Large‐Scale, Mechanically Robust, Solvent‐Resistant, and Antioxidant MXene‐Based Composites for Reliable Long‐Term Infrared Stealth

MXene‐based thermal camouflage materials have gained increasing attention due to their low emissivity, however, the poor anti‐oxidation restricts their potential applications under complex environments. Various modification methods and strategies, e.g., the addition of antioxidant molecules and fill...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 11; no. 17; pp. e2309392 - n/a
Main Authors Guo, Bi‐Fan, Wang, Ye‐Jun, Cao, Cheng‐Fei, Qu, Zhang‐Hao, Song, Jiang, Li, Shi‐Neng, Gao, Jie‐Feng, Song, Pingan, Zhang, Guo‐Dong, Shi, Yong‐Qian, Tang, Long‐Cheng
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.05.2024
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract MXene‐based thermal camouflage materials have gained increasing attention due to their low emissivity, however, the poor anti‐oxidation restricts their potential applications under complex environments. Various modification methods and strategies, e.g., the addition of antioxidant molecules and fillers have been developed to overcome this, but the realization of long‐term, reliable thermal camouflage using MXene network (coating) with excellent comprehensive performance remains a great challenge. Here, a MXene‐based hybrid network comodified with hyaluronic acid (HA) and hyperbranched polysiloxane (HSi) molecules is designed and fabricated. Notably, the presence of appreciated HA molecules restricts the oxidation of MXene sheets without altering infrared stealth performance, superior to other water‐soluble polymers; while the HSi molecules can act as efficient cross‐linking agents to generate strong interactions between MXene sheets and HA molecules. The optimized MXene/HA/HSi composites exhibit excellent mechanical flexibility (folded into crane structure), good water/solvent resistance, and long‐term stable thermal camouflage capability (with low infrared emissivity of ≈0.29). The long‐term thermal camouflage reliability (≈8 months) under various outdoor weathers and the scalable coating capability of the MXene‐coated textile enable them to disguise the IR signal of various targets in complex environments, indicating the great promise of achieved material for thermal camouflage, IR stealth, and counter surveillance. A high‐performance thermal camouflage material is designed and successfully fabricated by decorating MXene network with hyaluronic acid (HA) and hyperbranched polysiloxane (HSi). Besides excellent mid‐infrared (IR) thermal camouflage, such material also integrates multiple advantages into itself, including being large‐scale, mechanically flexible, weather‐resistant, and thus showing great potential for stealth applications.
AbstractList MXene‐based thermal camouflage materials have gained increasing attention due to their low emissivity, however, the poor anti‐oxidation restricts their potential applications under complex environments. Various modification methods and strategies, e.g., the addition of antioxidant molecules and fillers have been developed to overcome this, but the realization of long‐term, reliable thermal camouflage using MXene network (coating) with excellent comprehensive performance remains a great challenge. Here, a MXene‐based hybrid network comodified with hyaluronic acid (HA) and hyperbranched polysiloxane (HSi) molecules is designed and fabricated. Notably, the presence of appreciated HA molecules restricts the oxidation of MXene sheets without altering infrared stealth performance, superior to other water‐soluble polymers; while the HSi molecules can act as efficient cross‐linking agents to generate strong interactions between MXene sheets and HA molecules. The optimized MXene/HA/HSi composites exhibit excellent mechanical flexibility (folded into crane structure), good water/solvent resistance, and long‐term stable thermal camouflage capability (with low infrared emissivity of ≈0.29). The long‐term thermal camouflage reliability (≈8 months) under various outdoor weathers and the scalable coating capability of the MXene‐coated textile enable them to disguise the IR signal of various targets in complex environments, indicating the great promise of achieved material for thermal camouflage, IR stealth, and counter surveillance.
MXene-based thermal camouflage materials have gained increasing attention due to their low emissivity, however, the poor anti-oxidation restricts their potential applications under complex environments. Various modification methods and strategies, e.g., the addition of antioxidant molecules and fillers have been developed to overcome this, but the realization of long-term, reliable thermal camouflage using MXene network (coating) with excellent comprehensive performance remains a great challenge. Here, a MXene-based hybrid network comodified with hyaluronic acid (HA) and hyperbranched polysiloxane (HSi) molecules is designed and fabricated. Notably, the presence of appreciated HA molecules restricts the oxidation of MXene sheets without altering infrared stealth performance, superior to other water-soluble polymers; while the HSi molecules can act as efficient cross-linking agents to generate strong interactions between MXene sheets and HA molecules. The optimized MXene/HA/HSi composites exhibit excellent mechanical flexibility (folded into crane structure), good water/solvent resistance, and long-term stable thermal camouflage capability (with low infrared emissivity of ≈0.29). The long-term thermal camouflage reliability (≈8 months) under various outdoor weathers and the scalable coating capability of the MXene-coated textile enable them to disguise the IR signal of various targets in complex environments, indicating the great promise of achieved material for thermal camouflage, IR stealth, and counter surveillance.MXene-based thermal camouflage materials have gained increasing attention due to their low emissivity, however, the poor anti-oxidation restricts their potential applications under complex environments. Various modification methods and strategies, e.g., the addition of antioxidant molecules and fillers have been developed to overcome this, but the realization of long-term, reliable thermal camouflage using MXene network (coating) with excellent comprehensive performance remains a great challenge. Here, a MXene-based hybrid network comodified with hyaluronic acid (HA) and hyperbranched polysiloxane (HSi) molecules is designed and fabricated. Notably, the presence of appreciated HA molecules restricts the oxidation of MXene sheets without altering infrared stealth performance, superior to other water-soluble polymers; while the HSi molecules can act as efficient cross-linking agents to generate strong interactions between MXene sheets and HA molecules. The optimized MXene/HA/HSi composites exhibit excellent mechanical flexibility (folded into crane structure), good water/solvent resistance, and long-term stable thermal camouflage capability (with low infrared emissivity of ≈0.29). The long-term thermal camouflage reliability (≈8 months) under various outdoor weathers and the scalable coating capability of the MXene-coated textile enable them to disguise the IR signal of various targets in complex environments, indicating the great promise of achieved material for thermal camouflage, IR stealth, and counter surveillance.
Abstract MXene‐based thermal camouflage materials have gained increasing attention due to their low emissivity, however, the poor anti‐oxidation restricts their potential applications under complex environments. Various modification methods and strategies, e.g., the addition of antioxidant molecules and fillers have been developed to overcome this, but the realization of long‐term, reliable thermal camouflage using MXene network (coating) with excellent comprehensive performance remains a great challenge. Here, a MXene‐based hybrid network comodified with hyaluronic acid (HA) and hyperbranched polysiloxane (HSi) molecules is designed and fabricated. Notably, the presence of appreciated HA molecules restricts the oxidation of MXene sheets without altering infrared stealth performance, superior to other water‐soluble polymers; while the HSi molecules can act as efficient cross‐linking agents to generate strong interactions between MXene sheets and HA molecules. The optimized MXene/HA/HSi composites exhibit excellent mechanical flexibility (folded into crane structure), good water/solvent resistance, and long‐term stable thermal camouflage capability (with low infrared emissivity of ≈0.29). The long‐term thermal camouflage reliability (≈8 months) under various outdoor weathers and the scalable coating capability of the MXene‐coated textile enable them to disguise the IR signal of various targets in complex environments, indicating the great promise of achieved material for thermal camouflage, IR stealth, and counter surveillance.
MXene‐based thermal camouflage materials have gained increasing attention due to their low emissivity, however, the poor anti‐oxidation restricts their potential applications under complex environments. Various modification methods and strategies, e.g., the addition of antioxidant molecules and fillers have been developed to overcome this, but the realization of long‐term, reliable thermal camouflage using MXene network (coating) with excellent comprehensive performance remains a great challenge. Here, a MXene‐based hybrid network comodified with hyaluronic acid (HA) and hyperbranched polysiloxane (HSi) molecules is designed and fabricated. Notably, the presence of appreciated HA molecules restricts the oxidation of MXene sheets without altering infrared stealth performance, superior to other water‐soluble polymers; while the HSi molecules can act as efficient cross‐linking agents to generate strong interactions between MXene sheets and HA molecules. The optimized MXene/HA/HSi composites exhibit excellent mechanical flexibility (folded into crane structure), good water/solvent resistance, and long‐term stable thermal camouflage capability (with low infrared emissivity of ≈0.29). The long‐term thermal camouflage reliability (≈8 months) under various outdoor weathers and the scalable coating capability of the MXene‐coated textile enable them to disguise the IR signal of various targets in complex environments, indicating the great promise of achieved material for thermal camouflage, IR stealth, and counter surveillance. A high‐performance thermal camouflage material is designed and successfully fabricated by decorating MXene network with hyaluronic acid (HA) and hyperbranched polysiloxane (HSi). Besides excellent mid‐infrared (IR) thermal camouflage, such material also integrates multiple advantages into itself, including being large‐scale, mechanically flexible, weather‐resistant, and thus showing great potential for stealth applications.
Author Song, Jiang
Zhang, Guo‐Dong
Gao, Jie‐Feng
Qu, Zhang‐Hao
Li, Shi‐Neng
Wang, Ye‐Jun
Song, Pingan
Cao, Cheng‐Fei
Shi, Yong‐Qian
Tang, Long‐Cheng
Guo, Bi‐Fan
AuthorAffiliation 1 College of Material, Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology of MoE Key Laboratory of Silicone Materials Technology of Zhejiang Province Hangzhou Normal University Hangzhou 311121 China
2 Centre for Future Materials University of Southern Queensland Springfield 4300 Australia
5 School of Agriculture and Environmental Science University of Southern Queensland Springfield 4300 Australia
6 College of Environment and Safety Engineering Fuzhou University Fuzhou 350116 China
3 College of Chemistry and Materials Engineering Zhejiang A&F University Hangzhou 311300 China
4 College of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225002 China
AuthorAffiliation_xml – name: 5 School of Agriculture and Environmental Science University of Southern Queensland Springfield 4300 Australia
– name: 2 Centre for Future Materials University of Southern Queensland Springfield 4300 Australia
– name: 1 College of Material, Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology of MoE Key Laboratory of Silicone Materials Technology of Zhejiang Province Hangzhou Normal University Hangzhou 311121 China
– name: 3 College of Chemistry and Materials Engineering Zhejiang A&F University Hangzhou 311300 China
– name: 6 College of Environment and Safety Engineering Fuzhou University Fuzhou 350116 China
– name: 4 College of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225002 China
Author_xml – sequence: 1
  givenname: Bi‐Fan
  surname: Guo
  fullname: Guo, Bi‐Fan
  organization: Hangzhou Normal University
– sequence: 2
  givenname: Ye‐Jun
  surname: Wang
  fullname: Wang, Ye‐Jun
  organization: Hangzhou Normal University
– sequence: 3
  givenname: Cheng‐Fei
  surname: Cao
  fullname: Cao, Cheng‐Fei
  email: cheng-fei.cao@usq.edu.au
  organization: University of Southern Queensland
– sequence: 4
  givenname: Zhang‐Hao
  surname: Qu
  fullname: Qu, Zhang‐Hao
  organization: Hangzhou Normal University
– sequence: 5
  givenname: Jiang
  surname: Song
  fullname: Song, Jiang
  organization: Hangzhou Normal University
– sequence: 6
  givenname: Shi‐Neng
  surname: Li
  fullname: Li, Shi‐Neng
  organization: Zhejiang A&F University
– sequence: 7
  givenname: Jie‐Feng
  surname: Gao
  fullname: Gao, Jie‐Feng
  organization: Yangzhou University
– sequence: 8
  givenname: Pingan
  surname: Song
  fullname: Song, Pingan
  organization: University of Southern Queensland
– sequence: 9
  givenname: Guo‐Dong
  surname: Zhang
  fullname: Zhang, Guo‐Dong
  organization: Hangzhou Normal University
– sequence: 10
  givenname: Yong‐Qian
  surname: Shi
  fullname: Shi, Yong‐Qian
  organization: Fuzhou University
– sequence: 11
  givenname: Long‐Cheng
  orcidid: 0000-0002-2382-8850
  surname: Tang
  fullname: Tang, Long‐Cheng
  email: lctang@hznu.edu.cn
  organization: Hangzhou Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38403451$$D View this record in MEDLINE/PubMed
BookMark eNqFkktvEzEQgFeoiJbSK0e0EhcOTfBrvesTCuEVKRVSEiFultc7mzhy7NTeBHLjzoXfyC_BIWnVVkKcbI-_-Twaz9PsxHkHWfYcoz5GiLxWzTb2CSIUCSrIo-yMYFH1aMXYyZ39aXYR4xIhhAtaMlw9yU5TGFFW4LPs51iFOfz-8WuqlYXL_Ar0QjmTDnaXT3y9id1lPvV2C65L1ASiiZ1yKahckw9cZ_x306RAfvUV3F70VkVo8qFfrX00HcS89SGfgDWqtpCPvZsnaAZhlY9cG1RI8LQDZbvFs-xxq2yEi-N6ns0-vJ8NP_XGnz-OhoNxTxei5D3OClJzDhjrlgNCLRc11oiXtW64ZqgBgTnFRUMxpppq0dRVwRsEjLSMU3qejQ7axqulXAezUmEnvTLyb8CHuVShM9qCFBgTzalCbakY4VgpwauiJhWvK9HWbXK9ObjWm3oFjU5dCsrek96_cWYh534rMUZlyQVLhldHQ_DXG4idXJmowVrlwG-iJIIShEtGqoS-fIAu_Sa41CpJUYErWopyT724W9JtLTd_ngB2AHTwMQZopTadSh-5r9BYiZHcT5fcT5e8na6U1n-QdmP-Z8LxnW_Gwu4_tBy8-zItOeX0D6FA5ag
CitedBy_id crossref_primary_10_1021_acsabm_4c00255
crossref_primary_10_1021_acsaenm_4c00236
crossref_primary_10_1039_D4DT03422H
crossref_primary_10_1002_marc_202400698
crossref_primary_10_1016_j_compscitech_2024_110875
crossref_primary_10_1016_j_nanoms_2024_08_007
crossref_primary_10_1016_j_polymer_2024_127732
crossref_primary_10_1021_acs_nanolett_4c01920
crossref_primary_10_1016_j_cej_2024_158525
crossref_primary_10_1002_adma_202501485
crossref_primary_10_1039_D4NR01328J
crossref_primary_10_1002_adfm_202416108
crossref_primary_10_1039_D5NR00322A
crossref_primary_10_1021_acssuschemeng_4c03622
crossref_primary_10_1002_pc_29358
crossref_primary_10_1002_marc_202400145
crossref_primary_10_1002_sstr_202400630
crossref_primary_10_1016_j_mtsust_2024_101025
crossref_primary_10_1021_acsaenm_4c00224
crossref_primary_10_1039_D4ME00114A
crossref_primary_10_1021_acsami_4c18276
crossref_primary_10_1039_D4NR03233K
crossref_primary_10_1039_D4TC02804J
crossref_primary_10_1002_pat_6463
crossref_primary_10_1021_acsaelm_4c01350
crossref_primary_10_1007_s11804_025_00648_x
crossref_primary_10_1016_j_porgcoat_2024_108622
crossref_primary_10_1021_acs_nanolett_4c04401
crossref_primary_10_1021_acs_iecr_4c01240
crossref_primary_10_1021_acsapm_4c02747
crossref_primary_10_1016_j_nantod_2025_102719
crossref_primary_10_1021_acsaelm_4c01498
crossref_primary_10_1039_D4CE00547C
crossref_primary_10_1002_advs_202410364
crossref_primary_10_1007_s10853_024_10303_5
crossref_primary_10_1007_s10934_024_01738_x
crossref_primary_10_1007_s40820_024_01450_0
crossref_primary_10_1039_D4QM00286E
crossref_primary_10_1080_17480272_2024_2437507
crossref_primary_10_1007_s40820_024_01549_4
crossref_primary_10_1039_D4NR04260C
crossref_primary_10_1002_smll_202410283
crossref_primary_10_1039_D4TA02688H
crossref_primary_10_1039_D4TC04847D
Cites_doi 10.1002/adma.201102306
10.1021/acsnano.3c04650
10.1021/acsnano.2c10103
10.1016/j.matt.2022.04.011
10.1016/j.matt.2019.05.020
10.1038/s41467-022-33280-2
10.1021/acsnano.7b05264
10.1039/D0CS00022A
10.1039/C9NR00084D
10.1021/acsnano.2c07293
10.1002/adom.202101930
10.1021/acsami.1c04663
10.1016/j.nanoen.2021.106502
10.1002/adfm.202007392
10.1002/adfm.202004554
10.1021/acsami.2c11292
10.1098/rstb.2008.0254
10.1016/j.pmatsci.2023.101088
10.1126/science.aag2421
10.1021/acsnano.2c08368
10.1016/j.xcrp.2021.100449
10.1002/adfm.202304927
10.1016/j.mattod.2020.11.013
10.1021/acsnano.1c02254
10.1016/j.compositesa.2023.107907
10.1021/acsnano.2c07084
10.1002/advs.201901954
10.1007/s11998-009-9233-x
10.1098/rstb.2008.0270
10.1021/acsnano.0c01312
10.1007/BF02714952
10.1002/adfm.202000712
10.1002/andp.19033160811
10.1016/j.cej.2021.129342
10.1016/j.carbpol.2020.116021
10.1016/j.apmt.2020.100920
10.1016/j.cej.2021.131615
10.1073/pnas.1410494111
10.1016/j.cub.2007.03.034
10.1002/adfm.202212776
10.1002/admt.202100821
10.1039/D2MH01073A
10.1002/adfm.202000883
10.1016/j.matt.2022.04.031
10.1016/j.cej.2020.124310
10.1002/adma.202108560
10.1002/adfm.202101381
10.1007/s12274-022-4962-6
10.1021/acsnano.0c08357
10.1016/j.fct.2011.07.020
10.1007/s12274-022-4312-8
10.1016/j.colsurfa.2021.126388
10.1021/acsnano.9b06394
10.1021/acsnano.0c02401
10.1126/science.abg2026
10.1002/adfm.202002061
10.1021/acs.nanolett.8b01746
10.1016/S0142-9612(01)00360-X
10.1002/adfm.202214223
10.1016/j.matdes.2018.11.045
10.1002/smtd.202201694
10.1364/OME.6.003716
10.1126/sciadv.aba3494
10.1002/adma.201804779
10.1016/j.matpr.2021.12.038
10.1021/acsnano.1c00903
10.1016/j.cplett.2008.02.091
10.1021/acs.chemmater.7b00745
10.1007/s40820-023-01069-7
10.1016/j.diamond.2022.109587
10.1002/adma.202103054
10.1002/advs.202102502
10.1016/j.carbpol.2021.117663
10.1038/s41467-022-35226-0
ContentType Journal Article
Copyright 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH
2024 The Authors. Advanced Science published by Wiley‐VCH GmbH.
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH
– notice: 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202309392
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
PubMed



Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_9112c63a0f7a4261aa9685b286b89fbf
PMC11077694
38403451
10_1002_advs_202309392
ADVS7636
Genre article
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of China
  funderid: 52373033; 51973047
– fundername: Science and Technology Key Project of Zhejiang Province
  funderid: Z22E035302
– fundername: Science and Technology Key Project of Zhejiang Province
  grantid: Z22E035302
– fundername: Natural Science Foundation of China
  grantid: 51973047
– fundername: Natural Science Foundation of China
  grantid: 52373033
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
ITC
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAYXX
ADMLS
AFPKN
CITATION
EJD
IGS
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5976-6452b66e11cf6e00f69b1c067bcd6c40de916315d3113c3c9db856d0e42f4633
IEDL.DBID BENPR
ISSN 2198-3844
IngestDate Wed Aug 27 00:48:01 EDT 2025
Thu Aug 21 18:35:00 EDT 2025
Thu Jul 10 16:40:30 EDT 2025
Sat Jul 26 00:19:24 EDT 2025
Mon Jul 21 05:55:20 EDT 2025
Tue Jul 01 04:00:04 EDT 2025
Thu Apr 24 23:07:50 EDT 2025
Wed Jan 22 17:20:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords micro‐/nanoarchitecture
long‐term anti‐oxidation
infrared stealth
MXene
weather resistance
Language English
License Attribution
2024 The Authors. Advanced Science published by Wiley‐VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5976-6452b66e11cf6e00f69b1c067bcd6c40de916315d3113c3c9db856d0e42f4633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2382-8850
OpenAccessLink https://www.proquest.com/docview/3051837978?pq-origsite=%requestingapplication%
PMID 38403451
PQID 3051837978
PQPubID 4365299
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_9112c63a0f7a4261aa9685b286b89fbf
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11077694
proquest_miscellaneous_2932017428
proquest_journals_3051837978
pubmed_primary_38403451
crossref_citationtrail_10_1002_advs_202309392
crossref_primary_10_1002_advs_202309392
wiley_primary_10_1002_advs_202309392_ADVS7636
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2024
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2023; 33
2021; 22
2019; 11
2023; 7
2019; 13
2020; 14
2019; 162
2020; 7
2020; 6
2021; 31
2021; 33
2023; 131
2023; 135
2022; 34
2009; 364
2020; 49
2016; 353
2018; 30
2011; 23
2010; 7
2007; 17
2009; 23
2021; 8
2023; 10
2021; 7
2021; 45
2021; 2
2023; 17
2023; 15
2019; 1
1998
2017; 29
1903; 316
2020; 388
2014; 111
2021; 90
2021; 418
2021; 13
2016; 6
2018; 18
2021; 15
2021; 617
2020; 31
1989; 167
2020; 30
2022; 60
2022; 5
2021; 258
2017; 11
2002; 23
2022; 13
2020; 236
2022; 14
2022; 15
2024; 177
2022; 10
2008; 455
2021; 374
2022; 427
2011; 49
2022; 16
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
Halicka H. D. (e_1_2_9_49_1) 2009; 23
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 455
  start-page: 256
  year: 2008
  publication-title: Chem. Phys. Lett.
– volume: 13
  start-page: 7340
  year: 2022
  publication-title: Nat. Commun.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 17
  start-page: 2029
  year: 2023
  publication-title: ACS Nano
– volume: 167
  start-page: 237
  year: 1989
  publication-title: Lung
– volume: 2
  year: 2021
  publication-title: Cell Rep. Phys. Sci.
– volume: 418
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 14
  start-page: 5008
  year: 2020
  publication-title: ACS Nano
– volume: 111
  year: 2014
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 29
  start-page: 4848
  year: 2017
  publication-title: Chem. Mater.
– volume: 15
  start-page: 6551
  year: 2022
  publication-title: Nano Res.
– volume: 15
  start-page: 6420
  year: 2021
  publication-title: ACS Nano
– volume: 10
  year: 2022
  publication-title: Adv. Opt. Mater.
– volume: 23
  start-page: 4248
  year: 2011
  publication-title: Adv. Mater.
– volume: 17
  start-page: R400
  year: 2007
  publication-title: Curr. Biol.
– volume: 364
  start-page: 429
  year: 2009
  publication-title: Philos. Trans. R. Soc., B
– volume: 617
  year: 2021
  publication-title: Colloids Surf., A
– year: 1998
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 11
  start-page: 8387
  year: 2019
  publication-title: Nanoscale
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 31
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 11
  year: 2017
  publication-title: ACS Nano
– volume: 60
  start-page: 1523
  year: 2022
  publication-title: Mater. Today Proc.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 5
  start-page: 1937
  year: 2022
  publication-title: Matter
– volume: 45
  start-page: 120
  year: 2021
  publication-title: Mater. Today
– volume: 388
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 16
  start-page: 3326
  year: 2022
  publication-title: Nano Res.
– volume: 49
  start-page: 2670
  year: 2011
  publication-title: Food Chem. Toxicol.
– volume: 14
  start-page: 8368
  year: 2020
  publication-title: ACS Nano
– volume: 13
  start-page: 5551
  year: 2022
  publication-title: Nat. Commun.
– volume: 177
  year: 2024
  publication-title: Compos. Part A Appl. Sci. Manuf.
– volume: 15
  start-page: 108
  year: 2023
  publication-title: Nano‐Micro Lett.
– volume: 17
  start-page: 7229
  year: 2023
  publication-title: ACS Nano
– volume: 23
  start-page: 695
  year: 2009
  publication-title: Int. J. Mol. Med.
– volume: 7
  start-page: 659
  year: 2010
  publication-title: J. Coat. Technol. Res.
– volume: 18
  start-page: 4541
  year: 2018
  publication-title: Nano Lett.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 22
  year: 2021
  publication-title: Appl. Mater. Today
– volume: 17
  year: 2023
  publication-title: ACS Nano
– volume: 13
  start-page: 8491
  year: 2019
  publication-title: ACS Nano
– volume: 16
  year: 2022
  publication-title: ACS Nano
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 353
  start-page: 1137
  year: 2016
  publication-title: Science
– volume: 364
  start-page: 463
  year: 2009
  publication-title: Philos. Trans. R. Soc., B
– volume: 15
  year: 2021
  publication-title: ACS Nano
– volume: 258
  year: 2021
  publication-title: Carbohydr. Polym.
– volume: 427
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 7
  year: 2023
  publication-title: Small Methods
– volume: 6
  start-page: 3716
  year: 2016
  publication-title: Opt. Mater. Express
– volume: 90
  year: 2021
  publication-title: Nano Energy
– volume: 135
  year: 2023
  publication-title: Prog. Mater. Sci.
– volume: 374
  start-page: 96
  year: 2021
  publication-title: Science
– volume: 162
  start-page: 162
  year: 2019
  publication-title: Mater. Des.
– volume: 316
  start-page: 873
  year: 1903
  publication-title: Ann. Phys.
– volume: 1
  start-page: 513
  year: 2019
  publication-title: Matter
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 5
  start-page: 2265
  year: 2022
  publication-title: Matter
– volume: 10
  start-page: 235
  year: 2023
  publication-title: Mater. Horiz.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 23
  start-page: 2255
  year: 2002
  publication-title: Biomaterials
– volume: 131
  year: 2023
  publication-title: Diamond Relat. Mater.
– volume: 7
  year: 2021
  publication-title: Adv. Mater. Technol.
– volume: 49
  start-page: 7229
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 236
  year: 2020
  publication-title: Carbohydr. Polym.
– ident: e_1_2_9_22_1
  doi: 10.1002/adma.201102306
– ident: e_1_2_9_23_1
  doi: 10.1021/acsnano.3c04650
– ident: e_1_2_9_34_1
  doi: 10.1021/acsnano.2c10103
– ident: e_1_2_9_6_1
  doi: 10.1016/j.matt.2022.04.011
– ident: e_1_2_9_61_1
  doi: 10.1016/j.matt.2019.05.020
– ident: e_1_2_9_44_1
  doi: 10.1038/s41467-022-33280-2
– ident: e_1_2_9_32_1
  doi: 10.1021/acsnano.7b05264
– ident: e_1_2_9_26_1
  doi: 10.1039/D0CS00022A
– ident: e_1_2_9_41_1
  doi: 10.1039/C9NR00084D
– ident: e_1_2_9_39_1
  doi: 10.1021/acsnano.2c07293
– ident: e_1_2_9_15_1
  doi: 10.1002/adom.202101930
– ident: e_1_2_9_42_1
  doi: 10.1021/acsami.1c04663
– ident: e_1_2_9_25_1
  doi: 10.1016/j.nanoen.2021.106502
– ident: e_1_2_9_12_1
  doi: 10.1002/adfm.202007392
– ident: e_1_2_9_45_1
  doi: 10.1002/adfm.202004554
– ident: e_1_2_9_74_1
  doi: 10.1021/acsami.2c11292
– ident: e_1_2_9_4_1
  doi: 10.1098/rstb.2008.0254
– ident: e_1_2_9_5_1
– ident: e_1_2_9_8_1
  doi: 10.1016/j.pmatsci.2023.101088
– ident: e_1_2_9_50_1
  doi: 10.1126/science.aag2421
– ident: e_1_2_9_65_1
  doi: 10.1021/acsnano.2c08368
– ident: e_1_2_9_43_1
  doi: 10.1016/j.xcrp.2021.100449
– ident: e_1_2_9_75_1
  doi: 10.1002/adfm.202304927
– ident: e_1_2_9_9_1
  doi: 10.1016/j.mattod.2020.11.013
– ident: e_1_2_9_11_1
  doi: 10.1021/acsnano.1c02254
– ident: e_1_2_9_76_1
  doi: 10.1016/j.compositesa.2023.107907
– ident: e_1_2_9_48_1
  doi: 10.1021/acsnano.2c07084
– ident: e_1_2_9_31_1
  doi: 10.1002/advs.201901954
– ident: e_1_2_9_68_1
  doi: 10.1007/s11998-009-9233-x
– ident: e_1_2_9_3_1
  doi: 10.1098/rstb.2008.0270
– ident: e_1_2_9_29_1
  doi: 10.1021/acsnano.0c01312
– ident: e_1_2_9_53_1
  doi: 10.1007/BF02714952
– ident: e_1_2_9_27_1
  doi: 10.1002/adfm.202000712
– ident: e_1_2_9_67_1
  doi: 10.1002/andp.19033160811
– volume: 23
  start-page: 695
  year: 2009
  ident: e_1_2_9_49_1
  publication-title: Int. J. Mol. Med.
– ident: e_1_2_9_59_1
  doi: 10.1016/j.cej.2021.129342
– ident: e_1_2_9_55_1
  doi: 10.1016/j.carbpol.2020.116021
– ident: e_1_2_9_56_1
  doi: 10.1016/j.apmt.2020.100920
– ident: e_1_2_9_24_1
  doi: 10.1016/j.cej.2021.131615
– ident: e_1_2_9_1_1
  doi: 10.1073/pnas.1410494111
– ident: e_1_2_9_2_1
  doi: 10.1016/j.cub.2007.03.034
– ident: e_1_2_9_72_1
  doi: 10.1002/adfm.202212776
– ident: e_1_2_9_20_1
  doi: 10.1002/admt.202100821
– ident: e_1_2_9_38_1
  doi: 10.1039/D2MH01073A
– ident: e_1_2_9_33_1
  doi: 10.1002/adfm.202000883
– ident: e_1_2_9_13_1
  doi: 10.1016/j.matt.2022.04.031
– ident: e_1_2_9_14_1
  doi: 10.1016/j.cej.2020.124310
– ident: e_1_2_9_28_1
  doi: 10.1002/adma.202108560
– ident: e_1_2_9_36_1
  doi: 10.1002/adfm.202101381
– ident: e_1_2_9_37_1
  doi: 10.1007/s12274-022-4962-6
– ident: e_1_2_9_60_1
  doi: 10.1021/acsnano.0c08357
– ident: e_1_2_9_54_1
  doi: 10.1016/j.fct.2011.07.020
– ident: e_1_2_9_46_1
  doi: 10.1007/s12274-022-4312-8
– ident: e_1_2_9_63_1
  doi: 10.1016/j.colsurfa.2021.126388
– ident: e_1_2_9_21_1
  doi: 10.1021/acsnano.9b06394
– ident: e_1_2_9_69_1
  doi: 10.1021/acsnano.0c02401
– ident: e_1_2_9_66_1
  doi: 10.1126/science.abg2026
– ident: e_1_2_9_17_1
  doi: 10.1002/adfm.202002061
– ident: e_1_2_9_18_1
  doi: 10.1021/acs.nanolett.8b01746
– ident: e_1_2_9_52_1
  doi: 10.1016/S0142-9612(01)00360-X
– ident: e_1_2_9_71_1
  doi: 10.1002/adfm.202214223
– ident: e_1_2_9_58_1
  doi: 10.1016/j.matdes.2018.11.045
– ident: e_1_2_9_62_1
  doi: 10.1002/smtd.202201694
– ident: e_1_2_9_7_1
  doi: 10.1364/OME.6.003716
– ident: e_1_2_9_16_1
  doi: 10.1126/sciadv.aba3494
– ident: e_1_2_9_30_1
  doi: 10.1002/adma.201804779
– ident: e_1_2_9_51_1
  doi: 10.1016/j.matpr.2021.12.038
– ident: e_1_2_9_19_1
  doi: 10.1021/acsnano.1c00903
– ident: e_1_2_9_64_1
  doi: 10.1016/j.cplett.2008.02.091
– ident: e_1_2_9_40_1
  doi: 10.1021/acs.chemmater.7b00745
– ident: e_1_2_9_47_1
  doi: 10.1007/s40820-023-01069-7
– ident: e_1_2_9_70_1
  doi: 10.1016/j.diamond.2022.109587
– ident: e_1_2_9_35_1
  doi: 10.1002/adma.202103054
– ident: e_1_2_9_10_1
  doi: 10.1002/advs.202102502
– ident: e_1_2_9_57_1
  doi: 10.1016/j.carbpol.2021.117663
– ident: e_1_2_9_73_1
  doi: 10.1038/s41467-022-35226-0
SSID ssj0001537418
Score 2.5291114
Snippet MXene‐based thermal camouflage materials have gained increasing attention due to their low emissivity, however, the poor anti‐oxidation restricts their...
MXene-based thermal camouflage materials have gained increasing attention due to their low emissivity, however, the poor anti-oxidation restricts their...
Abstract MXene‐based thermal camouflage materials have gained increasing attention due to their low emissivity, however, the poor anti‐oxidation restricts...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2309392
SubjectTerms Aging
Antioxidants
Aqueous solutions
Composite materials
Cotton
infrared stealth
long‐term anti‐oxidation
micro‐/nanoarchitecture
Molecular weight
MXene
Nanoparticles
Oxidation
Radiation
Temperature
Textiles
weather resistance
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp1xK06ebpKhQaAsxkS1Zso9JaUhLtofsFvZm9GwCi1yyu6W55Z5Lf2N_SWZsr9mlLbn0Kg9aoXl9sxp9IuQNU6F0UplUB2tTIQ24VG7LVGmrPNgHYHz8Q3_0RZ5-FZ-nxXTtqS_sCevogbuNOwRnzK3kmgWlEe5rXcmyMHkJ01bBBIy-kPPWiqnufjBHWpYVSyPLD7X7gezcOZ78VflGFmrJ-v-GMP9slFwHsG0GOnlEHvbQkR51S94hD3x8THZ655zTdz2D9Psn5PYM-7t_3_wagwb8AR15vN-L6phd0_PGLOeLAzpuZtjrCFLnfo4oMsKgjo4eYQPkz0sHA3Q0hUlB5BiSnaMYPLDJC34NsC7Fdma8eUXPmvgNhCYQ5emnGK6wqZ1ip_BscfGUTE4-Tj6cpv2rC6mF4kKmeNJppPRZZoP0jAVZmcxCUjPWSSuY84AoeVY4nmXccls5UxbSMS_yICTnz8hWbKJ_QaizNphcBaYrUF0WSi6YKbXy4PPKlSwh6UoJte0ZyfFhjFndcSnnNSqtHpSWkLeD_PeOi-Ofkseo00EKObTbAbCsures-j7LSsjeyiLq3rHnNYRHCIIKau-EvB4-g0viOYuOvlnCMgATQ6CDwi4hzzsDGlbCoaDmosgSUm6Y1sZSN7_Ey4uW9hsrdSUrAdvWWuE9e1ADrhlD9pAv_8dm7JJtmFl0rZ57ZGtxtfT7AMcW5lXreXcboTW1
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9RAGB6kXryI9TO1ygiCCg2dzEwmybEVS5WuSHeFvYX5bAtLIptdsbfevfgb_SW-b5JNG1TE6-QlGfJ-zzzzDCEvWRZypzIT62BtLJUBl-I2jzNtMw_2ATU-LuhPPqrjz_LDPJ3fOMXf8UMMC27oGW28RgfXptm_Jg3V7ivSbXPcyisgCN_G87UI6uPy0_UqSyqQngVvmIPuOha5lBvmRsb3x68YZaaWwP9PVefv4MmbRW2blY7ukbt9OUkPOv1vk1u-uk-2e4dt6OueVfrNA_L9BDHfP69-TEErfo9OPJ75RRUtLulpbdbNao9O6wXiH0Hq1DdYWVYwqCtHDxAU-e3CwQCdzOGlIHIICdBRDCgI_IKvQf1LEeKMp7HoSV2dgdAMIj99X4UlAt0poocXq_OHZHb0bvb2OO5vYogtNBwqxt1Po5RPEhuUZyyowiQWEp2xTlnJnIcqUySpE0kirLCFM3mqHPOSB6mEeES2qrryTwh11gbDs8B0oSVPQi4kM7nOPMSBzOUsIvFGCaXtWcrxsoxF2fEr8xKVVg5Ki8irQf5Lx8_xV8lD1Okghbza7UC9PCt7Ny0h9HOrhGYh09hcal2oPDU8ByMuggkR2d1YRNk7e1NCyITAmEE_HpEXw2NwU9x70ZWv1zANqJMh-EGzF5HHnQENMwGrZEKmSUTykWmNpjp-Ul2ct1Tg2L1nqpDw21or_Mc_KKHWmUJGUTv_Kf-U3IFB2SE9d8nWarn2z6AaW5nnrcP9Ag2AMgY
  priority: 102
  providerName: Wiley-Blackwell
Title Large‐Scale, Mechanically Robust, Solvent‐Resistant, and Antioxidant MXene‐Based Composites for Reliable Long‐Term Infrared Stealth
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202309392
https://www.ncbi.nlm.nih.gov/pubmed/38403451
https://www.proquest.com/docview/3051837978
https://www.proquest.com/docview/2932017428
https://pubmed.ncbi.nlm.nih.gov/PMC11077694
https://doaj.org/article/9112c63a0f7a4261aa9685b286b89fbf
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1JbxMxFLZocuGCKOtAiYyEBEi1OovH4zmhBFoVlFRVEqTeRl7bStFMyYLgzB_nvYmTErFdPU7i-G3fe_7mmZBXceGlFYVmyhvDuNBgUqmRrFCmcKAfgPGxoD86E6ef-aeL_CIU3BaBVrnxia2jto3BGvkR6CVoXwFJz7ubLwxvjcLT1XCFxh7pgguWskO6g-Oz8_FtlSXPsD3LpltjnB4p-xW7dKd4AlimO9Gobdr_J6T5O2HyVyDbRqKT--RegJC0v5b5Prnj6gdkPxjpgr4JnaTfPiQ_hsjzZhOQgzukI4dv-aJQZt_puNGrxfKQTpoZMh7Z2C0QSdYwpGpL-0iC_HZtYYCOLuAL2QDCnaXoPpDmBb8DaJcioRnfvaLDpr5kU_Dy9GPt50hqp8gUni2vHpHpyfH0_SkLty4wA8mFYHjSqYVwSWK8cHHsRakTA0FNGysMj60DRJkluc2SJDOZKa2WubCx46nnIssek07d1O4podYYr9PCx6pUPE28zHispSoc2HxhZRwRttn8yoSO5Hgxxqxa91JOKxRWtRVWRF5v59-se3H8deYAZbmdhT2024FmflkFk6zAzadGZCr2hcJEUqlSyFynEhS29NpH5GCjCVUw7EV1q4YRebl9DCaJ5yyqds0KlgGYGBwdJHYRebJWnO1KMkioM54nEZE7KrWz1N0n9fVV2_YbM_VClBy2rdW-_-xBBbhmAtFDPPv3_3hO7sJn-JrEeUA6y_nKvQCgtdQ9spfy8x7p9j-MhpNesK1eW7b4CbCjKzE
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLam7gFeEOOaMcBIIECatcRJnOQBoRU2taytUFukvkW-bpOqZPQC7Jnfw3_knCTtqLg97dVxE9fn83c-28fHhDz3E5cakSgmndYsEgqGFNcpS6ROLOADND4u6PcHovMp-jCJJ1vkx-osDIZVrjixImpTalwjPwBcAvoSmPS8vfjM8NYo3F1dXaFRw-LEXn6FKdv8Tfc92PcF58dH43cd1twqwDSIZ8FwJ08JYYNAO2F934lMBRpIW2kjdOQbC4opDGITBkGoQ50ZlcbC-DbiLhK4_gmMvx2Fwuctst0-GnwcXi3qxCFmg1klh_T5gTRfMCk4xw3HjG84v-qOgD8J29_jM3_VzZXjO75NbjWKlR7WENshW7a4Q3YaTpjTV03i6td3yfcehpWzEZjd7tO-xUPFiIHpJR2Wajlf7NNROcUASza0cxSuBRTJwtBDjLn8dm6ggPYn8ELWBu9qKLIVRpXBd0BcU4yfxqNetFcWp2wMToV2CzfDGHqKgcnTxdk9Mr4Oc9wnraIs7ENCjdZO8cT5MpMRD1waRr5KZWKBYhKT-h5hq87PdZMAHe_hmOZ16maeo7HytbE88nJd_6JO_fHXmm205boWpuyuCsrZad4wQA5ehWsRSt8lEuetUmYijRVPYXxkTjmP7K2QkDc8Ms-vUO-RZ-vHwAC4rSMLWy6hGSDBgVdhHumRBzVw1i0JYf4eRnHgkXQDUhtN3XxSnJ9VWcZxYSARWQTdVqHvP32Qg4wagbMSu__-H0_Jjc6438t73cHJI3ITfh_V8aN7pLWYLe1j0HgL9aQZWZTk1zyWfwIiEGLE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VqYS4IMrTpcAigQCpVuy1vbYPCDW0UUOTqEqClJu1z7ZSZJc8gJ75Vfw7ZvxIiXiderU3yWb3m2--2Z2dJeSlF9tE81i6wirlhlyCSTGVuLFQsQF8gMbHBf3BkB9_Cj9Oo-kW-dGchcG0yoYTS6LWhcI18jbgEtAXQ9DTtnVaxOlh9_3lZxdvkMKd1uY6jQoiJ-bqK4Rvi3e9Q5jrV4x1jyYfjt36hgFXgZDmLu7qSc6N7yvLjedZnkpfAYFLpbkKPW1APQV-pAPfD1SgUi2TiGvPhMyGHNdCgf23YwyKWmS7czQ8HV0v8EQBVoZpCkV6rC30FywQznDzMWUbjrC8L-BPIvf3XM1fNXTpBLt3yZ1avdKDCm47ZMvk98hOzQ8L-qYuYv32PvnexxRzdwwQMPt0YPCAMeJhdkVHhVwtlvt0XMww2dIdmQWK2BweiVzTA8y__Hah4QEdTOEL3Q54Wk2RuTDDDH4HhDbFXGo89kX7RX7mTsDB0F5u55hPTzFJebY8f0AmNzEdD0krL3LzmFCtlJUstp5IRch8mwShJxMRG6CbWCeeQ9xm8DNVF0PHOzlmWVXGmWU4Wdl6shzyet3-sioD8teWHZzLdSss310-KOZnWc0GGXgYpnggPBsLjGGFSHkSSZaAraRWWofsNUjIak5ZZNcW4JAX69fABrjFI3JTrKAbIMeBYyGmdMijCjjrngQQywdh5Dsk2YDURlc33-QX52XFcVwkiHkawrCV6PvPGGQgqcbguPjuv__Hc3ILbDjr94YnT8ht-HhYpZLukdZyvjJPQe4t5bPasCjJbtiUfwLBrmb5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large%E2%80%90Scale%2C+Mechanically+Robust%2C+Solvent%E2%80%90Resistant%2C+and+Antioxidant+MXene%E2%80%90Based+Composites+for+Reliable+Long%E2%80%90Term+Infrared+Stealth&rft.jtitle=Advanced+science&rft.au=Guo%2C+Bi%E2%80%90Fan&rft.au=Wang%2C+Ye%E2%80%90Jun&rft.au=Cao%2C+Cheng%E2%80%90Fei&rft.au=Qu%2C+Zhang%E2%80%90Hao&rft.date=2024-05-01&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=2198-3844&rft.volume=11&rft.issue=17&rft_id=info:doi/10.1002%2Fadvs.202309392&rft_id=info%3Apmid%2F38403451&rft.externalDocID=PMC11077694
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon