A universal, accurate intensity-based classification of different physical activities using raw data of accelerometer

Summary Objective Accelerometers are increasingly used for objective assessment of physical activity. However, because of lack of the proprietary analysis algorithms, direct comparisons between accelerometer brands are difficult. In this study, we propose and evaluate open source methods for commens...

Full description

Saved in:
Bibliographic Details
Published inClinical physiology and functional imaging Vol. 35; no. 1; pp. 64 - 70
Main Authors Vähä-Ypyä, Henri, Vasankari, Tommi, Husu, Pauliina, Suni, Jaana, Sievänen, Harri
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.01.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Objective Accelerometers are increasingly used for objective assessment of physical activity. However, because of lack of the proprietary analysis algorithms, direct comparisons between accelerometer brands are difficult. In this study, we propose and evaluate open source methods for commensurate assessment of raw accelerometer data irrespective of the brand. Design Twenty‐one participants carried simultaneously three different tri‐axial accelerometers on their waist during five different sedentary activities and five different intensity levels of bipedal movement from slow walking to running. Several time and frequency domain traits were calculated from the measured raw data, and their performance in classifying the activities was compared. Results Of the several traits, the mean amplitude deviation (MAD) provided consistently the best performance in separating the sedentary activities and different speeds of bipedal movement from each other. Most importantly, the universal cut‐off limits based on MAD classified sedentary activities and different intensity levels of walking and running equally well for all three accelerometer brands and reached at least 97% sensitivity and specificity in each case. Conclusion Irrespective of the accelerometer brand, a simply calculable MAD with universal cut‐off limits provides a universal method to evaluate physical activity and sedentary behaviour using raw accelerometer data. A broader application of the present approach is expected to render different accelerometer studies directly comparable with each other.
AbstractList Accelerometers are increasingly used for objective assessment of physical activity. However, because of lack of the proprietary analysis algorithms, direct comparisons between accelerometer brands are difficult. In this study, we propose and evaluate open source methods for commensurate assessment of raw accelerometer data irrespective of the brand.OBJECTIVEAccelerometers are increasingly used for objective assessment of physical activity. However, because of lack of the proprietary analysis algorithms, direct comparisons between accelerometer brands are difficult. In this study, we propose and evaluate open source methods for commensurate assessment of raw accelerometer data irrespective of the brand.Twenty-one participants carried simultaneously three different tri-axial accelerometers on their waist during five different sedentary activities and five different intensity levels of bipedal movement from slow walking to running. Several time and frequency domain traits were calculated from the measured raw data, and their performance in classifying the activities was compared.DESIGNTwenty-one participants carried simultaneously three different tri-axial accelerometers on their waist during five different sedentary activities and five different intensity levels of bipedal movement from slow walking to running. Several time and frequency domain traits were calculated from the measured raw data, and their performance in classifying the activities was compared.Of the several traits, the mean amplitude deviation (MAD) provided consistently the best performance in separating the sedentary activities and different speeds of bipedal movement from each other. Most importantly, the universal cut-off limits based on MAD classified sedentary activities and different intensity levels of walking and running equally well for all three accelerometer brands and reached at least 97% sensitivity and specificity in each case.RESULTSOf the several traits, the mean amplitude deviation (MAD) provided consistently the best performance in separating the sedentary activities and different speeds of bipedal movement from each other. Most importantly, the universal cut-off limits based on MAD classified sedentary activities and different intensity levels of walking and running equally well for all three accelerometer brands and reached at least 97% sensitivity and specificity in each case.Irrespective of the accelerometer brand, a simply calculable MAD with universal cut-off limits provides a universal method to evaluate physical activity and sedentary behaviour using raw accelerometer data. A broader application of the present approach is expected to render different accelerometer studies directly comparable with each other.CONCLUSIONIrrespective of the accelerometer brand, a simply calculable MAD with universal cut-off limits provides a universal method to evaluate physical activity and sedentary behaviour using raw accelerometer data. A broader application of the present approach is expected to render different accelerometer studies directly comparable with each other.
Summary Objective Accelerometers are increasingly used for objective assessment of physical activity. However, because of lack of the proprietary analysis algorithms, direct comparisons between accelerometer brands are difficult. In this study, we propose and evaluate open source methods for commensurate assessment of raw accelerometer data irrespective of the brand. Design Twenty‐one participants carried simultaneously three different tri‐axial accelerometers on their waist during five different sedentary activities and five different intensity levels of bipedal movement from slow walking to running. Several time and frequency domain traits were calculated from the measured raw data, and their performance in classifying the activities was compared. Results Of the several traits, the mean amplitude deviation (MAD) provided consistently the best performance in separating the sedentary activities and different speeds of bipedal movement from each other. Most importantly, the universal cut‐off limits based on MAD classified sedentary activities and different intensity levels of walking and running equally well for all three accelerometer brands and reached at least 97% sensitivity and specificity in each case. Conclusion Irrespective of the accelerometer brand, a simply calculable MAD with universal cut‐off limits provides a universal method to evaluate physical activity and sedentary behaviour using raw accelerometer data. A broader application of the present approach is expected to render different accelerometer studies directly comparable with each other.
Summary Objective Accelerometers are increasingly used for objective assessment of physical activity. However, because of lack of the proprietary analysis algorithms, direct comparisons between accelerometer brands are difficult. In this study, we propose and evaluate open source methods for commensurate assessment of raw accelerometer data irrespective of the brand. Design Twenty-one participants carried simultaneously three different tri-axial accelerometers on their waist during five different sedentary activities and five different intensity levels of bipedal movement from slow walking to running. Several time and frequency domain traits were calculated from the measured raw data, and their performance in classifying the activities was compared. Results Of the several traits, the mean amplitude deviation (MAD) provided consistently the best performance in separating the sedentary activities and different speeds of bipedal movement from each other. Most importantly, the universal cut-off limits based on MAD classified sedentary activities and different intensity levels of walking and running equally well for all three accelerometer brands and reached at least 97% sensitivity and specificity in each case. Conclusion Irrespective of the accelerometer brand, a simply calculable MAD with universal cut-off limits provides a universal method to evaluate physical activity and sedentary behaviour using raw accelerometer data. A broader application of the present approach is expected to render different accelerometer studies directly comparable with each other.
Accelerometers are increasingly used for objective assessment of physical activity. However, because of lack of the proprietary analysis algorithms, direct comparisons between accelerometer brands are difficult. In this study, we propose and evaluate open source methods for commensurate assessment of raw accelerometer data irrespective of the brand. Twenty-one participants carried simultaneously three different tri-axial accelerometers on their waist during five different sedentary activities and five different intensity levels of bipedal movement from slow walking to running. Several time and frequency domain traits were calculated from the measured raw data, and their performance in classifying the activities was compared. Of the several traits, the mean amplitude deviation (MAD) provided consistently the best performance in separating the sedentary activities and different speeds of bipedal movement from each other. Most importantly, the universal cut-off limits based on MAD classified sedentary activities and different intensity levels of walking and running equally well for all three accelerometer brands and reached at least 97% sensitivity and specificity in each case. Irrespective of the accelerometer brand, a simply calculable MAD with universal cut-off limits provides a universal method to evaluate physical activity and sedentary behaviour using raw accelerometer data. A broader application of the present approach is expected to render different accelerometer studies directly comparable with each other.
Author Vasankari, Tommi
Husu, Pauliina
Vähä-Ypyä, Henri
Suni, Jaana
Sievänen, Harri
Author_xml – sequence: 1
  givenname: Henri
  surname: Vähä-Ypyä
  fullname: Vähä-Ypyä, Henri
  email: Henri Vähä-Ypyä, UKK Institute, PO Box 30, FI-33501 Tampere, Finland, henri.vaha-ypya@uta.fi
  organization: UKK Institute, Tampere, Finland
– sequence: 2
  givenname: Tommi
  surname: Vasankari
  fullname: Vasankari, Tommi
  organization: UKK Institute, Tampere, Finland
– sequence: 3
  givenname: Pauliina
  surname: Husu
  fullname: Husu, Pauliina
  organization: UKK Institute, Tampere, Finland
– sequence: 4
  givenname: Jaana
  surname: Suni
  fullname: Suni, Jaana
  organization: UKK Institute, Tampere, Finland
– sequence: 5
  givenname: Harri
  surname: Sievänen
  fullname: Sievänen, Harri
  organization: UKK Institute, Tampere, Finland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24393233$$D View this record in MEDLINE/PubMed
BookMark eNp1kV1vFCEUhompse3qhX_AkHhjE6eFgYHlstn0w_RDEzV6R4A5o9RZZgWm7f572e5uLxrLDSQ8z5uT9-yjnTAEQOgtJYe0nCO36A5pTWv5Au1RLpuKKPlz5_Et6C7aT-mGECoZl6_Qbs2ZYjVje2g8xmPwtxCT6T9i49wYTQbsQ4aQfF5W1iRosetNSr7zzmQ_BDx0uPVdBxFCxovfy1Q--mJnf-uzh4TH5MMvHM0dbk02K75EQw9xmEOG-Bq97Eyf4M3mnqDvpyffZufV5eezT7Pjy8o1SsqqNkZI23BFgNlWGmuVNZITmFLFOGuYY0DJVPDOCcengjBu1dRKYQlIXndsgj6scxdx-DtCynruU5mjNwGGMWkqmOKqFkIV9P0T9GYYYyjTrSjJm5qX9ibo3YYa7RxavYh-buJSbwstwNEacHFIKUKnnc8PpeVofK8p0auV6bIy_bCyYhw8Mbah_2M36Xe-h-XzoJ59Od0a1drwKcP9o2HiHy0kk43-cX2m6yt21Xy9uNCM_QOXk7SS
CODEN CPFICA
CitedBy_id crossref_primary_10_3389_fspor_2024_1434661
crossref_primary_10_1038_s41598_024_58775_4
crossref_primary_10_3390_s22072583
crossref_primary_10_3390_ijerph18115643
crossref_primary_10_1123_japa_2023_0445
crossref_primary_10_1123_japa_2020_0389
crossref_primary_10_1371_journal_pone_0198587
crossref_primary_10_3389_fpsyg_2021_741735
crossref_primary_10_1136_bmjsem_2019_000539
crossref_primary_10_1109_MC_2019_2913751
crossref_primary_10_1186_s13102_024_00991_6
crossref_primary_10_3390_ijerph20075414
crossref_primary_10_1038_s41598_022_18982_3
crossref_primary_10_3390_ijerph19138185
crossref_primary_10_1016_j_bone_2023_116951
crossref_primary_10_1088_0967_3334_37_10_1636
crossref_primary_10_1111_sms_14371
crossref_primary_10_1016_j_humov_2019_102523
crossref_primary_10_1007_s41347_022_00246_6
crossref_primary_10_1186_s13102_022_00522_1
crossref_primary_10_1002_ejsc_12172
crossref_primary_10_3389_ijph_2024_1607322
crossref_primary_10_1007_s00421_021_04731_3
crossref_primary_10_1016_j_enbuild_2015_11_054
crossref_primary_10_1016_j_sleep_2020_12_019
crossref_primary_10_1038_s41598_018_27704_7
crossref_primary_10_1111_sms_13838
crossref_primary_10_1038_srep45975
crossref_primary_10_1371_journal_pone_0164045
crossref_primary_10_3390_s24154955
crossref_primary_10_1016_j_joca_2016_05_007
crossref_primary_10_1016_j_dhjo_2018_08_011
crossref_primary_10_1111_sms_13673
crossref_primary_10_1093_eurpub_ckac078
crossref_primary_10_1186_s12889_018_6121_2
crossref_primary_10_1186_s13102_016_0056_7
crossref_primary_10_5334_paah_73
crossref_primary_10_3390_ijerph21070866
crossref_primary_10_3390_ijerph16091661
crossref_primary_10_1080_07853890_2019_1566765
crossref_primary_10_1186_s13102_021_00389_8
crossref_primary_10_1136_bmjsem_2018_000363
crossref_primary_10_1186_s44247_024_00087_8
crossref_primary_10_1016_j_trci_2018_06_007
crossref_primary_10_3390_s23115073
crossref_primary_10_1186_s40064_016_1701_z
crossref_primary_10_1186_s12889_015_2347_4
crossref_primary_10_3390_s21062063
crossref_primary_10_1016_j_ergon_2018_08_013
crossref_primary_10_1186_s12889_016_3591_y
crossref_primary_10_1088_1361_6579_ac944f
crossref_primary_10_1186_s13643_020_01515_2
crossref_primary_10_1371_journal_pone_0226843
crossref_primary_10_1186_s11556_020_00251_9
crossref_primary_10_1080_02640414_2017_1420452
crossref_primary_10_3390_ijerph19116950
crossref_primary_10_3389_fspor_2020_587789
crossref_primary_10_1186_s12966_017_0484_0
crossref_primary_10_1038_s41366_021_01022_x
crossref_primary_10_1371_journal_pone_0294817
crossref_primary_10_1371_journal_pone_0183317
crossref_primary_10_3390_healthcare10071255
crossref_primary_10_1016_j_gaitpost_2024_05_002
crossref_primary_10_1249_MSS_0000000000001344
crossref_primary_10_3389_fspor_2024_1346118
crossref_primary_10_4035_jsfwr_53_164
crossref_primary_10_1186_s12889_024_20363_6
crossref_primary_10_3390_ijerph21060686
crossref_primary_10_3934_publichealth_2016_3_577
crossref_primary_10_1111_sms_13017
crossref_primary_10_1177_1534735420914973
crossref_primary_10_3390_mps5010001
crossref_primary_10_3390_children5120172
crossref_primary_10_1136_military_2024_002800
crossref_primary_10_1016_j_gaitpost_2016_12_014
crossref_primary_10_1038_s41598_020_67983_7
crossref_primary_10_1097_BRS_0000000000001922
crossref_primary_10_3390_jcm7090268
crossref_primary_10_1186_s12889_021_10656_5
crossref_primary_10_1016_j_gaitpost_2017_12_028
crossref_primary_10_1371_journal_pone_0167759
crossref_primary_10_3390_s24134060
crossref_primary_10_1186_s12966_024_01681_9
crossref_primary_10_1055_a_2161_4137
crossref_primary_10_1007_s12553_020_00512_8
crossref_primary_10_1186_s12889_023_16110_y
crossref_primary_10_1186_s12889_017_4229_4
crossref_primary_10_1016_j_scispo_2021_08_007
crossref_primary_10_1080_02640414_2021_1876328
crossref_primary_10_1186_s12889_020_09773_4
crossref_primary_10_2196_38077
crossref_primary_10_3390_ani14243628
crossref_primary_10_1111_sms_12795
crossref_primary_10_1123_jmpb_2023_0033
crossref_primary_10_2196_23887
crossref_primary_10_1111_sms_13244
crossref_primary_10_3389_fphys_2019_00997
crossref_primary_10_1186_s12889_019_7869_8
crossref_primary_10_3390_s24010076
crossref_primary_10_1111_sms_14051
crossref_primary_10_1186_s12889_016_3006_0
crossref_primary_10_3390_s19092186
crossref_primary_10_1186_s12889_022_13352_0
crossref_primary_10_3390_metabo12080700
crossref_primary_10_1136_bmjsem_2017_000233
crossref_primary_10_3390_su13148116
crossref_primary_10_1093_gerona_glaa142
crossref_primary_10_1123_jmpb_2021_0018
crossref_primary_10_2196_14090
crossref_primary_10_1111_bjhp_12744
crossref_primary_10_1371_journal_pone_0314456
crossref_primary_10_1123_jmpb_2021_0016
crossref_primary_10_1038_s41598_021_92040_2
crossref_primary_10_1016_j_gaitpost_2020_05_024
crossref_primary_10_7717_peerj_5437
crossref_primary_10_1371_journal_pone_0195837
crossref_primary_10_3389_fpsyg_2022_824595
crossref_primary_10_3390_s151026783
crossref_primary_10_1111_joim_12908
crossref_primary_10_1080_1091367X_2021_1944154
crossref_primary_10_1016_j_tjnut_2022_10_009
crossref_primary_10_1080_1091367X_2023_2271444
crossref_primary_10_1093_gerona_gly263
crossref_primary_10_1007_s40279_017_0716_0
crossref_primary_10_1016_j_jbiomech_2020_109834
crossref_primary_10_2196_59660
crossref_primary_10_1186_s12889_016_3094_x
crossref_primary_10_1249_MSS_0000000000002916
crossref_primary_10_1093_milmed_usx049
crossref_primary_10_1177_17479541231225182
crossref_primary_10_4236_ape_2019_94016
crossref_primary_10_1038_s41598_018_26174_1
crossref_primary_10_3390_ijerph17186887
crossref_primary_10_1186_s12966_024_01662_y
crossref_primary_10_3389_fpubh_2020_578275
crossref_primary_10_1249_MSS_0000000000002883
crossref_primary_10_1002_jbmr_3357
crossref_primary_10_1017_BrImp_2016_1
crossref_primary_10_1016_j_gaitpost_2019_11_008
crossref_primary_10_1016_j_jshs_2024_101006
crossref_primary_10_1111_sms_12813
crossref_primary_10_3390_ijerph14101257
crossref_primary_10_1123_jmpb_2021_0023
crossref_primary_10_1186_s12877_020_01669_7
crossref_primary_10_3390_s19092095
crossref_primary_10_3390_s24041123
crossref_primary_10_1093_gerona_glac071
crossref_primary_10_3389_fphys_2016_00681
crossref_primary_10_1016_j_bone_2020_115704
crossref_primary_10_1080_02640414_2022_2159117
crossref_primary_10_1136_bmjopen_2023_081947
crossref_primary_10_1123_jmpb_2023_0057
crossref_primary_10_2196_mhealth_5960
crossref_primary_10_1038_s41598_019_54267_y
crossref_primary_10_1186_s12889_015_2266_4
crossref_primary_10_1007_s12561_018_9227_2
crossref_primary_10_1177_2047487317711048
crossref_primary_10_3390_s24030761
crossref_primary_10_1038_s41393_021_00728_z
crossref_primary_10_1186_s13102_015_0010_0
crossref_primary_10_1186_s13102_020_00196_7
crossref_primary_10_1007_s10984_022_09411_3
crossref_primary_10_1186_s12877_024_04764_1
crossref_primary_10_1080_1091367X_2019_1613997
crossref_primary_10_1093_gerona_glaa166
crossref_primary_10_1186_s12877_022_03711_2
crossref_primary_10_1111_sms_12887
crossref_primary_10_3389_fpubh_2022_820852
crossref_primary_10_1186_s11556_020_0237_y
crossref_primary_10_3389_fspor_2021_626282
crossref_primary_10_1016_j_pmedr_2022_101731
crossref_primary_10_1123_jmpb_2020_0061
crossref_primary_10_1172_JCI130341
crossref_primary_10_2196_12808
crossref_primary_10_1038_s41598_024_75579_8
Cites_doi 10.1519/JSC.0b013e3181ddfcf8
10.1249/MSS.0b013e3181d479f2
10.1016/j.ypmed.2010.08.010
10.1249/MSS.0b013e3182399e0f
10.1249/MSS.0b013e3181e5797d
10.1249/MSS.0b013e3182399b7e
10.1186/1471-2288-12-54
10.1249/MSS.0b013e3181a24536
10.1055/s-2003-40701
10.1249/MSS.0b013e3182399e5b
10.1109/TITB.2005.856863
10.1038/oby.2008.279
10.1371/journal.pone.0063522
10.1080/14763140701841936
10.1007/s00421-006-0307-5
10.2337/dc07-2046
ContentType Journal Article
Copyright 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd
2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Copyright © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine
Copyright_xml – notice: 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd
– notice: 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
– notice: Copyright © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TS
7U5
8FD
K9.
L7M
7X8
DOI 10.1111/cpf.12127
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Physical Education Index
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Solid State and Superconductivity Abstracts
Technology Research Database
Calcium & Calcified Tissue Abstracts
Advanced Technologies Database with Aerospace
Physical Education Index
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1475-097X
EndPage 70
ExternalDocumentID 3530110601
24393233
10_1111_cpf_12127
CPF12127
ark_67375_WNG_2M3M5SKK_3
Genre article
Comparative Study
Research Support, Non-U.S. Gov't
Evaluation Study
Journal Article
GrantInformation_xml – fundername: Competitive Research Funding of the Pirkanmaa Hospital District
  funderid: 9G070
– fundername: Finnish Funding Agency for Technology and Innovation
  funderid: 40247/12
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OC
29B
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAKAS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RJQFR
ROL
RX1
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WVDHM
WXI
WXSBR
XG1
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TS
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
K9.
L7M
7X8
ID FETCH-LOGICAL-c5977-2aa67b5490e3bd7abb9ba740e81934353c3e10864fc6c486034b98b76b0e742f3
IEDL.DBID DR2
ISSN 1475-0961
1475-097X
IngestDate Fri Jul 11 07:37:31 EDT 2025
Sun Jul 13 05:08:25 EDT 2025
Wed Feb 19 02:28:37 EST 2025
Tue Jul 01 01:42:45 EDT 2025
Thu Apr 24 22:56:57 EDT 2025
Wed Jan 22 16:32:38 EST 2025
Wed Oct 30 09:49:39 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords sedentary behaviour
objective assessment
accelerometer
reliability
physical activity
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5977-2aa67b5490e3bd7abb9ba740e81934353c3e10864fc6c486034b98b76b0e742f3
Notes Competitive Research Funding of the Pirkanmaa Hospital District - No. 9G070
ark:/67375/WNG-2M3M5SKK-3
istex:70CAA89554A2C7D9D9FA8A52A42F363844D957C5
Finnish Funding Agency for Technology and Innovation - No. 40247/12
ArticleID:CPF12127
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
PMID 24393233
PQID 1637452417
PQPubID 1006519
PageCount 7
ParticipantIDs proquest_miscellaneous_1639492669
proquest_journals_1637452417
pubmed_primary_24393233
crossref_citationtrail_10_1111_cpf_12127
crossref_primary_10_1111_cpf_12127
wiley_primary_10_1111_cpf_12127_CPF12127
istex_primary_ark_67375_WNG_2M3M5SKK_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2015
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: January 2015
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Clinical physiology and functional imaging
PublicationTitleAlternate Clin Physiol Funct Imaging
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Abt JP, Sell TC, Chu Y, Lovalekar M, Burdett RG, Lephart SM. Running kinematics and shock absorption do not change after brief exhaustive running. J Strength Cond Res (2011); 25: 1479-1485.
De Vries SI, Garre FG, Engbers LH, Hildebrandt VH, Van Buuren S. Evaluation of neural networks to identify types of activity using accelerometers. Med Sci Sports Exerc (2011); 43: 101-107.
Freedson P, Bowles HR, Troiano R, Haskell W. Assessment of physical activity using wearable monitors: recommendations for monitor calibration and use in the field. Med Sci Sports Exerc (2012); 44(1 Suppl 1): 1-4.
Kozey SL, Lyden K, Howe CA, Staudenmayer JW, Freedson PS. Accelerometer output and MET values of common physical activities. Med Sci Sports Exerc (2010); 42: 1776-1784.
Oliver M, Schofield GM, Badland HM, Shepherd J. Utility of accelerometer thresholds for classifying sitting in office workers. Prev Med (2010); 51: 357-360.
Pärkkä J, Ermes M, Korpipää P, Mäntyjärvi J, Peltola J, Korhonen I. Activity classification using realistic data from wearable sensors. IEEE Trans Inf Technol Biomed (2006); 10: 119-128.
Ermes M, Parkka J, Cluitmans L. Advancing from offline to online activity recognition with wearable sensors. Conf Proc IEEE Eng Med Biol Soc (2008); 2008: 4451-4454.
Matthews CE, Hagströmer M, Pober DM, Bowles HR. Best practices for using physical activity monitors in population-based research. Med Sci Sports Exerc (2012); 44(1 Suppl 1): S68-S76.
Healy GN, Dunstan DW, Salmon J, Cerin E, Shaw JE, Zimmet PZ, Owen N. Breaks in sedentary time: beneficial associations with metabolic risk. Diabetes Care (2008); 31: 661-666.
Staudenmayer J, Zhu W, Catellier DJ. Statistical considerations in the analysis of accelerometry-based activity monitor data. Med Sci Sports Exerc (2012); 44(1 Suppl 1): 61-67.
Hiilloskorpi HK, Pasanen ME, Fogelholm MG, Laukkanen RM, Mänttäri AT. Use of heart rate to predict energy expenditure from low to high activity levels. Int J Sports Med (2003); 24: 332-336.
Rothney MP, Schaefer EV, Neumann MM, Choi L, Chen KY. Validity of physical activity intensity predictions by ActiGraph, Actical, and RT3 accelerometers. Obesity (Silver Spring) (2008); 16: 1946-1952.
Bonomi AG, Goris AH, Yin B, Westerterp KR. Detection of type, duration, and intensity of physical activity using an accelerometer. Med Sci Sports Exerc (2009); 41: 1770-1777.
Zhang S, Derrick TR, Evans W, Yu YJ. Shock and impact reduction in moderate and strenuous landing activities. Sports Biomech (2008); 7: 296-309.
Esliger DW, Tremblay MS. Physical activity and inactivity profiling: the next generation. Can J Public Health (2007); 98(Suppl 2): 195-207.
Crouter SE, Churilla JR, Bassett DR Jr. Estimating energy expenditure using accelerometers. Eur J Appl Physiol (2006); 98: 601-612.
Marschollek M. A semi-quantitative method to denote generic physical activity phenotypes from long-term accelerometer data - the ATLAS index. PLoS One (2013); 8: e63522.
Straker L, Campbell A. Translation equations to compare ActiGraph GT3X and Actical accelerometers activity counts. BMC Med Res Methodol (2012); 12: 54.
2010; 42
2009; 41
2006; 98
2006; 10
2008; 16
2003; 24
2008; 7
2011; 43
2011; 25
2008; 31
2007; 98
2013; 8
2012; 12
2008; 2008
2012; 44
2010; 51
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
Ermes M (e_1_2_8_6_1) 2008; 2008
e_1_2_8_3_1
Esliger DW (e_1_2_8_7_1) 2007; 98
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_12_1
References_xml – reference: Ermes M, Parkka J, Cluitmans L. Advancing from offline to online activity recognition with wearable sensors. Conf Proc IEEE Eng Med Biol Soc (2008); 2008: 4451-4454.
– reference: De Vries SI, Garre FG, Engbers LH, Hildebrandt VH, Van Buuren S. Evaluation of neural networks to identify types of activity using accelerometers. Med Sci Sports Exerc (2011); 43: 101-107.
– reference: Hiilloskorpi HK, Pasanen ME, Fogelholm MG, Laukkanen RM, Mänttäri AT. Use of heart rate to predict energy expenditure from low to high activity levels. Int J Sports Med (2003); 24: 332-336.
– reference: Oliver M, Schofield GM, Badland HM, Shepherd J. Utility of accelerometer thresholds for classifying sitting in office workers. Prev Med (2010); 51: 357-360.
– reference: Crouter SE, Churilla JR, Bassett DR Jr. Estimating energy expenditure using accelerometers. Eur J Appl Physiol (2006); 98: 601-612.
– reference: Zhang S, Derrick TR, Evans W, Yu YJ. Shock and impact reduction in moderate and strenuous landing activities. Sports Biomech (2008); 7: 296-309.
– reference: Abt JP, Sell TC, Chu Y, Lovalekar M, Burdett RG, Lephart SM. Running kinematics and shock absorption do not change after brief exhaustive running. J Strength Cond Res (2011); 25: 1479-1485.
– reference: Rothney MP, Schaefer EV, Neumann MM, Choi L, Chen KY. Validity of physical activity intensity predictions by ActiGraph, Actical, and RT3 accelerometers. Obesity (Silver Spring) (2008); 16: 1946-1952.
– reference: Straker L, Campbell A. Translation equations to compare ActiGraph GT3X and Actical accelerometers activity counts. BMC Med Res Methodol (2012); 12: 54.
– reference: Pärkkä J, Ermes M, Korpipää P, Mäntyjärvi J, Peltola J, Korhonen I. Activity classification using realistic data from wearable sensors. IEEE Trans Inf Technol Biomed (2006); 10: 119-128.
– reference: Freedson P, Bowles HR, Troiano R, Haskell W. Assessment of physical activity using wearable monitors: recommendations for monitor calibration and use in the field. Med Sci Sports Exerc (2012); 44(1 Suppl 1): 1-4.
– reference: Healy GN, Dunstan DW, Salmon J, Cerin E, Shaw JE, Zimmet PZ, Owen N. Breaks in sedentary time: beneficial associations with metabolic risk. Diabetes Care (2008); 31: 661-666.
– reference: Esliger DW, Tremblay MS. Physical activity and inactivity profiling: the next generation. Can J Public Health (2007); 98(Suppl 2): 195-207.
– reference: Kozey SL, Lyden K, Howe CA, Staudenmayer JW, Freedson PS. Accelerometer output and MET values of common physical activities. Med Sci Sports Exerc (2010); 42: 1776-1784.
– reference: Matthews CE, Hagströmer M, Pober DM, Bowles HR. Best practices for using physical activity monitors in population-based research. Med Sci Sports Exerc (2012); 44(1 Suppl 1): S68-S76.
– reference: Marschollek M. A semi-quantitative method to denote generic physical activity phenotypes from long-term accelerometer data - the ATLAS index. PLoS One (2013); 8: e63522.
– reference: Bonomi AG, Goris AH, Yin B, Westerterp KR. Detection of type, duration, and intensity of physical activity using an accelerometer. Med Sci Sports Exerc (2009); 41: 1770-1777.
– reference: Staudenmayer J, Zhu W, Catellier DJ. Statistical considerations in the analysis of accelerometry-based activity monitor data. Med Sci Sports Exerc (2012); 44(1 Suppl 1): 61-67.
– volume: 42
  start-page: 1776
  year: 2010
  end-page: 1784
  article-title: Accelerometer output and MET values of common physical activities
  publication-title: Med Sci Sports Exerc
– volume: 2008
  start-page: 4451
  year: 2008
  end-page: 4454
  article-title: Advancing from offline to online activity recognition with wearable sensors
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 8
  start-page: e63522
  year: 2013
  article-title: A semi‐quantitative method to denote generic physical activity phenotypes from long‐term accelerometer data – the ATLAS index
  publication-title: PLoS One
– volume: 25
  start-page: 1479
  year: 2011
  end-page: 1485
  article-title: Running kinematics and shock absorption do not change after brief exhaustive running
  publication-title: J Strength Cond Res
– volume: 16
  start-page: 1946
  year: 2008
  end-page: 1952
  article-title: Validity of physical activity intensity predictions by ActiGraph, Actical, and RT3 accelerometers
  publication-title: Obesity (Silver Spring)
– volume: 12
  start-page: 54
  year: 2012
  article-title: Translation equations to compare ActiGraph GT3X and Actical accelerometers activity counts
  publication-title: BMC Med Res Methodol
– volume: 43
  start-page: 101
  year: 2011
  end-page: 107
  article-title: Evaluation of neural networks to identify types of activity using accelerometers
  publication-title: Med Sci Sports Exerc
– volume: 44
  start-page: S68
  issue: 1 Suppl 1
  year: 2012
  end-page: S76
  article-title: Best practices for using physical activity monitors in population‐based research
  publication-title: Med Sci Sports Exerc
– volume: 41
  start-page: 1770
  year: 2009
  end-page: 1777
  article-title: Detection of type, duration, and intensity of physical activity using an accelerometer
  publication-title: Med Sci Sports Exerc
– volume: 51
  start-page: 357
  year: 2010
  end-page: 360
  article-title: Utility of accelerometer thresholds for classifying sitting in office workers
  publication-title: Prev Med
– volume: 24
  start-page: 332
  year: 2003
  end-page: 336
  article-title: Use of heart rate to predict energy expenditure from low to high activity levels
  publication-title: Int J Sports Med
– volume: 44
  start-page: 1
  issue: 1 Suppl 1
  year: 2012
  end-page: 4
  article-title: Assessment of physical activity using wearable monitors: recommendations for monitor calibration and use in the field
  publication-title: Med Sci Sports Exerc
– volume: 31
  start-page: 661
  year: 2008
  end-page: 666
  article-title: Breaks in sedentary time: beneficial associations with metabolic risk
  publication-title: Diabetes Care
– volume: 7
  start-page: 296
  year: 2008
  end-page: 309
  article-title: Shock and impact reduction in moderate and strenuous landing activities
  publication-title: Sports Biomech
– volume: 10
  start-page: 119
  year: 2006
  end-page: 128
  article-title: Activity classification using realistic data from wearable sensors
  publication-title: IEEE Trans Inf Technol Biomed
– volume: 98
  start-page: 601
  year: 2006
  end-page: 612
  article-title: Estimating energy expenditure using accelerometers
  publication-title: Eur J Appl Physiol
– volume: 98
  start-page: 195
  issue: Suppl 2
  year: 2007
  end-page: 207
  article-title: Physical activity and inactivity profiling: the next generation
  publication-title: Can J Public Health
– volume: 44
  start-page: 61
  issue: 1 Suppl 1
  year: 2012
  end-page: 67
  article-title: Statistical considerations in the analysis of accelerometry‐based activity monitor data
  publication-title: Med Sci Sports Exerc
– ident: e_1_2_8_2_1
  doi: 10.1519/JSC.0b013e3181ddfcf8
– ident: e_1_2_8_11_1
  doi: 10.1249/MSS.0b013e3181d479f2
– ident: e_1_2_8_14_1
  doi: 10.1016/j.ypmed.2010.08.010
– ident: e_1_2_8_17_1
  doi: 10.1249/MSS.0b013e3182399e0f
– ident: e_1_2_8_5_1
  doi: 10.1249/MSS.0b013e3181e5797d
– ident: e_1_2_8_8_1
  doi: 10.1249/MSS.0b013e3182399b7e
– ident: e_1_2_8_18_1
  doi: 10.1186/1471-2288-12-54
– volume: 98
  start-page: 195
  issue: 2
  year: 2007
  ident: e_1_2_8_7_1
  article-title: Physical activity and inactivity profiling: the next generation
  publication-title: Can J Public Health
– ident: e_1_2_8_3_1
  doi: 10.1249/MSS.0b013e3181a24536
– ident: e_1_2_8_10_1
  doi: 10.1055/s-2003-40701
– ident: e_1_2_8_13_1
  doi: 10.1249/MSS.0b013e3182399e5b
– volume: 2008
  start-page: 4451
  year: 2008
  ident: e_1_2_8_6_1
  article-title: Advancing from offline to online activity recognition with wearable sensors
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– ident: e_1_2_8_15_1
  doi: 10.1109/TITB.2005.856863
– ident: e_1_2_8_16_1
  doi: 10.1038/oby.2008.279
– ident: e_1_2_8_12_1
  doi: 10.1371/journal.pone.0063522
– ident: e_1_2_8_19_1
  doi: 10.1080/14763140701841936
– ident: e_1_2_8_4_1
  doi: 10.1007/s00421-006-0307-5
– ident: e_1_2_8_9_1
  doi: 10.2337/dc07-2046
SSID ssj0017347
Score 2.4703064
Snippet Summary Objective Accelerometers are increasingly used for objective assessment of physical activity. However, because of lack of the proprietary analysis...
Accelerometers are increasingly used for objective assessment of physical activity. However, because of lack of the proprietary analysis algorithms, direct...
Summary Objective Accelerometers are increasingly used for objective assessment of physical activity. However, because of lack of the proprietary analysis...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 64
SubjectTerms accelerometer
Accelerometers
Accelerometry - instrumentation
Accelerometry - methods
Actigraphy - instrumentation
Actigraphy - methods
Adult
Algorithms
Equipment Design
Equipment Failure Analysis
Female
Humans
Male
Monitoring, Ambulatory - instrumentation
Monitoring, Ambulatory - methods
Motor Activity - physiology
objective assessment
Pattern Recognition, Automated - methods
physical activity
Physical Exertion - physiology
reliability
Reproducibility of Results
sedentary behaviour
Sensitivity and Specificity
Title A universal, accurate intensity-based classification of different physical activities using raw data of accelerometer
URI https://api.istex.fr/ark:/67375/WNG-2M3M5SKK-3/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcpf.12127
https://www.ncbi.nlm.nih.gov/pubmed/24393233
https://www.proquest.com/docview/1637452417
https://www.proquest.com/docview/1639492669
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9RAFL2UCqUvVVttV6uMRaQPTclmMpkNPpXitli2SD9oH4RhZjIjsmV32SZWffIn-Bv9Jd47-aCVCuJbIDeTZO69mTOTM-cCvM77Nk18FkdJrg1OUKyJjBmIKNHWc-1iYTxtFB4dZ4fn6ftLcbkAb9u9MLU-RLfgRpkRvteU4Npc30pyO_MkjZDQTnLiahEgOumko_qSh-Ji_VSKiMqaNKpCxOLprrwzFj2gbv16H9C8i1vDwDN8CB_bR675JuPdqjS79vsfao7_-U6PYKUBpGyvjqDHsOAmq7A0an65r8HNHqtq8oa-2mHa2orEJdjnmvpefvv14yeNhAWzhMOJeBR8zaaetcVXSjZrooHRNoovQcSVEeP-E5vrG0YsVbLHxnEQJP0EdPYTOB--O9s_jJpqDZElDTv0rs6kwelm7LgppDYmN1qmsUPMwRGUccsdlXVKvc0slb7iqckHRmYmdjg_9_wpLE6mE7cBzAqHuIb7fMCLVBZ2UHBs3LqCbGMverDd-k3ZRsqcKmpcqXZKgx2pQkf2YKszndX6HfcZvQnO7yz0fEyENynUxfGBSkZ8JE6PjhTvwWYbHarJ9WuFiFamApEQtvOqO41ZSr9e9MRNq2CTkzRjlvdgvY6q7mYJYkKecGx8O8TG359T7X8YhoNn_276HJYR44l61WgTFst55V4gjirNy5AwvwH2SRpK
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VVoJeKP8sFDAIoR5IlY3jeCNxqQrLwjYrBK3aC7Jsx6lQq93VklDaUx-BZ-RJmHF-RFGRELdImTiOZyb-xh5_A_A87ds4KpIwiFJtMECxJjBmIIJI24JrFwpT0EHhbJKM9uL3B-JgCV61Z2FqfohuwY08w_-vycFpQfo3L7fzgrgRInkFVqiiNzHnv_7YkUf1JfflxfqxFAEVNml4hSiPp3v0wmy0QgP7_TKoeRG5-qlnuAaf207XGSdHm1VpNu3ZH3yO__tVN-B6g0nZVm1EN2HJTW_B1azZdb8NJ1usqvM39PFLpq2tiF-Cfamz38vTn-c_aDLMmSUoTrlHXt1sVrC2_krJ5o1BMDpJ8c3zuDJKuj9kC33CKFGV5LFxnAeJQgH1fQf2hm92t0dBU7AhsERjhwrWiTQYcYaOm1xqY1KjZRw6hB0ccRm33FFlp7iwiaXqVzw26cDIxIQOQ_SC34Xl6Wzq7gOzwiG04UU64HksczvIOTZuXU6yYSF6sNEqTtmGzZyKahyrNqrBgVR-IHvwrBOd1xQelwm98NrvJPTiiHLepFD7k7cqyngmPo3HivdgvTUP1bj7V4WgVsYCwRC287S7jY5Kuy966maVl0mJnTFJe3CvNqvuZRHCQh5xbHzDG8ff-6m2Pwz9xYN_F30C10a72Y7aeTcZP4RVhHyiXkRah-VyUblHCKtK89h7zy-C-x5m
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VVqq40PK_UMAghHogVTaO4404VS1LYdlVBVT0UMmyHRuhVrurbUKhJx6BZ-RJmHF-RFGRELdImTiOZyb-xh5_A_A079s08VkcJbk2GKBYExkzEFGirefaxcJ4Oig8nmR7B-mbQ3G4BC_aszA1P0S34EaeEf7X5ODzwv_m5HbuiRohkVdgJc3inOo27L7ruKP6kofqYv1UiojqmjS0QpTG0z16YTJaoXH9ehnSvAhcw8wzXIOjts91wsnxVlWaLXv-B53jf37UOlxrECnbrk3oOiy56Q1YHTd77jfhbJtVdfaGPnnOtLUVsUuwz3Xue_nt5_cfNBUWzBIQp8yjoGw286ytvlKyeWMOjM5RfAksroxS7j-xhT5jlKZK8tg4zoJEoIDavgUHw5cfdvaiplxDZInEDtWrM2kw3owdN4XUxuRGyzR2CDo4ojJuuaO6Tqm3maXaVzw1-cDIzMQOA3TPb8PydDZ1d4FZ4RDYcJ8PeJHKwg4Kjo1bV5Bs7EUPNlu9KdtwmVNJjRPVxjQ4kCoMZA-edKLzmsDjMqFnQfmdhF4cU8abFOrj5JVKxnws3o9Givdgo7UO1Tj7qUJIK1OBUAjbedzdRjelvRc9dbMqyOTEzZjlPbhTW1X3sgRBIU84Nr4ZbOPv_VQ7-8Nwce_fRR_B6v7uUL19PRndh6uI90S9grQBy-Wicg8QU5XmYfCdXxeXHRU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+universal%2C+accurate+intensity%E2%80%90based+classification+of+different+physical+activities+using+raw+data+of+accelerometer&rft.jtitle=Clinical+physiology+and+functional+imaging&rft.au=V%C3%A4h%C3%A4%E2%80%90Ypy%C3%A4%2C+Henri&rft.au=Vasankari%2C+Tommi&rft.au=Husu%2C+Pauliina&rft.au=Suni%2C+Jaana&rft.date=2015-01-01&rft.issn=1475-0961&rft.eissn=1475-097X&rft.volume=35&rft.issue=1&rft.spage=64&rft.epage=70&rft_id=info:doi/10.1111%2Fcpf.12127&rft.externalDBID=10.1111%252Fcpf.12127&rft.externalDocID=CPF12127
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-0961&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-0961&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-0961&client=summon