Dual‐Mechanism Peptide SR25 has Broad Antimicrobial Activity and Potential Application for Healing Bacteria‐infected Diabetic Wounds

The rise of antibiotic resistance poses a significant public health crisis, particularly due to limited antimicrobial options for the treatment of infections with Gram‐negative pathogens. Here, an antimicrobial peptide (AMP) SR25 is characterized, which effectively kills both Gram‐negative and Gram‐...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 11; no. 30; pp. e2401793 - n/a
Main Authors Luo, Xue‐Yue, Hu, Chun‐Mei, Yin, Qi, Zhang, Xiao‐Mei, Liu, Zhen‐Zhen, Zhou, Cheng‐Kai, Zhang, Jian‐Gang, Chen, Wei, Yang, Yong‐Jun
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.08.2024
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The rise of antibiotic resistance poses a significant public health crisis, particularly due to limited antimicrobial options for the treatment of infections with Gram‐negative pathogens. Here, an antimicrobial peptide (AMP) SR25 is characterized, which effectively kills both Gram‐negative and Gram‐positive bacteria through a unique dual‐targeting mechanism without detectable resistance. Meanwhile, an SR25‐functionalized hydrogel is developed for the efficient treatment of infected diabetic wounds. SR25 is obtained through genome mining from an uncultured bovine enteric actinomycete named Nonomuraea Jilinensis sp. nov. Investigations reveal that SR25 has two independent cellular targets, disrupting bacterial membrane integrity and restraining the activity of succinate:quinone oxidoreductase (SQR). In a diabetic mice wound infection model, the SR25‐incorporated hydrogel exhibits high efficacy against mixed infections of Escherichia coli (E. coli) and methicillin‐resistant Staphylococcus aureus (MRSA), accelerating wound healing. Overall, these findings demonstrate the therapeutic potential of SR25 and highlight the value of mining drugs with multiple mechanisms from uncultured animal commensals for combating challenging bacterial pathogens. The previously uncultured bacterium presents a viable strategy for the discovery of novel antimicrobial peptides. The antimicrobial peptide SR25 operates through a dual mechanism, targeting both the bacterial cell membrane and succinate:quinone oxidoreductase. It exhibits outstanding antibacterial efficacy and promotes the recovery of infected diabetes wounds.
AbstractList Abstract The rise of antibiotic resistance poses a significant public health crisis, particularly due to limited antimicrobial options for the treatment of infections with Gram‐negative pathogens. Here, an antimicrobial peptide (AMP) SR25 is characterized, which effectively kills both Gram‐negative and Gram‐positive bacteria through a unique dual‐targeting mechanism without detectable resistance. Meanwhile, an SR25‐functionalized hydrogel is developed for the efficient treatment of infected diabetic wounds. SR25 is obtained through genome mining from an uncultured bovine enteric actinomycete named Nonomuraea Jilinensis sp. nov. Investigations reveal that SR25 has two independent cellular targets, disrupting bacterial membrane integrity and restraining the activity of succinate:quinone oxidoreductase (SQR). In a diabetic mice wound infection model, the SR25‐incorporated hydrogel exhibits high efficacy against mixed infections of Escherichia coli (E. coli) and methicillin‐resistant Staphylococcus aureus (MRSA), accelerating wound healing. Overall, these findings demonstrate the therapeutic potential of SR25 and highlight the value of mining drugs with multiple mechanisms from uncultured animal commensals for combating challenging bacterial pathogens.
The rise of antibiotic resistance poses a significant public health crisis, particularly due to limited antimicrobial options for the treatment of infections with Gram-negative pathogens. Here, an antimicrobial peptide (AMP) SR25 is characterized, which effectively kills both Gram-negative and Gram-positive bacteria through a unique dual-targeting mechanism without detectable resistance. Meanwhile, an SR25-functionalized hydrogel is developed for the efficient treatment of infected diabetic wounds. SR25 is obtained through genome mining from an uncultured bovine enteric actinomycete named Nonomuraea Jilinensis sp. nov. Investigations reveal that SR25 has two independent cellular targets, disrupting bacterial membrane integrity and restraining the activity of succinate:quinone oxidoreductase (SQR). In a diabetic mice wound infection model, the SR25-incorporated hydrogel exhibits high efficacy against mixed infections of Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA), accelerating wound healing. Overall, these findings demonstrate the therapeutic potential of SR25 and highlight the value of mining drugs with multiple mechanisms from uncultured animal commensals for combating challenging bacterial pathogens.
The rise of antibiotic resistance poses a significant public health crisis, particularly due to limited antimicrobial options for the treatment of infections with Gram‐negative pathogens. Here, an antimicrobial peptide (AMP) SR25 is characterized, which effectively kills both Gram‐negative and Gram‐positive bacteria through a unique dual‐targeting mechanism without detectable resistance. Meanwhile, an SR25‐functionalized hydrogel is developed for the efficient treatment of infected diabetic wounds. SR25 is obtained through genome mining from an uncultured bovine enteric actinomycete named Nonomuraea Jilinensis sp. nov. Investigations reveal that SR25 has two independent cellular targets, disrupting bacterial membrane integrity and restraining the activity of succinate:quinone oxidoreductase (SQR). In a diabetic mice wound infection model, the SR25‐incorporated hydrogel exhibits high efficacy against mixed infections of Escherichia coli ( E. coli ) and methicillin‐resistant Staphylococcus aureus (MRSA), accelerating wound healing. Overall, these findings demonstrate the therapeutic potential of SR25 and highlight the value of mining drugs with multiple mechanisms from uncultured animal commensals for combating challenging bacterial pathogens. The previously uncultured bacterium presents a viable strategy for the discovery of novel antimicrobial peptides. The antimicrobial peptide SR25 operates through a dual mechanism, targeting both the bacterial cell membrane and succinate:quinone oxidoreductase. It exhibits outstanding antibacterial efficacy and promotes the recovery of infected diabetes wounds.
The rise of antibiotic resistance poses a significant public health crisis, particularly due to limited antimicrobial options for the treatment of infections with Gram-negative pathogens. Here, an antimicrobial peptide (AMP) SR25 is characterized, which effectively kills both Gram-negative and Gram-positive bacteria through a unique dual-targeting mechanism without detectable resistance. Meanwhile, an SR25-functionalized hydrogel is developed for the efficient treatment of infected diabetic wounds. SR25 is obtained through genome mining from an uncultured bovine enteric actinomycete named Nonomuraea Jilinensis sp. nov. Investigations reveal that SR25 has two independent cellular targets, disrupting bacterial membrane integrity and restraining the activity of succinate:quinone oxidoreductase (SQR). In a diabetic mice wound infection model, the SR25-incorporated hydrogel exhibits high efficacy against mixed infections of Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA), accelerating wound healing. Overall, these findings demonstrate the therapeutic potential of SR25 and highlight the value of mining drugs with multiple mechanisms from uncultured animal commensals for combating challenging bacterial pathogens.The rise of antibiotic resistance poses a significant public health crisis, particularly due to limited antimicrobial options for the treatment of infections with Gram-negative pathogens. Here, an antimicrobial peptide (AMP) SR25 is characterized, which effectively kills both Gram-negative and Gram-positive bacteria through a unique dual-targeting mechanism without detectable resistance. Meanwhile, an SR25-functionalized hydrogel is developed for the efficient treatment of infected diabetic wounds. SR25 is obtained through genome mining from an uncultured bovine enteric actinomycete named Nonomuraea Jilinensis sp. nov. Investigations reveal that SR25 has two independent cellular targets, disrupting bacterial membrane integrity and restraining the activity of succinate:quinone oxidoreductase (SQR). In a diabetic mice wound infection model, the SR25-incorporated hydrogel exhibits high efficacy against mixed infections of Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA), accelerating wound healing. Overall, these findings demonstrate the therapeutic potential of SR25 and highlight the value of mining drugs with multiple mechanisms from uncultured animal commensals for combating challenging bacterial pathogens.
The rise of antibiotic resistance poses a significant public health crisis, particularly due to limited antimicrobial options for the treatment of infections with Gram‐negative pathogens. Here, an antimicrobial peptide (AMP) SR25 is characterized, which effectively kills both Gram‐negative and Gram‐positive bacteria through a unique dual‐targeting mechanism without detectable resistance. Meanwhile, an SR25‐functionalized hydrogel is developed for the efficient treatment of infected diabetic wounds. SR25 is obtained through genome mining from an uncultured bovine enteric actinomycete named Nonomuraea Jilinensis sp. nov. Investigations reveal that SR25 has two independent cellular targets, disrupting bacterial membrane integrity and restraining the activity of succinate:quinone oxidoreductase (SQR). In a diabetic mice wound infection model, the SR25‐incorporated hydrogel exhibits high efficacy against mixed infections of Escherichia coli (E. coli) and methicillin‐resistant Staphylococcus aureus (MRSA), accelerating wound healing. Overall, these findings demonstrate the therapeutic potential of SR25 and highlight the value of mining drugs with multiple mechanisms from uncultured animal commensals for combating challenging bacterial pathogens. The previously uncultured bacterium presents a viable strategy for the discovery of novel antimicrobial peptides. The antimicrobial peptide SR25 operates through a dual mechanism, targeting both the bacterial cell membrane and succinate:quinone oxidoreductase. It exhibits outstanding antibacterial efficacy and promotes the recovery of infected diabetes wounds.
The rise of antibiotic resistance poses a significant public health crisis, particularly due to limited antimicrobial options for the treatment of infections with Gram‐negative pathogens. Here, an antimicrobial peptide (AMP) SR25 is characterized, which effectively kills both Gram‐negative and Gram‐positive bacteria through a unique dual‐targeting mechanism without detectable resistance. Meanwhile, an SR25‐functionalized hydrogel is developed for the efficient treatment of infected diabetic wounds. SR25 is obtained through genome mining from an uncultured bovine enteric actinomycete named Nonomuraea Jilinensis sp. nov. Investigations reveal that SR25 has two independent cellular targets, disrupting bacterial membrane integrity and restraining the activity of succinate:quinone oxidoreductase (SQR). In a diabetic mice wound infection model, the SR25‐incorporated hydrogel exhibits high efficacy against mixed infections of Escherichia coli ( E. coli ) and methicillin‐resistant Staphylococcus aureus (MRSA), accelerating wound healing. Overall, these findings demonstrate the therapeutic potential of SR25 and highlight the value of mining drugs with multiple mechanisms from uncultured animal commensals for combating challenging bacterial pathogens.
Author Yin, Qi
Chen, Wei
Yang, Yong‐Jun
Luo, Xue‐Yue
Zhang, Xiao‐Mei
Liu, Zhen‐Zhen
Zhang, Jian‐Gang
Hu, Chun‐Mei
Zhou, Cheng‐Kai
AuthorAffiliation 1 Department of Preventive Veterinary Medicine College of Veterinary Medicine Jilin University Changchun Jilin 130062 P. R. China
AuthorAffiliation_xml – name: 1 Department of Preventive Veterinary Medicine College of Veterinary Medicine Jilin University Changchun Jilin 130062 P. R. China
Author_xml – sequence: 1
  givenname: Xue‐Yue
  surname: Luo
  fullname: Luo, Xue‐Yue
  organization: Jilin University
– sequence: 2
  givenname: Chun‐Mei
  surname: Hu
  fullname: Hu, Chun‐Mei
  organization: Jilin University
– sequence: 3
  givenname: Qi
  surname: Yin
  fullname: Yin, Qi
  organization: Jilin University
– sequence: 4
  givenname: Xiao‐Mei
  surname: Zhang
  fullname: Zhang, Xiao‐Mei
  organization: Jilin University
– sequence: 5
  givenname: Zhen‐Zhen
  surname: Liu
  fullname: Liu, Zhen‐Zhen
  organization: Jilin University
– sequence: 6
  givenname: Cheng‐Kai
  surname: Zhou
  fullname: Zhou, Cheng‐Kai
  organization: Jilin University
– sequence: 7
  givenname: Jian‐Gang
  surname: Zhang
  fullname: Zhang, Jian‐Gang
  organization: Jilin University
– sequence: 8
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  email: youngjune@jlu.edu.cn
  organization: Jilin University
– sequence: 9
  givenname: Yong‐Jun
  orcidid: 0000-0002-5294-9790
  surname: Yang
  fullname: Yang, Yong‐Jun
  email: chw_cc@jlu.edu.cn
  organization: Jilin University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38874469$$D View this record in MEDLINE/PubMed
BookMark eNqFUktvEzEQXqEiWkqvHJElLlwS_NrYe0JpA7RSERXlcbRmbW_iaGMHezcoN44c-Y38EpxHq7YS4uTxzDfffPN4Whz44G1RPCd4SDCmr8Gs0pBiyjERFXtUHFFSyQGTnB_csQ-Lk5TmGGNSMsGJfFIcMikF56PqqPg16aH98_P3B6tn4F1aoCu77Jyx6PoTLdEMEjqNAQwa-84tnI6hdtCise7cynVrBN6gq9DZHN24l8vWaehc8KgJEZ1baJ2folPQnY0OciHnG5s_Bk0c1LZzGn0LvTfpWfG4gTbZk_17XHx59_bz2fng8uP7i7Px5UCXlRCDio60aAyXgpUGDKbA6kYAFbyRpKkssMpwI2lDyhqXvLTCECpz7zACLQlmx8XFjtcEmKtldAuIaxXAqa0jxKmCmGW1VtXWaEMa0mignGMrS0yNJjWtcx1h6sz1Zse17OtFBucpRGjvkd6PeDdT07BShDBKRkRkhld7hhi-9zZ1auGStm0L3oY-KYZHUpRYbKEvH0DnoY8-zyqjKsoExXzT3ou7km613Gw8A_gOkFeZUrSN0q7bbiwrdK0iWG1uS21uS93eVk4bPki7Yf5nwr7OD9fa9X_Qajz5ei1HTLC_qu3kJg
CitedBy_id crossref_primary_10_1016_j_cej_2024_155575
crossref_primary_10_3389_fcimb_2024_1463551
crossref_primary_10_1016_j_bioactmat_2025_01_002
crossref_primary_10_1016_j_micres_2024_127980
Cites_doi 10.1039/D0CS01026J
10.1021/acsami.9b22595
10.1099/ijs.0.059774-0
10.1016/j.cell.2020.02.056
10.1002/adhm.202100877
10.1016/j.bioactmat.2022.01.009
10.1002/advs.202305078
10.1038/s41467-023-36994-z
10.1093/nar/gkab225
10.1186/s40779-021-00343-2
10.1016/j.actbio.2022.04.025
10.1021/acs.jafc.2c01458
10.1016/j.cbi.2020.109305
10.1186/s12929-022-00874-3
10.1073/pnas.0237315100
10.1038/nature12959
10.1093/molbev/msab120
10.1002/jcc.20291
10.1007/978-0-387-46312-4
10.1093/bioinformatics/btu097
10.1038/415389a
10.1021/acsnano.9b07836
10.15252/emmm.202115409
10.1016/j.lfs.2020.118381
10.1093/nar/gkv1051
10.1038/cdd.2010.93
10.1039/C6NP00025H
10.1038/nrd3591
10.1038/s41587-022-01226-0
10.1002/mabi.202200514
10.1093/nar/gkad344
10.1016/j.ejmech.2015.03.060
10.1016/j.drup.2016.04.002
10.1038/nrd3975
10.3390/gels9040265
10.1016/j.ijfoodmicro.2022.109953
10.1016/j.apsb.2019.05.002
10.1021/acs.jafc.6b00325
10.1186/s12864-022-08623-4
10.1093/nar/gkv1278
10.1002/advs.202305918
10.1038/s41522-022-00320-0
10.1002/ps.6762
10.1016/j.actbio.2021.01.046
10.1021/acsami.9b09824
10.1073/pnas.1612277113
10.1371/journal.ppat.1005098
10.1038/s41573-020-00114-z
10.1186/s40779-020-00249-5
10.1016/j.jconrel.2014.08.016
10.1016/j.gpb.2018.01.002
10.1016/j.cell.2023.07.038
10.1099/ijsem.0.002516
10.1016/j.apsb.2023.06.003
10.3389/fcimb.2021.809542
10.1099/ijs.0.65054-0
10.1099/ijs.0.056994-0
10.1002/advs.202300472
10.1126/science.7529940
ContentType Journal Article
Copyright 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH
2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH
– notice: 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202401793
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals (ODIN)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_bedcd1f1fca2440e8502dc1b2b9ea7db
PMC11321617
38874469
10_1002_advs_202401793
ADVS8637
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 32070119
– fundername: National Natural Science Foundation of China
  grantid: 32070119
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
ITC
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAYXX
ADMLS
AFPKN
CITATION
EJD
IGS
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5977-926c7fd48735dad02a3bf7a274f81f9ea39d4d82f15b0545e7d128001a6ac8103
IEDL.DBID 24P
ISSN 2198-3844
IngestDate Wed Aug 27 01:31:10 EDT 2025
Thu Aug 21 18:34:26 EDT 2025
Fri Jul 11 01:05:56 EDT 2025
Sat Jul 26 00:52:13 EDT 2025
Mon Jul 21 05:56:34 EDT 2025
Tue Jul 01 04:00:09 EDT 2025
Thu Apr 24 23:04:15 EDT 2025
Wed Jan 22 17:17:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 30
Keywords membrane disrupting
diabetic wound
hydrogel
succinate:quinone reductase
antimicrobial peptides
uncultured bacteria
Language English
License Attribution
2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5977-926c7fd48735dad02a3bf7a274f81f9ea39d4d82f15b0545e7d128001a6ac8103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5294-9790
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202401793
PMID 38874469
PQID 3092372040
PQPubID 4365299
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_bedcd1f1fca2440e8502dc1b2b9ea7db
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11321617
proquest_miscellaneous_3068750717
proquest_journals_3092372040
pubmed_primary_38874469
crossref_citationtrail_10_1002_advs_202401793
crossref_primary_10_1002_advs_202401793
wiley_primary_10_1002_advs_202401793_ADVS8637
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2024
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2021; 20
2023; 186
2021; 124
2022; 70
2019; 11
2018 2014; 68 64
2019; 13
2023; 9
2022; 23
2020; 12
2005; 26
2013 2014; 12 506
2014; 64
2016; 33
2023 2020; 23 261
2022 2022; 383 29
2020; 7
2021; 38
2011 2021; 11 50
2022; 78
2016; 113
2020; 332
2016; 44
2023; 10
2021; 8
2023; 51
2021; 49
2019; 9
2023; 13
2023; 14
2023; 11
2020; 181
2002; 415
2006
2014; 194
2024; 11
2021; 1
2015 2021; 11 10
2022 2022 2022; 146 8 40
2007; 57
2003 2011; 100 18
2021; 11
2016 2015; 64 95
2022; 14
1995; 267
2014; 30
2016; 26
2018; 16
2022; 17
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_24_2
e_1_2_8_26_1
e_1_2_8_49_1
Zheng W. (e_1_2_8_40_1) 2021; 1
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_5_2
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_17_2
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_13_2
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_30_1
e_1_2_8_27_2
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_8_3
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_2
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_12_2
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_14_2
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_50_1
References_xml – volume: 13
  year: 2019
  publication-title: ACS Nano.
– volume: 9
  start-page: 265
  year: 2023
  publication-title: Gels.
– volume: 49
  start-page: W216
  year: 2021
  publication-title: Nucleic Acids Res.
– volume: 100 18
  start-page: 473 338
  year: 2003 2011
  publication-title: Proc. Natl. Acad. Sci. USA. Cell Death Differ.
– volume: 23
  start-page: 380
  year: 2022
  publication-title: BMC Genomics.
– volume: 44
  year: 2016
  publication-title: Nucleic Acids Res.
– volume: 181
  start-page: 29
  year: 2020
  publication-title: Cell.
– volume: 13
  start-page: 3678
  year: 2023
  publication-title: Acta Pharm. Sin. B.
– volume: 26
  start-page: 1701
  year: 2005
  publication-title: J. Comput. Chem.
– volume: 124
  start-page: 205
  year: 2021
  publication-title: Acta Biomater.
– volume: 8
  start-page: 48
  year: 2021
  publication-title: Mil. Med. Res.
– volume: 70
  start-page: 5570
  year: 2022
  publication-title: J. Agric. Food Chem.
– volume: 11 50
  start-page: 37 4932
  year: 2011 2021
  publication-title: Nat Rev. Drug Discov. Chem. Soc. Rev.
– volume: 332
  year: 2020
  publication-title: Chem. Biol. Interact.
– volume: 11
  year: 2021
  publication-title: Front Cell Infect. Microbiol.
– volume: 26
  start-page: 43
  year: 2016
  publication-title: Drug Resist. Updat.
– volume: 383 29
  start-page: 89
  year: 2022 2022
  publication-title: Int. J. Food Microbiol. J. Biomed. Sci.
– volume: 14
  year: 2022
  publication-title: EMBO Mol. Med.
– volume: 23 261
  year: 2023 2020
  publication-title: Macromol. Biosci. Life Sci.
– volume: 194
  start-page: 138
  year: 2014
  publication-title: J. Control Release.
– volume: 267
  start-page: 383
  year: 1995
  publication-title: Science.
– volume: 113
  year: 2016
  publication-title: Proc. Natl. Acad. Sci. USA.
– volume: 146 8 40
  start-page: 131 58 921
  year: 2022 2022 2022
  publication-title: Acta. Biomater. NPJ Biofilms Microbiomes. Nat. Biotechnol.
– volume: 64 95
  start-page: 4830 424
  year: 2016 2015
  publication-title: J. Agric. Food Chem. Eur. J. Med. Chem.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 78
  start-page: 1448
  year: 2022
  publication-title: Pest Manag. Sci.
– volume: 16
  start-page: 405
  year: 2018
  publication-title: Genomics Proteomics Bioinformatics.
– volume: 10
  year: 2023
  publication-title: Adv. Sci. (Weinh).
– volume: 11
  year: 2023
  publication-title: Adv. Sci. (Weinh).
– volume: 1
  year: 2021
  publication-title: Cell Rep. Methods.
– volume: 20
  start-page: 200
  year: 2021
  publication-title: Nat. Rev. Drug Discov.
– volume: 12 506
  start-page: 371 58
  year: 2013 2014
  publication-title: Nat. Rev. Drug Discov. Nature.
– volume: 51
  start-page: W46
  year: 2023
  publication-title: Nucleic Acids Res.
– volume: 68 64
  start-page: 461 352
  year: 2018 2014
  publication-title: Int. J. Syst. Evol. Microbiol. Int. J. Syst. Evol. Microbiol.
– volume: 186
  start-page: 4059
  year: 2023
  publication-title: Cell.
– volume: 57
  start-page: 1504
  year: 2007
  publication-title: Int. J. Syst. Evol. Microbiol.
– volume: 17
  start-page: 471
  year: 2022
  publication-title: Bioact. Mater.
– volume: 7
  start-page: 20
  year: 2020
  publication-title: Mil. Med. Res.
– volume: 14
  start-page: 1453
  year: 2023
  publication-title: Nat. Commun.
– volume: 11 10
  year: 2015 2021
  publication-title: PLoS Pathog. Adv. Healthcare Mater.
– volume: 11
  year: 2024
  publication-title: Adv. Sci. (Weinh).
– volume: 64
  start-page: 346
  year: 2014
  publication-title: Int. J. Syst. Evol. Microbiol.
– volume: 9
  start-page: 1174
  year: 2019
  publication-title: Acta Pharm. Sin. B.
– year: 2006
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 33
  start-page: 988
  year: 2016
  publication-title: Nat. Prod. Rep.
– volume: 38
  start-page: 3022
  year: 2021
  publication-title: Mol. Biol. Evol.
– volume: 415
  start-page: 389
  year: 2002
  publication-title: Nature.
– volume: 30
  start-page: 1771
  year: 2014
  publication-title: Bioinformatics.
– ident: e_1_2_8_5_2
  doi: 10.1039/D0CS01026J
– ident: e_1_2_8_50_1
  doi: 10.1021/acsami.9b22595
– ident: e_1_2_8_10_1
  doi: 10.1099/ijs.0.059774-0
– ident: e_1_2_8_16_1
  doi: 10.1016/j.cell.2020.02.056
– ident: e_1_2_8_1_2
  doi: 10.1002/adhm.202100877
– volume: 1
  year: 2021
  ident: e_1_2_8_40_1
  publication-title: Cell Rep. Methods.
– ident: e_1_2_8_49_1
  doi: 10.1016/j.bioactmat.2022.01.009
– ident: e_1_2_8_9_1
  doi: 10.1002/advs.202305078
– ident: e_1_2_8_38_1
  doi: 10.1038/s41467-023-36994-z
– ident: e_1_2_8_39_1
  doi: 10.1093/nar/gkab225
– ident: e_1_2_8_23_1
  doi: 10.1186/s40779-021-00343-2
– ident: e_1_2_8_8_1
  doi: 10.1016/j.actbio.2022.04.025
– ident: e_1_2_8_32_1
  doi: 10.1021/acs.jafc.2c01458
– ident: e_1_2_8_41_1
  doi: 10.1016/j.cbi.2020.109305
– ident: e_1_2_8_13_2
  doi: 10.1186/s12929-022-00874-3
– ident: e_1_2_8_14_1
  doi: 10.1073/pnas.0237315100
– ident: e_1_2_8_17_2
  doi: 10.1038/nature12959
– ident: e_1_2_8_33_1
  doi: 10.1093/molbev/msab120
– ident: e_1_2_8_47_1
  doi: 10.1002/jcc.20291
– ident: e_1_2_8_48_1
  doi: 10.1007/978-0-387-46312-4
– ident: e_1_2_8_46_1
  doi: 10.1093/bioinformatics/btu097
– ident: e_1_2_8_6_1
  doi: 10.1038/415389a
– ident: e_1_2_8_44_1
  doi: 10.1021/acsnano.9b07836
– ident: e_1_2_8_22_1
  doi: 10.15252/emmm.202115409
– ident: e_1_2_8_27_2
  doi: 10.1016/j.lfs.2020.118381
– ident: e_1_2_8_37_1
  doi: 10.1093/nar/gkv1051
– ident: e_1_2_8_14_2
  doi: 10.1038/cdd.2010.93
– ident: e_1_2_8_20_1
  doi: 10.1039/C6NP00025H
– ident: e_1_2_8_5_1
  doi: 10.1038/nrd3591
– ident: e_1_2_8_8_3
  doi: 10.1038/s41587-022-01226-0
– ident: e_1_2_8_27_1
  doi: 10.1002/mabi.202200514
– ident: e_1_2_8_35_1
  doi: 10.1093/nar/gkad344
– ident: e_1_2_8_24_2
  doi: 10.1016/j.ejmech.2015.03.060
– ident: e_1_2_8_7_1
  doi: 10.1016/j.drup.2016.04.002
– ident: e_1_2_8_17_1
  doi: 10.1038/nrd3975
– ident: e_1_2_8_28_1
  doi: 10.3390/gels9040265
– ident: e_1_2_8_13_1
  doi: 10.1016/j.ijfoodmicro.2022.109953
– ident: e_1_2_8_42_1
  doi: 10.1016/j.apsb.2019.05.002
– ident: e_1_2_8_24_1
  doi: 10.1021/acs.jafc.6b00325
– ident: e_1_2_8_34_1
  doi: 10.1186/s12864-022-08623-4
– ident: e_1_2_8_36_1
  doi: 10.1093/nar/gkv1278
– ident: e_1_2_8_2_1
  doi: 10.1002/advs.202305918
– ident: e_1_2_8_8_2
  doi: 10.1038/s41522-022-00320-0
– ident: e_1_2_8_25_1
  doi: 10.1002/ps.6762
– ident: e_1_2_8_26_1
  doi: 10.1016/j.actbio.2021.01.046
– ident: e_1_2_8_3_1
  doi: 10.1021/acsami.9b09824
– ident: e_1_2_8_29_1
  doi: 10.1073/pnas.1612277113
– ident: e_1_2_8_1_1
  doi: 10.1371/journal.ppat.1005098
– ident: e_1_2_8_19_1
  doi: 10.1038/s41573-020-00114-z
– ident: e_1_2_8_30_1
  doi: 10.1186/s40779-020-00249-5
– ident: e_1_2_8_31_1
  doi: 10.1016/j.jconrel.2014.08.016
– ident: e_1_2_8_21_1
  doi: 10.1016/j.gpb.2018.01.002
– ident: e_1_2_8_18_1
  doi: 10.1016/j.cell.2023.07.038
– ident: e_1_2_8_12_1
  doi: 10.1099/ijsem.0.002516
– ident: e_1_2_8_45_1
  doi: 10.1016/j.apsb.2023.06.003
– ident: e_1_2_8_43_1
  doi: 10.3389/fcimb.2021.809542
– ident: e_1_2_8_11_1
  doi: 10.1099/ijs.0.65054-0
– ident: e_1_2_8_12_2
  doi: 10.1099/ijs.0.056994-0
– ident: e_1_2_8_4_1
  doi: 10.1002/advs.202300472
– ident: e_1_2_8_15_1
  doi: 10.1126/science.7529940
SSID ssj0001537418
Score 2.3848438
Snippet The rise of antibiotic resistance poses a significant public health crisis, particularly due to limited antimicrobial options for the treatment of infections...
Abstract The rise of antibiotic resistance poses a significant public health crisis, particularly due to limited antimicrobial options for the treatment of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2401793
SubjectTerms Animals
Anti-Bacterial Agents - pharmacology
Anti-Bacterial Agents - therapeutic use
Antibiotics
Antimicrobial agents
antimicrobial peptides
Antimicrobial Peptides - pharmacology
Bacteria
Bacterial infections
Biocompatibility
Biofilms
Dairy cattle
Diabetes
Diabetes Mellitus, Experimental - drug therapy
diabetic wound
Disease Models, Animal
Drug resistance
E coli
Escherichia coli - drug effects
Genomes
hydrogel
Hydrogels
Listeria
membrane disrupting
Methicillin-Resistant Staphylococcus aureus - drug effects
Mice
Microbial Sensitivity Tests
Natural products
Peptides
Physiology
Salmonella
Staphylococcus infections
succinate:quinone reductase
uncultured bacteria
Wound Healing - drug effects
Wound Infection - drug therapy
Wound Infection - microbiology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals (ODIN)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQ5RkoyEhIwCGqY-fhPbZAVSEVVZSK3qzxS43UZhHZ7blHjvxGfgkzcTbsClAvXG3LsWbGnm_i8TeMvVQCCCarHJQNednUNgdn6U-cKqG0pYZAP_SPPtaHp-WHs-psrdQX5YQleuAkuF0bvPNFLKID9EQi6EpI7wor7SxA4y2dvujz1oKp9D5YES3LiqVRyF3wV8TOjQ6MTHLDCw1k_X9DmH8mSq4D2MEDHdxld0boyPfSkrfZrdDdY9vj5uz565FB-s199v3dEi5-Xv84CvSut-0v-TElr_jATz7Jip9DzzH8Bs_3ukV72Q5cTDSzS6UkOHSeH88XlEhEzb_vuDlCXE4vl9Dh8f1E9Az4oZTSFTxPCTat41-oXFP_gJ0evP_89jAfSy7kjojo8pmsXRM9RjGq8uCFRBXGBjB0jbqIKHE186XXMhaVRbBXhcajg0N5Qw1OF0I9ZFvdvAuPGQ-2rkLpnADt0FN6q-n0iNFrAVE1kLF8pQLjRj5yKotxYRKTsjSkMjOpLGOvpvFfExPHP0fuk0anUcSgPTSgXZnRrsxNdpWxnZU9mHFb90YJxMNU1kdk7MXUjRuSblmgC_MljakxBqQwOWOPkvlMK1Gaqg3Us4zpDcPaWOpmT9eeD6TfRaEkxaIotsEGb5CBQVRzomvVPPkfwnjKbtPMKfFxh20tvi3DMwRjC_t82He_AOyYNq8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagvXBBlGegICMhAYeoTpyH94S60KpCarVqqegtGr9opDYpzS5njhz5jfwSZhJvlhWva-K8PDOeb8aTbxh7IQUQTJYxSO3irCx0DEZTJk5mkOlMgaOE_uFRcXCavT_Lz0LCrQtllcs1sV-obWsoR74jBUIR6qgi3lx9jqlrFO2uhhYaN9kmLsEKg6_N6d7R7HiVZckl0bMs2RpFugP2C7F0oyMj1VzzRj1p_5-Q5u8Fk78C2d4T7d9htwOE5LuDzLfYDdfcZVvBSDv-KjBJv77Hvr1bwMWPr98PHf3fW3eXfEZFLNbxk-M05-fQcQzDwfLdZl5f1j0nE93ZDC0lODSWz9o5FRTR4dVeN0eoy-kPJnR8fDoQPgM-aCjtcpYPhTa14R-pbVN3n53u7314exCH1guxIUK6eJIWpvQWoxmZW7AiRVH6EjCE9SrxEwdyYjOrUp_kGkFf7kqL84_zDQUYlQj5gG00beMeMe50kbvMGAHKoMe0WtEq4r1VArwsIWLxUgSVCbzk1B7johoYldOKRFaNIovYy3H81cDI8deRU5LoOIqYtPsD7fWnKhhmpVGqNvGJN4BIRziVi9SaRKcav7K0OmLbS32ognl31UoZI_Z8PI2GSbst0Lh2QWMKjAUpXI7Yw0F9xjeRiroOFJOIqTXFWnvV9TNNfd6TfyeJTCkmxWnrdfA_c1AhujlRhSwf__s7nrBbdM1Q2rjNNubXC_cU4dZcPws29RMsfS1Q
  priority: 102
  providerName: ProQuest
Title Dual‐Mechanism Peptide SR25 has Broad Antimicrobial Activity and Potential Application for Healing Bacteria‐infected Diabetic Wounds
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202401793
https://www.ncbi.nlm.nih.gov/pubmed/38874469
https://www.proquest.com/docview/3092372040
https://www.proquest.com/docview/3068750717
https://pubmed.ncbi.nlm.nih.gov/PMC11321617
https://doaj.org/article/bedcd1f1fca2440e8502dc1b2b9ea7db
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF5Be-GCKE9DiRYJCThYtXf92BwT2qpCpIoaKnqzZl-tpdZBddJzjxz5jfwSZmzHaQQIcbK0HvmxM-P5Zj37DWNvZQQEk2UIUrswyTMdgtG0EicTSHSiwNGC_uQ4OzpNPp2lZ3d28bf8EP2CG3lG870mBwdd761JQ8HeEN02RiSysftsm_bXEnu-SKbrVZZUEj0LdZjD7DqUKklWzI2R2Nu8xEZkagj8_4Q6fy-evAtqm6h0-Ig97OAkH7X632H3XPWY7XQOW_P3Hav0hyfs-_4SLn_e_pg42utb1ld8SgUt1vHZiUj5BdQcU3KwfFQtyquy4WeiK5u2vQSHyvLpfEHFRTS8_u_NEfZy2s2EQZCPW_JnwBu1ZV7O8rbopjT8K7Vwqp-y08ODLx-Pwq4NQ2iInC4ciszk3mJmI1MLNhKoVp8DprNexX7oQA5tYpXwcaoRAKYutxj0cO4hA6PiSD5jW9W8ci8YdzpLXWJMBMpg9LRa0RfFe6si8DKHgIUrFRSm4yinVhmXRcuuLApSWdGrLGDvevlvLTvHXyXHpNFeili1m4H59XnROWmhUas29rE3gKgnciqNhDWxFhrfMrc6YLsreyg6V68LGSFGplY_UcDe9KfRSenPC1RuviSZDPNCSp0D9rw1n_5JpKIOBNkwYGrDsDYedfNMVV40ROBxLAXlpzhtjQ3-Yw4KRDozlcn85X_Kv2IPaLCte9xlW4vrpXuNWGyhB427Ddj2aH_yeYbH8cHx9GTQrGz8ApgzNLQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAXRHkaCiwSCDhYtb1-bA4INbRVSpso6kP05u7LNFJrlzoBcePIkV_Cj-KXMONHQsTr1Ku9tnc9szPf7M5-A_CUe5JgMnclV9YNk1i5UitaieOhDFUopKUF_cEw7h-Gb4-ioyX43p6FobTK1iZWhtoUmtbI17iHUIQqqnivzz-4VDWKdlfbEhq1WuzYz58wZCtfbW-gfJ8FwdbmwZu-21QVcDVxrbndINZJZhCo88hI4wXYyyyRGJ1lws-6VvKuCY0IMj9SiGcimxi04WjNZSy18D2O770CyyHHUKYDy73N4WhvvqoTcaKDadkhvWBNmo_ECo6Ok6bCgverigT8Cdn-nqD5K3CuPN_WDbjeQFa2XuvYCizZ_CasNEahZC8a5uqXt-DrxlSe_vjybWDpPPG4PGMjSpoxlu3vBRE7kSXDsF8atp5PxmfjigOK3qzrEhZM5oaNigklMNHl-d46Q2jN6MQUOlrWqwmmJX6oTiWzhtWJPWPN3lGZqPI2HF6KUO5AJy9yew-YVXFkQ609KTR6aKMEWa0sM8KTGU-kA24rglQ3POhUjuM0rRmcg5REls5E5sDzWfvzmgHkry17JNFZK2Luri4UF-_TxhCkCqVq_MzPtERk5VkReYHRvgoUjjIxyoHVVh_SxpyU6Vz5HXgyu42GgHZ3ZG6LKbWJMfak8NyBu7X6zHrCBVU5iLsOiAXFWujq4p18fFKRjfs-DygGxt9W6eB__kGKaGpfxDy5_-9xPIar_YPBbrq7Pdx5ANfo-TqtchU6k4upfYhQb6IeNfOLwfFlT-mfOaBpHQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6VVEJcEGU1FBgkEHCwYs94mRwQakijltIqaqnozZ2VRmrtEicgbhw58nv4OfwS3vOSELGderUnzthv-97Mm-8R8pgHEmEy9yVX1o_SRPlSK1yJ45GMVCSkxQX93b1k6zB6fRQfrZDv7VkYLKtsfWLlqE2hcY28ywOAIthRJei6pixiNBi-PP_gYwcp3Glt22nUKrJjP3-C9K18sT0AWT9hbLj59tWW33QY8DXyrvk9lujUGQDtPDbSBAxm7FIJmZoToetZyXsmMoK5MFaAbWKbGvDn4NllIrUIAw7PvURWU8iKgg5Z7W_ujfYXKzwxR2qYlikyYF1pPiJDOARRNIulSFg1DPgTyv29WPNXEF1FweE1crWBr3Sj1rc1smLz62StcRAlfdawWD-_Qb4OZvL0x5dvuxbPFo_LMzrCAhpj6cE-i-mJLGl_UkhDN_Lp-Gxc8UHhk3XdzoLK3NBRMcViJry82GenALMpnp6CoEv7Ndm0hD-qy8qsoXWRz1jTd9gyqrxJDi9EKLdIJy9ye4dQq5LYRloHUmiI1kYJ9GDOGRFIx1PpEb8VQaYbTnRszXGa1WzOLEORZXOReeTpfPx5zQby15F9lOh8FLJ4VxeKyfuscQqZAqma0IVOS0BZgRVxwIwOFVPwlqlRHllv9SFrXEuZLQzBI4_mt8Ep4E6PzG0xwzEJ5KGYqnvkdq0-85lwgR0Pkp5HxJJiLU11-U4-PqmIx8OQM8yH4bNVOvifb5ABsjoQCU_v_vs9HpLLYMrZm-29nXvkCv68rrBcJ53pZGbvA-qbqgeNeVFyfNEW_RP0BW1S
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual%E2%80%90Mechanism+Peptide+SR25+has+Broad+Antimicrobial+Activity+and+Potential+Application+for+Healing+Bacteria%E2%80%90infected+Diabetic+Wounds&rft.jtitle=Advanced+science&rft.au=Luo%2C+Xue%E2%80%90Yue&rft.au=Hu%2C+Chun%E2%80%90Mei&rft.au=Yin%2C+Qi&rft.au=Zhang%2C+Xiao%E2%80%90Mei&rft.date=2024-08-01&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=2198-3844&rft.volume=11&rft.issue=30&rft_id=info:doi/10.1002%2Fadvs.202401793&rft_id=info%3Apmid%2F38874469&rft.externalDocID=PMC11321617
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon