420 crossref_primary_10_1189_jlb_2A0713_393RR crossref_primary_10_1038_ncomms14605 crossref_primary_10_1371_journal_ppat_1003975 crossref_primary_10_1073_pnas_2302083120 crossref_primary_10_1371_journal_ppat_1005357 crossref_primary_10_3390_v13020179 crossref_primary_10_15252_embr_202153466 crossref_primary_10_1074_jbc_M114_589515 crossref_primary_10_15252_emmm_202216427 crossref_primary_10_15252_embr_201439366 crossref_primary_10_1126_science_abc6027 crossref_primary_10_1128_JVI_03729_14 crossref_primary_10_3390_v13040582 crossref_primary_10_1016_j_antiviral_2014_06_008 crossref_primary_10_18632_aging_202929 crossref_primary_10_3390_ijms23158122 crossref_primary_10_4049_jimmunol_1900912 crossref_primary_10_1016_j_jlr_2021_100165 crossref_primary_10_1371_journal_ppat_1012673 crossref_primary_10_1016_j_cell_2015_12_027 crossref_primary_10_1016_j_ymthe_2022_02_014 crossref_primary_10_1021_acs_jproteome_5b00927 crossref_primary_10_1161_CIRCRESAHA_122_320873 crossref_primary_10_1096_fj_201600356R crossref_primary_10_1016_j_virol_2015_10_034 crossref_primary_10_1128_JVI_01356_15 crossref_primary_10_4049_jimmunol_1402066 crossref_primary_10_1038_s41420_024_02194_x crossref_primary_10_3389_fimmu_2018_00320 crossref_primary_10_1042_BCJ20210181 crossref_primary_10_1128_JCM_00252_20 crossref_primary_10_1016_j_vetmic_2019_03_004 crossref_primary_10_1186_1742_4690_10_30 crossref_primary_10_1128_JVI_00951_19 crossref_primary_10_1038_s41467_024_54512_7 crossref_primary_10_3390_ijms231810716 crossref_primary_10_1128_JVI_00638_14 crossref_primary_10_1128_JVI_03443_13 crossref_primary_10_1016_j_celrep_2017_10_054 crossref_primary_10_1099_jgv_0_000825 crossref_primary_10_3390_ijms241411860 crossref_primary_10_1016_j_virol_2013_04_036 crossref_primary_10_1371_journal_ppat_1010366 crossref_primary_10_1038_ncomms6494 crossref_primary_10_1371_journal_ppat_1007875 crossref_primary_10_1016_j_coviro_2014_03_006 crossref_primary_10_1038_s41467_024_54888_6 crossref_primary_10_1371_journal_ppat_1007756 crossref_primary_10_1111_jcmm_15774 crossref_primary_10_1073_pnas_1216922110 crossref_primary_10_1016_j_chom_2015_06_019 crossref_primary_10_3389_fimmu_2025_1484119 crossref_primary_10_1111_imm_13719 crossref_primary_10_3390_ijms22094668 crossref_primary_10_1186_s40247_014_0011_6 crossref_primary_10_3389_fimmu_2023_1190333 crossref_primary_10_3390_v5030834 crossref_primary_10_1371_journal_ppat_1003395 crossref_primary_10_1038_cmi_2016_67 crossref_primary_10_1038_s41598_020_59976_3 crossref_primary_10_3389_fimmu_2023_1274060 crossref_primary_10_1080_2162402X_2020_1807836 crossref_primary_10_1016_j_immuni_2017_02_012 crossref_primary_10_3389_fimmu_2021_694243 crossref_primary_10_1038_s41467_022_29308_2 crossref_primary_10_1128_JVI_01297_15 crossref_primary_10_1371_journal_pone_0137951 crossref_primary_10_4049_jimmunol_1701117 crossref_primary_10_1089_jir_2015_0008 crossref_primary_10_3389_fcimb_2019_00042 crossref_primary_10_1172_JCI133737 crossref_primary_10_4049_jimmunol_1203510 crossref_primary_10_1016_j_molimm_2024_10_002 crossref_primary_10_1038_s41467_021_27192_w crossref_primary_10_1097_QAI_0000000000001166 crossref_primary_10_1007_s13238_018_0511_1 crossref_primary_10_1016_j_it_2016_06_003 crossref_primary_10_1073_pnas_2107108118 |
Cites_doi | 10.1016/S0952-7915(01)00305-3 10.1093/bioinformatics/19.2.295 10.1016/S0092-8674(88)91307-4 10.1189/jlb.0603252 10.1038/nature03838 10.1016/S0167-4781(02)00462-1 10.1128/jvi.71.5.3916-3921.1997 10.1016/S0092-8674(00)81288-X 10.1016/S1074-7613(04)00047-0 10.1038/nature09907 10.1093/emboj/18.1.179 10.1038/ni.1676 10.1126/science.8009221 10.1128/JVI.78.16.8673-8686.2004 10.4049/jimmunol.175.5.2851 10.1038/nri2314 10.1042/CBI20100470 10.1128/JVI.74.8.3659-3667.2000 10.1073/pnas.87.5.1908 10.1111/j.1600-065X.1995.tb00090.x 10.1016/S1074-7613(00)00077-7 10.1128/JVI.77.15.8532-8540.2003 10.1126/science.288.5475.2357 10.1084/jem.20020890 10.1128/JVI.01152-08 10.1073/pnas.94.26.14764 10.1006/viro.1999.9834 10.1128/mr.51.1.66-87.1987 |
ContentType | Journal Article |
Copyright | copyright © 1993-2008 National Acadamy of Sciences of the United States of America Copyright National Academy of Sciences Mar 13, 2012 |
Copyright_xml | – notice: copyright © 1993-2008 National Acadamy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Mar 13, 2012 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.1114981109 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts AGRICOLA CrossRef MEDLINE - Academic MEDLINE AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 4244 |
ExternalDocumentID | PMC3306696 2610108931 22371602 10_1073_pnas_1114981109 109_11_4239 41507126 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: AI069120 – fundername: NIAID NIH HHS grantid: R01 AI056154 – fundername: NCI NIH HHS grantid: T32 CA009120 – fundername: NCI NIH HHS grantid: 5T32CA009120 – fundername: NIGMS NIH HHS grantid: T32 GM008042 – fundername: NIAID NIH HHS grantid: R01 AI069120 – fundername: NIAID NIH HHS grantid: R01 AI078389 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c597t-3e5be7c8fe25e4251fd915b7355238a9f9a097d4639a6eab380d7889403dd7b63 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:19:36 EDT 2025 Fri Jul 11 09:22:04 EDT 2025 Fri Jul 11 02:35:36 EDT 2025 Fri Jul 11 03:17:13 EDT 2025 Mon Jun 30 08:36:39 EDT 2025 Mon Jul 21 05:56:11 EDT 2025 Tue Jul 01 03:39:13 EDT 2025 Thu Apr 24 23:03:53 EDT 2025 Wed Nov 11 00:29:46 EST 2020 Thu May 29 08:40:45 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c597t-3e5be7c8fe25e4251fd915b7355238a9f9a097d4639a6eab380d7889403dd7b63 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Edited by Owen N. Witte, University of California, Los Angeles, CA, and approved January 24, 2012 (received for review September 21, 2011) Author contributions: S.-Y.L., D.J.S., and G.C. designed research; S.-Y.L. and R.A. performed research; S.L. contributed new reagents/analytic tools; S.-Y.L. and G.C. analyzed data; and S.-Y.L. and D.J.S. wrote the paper. |
OpenAccessLink | https://www.pnas.org/content/pnas/109/11/4239.full.pdf |
PMID | 22371602 |
PQID | 928039173 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmed_primary_22371602 pnas_primary_109_11_4239 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3306696 crossref_citationtrail_10_1073_pnas_1114981109 proquest_journals_928039173 proquest_miscellaneous_928375812 jstor_primary_41507126 proquest_miscellaneous_1539455698 proquest_miscellaneous_1014105423 crossref_primary_10_1073_pnas_1114981109 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-03-13 |
PublicationDateYYYYMMDD | 2012-03-13 |
PublicationDate_xml | – month: 03 year: 2012 text: 2012-03-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2012 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Zarnegar BJ (e_1_3_4_26_2) 2008; 9 Meraz MA (e_1_3_4_6_2) 1996; 84 Takaoka A (e_1_3_4_12_2) 2000; 288 Yamaguchi K (e_1_3_4_23_2) 1999; 18 Flaño E (e_1_3_4_5_2) 2002; 196 Yoneyama M (e_1_3_4_8_2) 2005; 175 Hwang S (e_1_3_4_10_2) 2008; 82 Müller U (e_1_3_4_13_2) 1994; 264 Dutia BM (e_1_3_4_18_2) 1999; 261 Pavlidis P (e_1_3_4_28_2) 2003; 19 Schoggins JW (e_1_3_4_4_2) 2011; 472 Xie ZL (e_1_3_4_7_2) 2011; 35 Takada A (e_1_3_4_27_2) 1997; 94 Negrete OA (e_1_3_4_16_2) 2005; 436 Brown HJ (e_1_3_4_24_2) 2003; 77 Banerjee AK (e_1_3_4_14_2) 1987; 51 Schroder K (e_1_3_4_3_2) 2004; 75 Wu T-T (e_1_3_4_17_2) 2000; 74 Taniguchi T (e_1_3_4_20_2) 2002; 14 Park C (e_1_3_4_11_2) 2000; 13 van den Broek MF (e_1_3_4_1_2) 1995; 148 Miyamoto M (e_1_3_4_9_2) 1988; 54 Scherle PA (e_1_3_4_25_2) 1990; 87 Barr JN (e_1_3_4_15_2) 2002; 1577 Sadler AJ (e_1_3_4_2_2) 2008; 8 Sarawar SR (e_1_3_4_19_2) 1997; 71 Wang X (e_1_3_4_21_2) 2004; 78 Boname JM (e_1_3_4_22_2) 2004; 20 11163195 - Immunity. 2000 Dec;13(6):795-804 9878061 - EMBO J. 1999 Jan 4;18(1):179-87 10497103 - Virology. 1999 Sep 1;261(2):173-9 10875919 - Science. 2000 Jun 30;288(5475):2357-60 12213662 - Biochim Biophys Acta. 2002 Sep 13;1577(2):337-53 10729142 - J Virol. 2000 Apr;74(8):3659-67 15030774 - Immunity. 2004 Mar;20(3):305-17 15280476 - J Virol. 2004 Aug;78(16):8673-86 18997794 - Nat Immunol. 2008 Dec;9(12):1371-8 16116171 - J Immunol. 2005 Sep 1;175(5):2851-8 12438427 - J Exp Med. 2002 Nov 18;196(10):1363-72 9094668 - J Virol. 1997 May;71(5):3916-21 21478870 - Nature. 2011 Apr 28;472(7344):481-5 9405687 - Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14764-9 18575461 - Nat Rev Immunol. 2008 Jul;8(7):559-68 8608597 - Cell. 1996 Feb 9;84(3):431-42 3409321 - Cell. 1988 Sep 9;54(6):903-13 21087213 - Cell Biol Int. 2011 Mar;35(3):187-92 18842717 - J Virol. 2008 Dec;82(24):12498-509 11790540 - Curr Opin Immunol. 2002 Feb;14(1):111-6 2408044 - Proc Natl Acad Sci U S A. 1990 Mar;87(5):1908-12 14525967 - J Leukoc Biol. 2004 Feb;75(2):163-89 12538257 - Bioinformatics. 2003 Jan 22;19(2):295-6 12857922 - J Virol. 2003 Aug;77(15):8532-40 16007075 - Nature. 2005 Jul 21;436(7049):401-5 3550409 - Microbiol Rev. 1987 Mar;51(1):66-87 8825279 - Immunol Rev. 1995 Dec;148:5-18 8009221 - Science. 1994 Jun 24;264(5167):1918-21 |
References_xml | – volume: 14 start-page: 111 year: 2002 ident: e_1_3_4_20_2 article-title: The interferon-α/β system in antiviral responses: A multimodal machinery of gene regulation by the IRF family of transcription factors publication-title: Curr Opin Immunol doi: 10.1016/S0952-7915(01)00305-3 – volume: 19 start-page: 295 year: 2003 ident: e_1_3_4_28_2 article-title: Matrix2png: A utility for visualizing matrix data publication-title: Bioinformatics doi: 10.1093/bioinformatics/19.2.295 – volume: 54 start-page: 903 year: 1988 ident: e_1_3_4_9_2 article-title: Regulated expression of a gene encoding a nuclear factor, IRF-1, that specifically binds to IFN-β gene regulatory elements publication-title: Cell doi: 10.1016/S0092-8674(88)91307-4 – volume: 75 start-page: 163 year: 2004 ident: e_1_3_4_3_2 article-title: Interferon-γ: An overview of signals, mechanisms and functions publication-title: J Leukoc Biol doi: 10.1189/jlb.0603252 – volume: 436 start-page: 401 year: 2005 ident: e_1_3_4_16_2 article-title: EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus publication-title: Nature doi: 10.1038/nature03838 – volume: 1577 start-page: 337 year: 2002 ident: e_1_3_4_15_2 article-title: Transcriptional control of the RNA-dependent RNA polymerase of vesicular stomatitis virus publication-title: Biochim Biophys Acta doi: 10.1016/S0167-4781(02)00462-1 – volume: 71 start-page: 3916 year: 1997 ident: e_1_3_4_19_2 article-title: γ interferon is not essential for recovery from acute infection with murine gammaherpesvirus 68 publication-title: J Virol doi: 10.1128/jvi.71.5.3916-3921.1997 – volume: 84 start-page: 431 year: 1996 ident: e_1_3_4_6_2 article-title: Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway publication-title: Cell doi: 10.1016/S0092-8674(00)81288-X – volume: 20 start-page: 305 year: 2004 ident: e_1_3_4_22_2 article-title: Viral degradation of the MHC class I peptide loading complex publication-title: Immunity doi: 10.1016/S1074-7613(04)00047-0 – volume: 472 start-page: 481 year: 2011 ident: e_1_3_4_4_2 article-title: A diverse range of gene products are effectors of the type I interferon antiviral response publication-title: Nature doi: 10.1038/nature09907 – volume: 18 start-page: 179 year: 1999 ident: e_1_3_4_23_2 article-title: XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1-TAK1 in the BMP signaling pathway publication-title: EMBO J doi: 10.1093/emboj/18.1.179 – volume: 9 start-page: 1371 year: 2008 ident: e_1_3_4_26_2 article-title: Noncanonical NF-κB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK publication-title: Nat Immunol doi: 10.1038/ni.1676 – volume: 264 start-page: 1918 year: 1994 ident: e_1_3_4_13_2 article-title: Functional role of type I and type II interferons in antiviral defense publication-title: Science doi: 10.1126/science.8009221 – volume: 78 start-page: 8673 year: 2004 ident: e_1_3_4_21_2 article-title: Model for the interaction of gammaherpesvirus 68 RING-CH finger protein mK3 with major histocompatibility complex class I and the peptide-loading complex publication-title: J Virol doi: 10.1128/JVI.78.16.8673-8686.2004 – volume: 175 start-page: 2851 year: 2005 ident: e_1_3_4_8_2 article-title: Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity publication-title: J Immunol doi: 10.4049/jimmunol.175.5.2851 – volume: 8 start-page: 559 year: 2008 ident: e_1_3_4_2_2 article-title: Interferon-inducible antiviral effectors publication-title: Nat Rev Immunol doi: 10.1038/nri2314 – volume: 35 start-page: 187 year: 2011 ident: e_1_3_4_7_2 article-title: Co-transfection and tandem transfection of HEK293A cells for overexpression and RNAi experiments publication-title: Cell Biol Int doi: 10.1042/CBI20100470 – volume: 74 start-page: 3659 year: 2000 ident: e_1_3_4_17_2 article-title: Rta of murine gammaherpesvirus 68 reactivates the complete lytic cycle from latency publication-title: J Virol doi: 10.1128/JVI.74.8.3659-3667.2000 – volume: 87 start-page: 1908 year: 1990 ident: e_1_3_4_25_2 article-title: Clonal lymphoid progenitor cell lines expressing the BCR/ABL oncogene retain full differentiative function publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.87.5.1908 – volume: 148 start-page: 5 year: 1995 ident: e_1_3_4_1_2 article-title: Immune defence in mice lacking type I and/or type II interferon receptors publication-title: Immunol Rev doi: 10.1111/j.1600-065X.1995.tb00090.x – volume: 13 start-page: 795 year: 2000 ident: e_1_3_4_11_2 article-title: Immune response in Stat2 knockout mice publication-title: Immunity doi: 10.1016/S1074-7613(00)00077-7 – volume: 77 start-page: 8532 year: 2003 ident: e_1_3_4_24_2 article-title: NF-κB inhibits gammaherpesvirus lytic replication publication-title: J Virol doi: 10.1128/JVI.77.15.8532-8540.2003 – volume: 288 start-page: 2357 year: 2000 ident: e_1_3_4_12_2 article-title: Cross talk between interferon-γ and -α/β signaling components in caveolar membrane domains publication-title: Science doi: 10.1126/science.288.5475.2357 – volume: 196 start-page: 1363 year: 2002 ident: e_1_3_4_5_2 article-title: γ-Herpesvirus latency is preferentially maintained in splenic germinal center and memory B cells publication-title: J Exp Med doi: 10.1084/jem.20020890 – volume: 82 start-page: 12498 year: 2008 ident: e_1_3_4_10_2 article-title: Persistent gammaherpesvirus replication and dynamic interaction with the host in vivo publication-title: J Virol doi: 10.1128/JVI.01152-08 – volume: 94 start-page: 14764 year: 1997 ident: e_1_3_4_27_2 article-title: A system for functional analysis of Ebola virus glycoprotein publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.94.26.14764 – volume: 261 start-page: 173 year: 1999 ident: e_1_3_4_18_2 article-title: Type I interferons and IRF-1 play a critical role in the control of a gammaherpesvirus infection publication-title: Virology doi: 10.1006/viro.1999.9834 – volume: 51 start-page: 66 year: 1987 ident: e_1_3_4_14_2 article-title: Transcription and replication of rhabdoviruses publication-title: Microbiol Rev doi: 10.1128/mr.51.1.66-87.1987 – reference: 16007075 - Nature. 2005 Jul 21;436(7049):401-5 – reference: 18575461 - Nat Rev Immunol. 2008 Jul;8(7):559-68 – reference: 8608597 - Cell. 1996 Feb 9;84(3):431-42 – reference: 9405687 - Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14764-9 – reference: 21087213 - Cell Biol Int. 2011 Mar;35(3):187-92 – reference: 10875919 - Science. 2000 Jun 30;288(5475):2357-60 – reference: 10497103 - Virology. 1999 Sep 1;261(2):173-9 – reference: 21478870 - Nature. 2011 Apr 28;472(7344):481-5 – reference: 11163195 - Immunity. 2000 Dec;13(6):795-804 – reference: 9094668 - J Virol. 1997 May;71(5):3916-21 – reference: 8009221 - Science. 1994 Jun 24;264(5167):1918-21 – reference: 15280476 - J Virol. 2004 Aug;78(16):8673-86 – reference: 12857922 - J Virol. 2003 Aug;77(15):8532-40 – reference: 8825279 - Immunol Rev. 1995 Dec;148:5-18 – reference: 12438427 - J Exp Med. 2002 Nov 18;196(10):1363-72 – reference: 3550409 - Microbiol Rev. 1987 Mar;51(1):66-87 – reference: 18842717 - J Virol. 2008 Dec;82(24):12498-509 – reference: 14525967 - J Leukoc Biol. 2004 Feb;75(2):163-89 – reference: 9878061 - EMBO J. 1999 Jan 4;18(1):179-87 – reference: 12538257 - Bioinformatics. 2003 Jan 22;19(2):295-6 – reference: 18997794 - Nat Immunol. 2008 Dec;9(12):1371-8 – reference: 11790540 - Curr Opin Immunol. 2002 Feb;14(1):111-6 – reference: 16116171 - J Immunol. 2005 Sep 1;175(5):2851-8 – reference: 2408044 - Proc Natl Acad Sci U S A. 1990 Mar;87(5):1908-12 – reference: 10729142 - J Virol. 2000 Apr;74(8):3659-67 – reference: 12213662 - Biochim Biophys Acta. 2002 Sep 13;1577(2):337-53 – reference: 15030774 - Immunity. 2004 Mar;20(3):305-17 – reference: 3409321 - Cell. 1988 Sep 9;54(6):903-13 |
SSID | ssj0009580 |
Score | 2.5497754 |
Snippet | Type I and type II interferons (IFNs) are cytokines that establish the cellular antiviral state through the induction of IFN-stimulated genes (ISGs). We sought... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4239 |
SubjectTerms | Animals Antiviral activity antiviral properties Antiviral state Antivirals ATP-Binding Cassette Sub-Family B Member 2 ATP-Binding Cassette Transporters ATP-Binding Cassette Transporters - metabolism Biological Sciences Bone Marrow Cells Bone Marrow Cells - cytology Bone morphogenetic protein 2 Cytokines cytology Deoxyribonucleic acid DNA DNA Viruses DNA Viruses - drug effects DNA Viruses - immunology drug effects Fibroblasts Fibroblasts - drug effects Fibroblasts - metabolism Fibroblasts - virology Flow Cytometry Gene expression Gene Expression Regulation Gene Expression Regulation - drug effects genes Genetic screening HEK293 Cells Humans Immediate-early proteins immunology Infection Infections Interferon Interferon Type I Interferon Type I - immunology Interferon Type I - pharmacology Interferon-gamma Interferon-gamma - immunology Interferon-gamma - pharmacology Interferons Macrophages Macrophages - drug effects Macrophages - metabolism Macrophages - virology metabolism Mice Mice, Inbred C57BL pharmacology Plaque assay Proteins Replication Ribonucleic acid RNA RNA viruses Vero cells Vesicular stomatitis virus Vesiculovirus Vesiculovirus - drug effects Vesiculovirus - immunology virology Viruses |
Title | Systematic identification of type I and type II interferon-induced antiviral factors |
URI | https://www.jstor.org/stable/41507126 http://www.pnas.org/content/109/11/4239.abstract https://www.ncbi.nlm.nih.gov/pubmed/22371602 https://www.proquest.com/docview/928039173 https://www.proquest.com/docview/1014105423 https://www.proquest.com/docview/1539455698 https://www.proquest.com/docview/928375812 https://pubmed.ncbi.nlm.nih.gov/PMC3306696 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfGuHBBDBgLA2QkDkOVS1I7dnycEKidpmqCThqnyEkcrVKVTv04jL-HP5Tn2HHS0qLBJbKSFyvNe30fzu_9jNCHMpG5EJyREvJbwoq8IFmsOImUTAalKsAF1miLMR9es4ub-Obg4FcHtbReZf38586-kv_RKpwDvZou2X_QrJ8UTsAY9AtH0DAcH6Tj7y0N87RwsB-fAtaLqyOLkKyHo5obYlHqxbwiUIqvzad_eLFTg_OdNTvvdLPVKx_dlg2WYNwsHp63rSjOPyx7pHc1bjc2vpyuLe6H_FAuPpqlHDCzW7tsXePpexeGvdzb3Wx6r2zz-zfDtX3vV6sv3WRVd53CAD4osW2mvm8A4iGzHdN9bd0tZCuEM7thqPfHoewaXtRxr4atsBOqTZPezjAAfsvsXVyppQkJTCZRM-kG4fZWIPTwxPrDvKCpmSBtJ3iEHg-gGKnho8MutXNiG53c72sIpAT9tPUEG7mPhb8aTl0Q2lXfbMN0O3nP5Bl66goWfG6t7wgd6Oo5OmpUjs8cb_nHF2jSmiPeNEc8L7GxQTzCYI5uOMJ_miP25oidOb5E11-_TD4Pidu0g-RQm64I1XGmRZ6UehBrCAhRWcgozgTktZAdKllKFUpRMMiMFdcqo0lYiCSRLKRFITJOj9FhNa_0CcJUchCJFGehZnqgpEhUmRU0YkwXIowC1G9eZ5o7Rnuzscos3aPAAJ35G-4smct-0eNaP16O1ZXTgAfopBZt75dwW2osM0CnjRJT5yWWqTTbv8lI0AC991fBhZvvcqrS8_XSoCwN2Bqm-ItMTCWLYy6TAOE9MtIwWcWQsQfolbUc_5RQBIiIh3BFbNiUFzAs85tXqultzTZPKVQlkr9--Ls7RU9aB_AGHa4Wa_0WUvdV9q7-5_wGUqHsnA |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+identification+of+type+I+and+type+II+interferon-induced+antiviral+factors&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Liu%2C+Su-Yang&rft.au=Sanchez%2C+David+Jesse&rft.au=Aliyari%2C+Roghiyh&rft.au=Lu%2C+Sun&rft.date=2012-03-13&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=109&rft.issue=11&rft.spage=4239&rft.epage=4244&rft_id=info:doi/10.1073%2Fpnas.1114981109&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1114981109 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F11.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F11.cover.gif |