Fenamates as TRP channel blockers: mefenamic acid selectively blocks TRPM3

BACKGROUND AND PURPOSE Fenamates are N‐phenyl‐substituted anthranilic acid derivatives clinically used as non‐steroid anti‐inflammatory drugs in pain treatment. Reports describing fenamates as tools to interfere with cellular volume regulation attracted our attention based on our interest in the rol...

Full description

Saved in:
Bibliographic Details
Published inBritish journal of pharmacology Vol. 162; no. 8; pp. 1757 - 1769
Main Authors Klose, Chihab, Straub, Isabelle, Riehle, Marc, Ranta, Felicia, Krautwurst, Dietmar, Ullrich, Susanne, Meyerhof, Wolfgang, Harteneck, Christian
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.04.2011
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract BACKGROUND AND PURPOSE Fenamates are N‐phenyl‐substituted anthranilic acid derivatives clinically used as non‐steroid anti‐inflammatory drugs in pain treatment. Reports describing fenamates as tools to interfere with cellular volume regulation attracted our attention based on our interest in the role of the volume‐modulated transient receptor potential (TRP) channels TRPM3 and TRPV4. EXPERIMENTAL APPROACH Firstly, we measured the blocking potencies and selectivities of fenamates on TRPM3 and TRPV4 as well as TRPC6 and TRPM2 by Ca2+ imaging in the heterologous HEK293 cell system. Secondly, we further investigated the effects of mefenamic acid on cytosolic Ca2+ and on the membrane voltage in single HEK293 cells that exogenously express TRPM3. Thirdly, in insulin‐secreting INS‐1E cells, which endogenously express TRPM3, we validated the effect of mefenamic acid on cytosolic Ca2+ and insulin secretion. KEY RESULTS We identified and characterized mefenamic acid as a selective and potent TRPM3 blocker, whereas other fenamate structures non‐selectively blocked TRPM3, TRPV4, TRPC6 and TRPM2. CONCLUSIONS AND IMPLICATIONS This study reveals that mefenamic acid selectively inhibits TRPM3‐mediated calcium entry. This selectivity was further confirmed using insulin‐secreting cells. KATP channel‐dependent increases in cytosolic Ca2+ and insulin secretion were not blocked by mefenamic acid, but the selective stimulation of TRPM3‐dependent Ca2+ entry and insulin secretion induced by pregnenolone sulphate were inhibited. However, the physiological regulator of TRPM3 in insulin‐secreting cells remains to be elucidated, as well as the conditions under which the inhibition of TRPM3 can impair pancreatic β‐cell function. Our results strongly suggest mefenamic acid is the most selective fenamate to interfere with TRPM3 function.
AbstractList Fenamates are N-phenyl-substituted anthranilic acid derivatives clinically used as non-steroid anti-inflammatory drugs in pain treatment. Reports describing fenamates as tools to interfere with cellular volume regulation attracted our attention based on our interest in the role of the volume-modulated transient receptor potential (TRP) channels TRPM3 and TRPV4. Firstly, we measured the blocking potencies and selectivities of fenamates on TRPM3 and TRPV4 as well as TRPC6 and TRPM2 by Ca(2+) imaging in the heterologous HEK293 cell system. Secondly, we further investigated the effects of mefenamic acid on cytosolic Ca(2+) and on the membrane voltage in single HEK293 cells that exogenously express TRPM3. Thirdly, in insulin-secreting INS-1E cells, which endogenously express TRPM3, we validated the effect of mefenamic acid on cytosolic Ca(2+) and insulin secretion. We identified and characterized mefenamic acid as a selective and potent TRPM3 blocker, whereas other fenamate structures non-selectively blocked TRPM3, TRPV4, TRPC6 and TRPM2. This study reveals that mefenamic acid selectively inhibits TRPM3-mediated calcium entry. This selectivity was further confirmed using insulin-secreting cells. K(ATP) channel-dependent increases in cytosolic Ca(2+) and insulin secretion were not blocked by mefenamic acid, but the selective stimulation of TRPM3-dependent Ca(2+) entry and insulin secretion induced by pregnenolone sulphate were inhibited. However, the physiological regulator of TRPM3 in insulin-secreting cells remains to be elucidated, as well as the conditions under which the inhibition of TRPM3 can impair pancreatic β-cell function. Our results strongly suggest mefenamic acid is the most selective fenamate to interfere with TRPM3 function.
BACKGROUND AND PURPOSE Fenamates are N-phenyl-substituted anthranilic acid derivatives clinically used as non-steroid anti-inflammatory drugs in pain treatment. Reports describing fenamates as tools to interfere with cellular volume regulation attracted our attention based on our interest in the role of the volume-modulated transient receptor potential (TRP) channels TRPM3 and TRPV4. EXPERIMENTAL APPROACH Firstly, we measured the blocking potencies and selectivities of fenamates on TRPM3 and TRPV4 as well as TRPC6 and TRPM2 by Ca2+ imaging in the heterologous HEK293 cell system. Secondly, we further investigated the effects of mefenamic acid on cytosolic Ca2+ and on the membrane voltage in single HEK293 cells that exogenously express TRPM3. Thirdly, in insulin-secreting INS-1E cells, which endogenously express TRPM3, we validated the effect of mefenamic acid on cytosolic Ca2+ and insulin secretion. KEY RESULTS We identified and characterized mefenamic acid as a selective and potent TRPM3 blocker, whereas other fenamate structures non-selectively blocked TRPM3, TRPV4, TRPC6 and TRPM2. CONCLUSIONS AND IMPLICATIONS This study reveals that mefenamic acid selectively inhibits TRPM3-mediated calcium entry. This selectivity was further confirmed using insulin-secreting cells. KATP channel-dependent increases in cytosolic Ca2+ and insulin secretion were not blocked by mefenamic acid, but the selective stimulation of TRPM3-dependent Ca2+ entry and insulin secretion induced by pregnenolone sulphate were inhibited. However, the physiological regulator of TRPM3 in insulin-secreting cells remains to be elucidated, as well as the conditions under which the inhibition of TRPM3 can impair pancreatic [beta]-cell function. Our results strongly suggest mefenamic acid is the most selective fenamate to interfere with TRPM3 function. [PUBLICATION ABSTRACT]
BACKGROUND AND PURPOSE Fenamates are N‐phenyl‐substituted anthranilic acid derivatives clinically used as non‐steroid anti‐inflammatory drugs in pain treatment. Reports describing fenamates as tools to interfere with cellular volume regulation attracted our attention based on our interest in the role of the volume‐modulated transient receptor potential (TRP) channels TRPM3 and TRPV4. EXPERIMENTAL APPROACH Firstly, we measured the blocking potencies and selectivities of fenamates on TRPM3 and TRPV4 as well as TRPC6 and TRPM2 by Ca2+ imaging in the heterologous HEK293 cell system. Secondly, we further investigated the effects of mefenamic acid on cytosolic Ca2+ and on the membrane voltage in single HEK293 cells that exogenously express TRPM3. Thirdly, in insulin‐secreting INS‐1E cells, which endogenously express TRPM3, we validated the effect of mefenamic acid on cytosolic Ca2+ and insulin secretion. KEY RESULTS We identified and characterized mefenamic acid as a selective and potent TRPM3 blocker, whereas other fenamate structures non‐selectively blocked TRPM3, TRPV4, TRPC6 and TRPM2. CONCLUSIONS AND IMPLICATIONS This study reveals that mefenamic acid selectively inhibits TRPM3‐mediated calcium entry. This selectivity was further confirmed using insulin‐secreting cells. KATP channel‐dependent increases in cytosolic Ca2+ and insulin secretion were not blocked by mefenamic acid, but the selective stimulation of TRPM3‐dependent Ca2+ entry and insulin secretion induced by pregnenolone sulphate were inhibited. However, the physiological regulator of TRPM3 in insulin‐secreting cells remains to be elucidated, as well as the conditions under which the inhibition of TRPM3 can impair pancreatic β‐cell function. Our results strongly suggest mefenamic acid is the most selective fenamate to interfere with TRPM3 function.
BACKGROUND AND PURPOSE Fenamates are N‐phenyl‐substituted anthranilic acid derivatives clinically used as non‐steroid anti‐inflammatory drugs in pain treatment. Reports describing fenamates as tools to interfere with cellular volume regulation attracted our attention based on our interest in the role of the volume‐modulated transient receptor potential (TRP) channels TRPM3 and TRPV4. EXPERIMENTAL APPROACH Firstly, we measured the blocking potencies and selectivities of fenamates on TRPM3 and TRPV4 as well as TRPC6 and TRPM2 by Ca 2+ imaging in the heterologous HEK293 cell system. Secondly, we further investigated the effects of mefenamic acid on cytosolic Ca 2+ and on the membrane voltage in single HEK293 cells that exogenously express TRPM3. Thirdly, in insulin‐secreting INS‐1E cells, which endogenously express TRPM3, we validated the effect of mefenamic acid on cytosolic Ca 2+ and insulin secretion. KEY RESULTS We identified and characterized mefenamic acid as a selective and potent TRPM3 blocker, whereas other fenamate structures non‐selectively blocked TRPM3, TRPV4, TRPC6 and TRPM2. CONCLUSIONS AND IMPLICATIONS This study reveals that mefenamic acid selectively inhibits TRPM3‐mediated calcium entry. This selectivity was further confirmed using insulin‐secreting cells. K ATP channel‐dependent increases in cytosolic Ca 2+ and insulin secretion were not blocked by mefenamic acid, but the selective stimulation of TRPM3‐dependent Ca 2+ entry and insulin secretion induced by pregnenolone sulphate were inhibited. However, the physiological regulator of TRPM3 in insulin‐secreting cells remains to be elucidated, as well as the conditions under which the inhibition of TRPM3 can impair pancreatic β‐cell function. Our results strongly suggest mefenamic acid is the most selective fenamate to interfere with TRPM3 function.
Author Ullrich, Susanne
Riehle, Marc
Meyerhof, Wolfgang
Straub, Isabelle
Krautwurst, Dietmar
Ranta, Felicia
Harteneck, Christian
Klose, Chihab
Author_xml – sequence: 1
  givenname: Chihab
  surname: Klose
  fullname: Klose, Chihab
– sequence: 2
  givenname: Isabelle
  surname: Straub
  fullname: Straub, Isabelle
– sequence: 3
  givenname: Marc
  surname: Riehle
  fullname: Riehle, Marc
– sequence: 4
  givenname: Felicia
  surname: Ranta
  fullname: Ranta, Felicia
– sequence: 5
  givenname: Dietmar
  surname: Krautwurst
  fullname: Krautwurst, Dietmar
– sequence: 6
  givenname: Susanne
  surname: Ullrich
  fullname: Ullrich, Susanne
– sequence: 7
  givenname: Wolfgang
  surname: Meyerhof
  fullname: Meyerhof, Wolfgang
– sequence: 8
  givenname: Christian
  surname: Harteneck
  fullname: Harteneck, Christian
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24021438$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21198543$$D View this record in MEDLINE/PubMed
BookMark eNqNkVtLAzEQhYMoWi9_QRbEx9bctskKCipeURTR5zCbndWt22xNWrX_3qytVd_MS0LONzOHM-tk2TUOCUkY7bF49gY9JlW_mwrNepzGX8qY7vc-lkhnISyTDqVUdaOi18h6CANKo6jSVbLGGct0KkWHXJ2hgyGMMSQQkof7u8Q-g3NYJ3nd2Bf0YT8ZYtlClU3AVkUSsEY7rt6wns6gr7obsUlWSqgDbs3vDfJ4dvpwctG9vj2_PDm67to0i94sVWmZlSXlPNdFIQC46ss0B5GpTOQ5z6VQyIpCg7AFKE2BobRcMkFzZQuxQQ5nfUeTfIiFRTf2UJuRr4bgp6aByvxVXPVsnpo3I6iO4WWxwc68gW9eJxjGZtBMvIueDUtlqqTUXEZKzyjrmxA8losJjJp2C2Zg2rBNG7Zpt2C-tmA-Yun2b4eLwu_YI7A7ByBYqEsPzlbhh5OUMyl05A5m3HtV4_TfBszx3UX7Ep_iBKR7
CODEN BJPCBM
CitedBy_id crossref_primary_10_1371_journal_pone_0189948
crossref_primary_10_1016_j_cbi_2018_11_018
crossref_primary_10_1016_j_yjmcc_2013_01_019
crossref_primary_10_1007_s00251_011_0570_4
crossref_primary_10_1038_srep05676
crossref_primary_10_1016_j_ccell_2014_09_015
crossref_primary_10_1111_cbdd_13119
crossref_primary_10_1111_bph_12076
crossref_primary_10_3390_ijms23063365
crossref_primary_10_2174_1573407218666220901114151
crossref_primary_10_1016_j_bcp_2012_01_014
crossref_primary_10_4161_23328940_2014_988524
crossref_primary_10_1111_bju_12954
crossref_primary_10_1016_j_ceca_2018_12_009
crossref_primary_10_3390_ijms241310437
crossref_primary_10_1016_j_phrs_2017_07_014
crossref_primary_10_1007_s40199_023_00467_x
crossref_primary_10_1016_j_ygcen_2014_10_004
crossref_primary_10_1016_j_mce_2020_111089
crossref_primary_10_3390_cells9122604
crossref_primary_10_1124_mol_119_117952
crossref_primary_10_1371_journal_pone_0117615
crossref_primary_10_1111_j_1471_4159_2011_07441_x
crossref_primary_10_1515_hsz_2018_0455
crossref_primary_10_3390_pharmaceutics11090446
crossref_primary_10_1097_j_pain_0000000000000846
crossref_primary_10_1007_s12576_017_0552_x
crossref_primary_10_1124_pr_113_008268
crossref_primary_10_1002_jcp_28168
crossref_primary_10_1016_j_molstruc_2024_138812
crossref_primary_10_1016_j_molliq_2022_120502
crossref_primary_10_1016_j_lfs_2012_08_010
crossref_primary_10_1186_s10020_019_0083_4
crossref_primary_10_2217_nnm_2017_0266
crossref_primary_10_1111_j_1476_5381_2011_01649_5_x
crossref_primary_10_1152_ajpendo_00337_2014
crossref_primary_10_1124_mol_113_086843
crossref_primary_10_1111_apha_12355
crossref_primary_10_3390_ijms222313133
crossref_primary_10_1016_j_jddst_2015_03_003
crossref_primary_10_1152_jn_00229_2020
crossref_primary_10_1007_s12576_019_00677_6
crossref_primary_10_3390_cells9030685
crossref_primary_10_1155_2022_4684830
crossref_primary_10_1002_prp2_232
crossref_primary_10_1016_j_molstruc_2022_134172
crossref_primary_10_1016_j_pharmthera_2013_01_012
crossref_primary_10_1111_bph_12414
crossref_primary_10_1111_j_1476_5381_2012_02058_x
crossref_primary_10_1007_s10787_016_0285_0
crossref_primary_10_1093_cvr_cvu199
crossref_primary_10_1152_ajplung_00426_2015
crossref_primary_10_1186_s40246_020_00258_4
crossref_primary_10_3390_molecules181012012
crossref_primary_10_1016_j_ceca_2011_09_005
crossref_primary_10_1111_bph_14192
crossref_primary_10_1111_1753_0407_12828
crossref_primary_10_1007_s12045_021_1277_y
crossref_primary_10_1016_j_ceca_2018_03_005
crossref_primary_10_1016_j_molliq_2023_122230
crossref_primary_10_1016_j_mce_2014_03_001
crossref_primary_10_1016_j_biopha_2017_10_131
crossref_primary_10_1016_j_drudis_2020_09_039
crossref_primary_10_1111_bph_12521
crossref_primary_10_3390_cells9112351
crossref_primary_10_1016_j_jdcr_2018_10_015
crossref_primary_10_1111_bph_12447
crossref_primary_10_1111_bph_12524
crossref_primary_10_1080_23723556_2014_1002712
crossref_primary_10_4161_chan_20719
crossref_primary_10_1016_j_cyto_2017_09_020
crossref_primary_10_1530_JME_12_0237
crossref_primary_10_3389_fcell_2021_635659
Cites_doi 10.1016/j.neuropharm.2004.04.014
10.1074/jbc.M511030200
10.1007/s11064-009-9983-y
10.4049/jimmunol.0902474
10.1016/S1097-2765(02)00448-3
10.1016/0896-6273(89)90069-X
10.1074/jbc.273.17.10402
10.1126/scisignal.2000278
10.2337/diabetes.51.2007.S183
10.1016/S0166-2236(99)01532-5
10.1007/s00424-005-1431-5
10.1007/s10517-008-0144-0
10.1074/jbc.M300945200
10.1124/mol.109.055624
10.1007/s00424-005-1428-0
10.1152/ajpgi.00069.2002
10.1152/ajpcell.00603.2002
10.1074/jbc.M801844200
10.1111/j.1471-4159.2010.06644.x
10.1007/s00125-008-1111-z
10.1016/j.peptides.2007.12.003
10.1113/jphysiol.2005.089888
10.1152/ajprenal.90522.2008
10.2337/diabetes.54.4.1090
10.1016/S0002-9343(98)00091-6
10.1096/fj.07-8110com
10.1124/mol.109.057513
10.1038/sj.emboj.7601083
10.1016/j.ceca.2009.02.006
10.1371/journal.pone.0000827
10.1038/sj.bjp.0706739
10.1096/fj.06-5772com
10.1007/s001250050711
10.1113/jphysiol.2004.063974
10.1074/jbc.M200062200
10.1152/ajpgi.00470.2002
10.1016/S1097-2765(01)00438-5
10.1111/j.1460-9568.2007.05802.x
10.1111/j.1527-3466.2007.00005.x
10.1007/s00125-009-1306-y
10.2174/138161208783330763
10.1007/BF00583543
10.1124/pr.57.4.6
10.1016/S0092-8674(02)00637-2
10.1016/0014-5793(90)80977-Q
10.1111/j.1582-4934.2009.00737.x
10.1085/jgp.200810136
10.1007/s00210-005-1034-x
10.1038/sj.bjp.0707259
10.1016/j.cell.2006.10.038
10.1038/ncb1801
10.1042/bj3580717
10.1073/pnas.0607465103
10.1038/ng1592
10.2170/physiolsci.SC003007
10.1073/pnas.2334624100
10.1016/j.tins.2008.03.002
10.1152/ajpcell.00624.2008
10.1080/004982500237712
ContentType Journal Article
Copyright 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society
2015 INIST-CNRS
2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.
British Journal of Pharmacology © 2011 The British Pharmacological Society
Copyright_xml – notice: 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society
– notice: 2015 INIST-CNRS
– notice: 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.
– notice: British Journal of Pharmacology © 2011 The British Pharmacological Society
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7TK
K9.
NAPCQ
5PM
DOI 10.1111/j.1476-5381.2010.01186.x
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
DatabaseTitleList MEDLINE
ProQuest Health & Medical Complete (Alumni)

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1476-5381
EndPage 1769
ExternalDocumentID 3376187301
10_1111_j_1476_5381_2010_01186_x
21198543
24021438
BPH1186
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
.3N
.55
.GJ
05W
0R~
1OC
23N
24P
2WC
31~
33P
36B
3O-
3SF
3V.
4.4
52U
52V
53G
5GY
6J9
7RV
7X7
8-0
8-1
88E
8AO
8FE
8FH
8FI
8FJ
8R4
8R5
8UM
A00
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABDBF
ABPVW
ABQWH
ABUWG
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
B0M
BAFTC
BAWUL
BBNVY
BENPR
BFHJK
BHBCM
BHPHI
BKEYQ
BMXJE
BPHCQ
BRXPI
BVXVI
C45
CAG
CCPQU
COF
CS3
DCZOG
DIK
DRFUL
DRMAN
DRSTM
DU5
E3Z
EAD
EAP
EAS
EBC
EBD
EBS
ECV
EJD
EMB
EMK
EMOBN
ENC
ESX
EX3
F5P
FUBAC
FYUFA
G-S
GODZA
GX1
H.X
HCIFZ
HGLYW
HMCUK
HYE
HZ~
J5H
KBYEO
LATKE
LEEKS
LH4
LITHE
LK8
LOXES
LSO
LUTES
LW6
LYRES
M1P
M7P
MEWTI
MK0
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
N9A
NAPCQ
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P4E
PQQKQ
PROAC
PSQYO
Q.N
Q2X
QB0
RIG
ROL
RPM
RWI
SJN
SUPJJ
SV3
TEORI
TR2
TUS
UKHRP
UPT
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WVDHM
WXSBR
X7M
XV2
Y6R
YHG
ZGI
ZXP
ZZTAW
~8M
~S-
08R
AAJUZ
AAPBV
AAUGY
AAVGM
ABCVL
ABHUG
ABPTK
ABWRO
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
IQODW
ZA5
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7TK
K9.
5PM
ID FETCH-LOGICAL-c5976-c075f9ff022b8dd3aa27645ba39793bb2b437e1dd8a3cda780a1e4c24130b7cd3
IEDL.DBID RPM
ISSN 0007-1188
IngestDate Tue Sep 17 21:24:32 EDT 2024
Thu Oct 10 17:06:59 EDT 2024
Fri Aug 23 00:36:29 EDT 2024
Sat Sep 28 07:57:21 EDT 2024
Sun Oct 22 16:08:44 EDT 2023
Sat Aug 24 00:55:11 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Drug
Prostaglandin-endoperoxide synthase
Enzyme
Enzyme inhibitor
non-steroidal anti-inflammatory drugs
transient receptor potential
Non steroidal antiinflammatory agent
pancreatic β-cells
Analgesic
cationic channel
Transient receptor potential channel
Mefenamic acid
Antipyretic
Anthranilic acid derivatives
Oxidoreductases
Antagonist
β Cell
fenamate
Biological receptor
Language English
License CC BY 4.0
2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5976-c075f9ff022b8dd3aa27645ba39793bb2b437e1dd8a3cda780a1e4c24130b7cd3
Notes The first two authors contributed equally to the work.
OpenAccessLink https://europepmc.org/articles/pmc3081119?pdf=render
PMID 21198543
PQID 1545744824
PQPubID 42104
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3081119
proquest_journals_1545744824
crossref_primary_10_1111_j_1476_5381_2010_01186_x
pubmed_primary_21198543
pascalfrancis_primary_24021438
wiley_primary_10_1111_j_1476_5381_2010_01186_x_BPH1186
PublicationCentury 2000
PublicationDate April 2011
PublicationDateYYYYMMDD 2011-04-01
PublicationDate_xml – month: 04
  year: 2011
  text: April 2011
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Basingstoke
– name: England
– name: London
PublicationTitle British journal of pharmacology
PublicationTitleAlternate Br J Pharmacol
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Nature Publishing Group
Publisher_xml – name: Blackwell Publishing Ltd
– name: Nature Publishing Group
References 2009; 45
1997; 40
2005; 371
1990; 268
2005; 451
2002; 51
2002; 277
2010; 184
2008; 31
2008; 145
2003; 278
1998; 273
2009; 13
2009; 52
2006; 20
2008; 29
2010; 114
2006; 25
2007; 2
2002; 108
2006; 281
2006; 127
2005; 37
2007; 21
2007; 25
2007; 26
2003; 285
2003; 284
2010; 77
1989; 2
1989; 413
2002; 9
2000; 23
2004; 47
2009; 297
2008; 14
2009; 133
2008; 10
2009; 296
2008; 51
2007; 57
2008; 283
2009; 34
2009; 75
2007; 151
1995; 47
2005; 567
2000; 30
2005; 54
1998; 104
2006; 148
2009; 2
2004; 558
2003; 100
2005; 57
2006; 103
2001; 358
15961423 - J Physiol. 2005 Aug 15;567(Pt 1):191-213
19454650 - Sci Signal. 2009;2(71):ra23
17666455 - FASEB J. 2007 Dec;21(14):4101-11
19324410 - Cell Calcium. 2009 Jun;45(6):583-8
17927776 - Eur J Neurosci. 2007 Oct;26(8):2119-30
7746266 - Mol Pharmacol. 1995 May;47(5):1006-13
16604090 - Br J Pharmacol. 2006 Jun;148(3):264-73
18220815 - Curr Pharm Des. 2008;14(1):18-31
15843919 - Naunyn Schmiedebergs Arch Pharmacol. 2005 Apr;371(4):307-14
19158345 - Am J Physiol Renal Physiol. 2009 Jun;296(6):F1245-54
20107186 - J Immunol. 2010 Mar 1;184(5):2386-93
11815479 - Diabetes. 2002 Feb;51 Suppl 1:S183-9
12631560 - Am J Physiol Gastrointest Liver Physiol. 2003 Apr;284(4):G604-16
17079490 - Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17079-86
17445088 - Cardiovasc Drug Rev. 2007 Spring;25(1):61-75
15793248 - Diabetes. 2005 Apr;54(4):1090-9
17594756 - J Physiol Sci. 2007 Aug;57(4):249-52
19444608 - Neurochem Res. 2009 Oct;34(10):1738-47
11535132 - Biochem J. 2001 Sep 15;358(Pt 3):717-26
18471901 - Trends Neurosci. 2008 Jun;31(6):287-95
10718119 - Xenobiotica. 2000 Feb;30(2):111-6
12606317 - Am J Physiol Cell Physiol. 2003 Jun;284(6):C1460-7
15895246 - Pflugers Arch. 2005 Oct;451(1):204-11
9626023 - Am J Med. 1998 May;104(5):413-21
11804595 - Mol Cell. 2002 Jan;9(1):163-73
11864597 - Mol Cell. 2002 Feb;9(2):229-31
18226426 - Peptides. 2008 Apr;29(4):613-21
1696554 - FEBS Lett. 1990 Jul 30;268(1):79-82
16601673 - EMBO J. 2006 May 3;25(9):1804-15
18751967 - Diabetologia. 2008 Dec;51(12):2252-62
19382906 - J Cell Mol Med. 2009 Sep;13(9B):3260-7
16940152 - FASEB J. 2006 Sep;20(11):1802-12
17435793 - Br J Pharmacol. 2007 Jun;151(4):483-93
12842831 - Am J Physiol Gastrointest Liver Physiol. 2003 Nov;285(5):G938-48
11827975 - J Biol Chem. 2002 Apr 19;277(16):13569-77
12672799 - J Biol Chem. 2003 Jun 13;278(24):21493-501
17174891 - Cell. 2006 Dec 15;127(6):1123-35
11853675 - Cell. 2002 Feb 8;108(3):421-30
20008516 - Mol Pharmacol. 2010 Mar;77(3):368-77
2516726 - Neuron. 1989 Apr;2(4):1313-23
17786199 - PLoS One. 2007;2(9):e827
19515901 - Am J Physiol Cell Physiol. 2009 Sep;297(3):C493-502
19297520 - Mol Pharmacol. 2009 Jun;75(6):1262-79
10717675 - Trends Neurosci. 2000 Apr;23(4):159-66
9553098 - J Biol Chem. 1998 Apr 24;273(17):10402-10
18978782 - Nat Cell Biol. 2008 Dec;10(12):1421-30
9165220 - Diabetologia. 1997 May;40(5):528-32
14634208 - Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):15166-71
16522634 - J Biol Chem. 2006 May 5;281(18):12277-88
19266181 - Diabetologia. 2009 May;52(5):863-72
18818211 - J Biol Chem. 2008 Dec 5;283(49):33942-54
2541404 - Pflugers Arch. 1989 Jan;413(3):287-98
15889307 - Pflugers Arch. 2005 Oct;451(1):264-76
19237589 - J Gen Physiol. 2009 Mar;133(3):245-9
19145282 - Bull Exp Biol Med. 2008 May;145(5):564-8
15924139 - Nat Genet. 2005 Jul;37(7):739-44
16382100 - Pharmacol Rev. 2005 Dec;57(4):427-50
15121803 - J Physiol. 2004 Jul 1;558(Pt 1):75-83
15275834 - Neuropharmacology. 2004 Sep;47(3):450-60
20163522 - J Neurochem. 2010 Aug;114(3):654-65
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
Kankaanranta H (e_1_2_8_29_1) 1995; 47
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 273
  start-page: 10402
  year: 1998
  end-page: 10410
  article-title: Characterization of a Ca release‐activated nonselective cation current regulating membrane potential and [Ca ] oscillations in transgenically derived beta‐cells
  publication-title: J Biol Chem
– volume: 29
  start-page: 613
  year: 2008
  end-page: 621
  article-title: Regulation of stretch‐activated ANP secretion by chloride channels
  publication-title: Peptides
– volume: 77
  start-page: 368
  year: 2010
  end-page: 377
  article-title: Simple 2,4 diacylphloroglucinols as TRPC6 activators – identification of a novel pharmacophore
  publication-title: Mol Pharmacol
– volume: 75
  start-page: 1262
  year: 2009
  end-page: 1279
  article-title: Pharmacology of vanilloid transient receptor potential cation channels
  publication-title: Mol Pharmacol
– volume: 20
  start-page: 1802
  year: 2006
  end-page: 1812
  article-title: TRPV4‐mediated regulation of epithelial permeability
  publication-title: FASEB J
– volume: 283
  start-page: 33942
  year: 2008
  end-page: 33954
  article-title: Specific TRPC6 channel activation, a novel approach to stimulate keratinocyte differentiation
  publication-title: J Biol Chem
– volume: 14
  start-page: 18
  year: 2008
  end-page: 31
  article-title: Vanilloid transient receptor potential cation channels: an overview
  publication-title: Curr Pharm Des
– volume: 567
  start-page: 191
  year: 2005
  end-page: 213
  article-title: Characterization of a proton‐activated, outwardly rectifying anion channel
  publication-title: J Physiol
– volume: 37
  start-page: 739
  year: 2005
  end-page: 744
  article-title: TRPC6 is a glomerular slit diaphragm‐associated channel required for normal renal function
  publication-title: Nat Genet
– volume: 127
  start-page: 1123
  year: 2006
  end-page: 1135
  article-title: TRPV1 sensory neurons control β cell stress and islet inflammation in autoimmune diabetes
  publication-title: Cell
– volume: 9
  start-page: 163
  year: 2002
  end-page: 173
  article-title: LTRPC2 Ca ‐permeable channel activated by changes in redox status confers susceptibility to cell death
  publication-title: Mol Cell
– volume: 371
  start-page: 307
  year: 2005
  end-page: 314
  article-title: Function and pharmacology of TRPM cation channels
  publication-title: Naunyn Schmiedebergs Arch Pharmacol
– volume: 2
  start-page: 1313
  year: 1989
  end-page: 1323
  article-title: Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction
  publication-title: Neuron
– volume: 40
  start-page: 528
  year: 1997
  end-page: 532
  article-title: Identification of four trp1 gene variants murine pancreatic beta‐cells
  publication-title: Diabetologia
– volume: 268
  start-page: 79
  year: 1990
  end-page: 82
  article-title: Flufenamic acid, mefenamic acid and niflumic acid inhibit single nonselective cation channels in the rat exocrine pancreas
  publication-title: FEBS Lett
– volume: 451
  start-page: 204
  year: 2005
  end-page: 211
  article-title: The mammalian melastatin‐related transient receptor potential cation channels: an overview
  publication-title: Pflügers Arch
– volume: 9
  start-page: 229
  year: 2002
  end-page: 231
  article-title: A unified nomenclature for the superfamily of TRP cation channels
  publication-title: Mol Cell
– volume: 296
  start-page: F1245
  year: 2009
  end-page: F1254
  article-title: TRPMLs: in sickness and in health
  publication-title: Am J Physiol Renal Physiol
– volume: 151
  start-page: 483
  year: 2007
  end-page: 493
  article-title: Non‐steroidal anti‐inflammatory drugs increase insulin release from beta cells by inhibiting ATP‐sensitive potassium channels
  publication-title: Br J Pharmacol
– volume: 285
  start-page: G938
  year: 2003
  end-page: G948
  article-title: Fundamental role of ClC‐3 in volume‐sensitive Cl channel function and cell volume regulation in AGS cells
  publication-title: Am J Physiol Gastrointest Liver Physiol
– volume: 25
  start-page: 1804
  year: 2006
  end-page: 1815
  article-title: TRPM2 activation by cyclic ADP‐ribose at body temperature is involved in insulin secretion
  publication-title: EMBO J
– volume: 51
  start-page: S183
  issue: 1
  year: 2002
  end-page: S189
  article-title: TRP genes: candidates for nonselective cation channels and store‐operated channels in insulin‐secreting cells
  publication-title: Diabetes
– volume: 104
  start-page: 413
  year: 1998
  end-page: 421
  article-title: Cyclooxygenase‐1 and cyclooxygenase‐2 selectivity of widely used nonsteroidal anti‐inflammatory drugs
  publication-title: Am J Med
– volume: 52
  start-page: 863
  year: 2009
  end-page: 872
  article-title: Niflumic acid‐sensitive ion channels play an important role in the induction of glucose‐stimulated insulin secretion by cyclic AMP in mice
  publication-title: Diabetologia
– volume: 25
  start-page: 61
  year: 2007
  end-page: 75
  article-title: N‐(p‐amylcinnamoyl)anthranilic acid (ACA): a phospholipase A inhibitor and TRP channel blocker
  publication-title: Cardiovasc Drug Rev
– volume: 145
  start-page: 564
  year: 2008
  end-page: 568
  article-title: Effects of fenamate on inhibitory postsynaptic currents in Purkinje's cells
  publication-title: Bull Exp Biol Med
– volume: 2
  start-page: e827
  year: 2007
  article-title: Arterial response to shear stress critically depends on endothelial TRPV4 expression
  publication-title: PLoS ONE
– volume: 358
  start-page: 717
  year: 2001
  end-page: 726
  article-title: A diacylglycerol‐activated Ca channel in PC12 cells (an adrenal chromaffin cell line) correlates with expression of the TRP‐6 (transient receptor potential) protein
  publication-title: Biochem J
– volume: 2
  start-page: ra23
  year: 2009
  article-title: TRPM2 functions as a lysosomal Ca ‐release channel in beta cells
  publication-title: Sci Signal
– volume: 47
  start-page: 450
  year: 2004
  end-page: 460
  article-title: Flufenamic acid is a pH‐dependent antagonist of TRPM2 channels
  publication-title: Neuropharmacology
– volume: 57
  start-page: 249
  year: 2007
  end-page: 252
  article-title: A novel inhibitor of hypertonicity‐induced cation channels in HeLa cells
  publication-title: J Physiol Sci
– volume: 31
  start-page: 287
  year: 2008
  end-page: 295
  article-title: Neuronal TRP channels: thermometers, pathfinders and life‐savers
  publication-title: Trends Neurosci
– volume: 30
  start-page: 111
  year: 2000
  end-page: 116
  article-title: Fenamates and the potent inhibition of human liver phenol sulphotransferase
  publication-title: Xenobiotica
– volume: 21
  start-page: 4101
  year: 2007
  end-page: 4111
  article-title: Hyperforin – a key constituent of St. John's wort specifically activates TRPC6 channels
  publication-title: FASEB J
– volume: 57
  start-page: 427
  year: 2005
  end-page: 450
  article-title: International Union of Pharmacology. XLIX. Nomenclature and structure‐function relationships of transient receptor potential channels
  publication-title: Pharmacol Rev
– volume: 45
  start-page: 583
  year: 2009
  end-page: 588
  article-title: TRPC channel lipid specificity and mechanisms of lipid regulation
  publication-title: Cell Calcium
– volume: 277
  start-page: 13569
  year: 2002
  end-page: 13577
  article-title: Activation of TRPV4 channels (hVRL‐2/mTRP12) by phorbol derivatives
  publication-title: J Biol Chem
– volume: 284
  start-page: C1460
  year: 2003
  end-page: C1467
  article-title: Contribution of chloride channels to volume regulation of cortical astrocytes
  publication-title: Am J Physiol Cell Physiol
– volume: 133
  start-page: 245
  year: 2009
  end-page: 249
  article-title: TRPA1 and cold transduction: an unresolved issue?
  publication-title: J Gen Physiol
– volume: 284
  start-page: G604
  year: 2003
  end-page: G616
  article-title: TRPC5 as a candidate for the nonselective cation channel activated by muscarinic stimulation in murine stomach
  publication-title: Am J Physiol Gastrointest Liver Physiol
– volume: 184
  start-page: 2386
  year: 2010
  end-page: 2393
  article-title: Transient receptor potential melastatin 2 is required for lipopolysaccharide‐induced cytokine production in human monocytes
  publication-title: J Immunol
– volume: 108
  start-page: 421
  year: 2002
  end-page: 430
  article-title: Molecular basis for species‐specific sensitivity to ‘hot’ chili peppers
  publication-title: Cell
– volume: 114
  start-page: 654
  year: 2010
  end-page: 665
  article-title: TRPM3 is expressed in sphingosine‐responsive myelinating oligodendrocytes
  publication-title: J Neurochem
– volume: 23
  start-page: 159
  year: 2000
  end-page: 166
  article-title: From worm to man: three subfamilies of TRP channels
  publication-title: Trends Neurosci
– volume: 13
  start-page: 3260
  year: 2009
  end-page: 3267
  article-title: H O ‐induced Ca influx and its inhibition by N‐(p‐amylcinnamoyl)anthranilic acid in the beta‐cells: involvement of TRPM2 channels
  publication-title: J Cell Mol Med
– volume: 451
  start-page: 264
  year: 2005
  end-page: 276
  article-title: Polycystins: polymodal receptor/ion‐channel cellular sensors
  publication-title: Pflügers Arch
– volume: 297
  start-page: C493
  year: 2009
  end-page: C502
  article-title: Evidence that TRPM7 is required for breast cancer cell proliferation
  publication-title: Am J Physiol Cell Physiol
– volume: 558
  start-page: 75
  year: 2004
  end-page: 83
  article-title: Functional characterization of a Ca ‐activated non‐selective cation channel in human atrial cardiomyocytes
  publication-title: J Physiol
– volume: 278
  start-page: 21493
  year: 2003
  end-page: 21501
  article-title: Molecular and functional characterization of the melastatin‐related cation channel TRPM3
  publication-title: J Biol Chem
– volume: 54
  start-page: 1090
  year: 2005
  end-page: 1099
  article-title: Serum‐ and glucocorticoid‐inducible kinase 1 (SGK1) mediates glucocorticoid‐induced inhibition of insulin secretion
  publication-title: Diabetes
– volume: 281
  start-page: 12277
  year: 2006
  end-page: 12288
  article-title: Anion channels, including ClC‐3, are required for normal neutrophil oxidative function, phagocytosis, and transendothelial migration
  publication-title: J Biol Chem
– volume: 413
  start-page: 287
  year: 1989
  end-page: 298
  article-title: The nonselective cation channel in the basolateral membrane of rat exocrine pancreas. Inhibition by 3′,5‐dichlorodiphenylamine‐2‐carboxylic acid (DCDPC) and activation by stilbene disulfonates
  publication-title: Pflügers Arch
– volume: 148
  start-page: 264
  year: 2006
  end-page: 273
  article-title: Inhibition of TRPM2 cation channels by N‐(p‐amylcinnamoyl)anthranilic acid
  publication-title: Br J Pharmacol
– volume: 34
  start-page: 1738
  year: 2009
  end-page: 1747
  article-title: Modulation of glutamate and glycine transporters by niflumic, flufenamic and mefenamic acids
  publication-title: Neurochem Res
– volume: 103
  start-page: 17079
  year: 2006
  end-page: 17086
  article-title: Podocin and MEC‐2 bind cholesterol to regulate the activity of associated ion channels
  publication-title: Proc Natl Acad Sci USA
– volume: 51
  start-page: 2252
  year: 2008
  end-page: 2262
  article-title: Calcium elevation in mouse pancreatic beta cells evoked by extracellular human islet amyloid polypeptide involves activation of the mechanosensitive ion channel TRPV4
  publication-title: Diabetologia
– volume: 26
  start-page: 2119
  year: 2007
  end-page: 2130
  article-title: Small‐conductance Cl channels contribute to volume regulation and phagocytosis in microglia
  publication-title: Eur J Neurosci
– volume: 47
  start-page: 1006
  year: 1995
  end-page: 1013
  article-title: Flufenamic and tolfenamic acids inhibit calcium influx in human polymorphonuclear leukocytes
  publication-title: Mol Pharmacol
– volume: 10
  start-page: 1421
  year: 2008
  end-page: 1430
  article-title: Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic beta cells
  publication-title: Nat Cell Biol
– volume: 100
  start-page: 15166
  year: 2003
  end-page: 15171
  article-title: TRPM5 is a transient Ca ‐activated cation channel responding to rapid changes in [Ca ]
  publication-title: Proc Natl Acad Sci USA
– ident: e_1_2_8_24_1
  doi: 10.1016/j.neuropharm.2004.04.014
– ident: e_1_2_8_40_1
  doi: 10.1074/jbc.M511030200
– ident: e_1_2_8_17_1
  doi: 10.1007/s11064-009-9983-y
– ident: e_1_2_8_61_1
  doi: 10.4049/jimmunol.0902474
– ident: e_1_2_8_39_1
  doi: 10.1016/S1097-2765(02)00448-3
– ident: e_1_2_8_38_1
  doi: 10.1016/0896-6273(89)90069-X
– ident: e_1_2_8_50_1
  doi: 10.1074/jbc.273.17.10402
– ident: e_1_2_8_33_1
  doi: 10.1126/scisignal.2000278
– ident: e_1_2_8_46_1
  doi: 10.2337/diabetes.51.2007.S183
– ident: e_1_2_8_21_1
  doi: 10.1016/S0166-2236(99)01532-5
– ident: e_1_2_8_8_1
  doi: 10.1007/s00424-005-1431-5
– ident: e_1_2_8_10_1
  doi: 10.1007/s10517-008-0144-0
– ident: e_1_2_8_14_1
  doi: 10.1074/jbc.M300945200
– ident: e_1_2_8_58_1
  doi: 10.1124/mol.109.055624
– ident: e_1_2_8_30_1
  doi: 10.1007/s00424-005-1428-0
– ident: e_1_2_8_34_1
  doi: 10.1152/ajpgi.00069.2002
– ident: e_1_2_8_43_1
  doi: 10.1152/ajpcell.00603.2002
– ident: e_1_2_8_41_1
  doi: 10.1074/jbc.M801844200
– ident: e_1_2_8_25_1
  doi: 10.1111/j.1471-4159.2010.06644.x
– ident: e_1_2_8_4_1
  doi: 10.1007/s00125-008-1111-z
– ident: e_1_2_8_18_1
  doi: 10.1016/j.peptides.2007.12.003
– ident: e_1_2_8_32_1
  doi: 10.1113/jphysiol.2005.089888
– ident: e_1_2_8_45_1
  doi: 10.1152/ajprenal.90522.2008
– ident: e_1_2_8_55_1
  doi: 10.2337/diabetes.54.4.1090
– ident: e_1_2_8_7_1
  doi: 10.1016/S0002-9343(98)00091-6
– ident: e_1_2_8_35_1
  doi: 10.1096/fj.07-8110com
– ident: e_1_2_8_36_1
  doi: 10.1124/mol.109.057513
– ident: e_1_2_8_54_1
  doi: 10.1038/sj.emboj.7601083
– ident: e_1_2_8_3_1
  doi: 10.1016/j.ceca.2009.02.006
– ident: e_1_2_8_23_1
  doi: 10.1371/journal.pone.0000827
– ident: e_1_2_8_31_1
  doi: 10.1038/sj.bjp.0706739
– ident: e_1_2_8_49_1
  doi: 10.1096/fj.06-5772com
– volume: 47
  start-page: 1006
  year: 1995
  ident: e_1_2_8_29_1
  article-title: Flufenamic and tolfenamic acids inhibit calcium influx in human polymorphonuclear leukocytes
  publication-title: Mol Pharmacol
  contributor:
    fullname: Kankaanranta H
– ident: e_1_2_8_51_1
  doi: 10.1007/s001250050711
– ident: e_1_2_8_16_1
  doi: 10.1113/jphysiol.2004.063974
– ident: e_1_2_8_60_1
  doi: 10.1074/jbc.M200062200
– ident: e_1_2_8_27_1
  doi: 10.1152/ajpgi.00470.2002
– ident: e_1_2_8_19_1
  doi: 10.1016/S1097-2765(01)00438-5
– ident: e_1_2_8_9_1
  doi: 10.1111/j.1460-9568.2007.05802.x
– ident: e_1_2_8_22_1
  doi: 10.1111/j.1527-3466.2007.00005.x
– ident: e_1_2_8_11_1
  doi: 10.1007/s00125-009-1306-y
– ident: e_1_2_8_56_1
  doi: 10.2174/138161208783330763
– ident: e_1_2_8_12_1
  doi: 10.1007/BF00583543
– ident: e_1_2_8_6_1
  doi: 10.1124/pr.57.4.6
– ident: e_1_2_8_28_1
  doi: 10.1016/S0092-8674(02)00637-2
– ident: e_1_2_8_13_1
  doi: 10.1016/0014-5793(90)80977-Q
– ident: e_1_2_8_2_1
  doi: 10.1111/j.1582-4934.2009.00737.x
– ident: e_1_2_8_5_1
  doi: 10.1085/jgp.200810136
– ident: e_1_2_8_20_1
  doi: 10.1007/s00210-005-1034-x
– ident: e_1_2_8_37_1
  doi: 10.1038/sj.bjp.0707259
– ident: e_1_2_8_47_1
  doi: 10.1016/j.cell.2006.10.038
– ident: e_1_2_8_59_1
  doi: 10.1038/ncb1801
– ident: e_1_2_8_53_1
  doi: 10.1042/bj3580717
– ident: e_1_2_8_26_1
  doi: 10.1073/pnas.0607465103
– ident: e_1_2_8_48_1
  doi: 10.1038/ng1592
– ident: e_1_2_8_42_1
  doi: 10.2170/physiolsci.SC003007
– ident: e_1_2_8_44_1
  doi: 10.1073/pnas.2334624100
– ident: e_1_2_8_52_1
  doi: 10.1016/j.tins.2008.03.002
– ident: e_1_2_8_15_1
  doi: 10.1152/ajpcell.00624.2008
– ident: e_1_2_8_57_1
  doi: 10.1080/004982500237712
SSID ssj0014775
Score 2.3863776
Snippet BACKGROUND AND PURPOSE Fenamates are N‐phenyl‐substituted anthranilic acid derivatives clinically used as non‐steroid anti‐inflammatory drugs in pain...
Fenamates are N-phenyl-substituted anthranilic acid derivatives clinically used as non-steroid anti-inflammatory drugs in pain treatment. Reports describing...
BACKGROUND AND PURPOSE Fenamates are N‐phenyl‐substituted anthranilic acid derivatives clinically used as non‐steroid anti‐inflammatory drugs in pain...
BACKGROUND AND PURPOSE Fenamates are N-phenyl-substituted anthranilic acid derivatives clinically used as non-steroid anti-inflammatory drugs in pain...
SourceID pubmedcentral
proquest
crossref
pubmed
pascalfrancis
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1757
SubjectTerms Acids
Animals
Anti-Inflammatory Agents, Non-Steroidal - pharmacology
Biological and medical sciences
Calcium - metabolism
cationic channel
fenamate
Fenamates - pharmacology
HEK293 Cells
Humans
Insulin
Insulin - metabolism
Insulin-Secreting Cells - metabolism
Medical sciences
Mefenamic Acid - pharmacology
Mice
non‐steroidal anti‐inflammatory drugs
Pancreas
pancreatic β‐cells
Pharmacology. Drug treatments
Research Papers
transient receptor potential
TRPC Cation Channels - antagonists & inhibitors
TRPM Cation Channels - antagonists & inhibitors
TRPV Cation Channels - antagonists & inhibitors
Title Fenamates as TRP channel blockers: mefenamic acid selectively blocks TRPM3
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1476-5381.2010.01186.x
https://www.ncbi.nlm.nih.gov/pubmed/21198543
https://www.proquest.com/docview/1545744824
https://pubmed.ncbi.nlm.nih.gov/PMC3081119
Volume 162
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED6aPg3G2O957YIeRp_qpooUSdnbVtaFQoYZKeRNSLLEQhMvzB0s_311st3UbA9jbwZLGPmTfN_57r4DeE8lsyYa0lwwLnNUN8H4rsuDUMEG5riTWO88_ypm1_xqOVkewKSrhUlJ-86uzqr15qxafU-5lduNG3V5YqNifsGiHaN0OhrAQDLWueht6IBL2bQtQPVDqlQ_fYdLkcczTtukrjhAJC1qFDpTE8565unx1tTxTYWmxcXfOOifqZQPKW6yUZdP4UlLLsnHZhHP4MBXz-GkaNSpd6dksS-2qk_JCSn2utW7F3AVd6zZIPckpiaLbwXBquDKr4mNFu8m8sQPZOODTy3siXGrktSpi078YK53zaA0b85ewvXl58XFLG9bLeQuehQid5E5hGkI0aJbVZbMmLEUfGINhv2YtWPLmfS0LJVhrjRSnRvquUtBOStdyV7BYfWj8m-AKM6n0js7Pg8oRq-sYk7YUk5dsN4zlgHt3rDeNooa-qEnIoVGgDQCpBNA-ncGwx4U9xMxNoQN3DM47rDR7SGsNbJDGd3PMc_gdQPTfmKLdwayB-D9AJTd7t-JuzHJb7e7LwORoP7nRehPxQyv3v73I4_gUfNLGxOHjuHw9ucv_y5yols7hMGXJR2mk3AHC68Gig
link.rule.ids 230,315,733,786,790,891,27955,27956,53825,53827
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcgAJ8X4ESvEB9dTsNrFje7lBRbWUbhWhLerNsh1brLobVmQrsfx6_Ei6DXAAbpHsUWR_duZzZvwNwOuMYSWdI00pJiz16iY-vqtTS7lVFmuimb_vPDml4zNyfF6cb0HR3YUJSftazQb1fDGoZ19CbuVyoYddntiwnBxi58eybDS8ATfdfs2L7pDeBg8IY7Fwgdc_zDjvJ_AQRlNnlbVpXa4DDWrUXuqMFwT3HNSdpWzcXNlY5OJPLPT3ZMrrJDd4qaN78LkbX0xOuRhcrtRA__hF-vGfJ-A-3G15K3obmx_Alqkfwl4Zha_X-2i6ucfV7KM9VG4ksdeP4NhtBrnwtBbJBk0_lchfOK7NHCnnTC8cBX2DFsb6TjONpJ5VqAkFety3eL6OnYLdBD-Gs6P308Nx2lZxSLU7rNBUO1JiR9Y6sqB4VWEpc0ZJoaSPKGKlckUwM1lVcYl1JRk_kJkhOsT7FNMVfgLb9dfaPAPECRkxo1V-YL3OPVcca6oqNtJWGYNxAlkHnVhGsQ5x_ZDDqPDIC4-8CMiL7wns9jC-MvRhJ18bPoGdDnTR7u9GeOLJ3Mk2Jwk8jfhvDNuFlADrrYyrDl7Ru9_icA7K3i2uCdCwhv56EOJdOfZPz__7la_g1ng6OREnH04_voDb8c-5z0_age3Vt0vz0lGvldoNG-0nqvsnhg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BkBAS4nsQGMMPaE9Lu8Su7fIGg6oMOkWokyZeLH-Kam2oSCdR_npsJ1kb4AHtLVLuFDl3l_s5d_4dwOuMYSV9Ik0pJiwN7CahvqtTR7lTDmuiWTjvPDml4zNycj443xr1FZv2tZr1yvmiV86-xd7K5UL32z6xfjE5xj6PZdmwvzSufxNu-ZjNWbtRbwoIhLF6eEHgQMw47zbxEEZTr5U1rV1egEZG6kB3xgcEd5LU3aWs_Pty9aCLfyHRvxsqt4FuzFSj-_C1XWPdoHLRu1ypnv71B_3jtV7CA7jX4Ff0thZ5CDds-QgOipoAe32IppvzXNUhOkDFhhp7_RhOfFDIRYC3SFZo-qVA4eBxaedI-aR64aHoG7SwLgjNNJJ6ZlAVB_X4b_J8XQtFvQl-AmejD9PjcdpMc0i137TQVHtw4obOedCguDFYypxRMlAyVBaxUrkimNnMGC6xNpLxI5lZomPdTzFt8C7slN9L-wwQJ2TIrFb5kQt891xxrKkybKidshbjBLLWfGJZk3aI7c0OoyJYXwTri2h98TOB_Y6drxRD-SnMiE9grzW8aOK8EgGAMr_DzUkCT2sf2Cg2zpQA63jHlUBg9u7e8baODN-NbROg0Y_-exHiXTEOV8-v_chXcLt4PxKfP55-egF36h_ooU1pD3ZWPy7tS4_AVmo_xtpvDRoqBg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fenamates+as+TRP+channel+blockers%3A+mefenamic+acid+selectively+blocks+TRPM3&rft.jtitle=British+journal+of+pharmacology&rft.au=Klose%2C+Chihab&rft.au=Straub%2C+Isabelle&rft.au=Riehle%2C+Marc&rft.au=Ranta%2C+Felicia&rft.date=2011-04-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0007-1188&rft.eissn=1476-5381&rft.volume=162&rft.issue=8&rft.spage=1757&rft.epage=1769&rft_id=info:doi/10.1111%2Fj.1476-5381.2010.01186.x&rft_id=info%3Apmid%2F21198543&rft.externalDBID=PMC3081119
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1188&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1188&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1188&client=summon