Cover

Loading…
Abstract Sulfonylurea is one of the commonly used anti-diabetic drugs that stimulate insulin secretion from β-cells. Despite their glucose lowering effects in type 2 diabetes mellitus, long-term treatment brought on secondary failure characterized by β-cell exhaustion and apoptosis. ER stress induced by Ca2+ depletion in endoplasmic reticulum (ER) is speculated be one of the causes of secondary failure, but it remains unclear. Glucagon like peptide-1 (GLP-1) has anti-apoptotic effects in β-cells after the induction of oxidative and ER stress. In this study, we examined the antiapoptotic action of a GLP-1 analogue in β-cell lines and islets against ER stress induced by chronic treatment of sulfonylurea. HIT-T15 and dispersed islet cells were exposed to glibenclamide for 48 h, and apoptosis was evaluated using Annexin/PI flow cytometry. Expression of the ER stress–related molecules and sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) 2/3 was determined by real-time PCR and western blot analysis. Chronic exposure to glibenclamide increased apoptosis by depletion of ER Ca2+ concentration through reduced expression of SERCA 2/3. Pretreatment with Exendin-4 had an anti-apoptotic role through ER stress modulation and ER Ca2+ replenishing by SERCA restoration. These findings will further the understanding of one cause of glibenclamide-induced β-cell loss and therapeutic availability of GLP-1–based drugs in secondary failure by sulfonylurea during treatment of diabetes.
AbstractList Sulfonylurea is one of the commonly used anti-diabetic drugs that stimulate insulin secretion from β-cells. Despite their glucose lowering effects in type 2 diabetes mellitus, long-term treatment brought on secondary failure characterized by β-cell exhaustion and apoptosis. ER stress induced by Ca(2+) depletion in endoplasmic reticulum (ER) is speculated be one of the causes of secondary failure, but it remains unclear. Glucagon like peptide-1 (GLP-1) has anti-apoptotic effects in β-cells after the induction of oxidative and ER stress. In this study, we examined the anti-apoptotic action of a GLP-1 analogue in β-cell lines and islets against ER stress induced by chronic treatment of sulfonylurea. HIT-T15 and dispersed islet cells were exposed to glibenclamide for 48 h, and apoptosis was evaluated using Annexin/PI flow cytometry. Expression of the ER stress-related molecules and sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) 2/3 was determined by real-time PCR and western blot analysis. Chronic exposure to glibenclamide increased apoptosis by depletion of ER Ca(2+) concentration through reduced expression of SERCA 2/3. Pretreatment with Exendin-4 had an anti-apoptotic role through ER stress modulation and ER Ca(2+) replenishing by SERCA restoration. These findings will further the understanding of one cause of glibenclamide-induced β-cell loss and therapeutic availability of GLP-1-based drugs in secondary failure by sulfonylurea during treatment of diabetes.
Sulfonylurea is one of the commonly used anti-diabetic drugs that stimulate insulin secretion from β-cells. Despite their glucose lowering effects in type 2 diabetes mellitus, long-term treatment brought on secondary failure characterized by β-cell exhaustion and apoptosis. ER stress induced by Ca2+ depletion in endoplasmic reticulum (ER) is speculated be one of the causes of secondary failure, but it remains unclear. Glucagon like peptide-1 (GLP-1) has anti-apoptotic effects in β-cells after the induction of oxidative and ER stress. In this study, we examined the anti-apoptotic action of a GLP-1 analogue in β-cell lines and islets against ER stress induced by chronic treatment of sulfonylurea. HIT-T15 and dispersed islet cells were exposed to glibenclamide for 48 h, and apoptosis was evaluated using Annexin/PI flow cytometry. Expression of the ER stress–related molecules and sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) 2/3 was determined by real-time PCR and western blot analysis. Chronic exposure to glibenclamide increased apoptosis by depletion of ER Ca2+ concentration through reduced expression of SERCA 2/3. Pretreatment with Exendin-4 had an anti-apoptotic role through ER stress modulation and ER Ca2+ replenishing by SERCA restoration. These findings will further the understanding of one cause of glibenclamide-induced β-cell loss and therapeutic availability of GLP-1–based drugs in secondary failure by sulfonylurea during treatment of diabetes.
Sulfonylurea is one of the commonly used anti-diabetic drugs that stimulate insulin secretion from β-cells. Despite their glucose lowering effects in type 2 diabetes mellitus, long-term treatment brought on secondary failure characterized by β-cell exhaustion and apoptosis. ER stress induced by Ca2+ depletion in endoplasmic reticulum (ER) is speculated be one of the causes of secondary failure, but it remains unclear. Glucagon like peptide-1 (GLP-1) has anti-apoptotic effects in β-cells after the induction of oxidative and ER stress. In this study, we examined the antiapoptotic action of a GLP-1 analogue in β-cell lines and islets against ER stress induced by chronic treatment of sulfonylurea. HIT-T15 and dispersed islet cells were exposed to glibenclamide for 48 h, and apoptosis was evaluated using Annexin/PI flow cytometry. Expression of the ER stress–related molecules and sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) 2/3 was determined by real-time PCR and western blot analysis. Chronic exposure to glibenclamide increased apoptosis by depletion of ER Ca2+ concentration through reduced expression of SERCA 2/3. Pretreatment with Exendin-4 had an anti-apoptotic role through ER stress modulation and ER Ca2+ replenishing by SERCA restoration. These findings will further the understanding of one cause of glibenclamide-induced β-cell loss and therapeutic availability of GLP-1–based drugs in secondary failure by sulfonylurea during treatment of diabetes. Keywords:: endoplasmic reticulum (ER) calcium depletion, apoptosis, ER stress, glucagon like peptide-1(GLP-1), sulfonylurea
Sulfonylurea is one of the commonly used anti-diabetic drugs that stimulate insulin secretion from β-cells. Despite their glucose lowering effects in type 2 diabetes mellitus, long-term treatment brought on secondary failure characterized by β-cell exhaustion and apoptosis. ER stress induced by Ca2+ depletion in endoplasmic reticulum (ER) is speculated be one of the causes of secondary failure, but it remains unclear. Glucagon like peptide-1 (GLP-1) has anti-apoptotic effects in β-cells after the induction of oxidative and ER stress. In this study, we examined the antiapoptotic action of a GLP-1 analogue in β-cell lines and islets against ER stress induced by chronic treatment of sulfonylurea. HIT-T15 and dispersed islet cells were exposed to glibenclamide for 48 h, and apoptosis was evaluated using Annexin/PI flow cytometry. Expression of the ER stress–related molecules and sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) 2/3 was determined by real-time PCR and western blot analysis. Chronic exposure to glibenclamide increased apoptosis by depletion of ER Ca2+ concentration through reduced expression of SERCA 2/3. Pretreatment with Exendin-4 had an anti-apoptotic role through ER stress modulation and ER Ca2+ replenishing by SERCA restoration. These findings will further the understanding of one cause of glibenclamide-induced β-cell loss and therapeutic availability of GLP-1–based drugs in secondary failure by sulfonylurea during treatment of diabetes.
Author Lim, Dong-Mee
Park, Hyung-Seo
Park, Keun-Young
Choi, Kyung-Jin
Kim, Ju-Young
Moon, Chan-Il
Kim, Byung-Joon
Lee, Seong-Kyu
Baik, Haing-Woon
Author_xml – sequence: 1
  givenname: Ju-Young
  surname: Kim
  fullname: Kim, Ju-Young
  organization: Division of Endocrinology and Metabolism, Department of Internal Medicine, Daejeon 302-832, Korea
– sequence: 2
  givenname: Dong-Mee
  surname: Lim
  fullname: Lim, Dong-Mee
  organization: Division of Endocrinology and Metabolism, Department of Internal Medicine, Daejeon 302-832, Korea
– sequence: 3
  givenname: Hyung-Seo
  surname: Park
  fullname: Park, Hyung-Seo
  organization: Department of Physiology, Konyang University School of Medicine, Daejeon 302-832, Korea
– sequence: 4
  givenname: Chan-Il
  surname: Moon
  fullname: Moon, Chan-Il
  organization: Department of Cardiology, Gachon University of Medicine and Science, Incheon 406-799, Korea
– sequence: 5
  givenname: Kyung-Jin
  surname: Choi
  fullname: Choi, Kyung-Jin
  organization: Department of Physiology, Konyang University School of Medicine, Daejeon 302-832, Korea
– sequence: 6
  givenname: Seong-Kyu
  surname: Lee
  fullname: Lee, Seong-Kyu
  organization: Department of Biochemistry and Molecular Biology, Eulji University School of Medicine, Daejeon 301-746, Korea
– sequence: 7
  givenname: Haing-Woon
  surname: Baik
  fullname: Baik, Haing-Woon
  organization: Department of Biochemistry and Molecular Biology, Eulji University School of Medicine, Daejeon 301-746, Korea
– sequence: 8
  givenname: Keun-Young
  surname: Park
  fullname: Park, Keun-Young
  organization: Division of Endocrinology and Metabolism, Department of Internal Medicine, Daejeon 302-832, Korea
– sequence: 9
  givenname: Byung-Joon
  surname: Kim
  fullname: Kim, Byung-Joon
  email: kbjoon4u@hananet.net
  organization: Division of Endocrinology and Metabolism, Department of Internal Medicine, Daejeon 302-832, Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22186619$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu1DAUhi1URC-wY42ygwUpviWOl6OhhZEqUQlYWyfJydSjjB3spKKvxYP0meoh06wQG9uyP306v_9zcuK8Q0LeMnrJeCE_7Ya7eMkYVfz69gU5Y0KqvCpldbKcmTgl5zHuKOUVZeUrcso5q8qS6TOyuvqNrrUul9lt8CM2Y8xWW7Aujtn3qe-8e-ingJBvXDs12GaPf_I19n22Gvww-mjja_Kygz7im-N-QX5eX_1Yf81vvn3ZrFc3eVNoNeS8FgVWTCrJUUCFLW14R0UtSihbVQiEmle6U5LWVHSouNBNx0FCythCocUF2cze1sPODMHuITwYD9b8vfBhayCMtunRCDyEbgG0lpKLClRZMGBSgK41VSy53s-uIfhfE8bR7G1sUixw6KdoNFOs5EzQRH74L8lFKSk_0An9OKNN8DEG7JYhGTWHqsyhKnOsKuHvjuap3mO7wM_dJODzDOziCFtcgOeUR1tl2LzO3uW5uYNg0CVNOWswlXNvMZjYWHSpSxtS3en37L8HfAIm0LpY
CitedBy_id crossref_primary_10_2337_dcS13_2011
crossref_primary_10_3109_10715762_2013_807923
crossref_primary_10_1530_JME_15_0232
crossref_primary_10_2337_db15_0085
crossref_primary_10_1096_fj_202001218R
crossref_primary_10_1016_j_tiv_2021_105128
crossref_primary_10_1152_ajpendo_00109_2014
crossref_primary_10_1002_dmrr_2358
crossref_primary_10_1186_s10020_018_0042_5
crossref_primary_10_1111_j_1463_1326_2012_01644_x
crossref_primary_10_1007_s13300_012_0012_9
crossref_primary_10_1074_jbc_RA118_005683
crossref_primary_10_1089_dna_2014_2352
crossref_primary_10_1007_s00592_013_0553_z
crossref_primary_10_1155_2013_750540
crossref_primary_10_14712_fb2020066050186
crossref_primary_10_1254_jphs_13R10CP
crossref_primary_10_1016_j_neuroscience_2012_09_025
crossref_primary_10_1016_j_molmet_2013_12_001
crossref_primary_10_1016_j_jphs_2014_12_007
Cites_doi 10.1006/bbrc.2000.2616
10.1210/jc.2004-0699
10.2165/00024677-200201020-00004
10.1152/ajpcell.1998.274.2.C513
10.1007/s10495-005-3088-0
10.1016/j.coph.2009.07.003
10.1507/endocrj.47.763
10.1385/1-59259-380-1:323
10.1074/jbc.M804184200
10.1016/j.cmet.2006.10.001
10.1177/153537020322801018
10.1016/j.metabol.2006.02.003
10.4093/kdj.2008.32.6.477
10.1016/S0143416002001823
10.1016/S1056-8727(01)00207-0
10.1677/JOE-06-0148
10.4093/kdj.2010.34.1.2
10.2337/diabetes.54.2.452
10.1007/s00441-004-1066-4
10.2174/0929867033456648
10.2337/diabetes.48.10.2001
10.1016/j.ceca.2010.02.001
10.5414/CPP44014
10.1254/jphs.09178FP
10.1016/j.pharmthera.2006.11.007
10.1111/j.1476-5381.2009.00458.x
10.1016/j.diabres.2006.12.021
10.1097/00007890-198612000-00022
10.1042/bj3190521
10.1254/jphs.95.33
10.1152/ajpcell.1995.269.3.C775
10.1016/j.mehy.2008.07.031
10.1210/er.2007-0039
10.2337/diabetes.51.2007.S455
10.1080/09687680010009646
ContentType Journal Article
Copyright 2012 Elsevier B.V.
The Japanese Pharmacological Society 2011
Copyright_xml – notice: 2012 Elsevier B.V.
– notice: The Japanese Pharmacological Society 2011
DBID 6I.
AAFTH
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOA
DOI 10.1254/jphs.11072FP
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1347-8648
EndPage 74
ExternalDocumentID oai_doaj_org_article_3e8613daa9944238a7651a143a9b9071
10_1254_jphs_11072FP
22186619
article_jphs_118_1_118_11072FP_article_char_en
S1347861319305997
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.55
.GJ
0R~
0SF
29L
2WC
3O-
4.4
457
53G
5GY
5RE
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AHPSJ
AITUG
AL-
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
BKOMP
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FDB
GROUPED_DOAJ
GX1
HH5
IPNFZ
JMI
JSF
JSH
KQ8
M41
MOJWN
M~E
NCXOZ
O9-
OK1
RIG
RJT
RNS
ROL
RZJ
SSZ
TKC
TR2
W2D
X7M
XSB
ZGI
ZXP
AAUGY
ADVLN
AFJKZ
AKRWK
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c597p-2b35e814742e3a8ed0c2f03b36a6d753eab289f740b03fe7239cf2a4a254da593
IEDL.DBID DOA
ISSN 1347-8613
IngestDate Tue Oct 22 14:59:49 EDT 2024
Fri Oct 25 01:08:08 EDT 2024
Fri Oct 25 07:01:10 EDT 2024
Thu Sep 26 15:42:36 EDT 2024
Sat Sep 28 08:38:23 EDT 2024
Thu Aug 17 20:29:30 EDT 2023
Fri Feb 23 02:48:52 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords ER stress
endoplasmic reticulum (ER) calcium depletion
sulfonylurea
apoptosis
glucagon like peptide-1(GLP-1)
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c597p-2b35e814742e3a8ed0c2f03b36a6d753eab289f740b03fe7239cf2a4a254da593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/3e8613daa9944238a7651a143a9b9071
PMID 22186619
PQID 2364027162
PQPubID 23479
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_3e8613daa9944238a7651a143a9b9071
proquest_miscellaneous_917162130
proquest_miscellaneous_2364027162
crossref_primary_10_1254_jphs_11072FP
pubmed_primary_22186619
jstage_primary_article_jphs_118_1_118_11072FP_article_char_en
elsevier_sciencedirect_doi_10_1254_jphs_11072FP
PublicationCentury 2000
PublicationDate 2012-00-00
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – year: 2012
  text: 2012-00-00
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Journal of Pharmacological Sciences
PublicationTitleAlternate J Pharmacol Sci
PublicationYear 2012
Publisher Elsevier B.V
The Japanese Pharmacological Society
Elsevier
Publisher_xml – name: Elsevier B.V
– name: The Japanese Pharmacological Society
– name: Elsevier
References 18 Kim JY, Lee SK, Baik HW, Lee KH, Kim HJ, Park KS, et al. Protective effects of glucagon like peptide-1 on HIT-T15 β cell apoptosis via ER stress induced by 2-deoxy-D-glucose. Korean Diabetes J. 2008;32:477–487.
15 Kim MH, Lee MK. The incretins and pancreatic beta-cells: use of glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide to cure type 2 diabetes mellitus. Korean Diabetes J. 2010;34:2–9.
13 Holz GG, Chepurny OG. Glucagon-like peptide-1 synthetic analogues: new therapeutic agents for use in the treatment of diabetes mellitus. Curr Med Chem. 2003;10:2471–2483.
29 East JM. Sarco(endo)plasmic reticulum calcium pumps: recent advances in our understanding of structure/function and biology (review). Mol Membr Biol. 2000;17:189–200.
4 Rosak C. The pathophysiologic basis of efficacy and clinical experience with the new oral antidiabetic agents. J Diabetes Complications. 2002;16:123–132.
35 Koh GP, Suh KS, Chon S, Oh SJ, Woo JT, Kim SW, et al. The effect of cAMP-elevating agents on high glucose-induced apoptosis of isolated islets of rat pancreas. Korean Diabetes J. 2004;28:490–500.
6 Maedler K, Carr RD, Bosco D, Zuellig RA, Berney T, Donath MY. Sulfonylurea induced beta-cell apoptosis in cultured human islets. J Clin Endocrinol Metab. 2005;90:501–506.
20 Sutton R, Peters M, McShane P, Gray DW, Morris PJ. Isolation of rat pancreatic islets by ductal injection of collagenase. Transplantation. 1986;42:689–691.
31 Araki E, Oyadomari S, Mori M. Impact of endoplasmic reticulum stress pathway on pancreatic beta-cells and diabetes mellitus. Exp Biol Med (Maywood). 2003;228:1213–1217.
32 Cardozo AK, Ortis F, Storling J, Feng YM, Rasschaert J, Tonnesen M, et al. Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic beta-cells. Diabetes. 2005;54:452–461.
34 Yaekura K, Yada T. [Ca2+]i-reducing action of cAMP in rat pancreatic beta-cells: involvement of thapsigargin-sensitive stores. Am J Physiol. 1998;274:C513–C521.
36 Grandoch M, Roscioni SS, Schmidt M. The role of Epac proteins, novel cAMP mediators, in the regulation of immune, lung and neuronal function. Br J Pharmacol. 2010;159:265–284.
24 Inoguchi T, Umeda F, Kakimoto M, Sako Y, Ishii H, Noda K, et al. Chronic sulfonylurea treatment and hyperglycemia aggravate disproportionately elevated plasma proinsulin levels in patients with type 2 diabetes. Endocr J. 2000;47:763–770.
3 Kawaki J, Nagashima K, Tanaka J, Miki T, Miyazaki M, Gonoi T, et al. Unresponsiveness to glibenclamide during chronic treatment induced by reduction of ATP-sensitive K+ channel activity. Diabetes. 1999;48:2001–2006.
14 Doyle ME, Egan JM. Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol Ther. 2007;113:546–593.
33 Schildberg FA, Schulz S, Dombrowski F, Minor T. Cyclic AMP alleviates endoplasmic stress and programmed cell death induced by lipopolysaccharides in human endothelial cells. Cell Tissue Res. 2005;320:91–98.
2 Del Prato S, Pulizzi N. The place of sulfonylureas in the therapy for type 2 diabetes mellitus. Metabolism. 2006;55:S20–S27.
7 Takahashi A, Nagashima K, Hamasaki A, Kuwamura N, Kawasaki Y, Ikeda H, et al. Sulfonylurea and glinide reduce insulin content, functional expression of K(ATP) channels, and accelerate apoptotic beta-cell death in the chronic phase. Diabetes Res Clin Pract. 2007;77:343–350.
11 Berridge MJ. The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium. 2002;32:235–249.
16 Yusta B, Baggio LL, Estall JL, Koehler JA, Holland DP, Li H, et al. GLP-1 receptor activation improves beta cell function and survival following induction of endoplasmic reticulum stress. Cell Metab. 2006;4:391–406.
23 Qian L, Zhang S, Xu L, Peng Y. Endoplasmic reticulum stress in beta cells: latent mechanism of secondary sulfonylurea failure in type 2 diabetes? Med Hypotheses. 2008;71:889–891.
9 Scheuner D, Kaufman RJ. The unfolded protein response: a pathway that links insulin demand with beta-cell failure and diabetes. Endocr Rev. 2008;29:17–33.
17 Tsunekawa S, Yamamoto N, Tsukamoto K, Itoh Y, Kaneko Y, Kimura T, et al. Protection of pancreatic beta-cells by exendin-4 may involve the reduction of endoplasmic reticulum stress; in vivo and in vitro studies. J Endocrinol. 2007;193:65–74.
25 Dworacka M, Abramczyk M, Winiarska H, Kuczynski S, Borowska M, Szczawinska K. Disproportionately elevated proinsulin levels in type 2 diabetic patients treated with sulfonylurea. Int J Clin Pharmacol Ther. 2006;44:14–21.
26 Kim R, Emi M, Tanabe K, Murakami S. Role of the unfolded protein response in cell death. Apoptosis. 2006;11:5–13.
8 Harding HP, Ron D. Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes. 2002;51:S455–S461.
5 Iwakura T, Fujimoto S, Kagimoto S, Inada A, Kubota A, Someya Y, et al. Sustained enhancement of Ca(2+) influx by glibenclamide induces apoptosis in RINm5F cells. Biochem Biophys Res Commun. 2000;271:422–428.
19 Kwon DY, Kim YS, Ahn IS, Kim DS, Kang S, Hong SM, et al. Exendin-4 potentiates insulinotropic action partly via increasing beta-cell proliferation and neogenesis and decreasing apoptosis in association with the attenuation of endoplasmic reticulum stress in islets of diabetic rats. J Pharmacol Sci. 2009;111:361–371.
10 Fonseca SG, Burcin M, Gromada J, Urano F. Endoplasmic reticulum stress in beta-cells and development of diabetes. Curr Opin Pharmacol. 2009;9:763–770.
21 Steensma DP, Timm M, Witzig TE. Flow cytometric methods for detection and quantification of apoptosis. Methods Mol Med. 2003;85:323–332.
28 Wu KD, Lee WS, Wey J, Bungard D, Lytton J. Localization and quantification of endoplasmic reticulum Ca(2+)-ATPase isoform transcripts. Am J Physiol. 1995;269:C775–C784.
22 Park HS, Betzenhauser MJ, Won JH, Chen J, Yule DI. The type 2 inositol (1,4,5)-trisphosphate (InsP3) receptor determines the sensitivity of InsP3-induced Ca2+ release to ATP in pancreatic acinar cells. J Biol Chem. 2008;283:26081–26088.
30 Váradi A, Molnár E, Ostenson CG, Ashcroft SJ. Isoforms of endoplasmic reticulum Ca(2+)-ATPase are differentially expressed in normal and diabetic islets of Langerhans. Biochem J. 1996;319:521–527.
1 Sudhir R, Mohan V. Postprandial hyperglycemia in patients with type 2 diabetes mellitus. Treat Endocrinol. 2002;1:105–116.
12 Sammels E, Parys JB, Missiaen L, De Smedt H, Bultynck G. Intracellular Ca2+ storage in health and disease: a dynamic equilibrium. Cell Calcium. 2010;47:297–314.
27 Sato A, Fujiwara H, Oku H, Ishiguro K, Ohizumi Y. Alpha-mangostin induces Ca2+-ATPase-dependent apoptosis via mitochondrial pathway in PC12 cells. J Pharmacol Sci. 2004;95:33–40.
22
23
24
25
26
27
28
29
31
10
32
11
33
12
34
13
35
14
36
15
16
17
(30) 1996; 319
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – ident: 5
  doi: 10.1006/bbrc.2000.2616
– ident: 6
  doi: 10.1210/jc.2004-0699
– ident: 1
  doi: 10.2165/00024677-200201020-00004
– ident: 34
  doi: 10.1152/ajpcell.1998.274.2.C513
– ident: 35
– ident: 26
  doi: 10.1007/s10495-005-3088-0
– ident: 10
  doi: 10.1016/j.coph.2009.07.003
– ident: 24
  doi: 10.1507/endocrj.47.763
– ident: 21
  doi: 10.1385/1-59259-380-1:323
– ident: 22
  doi: 10.1074/jbc.M804184200
– ident: 16
  doi: 10.1016/j.cmet.2006.10.001
– ident: 31
  doi: 10.1177/153537020322801018
– ident: 2
  doi: 10.1016/j.metabol.2006.02.003
– ident: 18
  doi: 10.4093/kdj.2008.32.6.477
– ident: 11
  doi: 10.1016/S0143416002001823
– ident: 4
  doi: 10.1016/S1056-8727(01)00207-0
– ident: 17
  doi: 10.1677/JOE-06-0148
– ident: 15
  doi: 10.4093/kdj.2010.34.1.2
– ident: 32
  doi: 10.2337/diabetes.54.2.452
– ident: 33
  doi: 10.1007/s00441-004-1066-4
– ident: 13
  doi: 10.2174/0929867033456648
– ident: 3
  doi: 10.2337/diabetes.48.10.2001
– ident: 12
  doi: 10.1016/j.ceca.2010.02.001
– ident: 25
  doi: 10.5414/CPP44014
– ident: 19
  doi: 10.1254/jphs.09178FP
– ident: 14
  doi: 10.1016/j.pharmthera.2006.11.007
– ident: 36
  doi: 10.1111/j.1476-5381.2009.00458.x
– ident: 7
  doi: 10.1016/j.diabres.2006.12.021
– ident: 20
  doi: 10.1097/00007890-198612000-00022
– volume: 319
  start-page: 521
  issn: 0264-6021
  issue: 2
  year: 1996
  ident: 30
  doi: 10.1042/bj3190521
– ident: 27
  doi: 10.1254/jphs.95.33
– ident: 28
  doi: 10.1152/ajpcell.1995.269.3.C775
– ident: 23
  doi: 10.1016/j.mehy.2008.07.031
– ident: 9
  doi: 10.1210/er.2007-0039
– ident: 8
  doi: 10.2337/diabetes.51.2007.S455
– ident: 29
  doi: 10.1080/09687680010009646
SSID ssj0028016
Score 2.130456
Snippet Sulfonylurea is one of the commonly used anti-diabetic drugs that stimulate insulin secretion from β-cells. Despite their glucose lowering effects in type 2...
SourceID doaj
proquest
crossref
pubmed
jstage
elsevier
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 65
SubjectTerms Animals
apoptosis
Apoptosis - drug effects
Calcium - metabolism
Cell Line
Cricetinae
endoplasmic reticulum (ER) calcium depletion
Endoplasmic Reticulum - drug effects
Endoplasmic Reticulum - metabolism
Endoplasmic Reticulum Stress - drug effects
ER stress
Exenatide
glucagon like peptide-1(GLP-1)
Glucagon-Like Peptide 1 - agonists
Glyburide - adverse effects
Hypoglycemic Agents - adverse effects
Insulin-Secreting Cells - drug effects
Insulin-Secreting Cells - metabolism
Peptides - pharmacology
Rats
Rats, Sprague-Dawley
sulfonylurea
Venoms - pharmacology
Title Exendin-4 Protects Against Sulfonylurea-Induced β-Cell Apoptosis
URI https://dx.doi.org/10.1254/jphs.11072FP
https://www.jstage.jst.go.jp/article/jphs/118/1/118_11072FP/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/22186619
https://search.proquest.com/docview/2364027162
https://search.proquest.com/docview/917162130
https://doaj.org/article/3e8613daa9944238a7651a143a9b9071
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Pharmacological Sciences, 2012, Vol.118(1), pp.65-74
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELUQp15QCy1NKciVKCesTWzHax84bBErhNRqJUDiZtnJhC5Cu1GzK8Fv8SF8E-M4Wcph1UsvOSSObc3YnvcS-w0hhx4HgQCTM11UKZM-z5gWpWKZwpkHHLRu86f8_KXOr-XFTX7zV6qvsCcsygNHww0EaIw4pXPGSAz92g1VnjmM8s54JHaR-KSmJ1Md1cJ1tz1XJCSuwfh-t-Ud2dDgrv7dhM3vQ17Vb4JRq9n_NibdIUK7hfXgsw1C4_dkq0OPdBR7_YFswGybHE2i_PTjMb16PU3VHNMjOnkVpn7cIaOzBwiHWJikkyjP0NDRrZsiQqSXy_uq36TOQj6PAkr6_MRO4R7bq-f1Yt5Mm4_kenx2dXrOuhQKrECmUDPuRQ46k0iAQTgNZVrwKhVeKKdKZCrgPDKuaihTn4oKhlyYouJOOrRU6XIjPpHN2XwGnwkNWE4UQY1eOVmpwnvFS-kKZzLtETcm5HtvS1tHpQwbGAbWZIPNbWvz8SQhP4KhV2WCvnV7A71uO6_bf3k9IYPeTbaDChECYFXTNc2eRG-uGu7b6kppm8VrLL96HE6_4RKSkG_9ILA4A8NvFTeD-bKxQYIfyX2meELomjImqBJxxAsJ2Y0DaNUNHrKCIY398j_sskfeIaLj8RvRV7K5-LOEfURNC3_QTpCDELnyFx76ErY
link.rule.ids 315,783,787,867,2109,4031,27935,27936,27937
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exendin-4+protects+against+sulfonylurea-induced+%CE%B2-cell+apoptosis&rft.jtitle=Journal+of+pharmacological+sciences&rft.au=Kim%2C+Ju-Young&rft.au=Lim%2C+Dong-Mee&rft.au=Park%2C+Hyung-Seo&rft.au=Moon%2C+Chan-Il&rft.date=2012&rft.eissn=1347-8648&rft.volume=118&rft.issue=1&rft.spage=65&rft.epage=74&rft_id=info:doi/10.1254%2Fjphs.11072fp&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1347-8613&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1347-8613&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1347-8613&client=summon