A universal, accurate intensity-based classification of different physical activities using raw data of accelerometer
Summary Objective Accelerometers are increasingly used for objective assessment of physical activity. However, because of lack of the proprietary analysis algorithms, direct comparisons between accelerometer brands are difficult. In this study, we propose and evaluate open source methods for commens...
Saved in:
Published in | Clinical physiology and functional imaging Vol. 35; no. 1; pp. 64 - 70 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.01.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Objective
Accelerometers are increasingly used for objective assessment of physical activity. However, because of lack of the proprietary analysis algorithms, direct comparisons between accelerometer brands are difficult. In this study, we propose and evaluate open source methods for commensurate assessment of raw accelerometer data irrespective of the brand.
Design
Twenty‐one participants carried simultaneously three different tri‐axial accelerometers on their waist during five different sedentary activities and five different intensity levels of bipedal movement from slow walking to running. Several time and frequency domain traits were calculated from the measured raw data, and their performance in classifying the activities was compared.
Results
Of the several traits, the mean amplitude deviation (MAD) provided consistently the best performance in separating the sedentary activities and different speeds of bipedal movement from each other. Most importantly, the universal cut‐off limits based on MAD classified sedentary activities and different intensity levels of walking and running equally well for all three accelerometer brands and reached at least 97% sensitivity and specificity in each case.
Conclusion
Irrespective of the accelerometer brand, a simply calculable MAD with universal cut‐off limits provides a universal method to evaluate physical activity and sedentary behaviour using raw accelerometer data. A broader application of the present approach is expected to render different accelerometer studies directly comparable with each other. |
---|---|
AbstractList | Accelerometers are increasingly used for objective assessment of physical activity. However, because of lack of the proprietary analysis algorithms, direct comparisons between accelerometer brands are difficult. In this study, we propose and evaluate open source methods for commensurate assessment of raw accelerometer data irrespective of the brand.OBJECTIVEAccelerometers are increasingly used for objective assessment of physical activity. However, because of lack of the proprietary analysis algorithms, direct comparisons between accelerometer brands are difficult. In this study, we propose and evaluate open source methods for commensurate assessment of raw accelerometer data irrespective of the brand.Twenty-one participants carried simultaneously three different tri-axial accelerometers on their waist during five different sedentary activities and five different intensity levels of bipedal movement from slow walking to running. Several time and frequency domain traits were calculated from the measured raw data, and their performance in classifying the activities was compared.DESIGNTwenty-one participants carried simultaneously three different tri-axial accelerometers on their waist during five different sedentary activities and five different intensity levels of bipedal movement from slow walking to running. Several time and frequency domain traits were calculated from the measured raw data, and their performance in classifying the activities was compared.Of the several traits, the mean amplitude deviation (MAD) provided consistently the best performance in separating the sedentary activities and different speeds of bipedal movement from each other. Most importantly, the universal cut-off limits based on MAD classified sedentary activities and different intensity levels of walking and running equally well for all three accelerometer brands and reached at least 97% sensitivity and specificity in each case.RESULTSOf the several traits, the mean amplitude deviation (MAD) provided consistently the best performance in separating the sedentary activities and different speeds of bipedal movement from each other. Most importantly, the universal cut-off limits based on MAD classified sedentary activities and different intensity levels of walking and running equally well for all three accelerometer brands and reached at least 97% sensitivity and specificity in each case.Irrespective of the accelerometer brand, a simply calculable MAD with universal cut-off limits provides a universal method to evaluate physical activity and sedentary behaviour using raw accelerometer data. A broader application of the present approach is expected to render different accelerometer studies directly comparable with each other.CONCLUSIONIrrespective of the accelerometer brand, a simply calculable MAD with universal cut-off limits provides a universal method to evaluate physical activity and sedentary behaviour using raw accelerometer data. A broader application of the present approach is expected to render different accelerometer studies directly comparable with each other. Summary Objective Accelerometers are increasingly used for objective assessment of physical activity. However, because of lack of the proprietary analysis algorithms, direct comparisons between accelerometer brands are difficult. In this study, we propose and evaluate open source methods for commensurate assessment of raw accelerometer data irrespective of the brand. Design Twenty‐one participants carried simultaneously three different tri‐axial accelerometers on their waist during five different sedentary activities and five different intensity levels of bipedal movement from slow walking to running. Several time and frequency domain traits were calculated from the measured raw data, and their performance in classifying the activities was compared. Results Of the several traits, the mean amplitude deviation (MAD) provided consistently the best performance in separating the sedentary activities and different speeds of bipedal movement from each other. Most importantly, the universal cut‐off limits based on MAD classified sedentary activities and different intensity levels of walking and running equally well for all three accelerometer brands and reached at least 97% sensitivity and specificity in each case. Conclusion Irrespective of the accelerometer brand, a simply calculable MAD with universal cut‐off limits provides a universal method to evaluate physical activity and sedentary behaviour using raw accelerometer data. A broader application of the present approach is expected to render different accelerometer studies directly comparable with each other. Summary Objective Accelerometers are increasingly used for objective assessment of physical activity. However, because of lack of the proprietary analysis algorithms, direct comparisons between accelerometer brands are difficult. In this study, we propose and evaluate open source methods for commensurate assessment of raw accelerometer data irrespective of the brand. Design Twenty-one participants carried simultaneously three different tri-axial accelerometers on their waist during five different sedentary activities and five different intensity levels of bipedal movement from slow walking to running. Several time and frequency domain traits were calculated from the measured raw data, and their performance in classifying the activities was compared. Results Of the several traits, the mean amplitude deviation (MAD) provided consistently the best performance in separating the sedentary activities and different speeds of bipedal movement from each other. Most importantly, the universal cut-off limits based on MAD classified sedentary activities and different intensity levels of walking and running equally well for all three accelerometer brands and reached at least 97% sensitivity and specificity in each case. Conclusion Irrespective of the accelerometer brand, a simply calculable MAD with universal cut-off limits provides a universal method to evaluate physical activity and sedentary behaviour using raw accelerometer data. A broader application of the present approach is expected to render different accelerometer studies directly comparable with each other. Accelerometers are increasingly used for objective assessment of physical activity. However, because of lack of the proprietary analysis algorithms, direct comparisons between accelerometer brands are difficult. In this study, we propose and evaluate open source methods for commensurate assessment of raw accelerometer data irrespective of the brand. Twenty-one participants carried simultaneously three different tri-axial accelerometers on their waist during five different sedentary activities and five different intensity levels of bipedal movement from slow walking to running. Several time and frequency domain traits were calculated from the measured raw data, and their performance in classifying the activities was compared. Of the several traits, the mean amplitude deviation (MAD) provided consistently the best performance in separating the sedentary activities and different speeds of bipedal movement from each other. Most importantly, the universal cut-off limits based on MAD classified sedentary activities and different intensity levels of walking and running equally well for all three accelerometer brands and reached at least 97% sensitivity and specificity in each case. Irrespective of the accelerometer brand, a simply calculable MAD with universal cut-off limits provides a universal method to evaluate physical activity and sedentary behaviour using raw accelerometer data. A broader application of the present approach is expected to render different accelerometer studies directly comparable with each other. |
Author | Vasankari, Tommi Husu, Pauliina Vähä-Ypyä, Henri Suni, Jaana Sievänen, Harri |
Author_xml | – sequence: 1 givenname: Henri surname: Vähä-Ypyä fullname: Vähä-Ypyä, Henri email: Henri Vähä-Ypyä, UKK Institute, PO Box 30, FI-33501 Tampere, Finland, henri.vaha-ypya@uta.fi organization: UKK Institute, Tampere, Finland – sequence: 2 givenname: Tommi surname: Vasankari fullname: Vasankari, Tommi organization: UKK Institute, Tampere, Finland – sequence: 3 givenname: Pauliina surname: Husu fullname: Husu, Pauliina organization: UKK Institute, Tampere, Finland – sequence: 4 givenname: Jaana surname: Suni fullname: Suni, Jaana organization: UKK Institute, Tampere, Finland – sequence: 5 givenname: Harri surname: Sievänen fullname: Sievänen, Harri organization: UKK Institute, Tampere, Finland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24393233$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kV1vFCEUhompse3qhX_AkHhjE6eFgYHlstn0w_RDEzV6R4A5o9RZZgWm7f572e5uLxrLDSQ8z5uT9-yjnTAEQOgtJYe0nCO36A5pTWv5Au1RLpuKKPlz5_Et6C7aT-mGECoZl6_Qbs2ZYjVje2g8xmPwtxCT6T9i49wYTQbsQ4aQfF5W1iRosetNSr7zzmQ_BDx0uPVdBxFCxovfy1Q--mJnf-uzh4TH5MMvHM0dbk02K75EQw9xmEOG-Bq97Eyf4M3mnqDvpyffZufV5eezT7Pjy8o1SsqqNkZI23BFgNlWGmuVNZITmFLFOGuYY0DJVPDOCcengjBu1dRKYQlIXndsgj6scxdx-DtCynruU5mjNwGGMWkqmOKqFkIV9P0T9GYYYyjTrSjJm5qX9ibo3YYa7RxavYh-buJSbwstwNEacHFIKUKnnc8PpeVofK8p0auV6bIy_bCyYhw8Mbah_2M36Xe-h-XzoJ59Od0a1drwKcP9o2HiHy0kk43-cX2m6yt21Xy9uNCM_QOXk7SS |
CODEN | CPFICA |
CitedBy_id | crossref_primary_10_3389_fspor_2024_1434661 crossref_primary_10_1038_s41598_024_58775_4 crossref_primary_10_3390_s22072583 crossref_primary_10_3390_ijerph18115643 crossref_primary_10_1123_japa_2023_0445 crossref_primary_10_1123_japa_2020_0389 crossref_primary_10_1371_journal_pone_0198587 crossref_primary_10_3389_fpsyg_2021_741735 crossref_primary_10_1136_bmjsem_2019_000539 crossref_primary_10_1109_MC_2019_2913751 crossref_primary_10_1186_s13102_024_00991_6 crossref_primary_10_3390_ijerph20075414 crossref_primary_10_1038_s41598_022_18982_3 crossref_primary_10_3390_ijerph19138185 crossref_primary_10_1016_j_bone_2023_116951 crossref_primary_10_1088_0967_3334_37_10_1636 crossref_primary_10_1111_sms_14371 crossref_primary_10_1016_j_humov_2019_102523 crossref_primary_10_1007_s41347_022_00246_6 crossref_primary_10_1186_s13102_022_00522_1 crossref_primary_10_1002_ejsc_12172 crossref_primary_10_3389_ijph_2024_1607322 crossref_primary_10_1007_s00421_021_04731_3 crossref_primary_10_1016_j_enbuild_2015_11_054 crossref_primary_10_1016_j_sleep_2020_12_019 crossref_primary_10_1038_s41598_018_27704_7 crossref_primary_10_1111_sms_13838 crossref_primary_10_1038_srep45975 crossref_primary_10_1371_journal_pone_0164045 crossref_primary_10_3390_s24154955 crossref_primary_10_1016_j_joca_2016_05_007 crossref_primary_10_1016_j_dhjo_2018_08_011 crossref_primary_10_1111_sms_13673 crossref_primary_10_1093_eurpub_ckac078 crossref_primary_10_1186_s12889_018_6121_2 crossref_primary_10_1186_s13102_016_0056_7 crossref_primary_10_5334_paah_73 crossref_primary_10_3390_ijerph21070866 crossref_primary_10_3390_ijerph16091661 crossref_primary_10_1080_07853890_2019_1566765 crossref_primary_10_1186_s13102_021_00389_8 crossref_primary_10_1136_bmjsem_2018_000363 crossref_primary_10_1186_s44247_024_00087_8 crossref_primary_10_1016_j_trci_2018_06_007 crossref_primary_10_3390_s23115073 crossref_primary_10_1186_s40064_016_1701_z crossref_primary_10_1186_s12889_015_2347_4 crossref_primary_10_3390_s21062063 crossref_primary_10_1016_j_ergon_2018_08_013 crossref_primary_10_1186_s12889_016_3591_y crossref_primary_10_1088_1361_6579_ac944f crossref_primary_10_1186_s13643_020_01515_2 crossref_primary_10_1371_journal_pone_0226843 crossref_primary_10_1186_s11556_020_00251_9 crossref_primary_10_1080_02640414_2017_1420452 crossref_primary_10_3390_ijerph19116950 crossref_primary_10_3389_fspor_2020_587789 crossref_primary_10_1186_s12966_017_0484_0 crossref_primary_10_1038_s41366_021_01022_x crossref_primary_10_1371_journal_pone_0294817 crossref_primary_10_1371_journal_pone_0183317 crossref_primary_10_3390_healthcare10071255 crossref_primary_10_1016_j_gaitpost_2024_05_002 crossref_primary_10_1249_MSS_0000000000001344 crossref_primary_10_3389_fspor_2024_1346118 crossref_primary_10_4035_jsfwr_53_164 crossref_primary_10_1186_s12889_024_20363_6 crossref_primary_10_3390_ijerph21060686 crossref_primary_10_3934_publichealth_2016_3_577 crossref_primary_10_1111_sms_13017 crossref_primary_10_1177_1534735420914973 crossref_primary_10_3390_mps5010001 crossref_primary_10_3390_children5120172 crossref_primary_10_1136_military_2024_002800 crossref_primary_10_1016_j_gaitpost_2016_12_014 crossref_primary_10_1038_s41598_020_67983_7 crossref_primary_10_1097_BRS_0000000000001922 crossref_primary_10_3390_jcm7090268 crossref_primary_10_1186_s12889_021_10656_5 crossref_primary_10_1016_j_gaitpost_2017_12_028 crossref_primary_10_1371_journal_pone_0167759 crossref_primary_10_3390_s24134060 crossref_primary_10_1186_s12966_024_01681_9 crossref_primary_10_1055_a_2161_4137 crossref_primary_10_1007_s12553_020_00512_8 crossref_primary_10_1186_s12889_023_16110_y crossref_primary_10_1186_s12889_017_4229_4 crossref_primary_10_1016_j_scispo_2021_08_007 crossref_primary_10_1080_02640414_2021_1876328 crossref_primary_10_1186_s12889_020_09773_4 crossref_primary_10_2196_38077 crossref_primary_10_3390_ani14243628 crossref_primary_10_1111_sms_12795 crossref_primary_10_1123_jmpb_2023_0033 crossref_primary_10_2196_23887 crossref_primary_10_1111_sms_13244 crossref_primary_10_3389_fphys_2019_00997 crossref_primary_10_1186_s12889_019_7869_8 crossref_primary_10_3390_s24010076 crossref_primary_10_1111_sms_14051 crossref_primary_10_1186_s12889_016_3006_0 crossref_primary_10_3390_s19092186 crossref_primary_10_1186_s12889_022_13352_0 crossref_primary_10_3390_metabo12080700 crossref_primary_10_1136_bmjsem_2017_000233 crossref_primary_10_3390_su13148116 crossref_primary_10_1093_gerona_glaa142 crossref_primary_10_1123_jmpb_2021_0018 crossref_primary_10_2196_14090 crossref_primary_10_1111_bjhp_12744 crossref_primary_10_1371_journal_pone_0314456 crossref_primary_10_1123_jmpb_2021_0016 crossref_primary_10_1038_s41598_021_92040_2 crossref_primary_10_1016_j_gaitpost_2020_05_024 crossref_primary_10_7717_peerj_5437 crossref_primary_10_1371_journal_pone_0195837 crossref_primary_10_3389_fpsyg_2022_824595 crossref_primary_10_3390_s151026783 crossref_primary_10_1111_joim_12908 crossref_primary_10_1080_1091367X_2021_1944154 crossref_primary_10_1016_j_tjnut_2022_10_009 crossref_primary_10_1080_1091367X_2023_2271444 crossref_primary_10_1093_gerona_gly263 crossref_primary_10_1007_s40279_017_0716_0 crossref_primary_10_1016_j_jbiomech_2020_109834 crossref_primary_10_2196_59660 crossref_primary_10_1186_s12889_016_3094_x crossref_primary_10_1249_MSS_0000000000002916 crossref_primary_10_1093_milmed_usx049 crossref_primary_10_1177_17479541231225182 crossref_primary_10_4236_ape_2019_94016 crossref_primary_10_1038_s41598_018_26174_1 crossref_primary_10_3390_ijerph17186887 crossref_primary_10_1186_s12966_024_01662_y crossref_primary_10_3389_fpubh_2020_578275 crossref_primary_10_1249_MSS_0000000000002883 crossref_primary_10_1002_jbmr_3357 crossref_primary_10_1017_BrImp_2016_1 crossref_primary_10_1016_j_gaitpost_2019_11_008 crossref_primary_10_1016_j_jshs_2024_101006 crossref_primary_10_1111_sms_12813 crossref_primary_10_3390_ijerph14101257 crossref_primary_10_1123_jmpb_2021_0023 crossref_primary_10_1186_s12877_020_01669_7 crossref_primary_10_3390_s19092095 crossref_primary_10_3390_s24041123 crossref_primary_10_1093_gerona_glac071 crossref_primary_10_3389_fphys_2016_00681 crossref_primary_10_1016_j_bone_2020_115704 crossref_primary_10_1080_02640414_2022_2159117 crossref_primary_10_1136_bmjopen_2023_081947 crossref_primary_10_1123_jmpb_2023_0057 crossref_primary_10_2196_mhealth_5960 crossref_primary_10_1038_s41598_019_54267_y crossref_primary_10_1186_s12889_015_2266_4 crossref_primary_10_1007_s12561_018_9227_2 crossref_primary_10_1177_2047487317711048 crossref_primary_10_3390_s24030761 crossref_primary_10_1038_s41393_021_00728_z crossref_primary_10_1186_s13102_015_0010_0 crossref_primary_10_1186_s13102_020_00196_7 crossref_primary_10_1007_s10984_022_09411_3 crossref_primary_10_1186_s12877_024_04764_1 crossref_primary_10_1080_1091367X_2019_1613997 crossref_primary_10_1093_gerona_glaa166 crossref_primary_10_1186_s12877_022_03711_2 crossref_primary_10_1111_sms_12887 crossref_primary_10_3389_fpubh_2022_820852 crossref_primary_10_1186_s11556_020_0237_y crossref_primary_10_3389_fspor_2021_626282 crossref_primary_10_1016_j_pmedr_2022_101731 crossref_primary_10_1123_jmpb_2020_0061 crossref_primary_10_1172_JCI130341 crossref_primary_10_2196_12808 crossref_primary_10_1038_s41598_024_75579_8 |
Cites_doi | 10.1519/JSC.0b013e3181ddfcf8 10.1249/MSS.0b013e3181d479f2 10.1016/j.ypmed.2010.08.010 10.1249/MSS.0b013e3182399e0f 10.1249/MSS.0b013e3181e5797d 10.1249/MSS.0b013e3182399b7e 10.1186/1471-2288-12-54 10.1249/MSS.0b013e3181a24536 10.1055/s-2003-40701 10.1249/MSS.0b013e3182399e5b 10.1109/TITB.2005.856863 10.1038/oby.2008.279 10.1371/journal.pone.0063522 10.1080/14763140701841936 10.1007/s00421-006-0307-5 10.2337/dc07-2046 |
ContentType | Journal Article |
Copyright | 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd. Copyright © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine |
Copyright_xml | – notice: 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd – notice: 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd. – notice: Copyright © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7TS 7U5 8FD K9. L7M 7X8 |
DOI | 10.1111/cpf.12127 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Physical Education Index Solid State and Superconductivity Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Solid State and Superconductivity Abstracts Technology Research Database Calcium & Calcified Tissue Abstracts Advanced Technologies Database with Aerospace Physical Education Index MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1475-097X |
EndPage | 70 |
ExternalDocumentID | 3530110601 24393233 10_1111_cpf_12127 CPF12127 ark_67375_WNG_2M3M5SKK_3 |
Genre | article Comparative Study Research Support, Non-U.S. Gov't Evaluation Study Journal Article |
GrantInformation_xml | – fundername: Competitive Research Funding of the Pirkanmaa Hospital District funderid: 9G070 – fundername: Finnish Funding Agency for Technology and Innovation funderid: 40247/12 |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1OC 29B 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAKAS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZCM ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 R.K RJQFR ROL RX1 SUPJJ TEORI UB1 V8K W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WVDHM WXI WXSBR XG1 ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QP 7TS 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY K9. L7M 7X8 |
ID | FETCH-LOGICAL-c5977-2aa67b5490e3bd7abb9ba740e81934353c3e10864fc6c486034b98b76b0e742f3 |
IEDL.DBID | DR2 |
ISSN | 1475-0961 1475-097X |
IngestDate | Fri Jul 11 07:37:31 EDT 2025 Sun Jul 13 05:08:25 EDT 2025 Wed Feb 19 02:28:37 EST 2025 Tue Jul 01 01:42:45 EDT 2025 Thu Apr 24 22:56:57 EDT 2025 Wed Jan 22 16:32:38 EST 2025 Wed Oct 30 09:49:39 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | sedentary behaviour objective assessment accelerometer reliability physical activity |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5977-2aa67b5490e3bd7abb9ba740e81934353c3e10864fc6c486034b98b76b0e742f3 |
Notes | Competitive Research Funding of the Pirkanmaa Hospital District - No. 9G070 ark:/67375/WNG-2M3M5SKK-3 istex:70CAA89554A2C7D9D9FA8A52A42F363844D957C5 Finnish Funding Agency for Technology and Innovation - No. 40247/12 ArticleID:CPF12127 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 |
PMID | 24393233 |
PQID | 1637452417 |
PQPubID | 1006519 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1639492669 proquest_journals_1637452417 pubmed_primary_24393233 crossref_citationtrail_10_1111_cpf_12127 crossref_primary_10_1111_cpf_12127 wiley_primary_10_1111_cpf_12127_CPF12127 istex_primary_ark_67375_WNG_2M3M5SKK_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2015 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: January 2015 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Clinical physiology and functional imaging |
PublicationTitleAlternate | Clin Physiol Funct Imaging |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Abt JP, Sell TC, Chu Y, Lovalekar M, Burdett RG, Lephart SM. Running kinematics and shock absorption do not change after brief exhaustive running. J Strength Cond Res (2011); 25: 1479-1485. De Vries SI, Garre FG, Engbers LH, Hildebrandt VH, Van Buuren S. Evaluation of neural networks to identify types of activity using accelerometers. Med Sci Sports Exerc (2011); 43: 101-107. Freedson P, Bowles HR, Troiano R, Haskell W. Assessment of physical activity using wearable monitors: recommendations for monitor calibration and use in the field. Med Sci Sports Exerc (2012); 44(1 Suppl 1): 1-4. Kozey SL, Lyden K, Howe CA, Staudenmayer JW, Freedson PS. Accelerometer output and MET values of common physical activities. Med Sci Sports Exerc (2010); 42: 1776-1784. Oliver M, Schofield GM, Badland HM, Shepherd J. Utility of accelerometer thresholds for classifying sitting in office workers. Prev Med (2010); 51: 357-360. Pärkkä J, Ermes M, Korpipää P, Mäntyjärvi J, Peltola J, Korhonen I. Activity classification using realistic data from wearable sensors. IEEE Trans Inf Technol Biomed (2006); 10: 119-128. Ermes M, Parkka J, Cluitmans L. Advancing from offline to online activity recognition with wearable sensors. Conf Proc IEEE Eng Med Biol Soc (2008); 2008: 4451-4454. Matthews CE, Hagströmer M, Pober DM, Bowles HR. Best practices for using physical activity monitors in population-based research. Med Sci Sports Exerc (2012); 44(1 Suppl 1): S68-S76. Healy GN, Dunstan DW, Salmon J, Cerin E, Shaw JE, Zimmet PZ, Owen N. Breaks in sedentary time: beneficial associations with metabolic risk. Diabetes Care (2008); 31: 661-666. Staudenmayer J, Zhu W, Catellier DJ. Statistical considerations in the analysis of accelerometry-based activity monitor data. Med Sci Sports Exerc (2012); 44(1 Suppl 1): 61-67. Hiilloskorpi HK, Pasanen ME, Fogelholm MG, Laukkanen RM, Mänttäri AT. Use of heart rate to predict energy expenditure from low to high activity levels. Int J Sports Med (2003); 24: 332-336. Rothney MP, Schaefer EV, Neumann MM, Choi L, Chen KY. Validity of physical activity intensity predictions by ActiGraph, Actical, and RT3 accelerometers. Obesity (Silver Spring) (2008); 16: 1946-1952. Bonomi AG, Goris AH, Yin B, Westerterp KR. Detection of type, duration, and intensity of physical activity using an accelerometer. Med Sci Sports Exerc (2009); 41: 1770-1777. Zhang S, Derrick TR, Evans W, Yu YJ. Shock and impact reduction in moderate and strenuous landing activities. Sports Biomech (2008); 7: 296-309. Esliger DW, Tremblay MS. Physical activity and inactivity profiling: the next generation. Can J Public Health (2007); 98(Suppl 2): 195-207. Crouter SE, Churilla JR, Bassett DR Jr. Estimating energy expenditure using accelerometers. Eur J Appl Physiol (2006); 98: 601-612. Marschollek M. A semi-quantitative method to denote generic physical activity phenotypes from long-term accelerometer data - the ATLAS index. PLoS One (2013); 8: e63522. Straker L, Campbell A. Translation equations to compare ActiGraph GT3X and Actical accelerometers activity counts. BMC Med Res Methodol (2012); 12: 54. 2010; 42 2009; 41 2006; 98 2006; 10 2008; 16 2003; 24 2008; 7 2011; 43 2011; 25 2008; 31 2007; 98 2013; 8 2012; 12 2008; 2008 2012; 44 2010; 51 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 Ermes M (e_1_2_8_6_1) 2008; 2008 e_1_2_8_3_1 Esliger DW (e_1_2_8_7_1) 2007; 98 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_10_1 e_1_2_8_11_1 e_1_2_8_12_1 |
References_xml | – reference: Ermes M, Parkka J, Cluitmans L. Advancing from offline to online activity recognition with wearable sensors. Conf Proc IEEE Eng Med Biol Soc (2008); 2008: 4451-4454. – reference: De Vries SI, Garre FG, Engbers LH, Hildebrandt VH, Van Buuren S. Evaluation of neural networks to identify types of activity using accelerometers. Med Sci Sports Exerc (2011); 43: 101-107. – reference: Hiilloskorpi HK, Pasanen ME, Fogelholm MG, Laukkanen RM, Mänttäri AT. Use of heart rate to predict energy expenditure from low to high activity levels. Int J Sports Med (2003); 24: 332-336. – reference: Oliver M, Schofield GM, Badland HM, Shepherd J. Utility of accelerometer thresholds for classifying sitting in office workers. Prev Med (2010); 51: 357-360. – reference: Crouter SE, Churilla JR, Bassett DR Jr. Estimating energy expenditure using accelerometers. Eur J Appl Physiol (2006); 98: 601-612. – reference: Zhang S, Derrick TR, Evans W, Yu YJ. Shock and impact reduction in moderate and strenuous landing activities. Sports Biomech (2008); 7: 296-309. – reference: Abt JP, Sell TC, Chu Y, Lovalekar M, Burdett RG, Lephart SM. Running kinematics and shock absorption do not change after brief exhaustive running. J Strength Cond Res (2011); 25: 1479-1485. – reference: Rothney MP, Schaefer EV, Neumann MM, Choi L, Chen KY. Validity of physical activity intensity predictions by ActiGraph, Actical, and RT3 accelerometers. Obesity (Silver Spring) (2008); 16: 1946-1952. – reference: Straker L, Campbell A. Translation equations to compare ActiGraph GT3X and Actical accelerometers activity counts. BMC Med Res Methodol (2012); 12: 54. – reference: Pärkkä J, Ermes M, Korpipää P, Mäntyjärvi J, Peltola J, Korhonen I. Activity classification using realistic data from wearable sensors. IEEE Trans Inf Technol Biomed (2006); 10: 119-128. – reference: Freedson P, Bowles HR, Troiano R, Haskell W. Assessment of physical activity using wearable monitors: recommendations for monitor calibration and use in the field. Med Sci Sports Exerc (2012); 44(1 Suppl 1): 1-4. – reference: Healy GN, Dunstan DW, Salmon J, Cerin E, Shaw JE, Zimmet PZ, Owen N. Breaks in sedentary time: beneficial associations with metabolic risk. Diabetes Care (2008); 31: 661-666. – reference: Esliger DW, Tremblay MS. Physical activity and inactivity profiling: the next generation. Can J Public Health (2007); 98(Suppl 2): 195-207. – reference: Kozey SL, Lyden K, Howe CA, Staudenmayer JW, Freedson PS. Accelerometer output and MET values of common physical activities. Med Sci Sports Exerc (2010); 42: 1776-1784. – reference: Matthews CE, Hagströmer M, Pober DM, Bowles HR. Best practices for using physical activity monitors in population-based research. Med Sci Sports Exerc (2012); 44(1 Suppl 1): S68-S76. – reference: Marschollek M. A semi-quantitative method to denote generic physical activity phenotypes from long-term accelerometer data - the ATLAS index. PLoS One (2013); 8: e63522. – reference: Bonomi AG, Goris AH, Yin B, Westerterp KR. Detection of type, duration, and intensity of physical activity using an accelerometer. Med Sci Sports Exerc (2009); 41: 1770-1777. – reference: Staudenmayer J, Zhu W, Catellier DJ. Statistical considerations in the analysis of accelerometry-based activity monitor data. Med Sci Sports Exerc (2012); 44(1 Suppl 1): 61-67. – volume: 42 start-page: 1776 year: 2010 end-page: 1784 article-title: Accelerometer output and MET values of common physical activities publication-title: Med Sci Sports Exerc – volume: 2008 start-page: 4451 year: 2008 end-page: 4454 article-title: Advancing from offline to online activity recognition with wearable sensors publication-title: Conf Proc IEEE Eng Med Biol Soc – volume: 8 start-page: e63522 year: 2013 article-title: A semi‐quantitative method to denote generic physical activity phenotypes from long‐term accelerometer data – the ATLAS index publication-title: PLoS One – volume: 25 start-page: 1479 year: 2011 end-page: 1485 article-title: Running kinematics and shock absorption do not change after brief exhaustive running publication-title: J Strength Cond Res – volume: 16 start-page: 1946 year: 2008 end-page: 1952 article-title: Validity of physical activity intensity predictions by ActiGraph, Actical, and RT3 accelerometers publication-title: Obesity (Silver Spring) – volume: 12 start-page: 54 year: 2012 article-title: Translation equations to compare ActiGraph GT3X and Actical accelerometers activity counts publication-title: BMC Med Res Methodol – volume: 43 start-page: 101 year: 2011 end-page: 107 article-title: Evaluation of neural networks to identify types of activity using accelerometers publication-title: Med Sci Sports Exerc – volume: 44 start-page: S68 issue: 1 Suppl 1 year: 2012 end-page: S76 article-title: Best practices for using physical activity monitors in population‐based research publication-title: Med Sci Sports Exerc – volume: 41 start-page: 1770 year: 2009 end-page: 1777 article-title: Detection of type, duration, and intensity of physical activity using an accelerometer publication-title: Med Sci Sports Exerc – volume: 51 start-page: 357 year: 2010 end-page: 360 article-title: Utility of accelerometer thresholds for classifying sitting in office workers publication-title: Prev Med – volume: 24 start-page: 332 year: 2003 end-page: 336 article-title: Use of heart rate to predict energy expenditure from low to high activity levels publication-title: Int J Sports Med – volume: 44 start-page: 1 issue: 1 Suppl 1 year: 2012 end-page: 4 article-title: Assessment of physical activity using wearable monitors: recommendations for monitor calibration and use in the field publication-title: Med Sci Sports Exerc – volume: 31 start-page: 661 year: 2008 end-page: 666 article-title: Breaks in sedentary time: beneficial associations with metabolic risk publication-title: Diabetes Care – volume: 7 start-page: 296 year: 2008 end-page: 309 article-title: Shock and impact reduction in moderate and strenuous landing activities publication-title: Sports Biomech – volume: 10 start-page: 119 year: 2006 end-page: 128 article-title: Activity classification using realistic data from wearable sensors publication-title: IEEE Trans Inf Technol Biomed – volume: 98 start-page: 601 year: 2006 end-page: 612 article-title: Estimating energy expenditure using accelerometers publication-title: Eur J Appl Physiol – volume: 98 start-page: 195 issue: Suppl 2 year: 2007 end-page: 207 article-title: Physical activity and inactivity profiling: the next generation publication-title: Can J Public Health – volume: 44 start-page: 61 issue: 1 Suppl 1 year: 2012 end-page: 67 article-title: Statistical considerations in the analysis of accelerometry‐based activity monitor data publication-title: Med Sci Sports Exerc – ident: e_1_2_8_2_1 doi: 10.1519/JSC.0b013e3181ddfcf8 – ident: e_1_2_8_11_1 doi: 10.1249/MSS.0b013e3181d479f2 – ident: e_1_2_8_14_1 doi: 10.1016/j.ypmed.2010.08.010 – ident: e_1_2_8_17_1 doi: 10.1249/MSS.0b013e3182399e0f – ident: e_1_2_8_5_1 doi: 10.1249/MSS.0b013e3181e5797d – ident: e_1_2_8_8_1 doi: 10.1249/MSS.0b013e3182399b7e – ident: e_1_2_8_18_1 doi: 10.1186/1471-2288-12-54 – volume: 98 start-page: 195 issue: 2 year: 2007 ident: e_1_2_8_7_1 article-title: Physical activity and inactivity profiling: the next generation publication-title: Can J Public Health – ident: e_1_2_8_3_1 doi: 10.1249/MSS.0b013e3181a24536 – ident: e_1_2_8_10_1 doi: 10.1055/s-2003-40701 – ident: e_1_2_8_13_1 doi: 10.1249/MSS.0b013e3182399e5b – volume: 2008 start-page: 4451 year: 2008 ident: e_1_2_8_6_1 article-title: Advancing from offline to online activity recognition with wearable sensors publication-title: Conf Proc IEEE Eng Med Biol Soc – ident: e_1_2_8_15_1 doi: 10.1109/TITB.2005.856863 – ident: e_1_2_8_16_1 doi: 10.1038/oby.2008.279 – ident: e_1_2_8_12_1 doi: 10.1371/journal.pone.0063522 – ident: e_1_2_8_19_1 doi: 10.1080/14763140701841936 – ident: e_1_2_8_4_1 doi: 10.1007/s00421-006-0307-5 – ident: e_1_2_8_9_1 doi: 10.2337/dc07-2046 |
SSID | ssj0017347 |
Score | 2.4703064 |
Snippet | Summary
Objective
Accelerometers are increasingly used for objective assessment of physical activity. However, because of lack of the proprietary analysis... Accelerometers are increasingly used for objective assessment of physical activity. However, because of lack of the proprietary analysis algorithms, direct... Summary Objective Accelerometers are increasingly used for objective assessment of physical activity. However, because of lack of the proprietary analysis... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 64 |
SubjectTerms | accelerometer Accelerometers Accelerometry - instrumentation Accelerometry - methods Actigraphy - instrumentation Actigraphy - methods Adult Algorithms Equipment Design Equipment Failure Analysis Female Humans Male Monitoring, Ambulatory - instrumentation Monitoring, Ambulatory - methods Motor Activity - physiology objective assessment Pattern Recognition, Automated - methods physical activity Physical Exertion - physiology reliability Reproducibility of Results sedentary behaviour Sensitivity and Specificity |
Title | A universal, accurate intensity-based classification of different physical activities using raw data of accelerometer |
URI | https://api.istex.fr/ark:/67375/WNG-2M3M5SKK-3/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcpf.12127 https://www.ncbi.nlm.nih.gov/pubmed/24393233 https://www.proquest.com/docview/1637452417 https://www.proquest.com/docview/1639492669 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9RAFL2UCqUvVVttV6uMRaQPTclmMpkNPpXitli2SD9oH4RhZjIjsmV32SZWffIn-Bv9Jd47-aCVCuJbIDeTZO69mTOTM-cCvM77Nk18FkdJrg1OUKyJjBmIKNHWc-1iYTxtFB4dZ4fn6ftLcbkAb9u9MLU-RLfgRpkRvteU4Npc30pyO_MkjZDQTnLiahEgOumko_qSh-Ji_VSKiMqaNKpCxOLprrwzFj2gbv16H9C8i1vDwDN8CB_bR675JuPdqjS79vsfao7_-U6PYKUBpGyvjqDHsOAmq7A0an65r8HNHqtq8oa-2mHa2orEJdjnmvpefvv14yeNhAWzhMOJeBR8zaaetcVXSjZrooHRNoovQcSVEeP-E5vrG0YsVbLHxnEQJP0EdPYTOB--O9s_jJpqDZElDTv0rs6kwelm7LgppDYmN1qmsUPMwRGUccsdlXVKvc0slb7iqckHRmYmdjg_9_wpLE6mE7cBzAqHuIb7fMCLVBZ2UHBs3LqCbGMverDd-k3ZRsqcKmpcqXZKgx2pQkf2YKszndX6HfcZvQnO7yz0fEyENynUxfGBSkZ8JE6PjhTvwWYbHarJ9WuFiFamApEQtvOqO41ZSr9e9MRNq2CTkzRjlvdgvY6q7mYJYkKecGx8O8TG359T7X8YhoNn_276HJYR44l61WgTFst55V4gjirNy5AwvwH2SRpK |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VVoJeKP8sFDAIoR5IlY3jeCNxqQrLwjYrBK3aC7Jsx6lQq93VklDaUx-BZ-RJmHF-RFGRELdImTiOZyb-xh5_A_A87ds4KpIwiFJtMECxJjBmIIJI24JrFwpT0EHhbJKM9uL3B-JgCV61Z2FqfohuwY08w_-vycFpQfo3L7fzgrgRInkFVqiiNzHnv_7YkUf1JfflxfqxFAEVNml4hSiPp3v0wmy0QgP7_TKoeRG5-qlnuAaf207XGSdHm1VpNu3ZH3yO__tVN-B6g0nZVm1EN2HJTW_B1azZdb8NJ1usqvM39PFLpq2tiF-Cfamz38vTn-c_aDLMmSUoTrlHXt1sVrC2_krJ5o1BMDpJ8c3zuDJKuj9kC33CKFGV5LFxnAeJQgH1fQf2hm92t0dBU7AhsERjhwrWiTQYcYaOm1xqY1KjZRw6hB0ccRm33FFlp7iwiaXqVzw26cDIxIQOQ_SC34Xl6Wzq7gOzwiG04UU64HksczvIOTZuXU6yYSF6sNEqTtmGzZyKahyrNqrBgVR-IHvwrBOd1xQelwm98NrvJPTiiHLepFD7k7cqyngmPo3HivdgvTUP1bj7V4WgVsYCwRC287S7jY5Kuy966maVl0mJnTFJe3CvNqvuZRHCQh5xbHzDG8ff-6m2Pwz9xYN_F30C10a72Y7aeTcZP4RVhHyiXkRah-VyUblHCKtK89h7zy-C-x5m |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VVqq40PK_UMAghHogVTaO4404VS1LYdlVBVT0UMmyHRuhVrurbUKhJx6BZ-RJmHF-RFGRELdImTiOZyb-xh5_A_A079s08VkcJbk2GKBYExkzEFGirefaxcJ4Oig8nmR7B-mbQ3G4BC_aszA1P0S34EaeEf7X5ODzwv_m5HbuiRohkVdgJc3inOo27L7ruKP6kofqYv1UiojqmjS0QpTG0z16YTJaoXH9ehnSvAhcw8wzXIOjts91wsnxVlWaLXv-B53jf37UOlxrECnbrk3oOiy56Q1YHTd77jfhbJtVdfaGPnnOtLUVsUuwz3Xue_nt5_cfNBUWzBIQp8yjoGw286ytvlKyeWMOjM5RfAksroxS7j-xhT5jlKZK8tg4zoJEoIDavgUHw5cfdvaiplxDZInEDtWrM2kw3owdN4XUxuRGyzR2CDo4ojJuuaO6Tqm3maXaVzw1-cDIzMQOA3TPb8PydDZ1d4FZ4RDYcJ8PeJHKwg4Kjo1bV5Bs7EUPNlu9KdtwmVNJjRPVxjQ4kCoMZA-edKLzmsDjMqFnQfmdhF4cU8abFOrj5JVKxnws3o9Givdgo7UO1Tj7qUJIK1OBUAjbedzdRjelvRc9dbMqyOTEzZjlPbhTW1X3sgRBIU84Nr4ZbOPv_VQ7-8Nwce_fRR_B6v7uUL19PRndh6uI90S9grQBy-Wicg8QU5XmYfCdXxeXHRU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+universal%2C+accurate+intensity%E2%80%90based+classification+of+different+physical+activities+using+raw+data+of+accelerometer&rft.jtitle=Clinical+physiology+and+functional+imaging&rft.au=V%C3%A4h%C3%A4%E2%80%90Ypy%C3%A4%2C+Henri&rft.au=Vasankari%2C+Tommi&rft.au=Husu%2C+Pauliina&rft.au=Suni%2C+Jaana&rft.date=2015-01-01&rft.issn=1475-0961&rft.eissn=1475-097X&rft.volume=35&rft.issue=1&rft.spage=64&rft.epage=70&rft_id=info:doi/10.1111%2Fcpf.12127&rft.externalDBID=10.1111%252Fcpf.12127&rft.externalDocID=CPF12127 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-0961&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-0961&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-0961&client=summon |