Dual‐Mechanism Peptide SR25 has Broad Antimicrobial Activity and Potential Application for Healing Bacteria‐infected Diabetic Wounds
The rise of antibiotic resistance poses a significant public health crisis, particularly due to limited antimicrobial options for the treatment of infections with Gram‐negative pathogens. Here, an antimicrobial peptide (AMP) SR25 is characterized, which effectively kills both Gram‐negative and Gram‐...
Saved in:
Published in | Advanced science Vol. 11; no. 30; pp. e2401793 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.08.2024
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The rise of antibiotic resistance poses a significant public health crisis, particularly due to limited antimicrobial options for the treatment of infections with Gram‐negative pathogens. Here, an antimicrobial peptide (AMP) SR25 is characterized, which effectively kills both Gram‐negative and Gram‐positive bacteria through a unique dual‐targeting mechanism without detectable resistance. Meanwhile, an SR25‐functionalized hydrogel is developed for the efficient treatment of infected diabetic wounds. SR25 is obtained through genome mining from an uncultured bovine enteric actinomycete named Nonomuraea Jilinensis sp. nov. Investigations reveal that SR25 has two independent cellular targets, disrupting bacterial membrane integrity and restraining the activity of succinate:quinone oxidoreductase (SQR). In a diabetic mice wound infection model, the SR25‐incorporated hydrogel exhibits high efficacy against mixed infections of Escherichia coli (E. coli) and methicillin‐resistant Staphylococcus aureus (MRSA), accelerating wound healing. Overall, these findings demonstrate the therapeutic potential of SR25 and highlight the value of mining drugs with multiple mechanisms from uncultured animal commensals for combating challenging bacterial pathogens.
The previously uncultured bacterium presents a viable strategy for the discovery of novel antimicrobial peptides. The antimicrobial peptide SR25 operates through a dual mechanism, targeting both the bacterial cell membrane and succinate:quinone oxidoreductase. It exhibits outstanding antibacterial efficacy and promotes the recovery of infected diabetes wounds. |
---|---|
AbstractList | Abstract The rise of antibiotic resistance poses a significant public health crisis, particularly due to limited antimicrobial options for the treatment of infections with Gram‐negative pathogens. Here, an antimicrobial peptide (AMP) SR25 is characterized, which effectively kills both Gram‐negative and Gram‐positive bacteria through a unique dual‐targeting mechanism without detectable resistance. Meanwhile, an SR25‐functionalized hydrogel is developed for the efficient treatment of infected diabetic wounds. SR25 is obtained through genome mining from an uncultured bovine enteric actinomycete named Nonomuraea Jilinensis sp. nov. Investigations reveal that SR25 has two independent cellular targets, disrupting bacterial membrane integrity and restraining the activity of succinate:quinone oxidoreductase (SQR). In a diabetic mice wound infection model, the SR25‐incorporated hydrogel exhibits high efficacy against mixed infections of Escherichia coli (E. coli) and methicillin‐resistant Staphylococcus aureus (MRSA), accelerating wound healing. Overall, these findings demonstrate the therapeutic potential of SR25 and highlight the value of mining drugs with multiple mechanisms from uncultured animal commensals for combating challenging bacterial pathogens. The rise of antibiotic resistance poses a significant public health crisis, particularly due to limited antimicrobial options for the treatment of infections with Gram-negative pathogens. Here, an antimicrobial peptide (AMP) SR25 is characterized, which effectively kills both Gram-negative and Gram-positive bacteria through a unique dual-targeting mechanism without detectable resistance. Meanwhile, an SR25-functionalized hydrogel is developed for the efficient treatment of infected diabetic wounds. SR25 is obtained through genome mining from an uncultured bovine enteric actinomycete named Nonomuraea Jilinensis sp. nov. Investigations reveal that SR25 has two independent cellular targets, disrupting bacterial membrane integrity and restraining the activity of succinate:quinone oxidoreductase (SQR). In a diabetic mice wound infection model, the SR25-incorporated hydrogel exhibits high efficacy against mixed infections of Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA), accelerating wound healing. Overall, these findings demonstrate the therapeutic potential of SR25 and highlight the value of mining drugs with multiple mechanisms from uncultured animal commensals for combating challenging bacterial pathogens. The rise of antibiotic resistance poses a significant public health crisis, particularly due to limited antimicrobial options for the treatment of infections with Gram‐negative pathogens. Here, an antimicrobial peptide (AMP) SR25 is characterized, which effectively kills both Gram‐negative and Gram‐positive bacteria through a unique dual‐targeting mechanism without detectable resistance. Meanwhile, an SR25‐functionalized hydrogel is developed for the efficient treatment of infected diabetic wounds. SR25 is obtained through genome mining from an uncultured bovine enteric actinomycete named Nonomuraea Jilinensis sp. nov. Investigations reveal that SR25 has two independent cellular targets, disrupting bacterial membrane integrity and restraining the activity of succinate:quinone oxidoreductase (SQR). In a diabetic mice wound infection model, the SR25‐incorporated hydrogel exhibits high efficacy against mixed infections of Escherichia coli ( E. coli ) and methicillin‐resistant Staphylococcus aureus (MRSA), accelerating wound healing. Overall, these findings demonstrate the therapeutic potential of SR25 and highlight the value of mining drugs with multiple mechanisms from uncultured animal commensals for combating challenging bacterial pathogens. The previously uncultured bacterium presents a viable strategy for the discovery of novel antimicrobial peptides. The antimicrobial peptide SR25 operates through a dual mechanism, targeting both the bacterial cell membrane and succinate:quinone oxidoreductase. It exhibits outstanding antibacterial efficacy and promotes the recovery of infected diabetes wounds. The rise of antibiotic resistance poses a significant public health crisis, particularly due to limited antimicrobial options for the treatment of infections with Gram-negative pathogens. Here, an antimicrobial peptide (AMP) SR25 is characterized, which effectively kills both Gram-negative and Gram-positive bacteria through a unique dual-targeting mechanism without detectable resistance. Meanwhile, an SR25-functionalized hydrogel is developed for the efficient treatment of infected diabetic wounds. SR25 is obtained through genome mining from an uncultured bovine enteric actinomycete named Nonomuraea Jilinensis sp. nov. Investigations reveal that SR25 has two independent cellular targets, disrupting bacterial membrane integrity and restraining the activity of succinate:quinone oxidoreductase (SQR). In a diabetic mice wound infection model, the SR25-incorporated hydrogel exhibits high efficacy against mixed infections of Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA), accelerating wound healing. Overall, these findings demonstrate the therapeutic potential of SR25 and highlight the value of mining drugs with multiple mechanisms from uncultured animal commensals for combating challenging bacterial pathogens.The rise of antibiotic resistance poses a significant public health crisis, particularly due to limited antimicrobial options for the treatment of infections with Gram-negative pathogens. Here, an antimicrobial peptide (AMP) SR25 is characterized, which effectively kills both Gram-negative and Gram-positive bacteria through a unique dual-targeting mechanism without detectable resistance. Meanwhile, an SR25-functionalized hydrogel is developed for the efficient treatment of infected diabetic wounds. SR25 is obtained through genome mining from an uncultured bovine enteric actinomycete named Nonomuraea Jilinensis sp. nov. Investigations reveal that SR25 has two independent cellular targets, disrupting bacterial membrane integrity and restraining the activity of succinate:quinone oxidoreductase (SQR). In a diabetic mice wound infection model, the SR25-incorporated hydrogel exhibits high efficacy against mixed infections of Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA), accelerating wound healing. Overall, these findings demonstrate the therapeutic potential of SR25 and highlight the value of mining drugs with multiple mechanisms from uncultured animal commensals for combating challenging bacterial pathogens. The rise of antibiotic resistance poses a significant public health crisis, particularly due to limited antimicrobial options for the treatment of infections with Gram‐negative pathogens. Here, an antimicrobial peptide (AMP) SR25 is characterized, which effectively kills both Gram‐negative and Gram‐positive bacteria through a unique dual‐targeting mechanism without detectable resistance. Meanwhile, an SR25‐functionalized hydrogel is developed for the efficient treatment of infected diabetic wounds. SR25 is obtained through genome mining from an uncultured bovine enteric actinomycete named Nonomuraea Jilinensis sp. nov. Investigations reveal that SR25 has two independent cellular targets, disrupting bacterial membrane integrity and restraining the activity of succinate:quinone oxidoreductase (SQR). In a diabetic mice wound infection model, the SR25‐incorporated hydrogel exhibits high efficacy against mixed infections of Escherichia coli (E. coli) and methicillin‐resistant Staphylococcus aureus (MRSA), accelerating wound healing. Overall, these findings demonstrate the therapeutic potential of SR25 and highlight the value of mining drugs with multiple mechanisms from uncultured animal commensals for combating challenging bacterial pathogens. The previously uncultured bacterium presents a viable strategy for the discovery of novel antimicrobial peptides. The antimicrobial peptide SR25 operates through a dual mechanism, targeting both the bacterial cell membrane and succinate:quinone oxidoreductase. It exhibits outstanding antibacterial efficacy and promotes the recovery of infected diabetes wounds. The rise of antibiotic resistance poses a significant public health crisis, particularly due to limited antimicrobial options for the treatment of infections with Gram‐negative pathogens. Here, an antimicrobial peptide (AMP) SR25 is characterized, which effectively kills both Gram‐negative and Gram‐positive bacteria through a unique dual‐targeting mechanism without detectable resistance. Meanwhile, an SR25‐functionalized hydrogel is developed for the efficient treatment of infected diabetic wounds. SR25 is obtained through genome mining from an uncultured bovine enteric actinomycete named Nonomuraea Jilinensis sp. nov. Investigations reveal that SR25 has two independent cellular targets, disrupting bacterial membrane integrity and restraining the activity of succinate:quinone oxidoreductase (SQR). In a diabetic mice wound infection model, the SR25‐incorporated hydrogel exhibits high efficacy against mixed infections of Escherichia coli ( E. coli ) and methicillin‐resistant Staphylococcus aureus (MRSA), accelerating wound healing. Overall, these findings demonstrate the therapeutic potential of SR25 and highlight the value of mining drugs with multiple mechanisms from uncultured animal commensals for combating challenging bacterial pathogens. |
Author | Yin, Qi Chen, Wei Yang, Yong‐Jun Luo, Xue‐Yue Zhang, Xiao‐Mei Liu, Zhen‐Zhen Zhang, Jian‐Gang Hu, Chun‐Mei Zhou, Cheng‐Kai |
AuthorAffiliation | 1 Department of Preventive Veterinary Medicine College of Veterinary Medicine Jilin University Changchun Jilin 130062 P. R. China |
AuthorAffiliation_xml | – name: 1 Department of Preventive Veterinary Medicine College of Veterinary Medicine Jilin University Changchun Jilin 130062 P. R. China |
Author_xml | – sequence: 1 givenname: Xue‐Yue surname: Luo fullname: Luo, Xue‐Yue organization: Jilin University – sequence: 2 givenname: Chun‐Mei surname: Hu fullname: Hu, Chun‐Mei organization: Jilin University – sequence: 3 givenname: Qi surname: Yin fullname: Yin, Qi organization: Jilin University – sequence: 4 givenname: Xiao‐Mei surname: Zhang fullname: Zhang, Xiao‐Mei organization: Jilin University – sequence: 5 givenname: Zhen‐Zhen surname: Liu fullname: Liu, Zhen‐Zhen organization: Jilin University – sequence: 6 givenname: Cheng‐Kai surname: Zhou fullname: Zhou, Cheng‐Kai organization: Jilin University – sequence: 7 givenname: Jian‐Gang surname: Zhang fullname: Zhang, Jian‐Gang organization: Jilin University – sequence: 8 givenname: Wei surname: Chen fullname: Chen, Wei email: youngjune@jlu.edu.cn organization: Jilin University – sequence: 9 givenname: Yong‐Jun orcidid: 0000-0002-5294-9790 surname: Yang fullname: Yang, Yong‐Jun email: chw_cc@jlu.edu.cn organization: Jilin University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38874469$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUktvEzEQXqEiWkqvHJElLlwS_NrYe0JpA7RSERXlcbRmbW_iaGMHezcoN44c-Y38EpxHq7YS4uTxzDfffPN4Whz44G1RPCd4SDCmr8Gs0pBiyjERFXtUHFFSyQGTnB_csQ-Lk5TmGGNSMsGJfFIcMikF56PqqPg16aH98_P3B6tn4F1aoCu77Jyx6PoTLdEMEjqNAQwa-84tnI6hdtCise7cynVrBN6gq9DZHN24l8vWaehc8KgJEZ1baJ2folPQnY0OciHnG5s_Bk0c1LZzGn0LvTfpWfG4gTbZk_17XHx59_bz2fng8uP7i7Px5UCXlRCDio60aAyXgpUGDKbA6kYAFbyRpKkssMpwI2lDyhqXvLTCECpz7zACLQlmx8XFjtcEmKtldAuIaxXAqa0jxKmCmGW1VtXWaEMa0mignGMrS0yNJjWtcx1h6sz1Zse17OtFBucpRGjvkd6PeDdT07BShDBKRkRkhld7hhi-9zZ1auGStm0L3oY-KYZHUpRYbKEvH0DnoY8-zyqjKsoExXzT3ou7km613Gw8A_gOkFeZUrSN0q7bbiwrdK0iWG1uS21uS93eVk4bPki7Yf5nwr7OD9fa9X_Qajz5ei1HTLC_qu3kJg |
CitedBy_id | crossref_primary_10_1016_j_cej_2024_155575 crossref_primary_10_3389_fcimb_2024_1463551 crossref_primary_10_1016_j_bioactmat_2025_01_002 crossref_primary_10_1016_j_micres_2024_127980 |
Cites_doi | 10.1039/D0CS01026J 10.1021/acsami.9b22595 10.1099/ijs.0.059774-0 10.1016/j.cell.2020.02.056 10.1002/adhm.202100877 10.1016/j.bioactmat.2022.01.009 10.1002/advs.202305078 10.1038/s41467-023-36994-z 10.1093/nar/gkab225 10.1186/s40779-021-00343-2 10.1016/j.actbio.2022.04.025 10.1021/acs.jafc.2c01458 10.1016/j.cbi.2020.109305 10.1186/s12929-022-00874-3 10.1073/pnas.0237315100 10.1038/nature12959 10.1093/molbev/msab120 10.1002/jcc.20291 10.1007/978-0-387-46312-4 10.1093/bioinformatics/btu097 10.1038/415389a 10.1021/acsnano.9b07836 10.15252/emmm.202115409 10.1016/j.lfs.2020.118381 10.1093/nar/gkv1051 10.1038/cdd.2010.93 10.1039/C6NP00025H 10.1038/nrd3591 10.1038/s41587-022-01226-0 10.1002/mabi.202200514 10.1093/nar/gkad344 10.1016/j.ejmech.2015.03.060 10.1016/j.drup.2016.04.002 10.1038/nrd3975 10.3390/gels9040265 10.1016/j.ijfoodmicro.2022.109953 10.1016/j.apsb.2019.05.002 10.1021/acs.jafc.6b00325 10.1186/s12864-022-08623-4 10.1093/nar/gkv1278 10.1002/advs.202305918 10.1038/s41522-022-00320-0 10.1002/ps.6762 10.1016/j.actbio.2021.01.046 10.1021/acsami.9b09824 10.1073/pnas.1612277113 10.1371/journal.ppat.1005098 10.1038/s41573-020-00114-z 10.1186/s40779-020-00249-5 10.1016/j.jconrel.2014.08.016 10.1016/j.gpb.2018.01.002 10.1016/j.cell.2023.07.038 10.1099/ijsem.0.002516 10.1016/j.apsb.2023.06.003 10.3389/fcimb.2021.809542 10.1099/ijs.0.65054-0 10.1099/ijs.0.056994-0 10.1002/advs.202300472 10.1126/science.7529940 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH. 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH – notice: 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH. – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202401793 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals (ODIN) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_bedcd1f1fca2440e8502dc1b2b9ea7db PMC11321617 38874469 10_1002_advs_202401793 ADVS8637 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 32070119 – fundername: National Natural Science Foundation of China grantid: 32070119 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO ITC KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAYXX ADMLS AFPKN CITATION EJD IGS PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5977-926c7fd48735dad02a3bf7a274f81f9ea39d4d82f15b0545e7d128001a6ac8103 |
IEDL.DBID | 24P |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:31:10 EDT 2025 Thu Aug 21 18:34:26 EDT 2025 Fri Jul 11 01:05:56 EDT 2025 Sat Jul 26 00:52:13 EDT 2025 Mon Jul 21 05:56:34 EDT 2025 Tue Jul 01 04:00:09 EDT 2025 Thu Apr 24 23:04:15 EDT 2025 Wed Jan 22 17:17:07 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 30 |
Keywords | membrane disrupting diabetic wound hydrogel succinate:quinone reductase antimicrobial peptides uncultured bacteria |
Language | English |
License | Attribution 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5977-926c7fd48735dad02a3bf7a274f81f9ea39d4d82f15b0545e7d128001a6ac8103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5294-9790 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202401793 |
PMID | 38874469 |
PQID | 3092372040 |
PQPubID | 4365299 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bedcd1f1fca2440e8502dc1b2b9ea7db pubmedcentral_primary_oai_pubmedcentral_nih_gov_11321617 proquest_miscellaneous_3068750717 proquest_journals_3092372040 pubmed_primary_38874469 crossref_citationtrail_10_1002_advs_202401793 crossref_primary_10_1002_advs_202401793 wiley_primary_10_1002_advs_202401793_ADVS8637 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2021; 20 2023; 186 2021; 124 2022; 70 2019; 11 2018 2014; 68 64 2019; 13 2023; 9 2022; 23 2020; 12 2005; 26 2013 2014; 12 506 2014; 64 2016; 33 2023 2020; 23 261 2022 2022; 383 29 2020; 7 2021; 38 2011 2021; 11 50 2022; 78 2016; 113 2020; 332 2016; 44 2023; 10 2021; 8 2023; 51 2021; 49 2019; 9 2023; 13 2023; 14 2023; 11 2020; 181 2002; 415 2006 2014; 194 2024; 11 2021; 1 2015 2021; 11 10 2022 2022 2022; 146 8 40 2007; 57 2003 2011; 100 18 2021; 11 2016 2015; 64 95 2022; 14 1995; 267 2014; 30 2016; 26 2018; 16 2022; 17 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_24_2 e_1_2_8_26_1 e_1_2_8_49_1 Zheng W. (e_1_2_8_40_1) 2021; 1 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_5_2 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_17_2 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_13_2 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_30_1 e_1_2_8_27_2 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_8_3 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_2 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_12_2 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_14_2 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_50_1 |
References_xml | – volume: 13 year: 2019 publication-title: ACS Nano. – volume: 9 start-page: 265 year: 2023 publication-title: Gels. – volume: 49 start-page: W216 year: 2021 publication-title: Nucleic Acids Res. – volume: 100 18 start-page: 473 338 year: 2003 2011 publication-title: Proc. Natl. Acad. Sci. USA. Cell Death Differ. – volume: 23 start-page: 380 year: 2022 publication-title: BMC Genomics. – volume: 44 year: 2016 publication-title: Nucleic Acids Res. – volume: 181 start-page: 29 year: 2020 publication-title: Cell. – volume: 13 start-page: 3678 year: 2023 publication-title: Acta Pharm. Sin. B. – volume: 26 start-page: 1701 year: 2005 publication-title: J. Comput. Chem. – volume: 124 start-page: 205 year: 2021 publication-title: Acta Biomater. – volume: 8 start-page: 48 year: 2021 publication-title: Mil. Med. Res. – volume: 70 start-page: 5570 year: 2022 publication-title: J. Agric. Food Chem. – volume: 11 50 start-page: 37 4932 year: 2011 2021 publication-title: Nat Rev. Drug Discov. Chem. Soc. Rev. – volume: 332 year: 2020 publication-title: Chem. Biol. Interact. – volume: 11 year: 2021 publication-title: Front Cell Infect. Microbiol. – volume: 26 start-page: 43 year: 2016 publication-title: Drug Resist. Updat. – volume: 383 29 start-page: 89 year: 2022 2022 publication-title: Int. J. Food Microbiol. J. Biomed. Sci. – volume: 14 year: 2022 publication-title: EMBO Mol. Med. – volume: 23 261 year: 2023 2020 publication-title: Macromol. Biosci. Life Sci. – volume: 194 start-page: 138 year: 2014 publication-title: J. Control Release. – volume: 267 start-page: 383 year: 1995 publication-title: Science. – volume: 113 year: 2016 publication-title: Proc. Natl. Acad. Sci. USA. – volume: 146 8 40 start-page: 131 58 921 year: 2022 2022 2022 publication-title: Acta. Biomater. NPJ Biofilms Microbiomes. Nat. Biotechnol. – volume: 64 95 start-page: 4830 424 year: 2016 2015 publication-title: J. Agric. Food Chem. Eur. J. Med. Chem. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces. – volume: 78 start-page: 1448 year: 2022 publication-title: Pest Manag. Sci. – volume: 16 start-page: 405 year: 2018 publication-title: Genomics Proteomics Bioinformatics. – volume: 10 year: 2023 publication-title: Adv. Sci. (Weinh). – volume: 11 year: 2023 publication-title: Adv. Sci. (Weinh). – volume: 1 year: 2021 publication-title: Cell Rep. Methods. – volume: 20 start-page: 200 year: 2021 publication-title: Nat. Rev. Drug Discov. – volume: 12 506 start-page: 371 58 year: 2013 2014 publication-title: Nat. Rev. Drug Discov. Nature. – volume: 51 start-page: W46 year: 2023 publication-title: Nucleic Acids Res. – volume: 68 64 start-page: 461 352 year: 2018 2014 publication-title: Int. J. Syst. Evol. Microbiol. Int. J. Syst. Evol. Microbiol. – volume: 186 start-page: 4059 year: 2023 publication-title: Cell. – volume: 57 start-page: 1504 year: 2007 publication-title: Int. J. Syst. Evol. Microbiol. – volume: 17 start-page: 471 year: 2022 publication-title: Bioact. Mater. – volume: 7 start-page: 20 year: 2020 publication-title: Mil. Med. Res. – volume: 14 start-page: 1453 year: 2023 publication-title: Nat. Commun. – volume: 11 10 year: 2015 2021 publication-title: PLoS Pathog. Adv. Healthcare Mater. – volume: 11 year: 2024 publication-title: Adv. Sci. (Weinh). – volume: 64 start-page: 346 year: 2014 publication-title: Int. J. Syst. Evol. Microbiol. – volume: 9 start-page: 1174 year: 2019 publication-title: Acta Pharm. Sin. B. – year: 2006 – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces. – volume: 33 start-page: 988 year: 2016 publication-title: Nat. Prod. Rep. – volume: 38 start-page: 3022 year: 2021 publication-title: Mol. Biol. Evol. – volume: 415 start-page: 389 year: 2002 publication-title: Nature. – volume: 30 start-page: 1771 year: 2014 publication-title: Bioinformatics. – ident: e_1_2_8_5_2 doi: 10.1039/D0CS01026J – ident: e_1_2_8_50_1 doi: 10.1021/acsami.9b22595 – ident: e_1_2_8_10_1 doi: 10.1099/ijs.0.059774-0 – ident: e_1_2_8_16_1 doi: 10.1016/j.cell.2020.02.056 – ident: e_1_2_8_1_2 doi: 10.1002/adhm.202100877 – volume: 1 year: 2021 ident: e_1_2_8_40_1 publication-title: Cell Rep. Methods. – ident: e_1_2_8_49_1 doi: 10.1016/j.bioactmat.2022.01.009 – ident: e_1_2_8_9_1 doi: 10.1002/advs.202305078 – ident: e_1_2_8_38_1 doi: 10.1038/s41467-023-36994-z – ident: e_1_2_8_39_1 doi: 10.1093/nar/gkab225 – ident: e_1_2_8_23_1 doi: 10.1186/s40779-021-00343-2 – ident: e_1_2_8_8_1 doi: 10.1016/j.actbio.2022.04.025 – ident: e_1_2_8_32_1 doi: 10.1021/acs.jafc.2c01458 – ident: e_1_2_8_41_1 doi: 10.1016/j.cbi.2020.109305 – ident: e_1_2_8_13_2 doi: 10.1186/s12929-022-00874-3 – ident: e_1_2_8_14_1 doi: 10.1073/pnas.0237315100 – ident: e_1_2_8_17_2 doi: 10.1038/nature12959 – ident: e_1_2_8_33_1 doi: 10.1093/molbev/msab120 – ident: e_1_2_8_47_1 doi: 10.1002/jcc.20291 – ident: e_1_2_8_48_1 doi: 10.1007/978-0-387-46312-4 – ident: e_1_2_8_46_1 doi: 10.1093/bioinformatics/btu097 – ident: e_1_2_8_6_1 doi: 10.1038/415389a – ident: e_1_2_8_44_1 doi: 10.1021/acsnano.9b07836 – ident: e_1_2_8_22_1 doi: 10.15252/emmm.202115409 – ident: e_1_2_8_27_2 doi: 10.1016/j.lfs.2020.118381 – ident: e_1_2_8_37_1 doi: 10.1093/nar/gkv1051 – ident: e_1_2_8_14_2 doi: 10.1038/cdd.2010.93 – ident: e_1_2_8_20_1 doi: 10.1039/C6NP00025H – ident: e_1_2_8_5_1 doi: 10.1038/nrd3591 – ident: e_1_2_8_8_3 doi: 10.1038/s41587-022-01226-0 – ident: e_1_2_8_27_1 doi: 10.1002/mabi.202200514 – ident: e_1_2_8_35_1 doi: 10.1093/nar/gkad344 – ident: e_1_2_8_24_2 doi: 10.1016/j.ejmech.2015.03.060 – ident: e_1_2_8_7_1 doi: 10.1016/j.drup.2016.04.002 – ident: e_1_2_8_17_1 doi: 10.1038/nrd3975 – ident: e_1_2_8_28_1 doi: 10.3390/gels9040265 – ident: e_1_2_8_13_1 doi: 10.1016/j.ijfoodmicro.2022.109953 – ident: e_1_2_8_42_1 doi: 10.1016/j.apsb.2019.05.002 – ident: e_1_2_8_24_1 doi: 10.1021/acs.jafc.6b00325 – ident: e_1_2_8_34_1 doi: 10.1186/s12864-022-08623-4 – ident: e_1_2_8_36_1 doi: 10.1093/nar/gkv1278 – ident: e_1_2_8_2_1 doi: 10.1002/advs.202305918 – ident: e_1_2_8_8_2 doi: 10.1038/s41522-022-00320-0 – ident: e_1_2_8_25_1 doi: 10.1002/ps.6762 – ident: e_1_2_8_26_1 doi: 10.1016/j.actbio.2021.01.046 – ident: e_1_2_8_3_1 doi: 10.1021/acsami.9b09824 – ident: e_1_2_8_29_1 doi: 10.1073/pnas.1612277113 – ident: e_1_2_8_1_1 doi: 10.1371/journal.ppat.1005098 – ident: e_1_2_8_19_1 doi: 10.1038/s41573-020-00114-z – ident: e_1_2_8_30_1 doi: 10.1186/s40779-020-00249-5 – ident: e_1_2_8_31_1 doi: 10.1016/j.jconrel.2014.08.016 – ident: e_1_2_8_21_1 doi: 10.1016/j.gpb.2018.01.002 – ident: e_1_2_8_18_1 doi: 10.1016/j.cell.2023.07.038 – ident: e_1_2_8_12_1 doi: 10.1099/ijsem.0.002516 – ident: e_1_2_8_45_1 doi: 10.1016/j.apsb.2023.06.003 – ident: e_1_2_8_43_1 doi: 10.3389/fcimb.2021.809542 – ident: e_1_2_8_11_1 doi: 10.1099/ijs.0.65054-0 – ident: e_1_2_8_12_2 doi: 10.1099/ijs.0.056994-0 – ident: e_1_2_8_4_1 doi: 10.1002/advs.202300472 – ident: e_1_2_8_15_1 doi: 10.1126/science.7529940 |
SSID | ssj0001537418 |
Score | 2.3848438 |
Snippet | The rise of antibiotic resistance poses a significant public health crisis, particularly due to limited antimicrobial options for the treatment of infections... Abstract The rise of antibiotic resistance poses a significant public health crisis, particularly due to limited antimicrobial options for the treatment of... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2401793 |
SubjectTerms | Animals Anti-Bacterial Agents - pharmacology Anti-Bacterial Agents - therapeutic use Antibiotics Antimicrobial agents antimicrobial peptides Antimicrobial Peptides - pharmacology Bacteria Bacterial infections Biocompatibility Biofilms Dairy cattle Diabetes Diabetes Mellitus, Experimental - drug therapy diabetic wound Disease Models, Animal Drug resistance E coli Escherichia coli - drug effects Genomes hydrogel Hydrogels Listeria membrane disrupting Methicillin-Resistant Staphylococcus aureus - drug effects Mice Microbial Sensitivity Tests Natural products Peptides Physiology Salmonella Staphylococcus infections succinate:quinone reductase uncultured bacteria Wound Healing - drug effects Wound Infection - drug therapy Wound Infection - microbiology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals (ODIN) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQ5RkoyEhIwCGqY-fhPbZAVSEVVZSK3qzxS43UZhHZ7blHjvxGfgkzcTbsClAvXG3LsWbGnm_i8TeMvVQCCCarHJQNednUNgdn6U-cKqG0pYZAP_SPPtaHp-WHs-psrdQX5YQleuAkuF0bvPNFLKID9EQi6EpI7wor7SxA4y2dvujz1oKp9D5YES3LiqVRyF3wV8TOjQ6MTHLDCw1k_X9DmH8mSq4D2MEDHdxld0boyPfSkrfZrdDdY9vj5uz565FB-s199v3dEi5-Xv84CvSut-0v-TElr_jATz7Jip9DzzH8Bs_3ukV72Q5cTDSzS6UkOHSeH88XlEhEzb_vuDlCXE4vl9Dh8f1E9Az4oZTSFTxPCTat41-oXFP_gJ0evP_89jAfSy7kjojo8pmsXRM9RjGq8uCFRBXGBjB0jbqIKHE186XXMhaVRbBXhcajg0N5Qw1OF0I9ZFvdvAuPGQ-2rkLpnADt0FN6q-n0iNFrAVE1kLF8pQLjRj5yKotxYRKTsjSkMjOpLGOvpvFfExPHP0fuk0anUcSgPTSgXZnRrsxNdpWxnZU9mHFb90YJxMNU1kdk7MXUjRuSblmgC_MljakxBqQwOWOPkvlMK1Gaqg3Us4zpDcPaWOpmT9eeD6TfRaEkxaIotsEGb5CBQVRzomvVPPkfwnjKbtPMKfFxh20tvi3DMwRjC_t82He_AOyYNq8 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagvXBBlGegICMhAYeoTpyH94S60KpCarVqqegtGr9opDYpzS5njhz5jfwSZhJvlhWva-K8PDOeb8aTbxh7IQUQTJYxSO3irCx0DEZTJk5mkOlMgaOE_uFRcXCavT_Lz0LCrQtllcs1sV-obWsoR74jBUIR6qgi3lx9jqlrFO2uhhYaN9kmLsEKg6_N6d7R7HiVZckl0bMs2RpFugP2C7F0oyMj1VzzRj1p_5-Q5u8Fk78C2d4T7d9htwOE5LuDzLfYDdfcZVvBSDv-KjBJv77Hvr1bwMWPr98PHf3fW3eXfEZFLNbxk-M05-fQcQzDwfLdZl5f1j0nE93ZDC0lODSWz9o5FRTR4dVeN0eoy-kPJnR8fDoQPgM-aCjtcpYPhTa14R-pbVN3n53u7314exCH1guxIUK6eJIWpvQWoxmZW7AiRVH6EjCE9SrxEwdyYjOrUp_kGkFf7kqL84_zDQUYlQj5gG00beMeMe50kbvMGAHKoMe0WtEq4r1VArwsIWLxUgSVCbzk1B7johoYldOKRFaNIovYy3H81cDI8deRU5LoOIqYtPsD7fWnKhhmpVGqNvGJN4BIRziVi9SaRKcav7K0OmLbS32ognl31UoZI_Z8PI2GSbst0Lh2QWMKjAUpXI7Yw0F9xjeRiroOFJOIqTXFWnvV9TNNfd6TfyeJTCkmxWnrdfA_c1AhujlRhSwf__s7nrBbdM1Q2rjNNubXC_cU4dZcPws29RMsfS1Q priority: 102 providerName: ProQuest |
Title | Dual‐Mechanism Peptide SR25 has Broad Antimicrobial Activity and Potential Application for Healing Bacteria‐infected Diabetic Wounds |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202401793 https://www.ncbi.nlm.nih.gov/pubmed/38874469 https://www.proquest.com/docview/3092372040 https://www.proquest.com/docview/3068750717 https://pubmed.ncbi.nlm.nih.gov/PMC11321617 https://doaj.org/article/bedcd1f1fca2440e8502dc1b2b9ea7db |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF5Be-GCKE9DiRYJCThYtXf92BwT2qpCpIoaKnqzZl-tpdZBddJzjxz5jfwSZmzHaQQIcbK0HvmxM-P5Zj37DWNvZQQEk2UIUrswyTMdgtG0EicTSHSiwNGC_uQ4OzpNPp2lZ3d28bf8EP2CG3lG870mBwdd761JQ8HeEN02RiSysftsm_bXEnu-SKbrVZZUEj0LdZjD7DqUKklWzI2R2Nu8xEZkagj8_4Q6fy-evAtqm6h0-Ig97OAkH7X632H3XPWY7XQOW_P3Hav0hyfs-_4SLn_e_pg42utb1ld8SgUt1vHZiUj5BdQcU3KwfFQtyquy4WeiK5u2vQSHyvLpfEHFRTS8_u_NEfZy2s2EQZCPW_JnwBu1ZV7O8rbopjT8K7Vwqp-y08ODLx-Pwq4NQ2iInC4ciszk3mJmI1MLNhKoVp8DprNexX7oQA5tYpXwcaoRAKYutxj0cO4hA6PiSD5jW9W8ci8YdzpLXWJMBMpg9LRa0RfFe6si8DKHgIUrFRSm4yinVhmXRcuuLApSWdGrLGDvevlvLTvHXyXHpNFeili1m4H59XnROWmhUas29rE3gKgnciqNhDWxFhrfMrc6YLsreyg6V68LGSFGplY_UcDe9KfRSenPC1RuviSZDPNCSp0D9rw1n_5JpKIOBNkwYGrDsDYedfNMVV40ROBxLAXlpzhtjQ3-Yw4KRDozlcn85X_Kv2IPaLCte9xlW4vrpXuNWGyhB427Ddj2aH_yeYbH8cHx9GTQrGz8ApgzNLQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAXRHkaCiwSCDhYtb1-bA4INbRVSpso6kP05u7LNFJrlzoBcePIkV_Cj-KXMONHQsTr1Ku9tnc9szPf7M5-A_CUe5JgMnclV9YNk1i5UitaieOhDFUopKUF_cEw7h-Gb4-ioyX43p6FobTK1iZWhtoUmtbI17iHUIQqqnivzz-4VDWKdlfbEhq1WuzYz58wZCtfbW-gfJ8FwdbmwZu-21QVcDVxrbndINZJZhCo88hI4wXYyyyRGJ1lws-6VvKuCY0IMj9SiGcimxi04WjNZSy18D2O770CyyHHUKYDy73N4WhvvqoTcaKDadkhvWBNmo_ECo6Ok6bCgverigT8Cdn-nqD5K3CuPN_WDbjeQFa2XuvYCizZ_CasNEahZC8a5uqXt-DrxlSe_vjybWDpPPG4PGMjSpoxlu3vBRE7kSXDsF8atp5PxmfjigOK3qzrEhZM5oaNigklMNHl-d46Q2jN6MQUOlrWqwmmJX6oTiWzhtWJPWPN3lGZqPI2HF6KUO5AJy9yew-YVXFkQ609KTR6aKMEWa0sM8KTGU-kA24rglQ3POhUjuM0rRmcg5REls5E5sDzWfvzmgHkry17JNFZK2Luri4UF-_TxhCkCqVq_MzPtERk5VkReYHRvgoUjjIxyoHVVh_SxpyU6Vz5HXgyu42GgHZ3ZG6LKbWJMfak8NyBu7X6zHrCBVU5iLsOiAXFWujq4p18fFKRjfs-DygGxt9W6eB__kGKaGpfxDy5_-9xPIar_YPBbrq7Pdx5ANfo-TqtchU6k4upfYhQb6IeNfOLwfFlT-mfOaBpHQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6VVEJcEGU1FBgkEHCwYs94mRwQakijltIqaqnozZ2VRmrtEicgbhw58nv4OfwS3vOSELGderUnzthv-97Mm-8R8pgHEmEy9yVX1o_SRPlSK1yJ45GMVCSkxQX93b1k6zB6fRQfrZDv7VkYLKtsfWLlqE2hcY28ywOAIthRJei6pixiNBi-PP_gYwcp3Glt22nUKrJjP3-C9K18sT0AWT9hbLj59tWW33QY8DXyrvk9lujUGQDtPDbSBAxm7FIJmZoToetZyXsmMoK5MFaAbWKbGvDn4NllIrUIAw7PvURWU8iKgg5Z7W_ujfYXKzwxR2qYlikyYF1pPiJDOARRNIulSFg1DPgTyv29WPNXEF1FweE1crWBr3Sj1rc1smLz62StcRAlfdawWD-_Qb4OZvL0x5dvuxbPFo_LMzrCAhpj6cE-i-mJLGl_UkhDN_Lp-Gxc8UHhk3XdzoLK3NBRMcViJry82GenALMpnp6CoEv7Ndm0hD-qy8qsoXWRz1jTd9gyqrxJDi9EKLdIJy9ye4dQq5LYRloHUmiI1kYJ9GDOGRFIx1PpEb8VQaYbTnRszXGa1WzOLEORZXOReeTpfPx5zQby15F9lOh8FLJ4VxeKyfuscQqZAqma0IVOS0BZgRVxwIwOFVPwlqlRHllv9SFrXEuZLQzBI4_mt8Ep4E6PzG0xwzEJ5KGYqnvkdq0-85lwgR0Pkp5HxJJiLU11-U4-PqmIx8OQM8yH4bNVOvifb5ABsjoQCU_v_vs9HpLLYMrZm-29nXvkCv68rrBcJ53pZGbvA-qbqgeNeVFyfNEW_RP0BW1S |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual%E2%80%90Mechanism+Peptide+SR25+has+Broad+Antimicrobial+Activity+and+Potential+Application+for+Healing+Bacteria%E2%80%90infected+Diabetic+Wounds&rft.jtitle=Advanced+science&rft.au=Luo%2C+Xue%E2%80%90Yue&rft.au=Hu%2C+Chun%E2%80%90Mei&rft.au=Yin%2C+Qi&rft.au=Zhang%2C+Xiao%E2%80%90Mei&rft.date=2024-08-01&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=2198-3844&rft.volume=11&rft.issue=30&rft_id=info:doi/10.1002%2Fadvs.202401793&rft_id=info%3Apmid%2F38874469&rft.externalDocID=PMC11321617 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |