Large‐Scale, Mechanically Robust, Solvent‐Resistant, and Antioxidant MXene‐Based Composites for Reliable Long‐Term Infrared Stealth
MXene‐based thermal camouflage materials have gained increasing attention due to their low emissivity, however, the poor anti‐oxidation restricts their potential applications under complex environments. Various modification methods and strategies, e.g., the addition of antioxidant molecules and fill...
Saved in:
Published in | Advanced science Vol. 11; no. 17; pp. e2309392 - n/a |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.05.2024
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | MXene‐based thermal camouflage materials have gained increasing attention due to their low emissivity, however, the poor anti‐oxidation restricts their potential applications under complex environments. Various modification methods and strategies, e.g., the addition of antioxidant molecules and fillers have been developed to overcome this, but the realization of long‐term, reliable thermal camouflage using MXene network (coating) with excellent comprehensive performance remains a great challenge. Here, a MXene‐based hybrid network comodified with hyaluronic acid (HA) and hyperbranched polysiloxane (HSi) molecules is designed and fabricated. Notably, the presence of appreciated HA molecules restricts the oxidation of MXene sheets without altering infrared stealth performance, superior to other water‐soluble polymers; while the HSi molecules can act as efficient cross‐linking agents to generate strong interactions between MXene sheets and HA molecules. The optimized MXene/HA/HSi composites exhibit excellent mechanical flexibility (folded into crane structure), good water/solvent resistance, and long‐term stable thermal camouflage capability (with low infrared emissivity of ≈0.29). The long‐term thermal camouflage reliability (≈8 months) under various outdoor weathers and the scalable coating capability of the MXene‐coated textile enable them to disguise the IR signal of various targets in complex environments, indicating the great promise of achieved material for thermal camouflage, IR stealth, and counter surveillance.
A high‐performance thermal camouflage material is designed and successfully fabricated by decorating MXene network with hyaluronic acid (HA) and hyperbranched polysiloxane (HSi). Besides excellent mid‐infrared (IR) thermal camouflage, such material also integrates multiple advantages into itself, including being large‐scale, mechanically flexible, weather‐resistant, and thus showing great potential for stealth applications. |
---|---|
AbstractList | MXene‐based thermal camouflage materials have gained increasing attention due to their low emissivity, however, the poor anti‐oxidation restricts their potential applications under complex environments. Various modification methods and strategies, e.g., the addition of antioxidant molecules and fillers have been developed to overcome this, but the realization of long‐term, reliable thermal camouflage using MXene network (coating) with excellent comprehensive performance remains a great challenge. Here, a MXene‐based hybrid network comodified with hyaluronic acid (HA) and hyperbranched polysiloxane (HSi) molecules is designed and fabricated. Notably, the presence of appreciated HA molecules restricts the oxidation of MXene sheets without altering infrared stealth performance, superior to other water‐soluble polymers; while the HSi molecules can act as efficient cross‐linking agents to generate strong interactions between MXene sheets and HA molecules. The optimized MXene/HA/HSi composites exhibit excellent mechanical flexibility (folded into crane structure), good water/solvent resistance, and long‐term stable thermal camouflage capability (with low infrared emissivity of ≈0.29). The long‐term thermal camouflage reliability (≈8 months) under various outdoor weathers and the scalable coating capability of the MXene‐coated textile enable them to disguise the IR signal of various targets in complex environments, indicating the great promise of achieved material for thermal camouflage, IR stealth, and counter surveillance. MXene-based thermal camouflage materials have gained increasing attention due to their low emissivity, however, the poor anti-oxidation restricts their potential applications under complex environments. Various modification methods and strategies, e.g., the addition of antioxidant molecules and fillers have been developed to overcome this, but the realization of long-term, reliable thermal camouflage using MXene network (coating) with excellent comprehensive performance remains a great challenge. Here, a MXene-based hybrid network comodified with hyaluronic acid (HA) and hyperbranched polysiloxane (HSi) molecules is designed and fabricated. Notably, the presence of appreciated HA molecules restricts the oxidation of MXene sheets without altering infrared stealth performance, superior to other water-soluble polymers; while the HSi molecules can act as efficient cross-linking agents to generate strong interactions between MXene sheets and HA molecules. The optimized MXene/HA/HSi composites exhibit excellent mechanical flexibility (folded into crane structure), good water/solvent resistance, and long-term stable thermal camouflage capability (with low infrared emissivity of ≈0.29). The long-term thermal camouflage reliability (≈8 months) under various outdoor weathers and the scalable coating capability of the MXene-coated textile enable them to disguise the IR signal of various targets in complex environments, indicating the great promise of achieved material for thermal camouflage, IR stealth, and counter surveillance.MXene-based thermal camouflage materials have gained increasing attention due to their low emissivity, however, the poor anti-oxidation restricts their potential applications under complex environments. Various modification methods and strategies, e.g., the addition of antioxidant molecules and fillers have been developed to overcome this, but the realization of long-term, reliable thermal camouflage using MXene network (coating) with excellent comprehensive performance remains a great challenge. Here, a MXene-based hybrid network comodified with hyaluronic acid (HA) and hyperbranched polysiloxane (HSi) molecules is designed and fabricated. Notably, the presence of appreciated HA molecules restricts the oxidation of MXene sheets without altering infrared stealth performance, superior to other water-soluble polymers; while the HSi molecules can act as efficient cross-linking agents to generate strong interactions between MXene sheets and HA molecules. The optimized MXene/HA/HSi composites exhibit excellent mechanical flexibility (folded into crane structure), good water/solvent resistance, and long-term stable thermal camouflage capability (with low infrared emissivity of ≈0.29). The long-term thermal camouflage reliability (≈8 months) under various outdoor weathers and the scalable coating capability of the MXene-coated textile enable them to disguise the IR signal of various targets in complex environments, indicating the great promise of achieved material for thermal camouflage, IR stealth, and counter surveillance. Abstract MXene‐based thermal camouflage materials have gained increasing attention due to their low emissivity, however, the poor anti‐oxidation restricts their potential applications under complex environments. Various modification methods and strategies, e.g., the addition of antioxidant molecules and fillers have been developed to overcome this, but the realization of long‐term, reliable thermal camouflage using MXene network (coating) with excellent comprehensive performance remains a great challenge. Here, a MXene‐based hybrid network comodified with hyaluronic acid (HA) and hyperbranched polysiloxane (HSi) molecules is designed and fabricated. Notably, the presence of appreciated HA molecules restricts the oxidation of MXene sheets without altering infrared stealth performance, superior to other water‐soluble polymers; while the HSi molecules can act as efficient cross‐linking agents to generate strong interactions between MXene sheets and HA molecules. The optimized MXene/HA/HSi composites exhibit excellent mechanical flexibility (folded into crane structure), good water/solvent resistance, and long‐term stable thermal camouflage capability (with low infrared emissivity of ≈0.29). The long‐term thermal camouflage reliability (≈8 months) under various outdoor weathers and the scalable coating capability of the MXene‐coated textile enable them to disguise the IR signal of various targets in complex environments, indicating the great promise of achieved material for thermal camouflage, IR stealth, and counter surveillance. MXene‐based thermal camouflage materials have gained increasing attention due to their low emissivity, however, the poor anti‐oxidation restricts their potential applications under complex environments. Various modification methods and strategies, e.g., the addition of antioxidant molecules and fillers have been developed to overcome this, but the realization of long‐term, reliable thermal camouflage using MXene network (coating) with excellent comprehensive performance remains a great challenge. Here, a MXene‐based hybrid network comodified with hyaluronic acid (HA) and hyperbranched polysiloxane (HSi) molecules is designed and fabricated. Notably, the presence of appreciated HA molecules restricts the oxidation of MXene sheets without altering infrared stealth performance, superior to other water‐soluble polymers; while the HSi molecules can act as efficient cross‐linking agents to generate strong interactions between MXene sheets and HA molecules. The optimized MXene/HA/HSi composites exhibit excellent mechanical flexibility (folded into crane structure), good water/solvent resistance, and long‐term stable thermal camouflage capability (with low infrared emissivity of ≈0.29). The long‐term thermal camouflage reliability (≈8 months) under various outdoor weathers and the scalable coating capability of the MXene‐coated textile enable them to disguise the IR signal of various targets in complex environments, indicating the great promise of achieved material for thermal camouflage, IR stealth, and counter surveillance. A high‐performance thermal camouflage material is designed and successfully fabricated by decorating MXene network with hyaluronic acid (HA) and hyperbranched polysiloxane (HSi). Besides excellent mid‐infrared (IR) thermal camouflage, such material also integrates multiple advantages into itself, including being large‐scale, mechanically flexible, weather‐resistant, and thus showing great potential for stealth applications. |
Author | Song, Jiang Zhang, Guo‐Dong Gao, Jie‐Feng Qu, Zhang‐Hao Li, Shi‐Neng Wang, Ye‐Jun Song, Pingan Cao, Cheng‐Fei Shi, Yong‐Qian Tang, Long‐Cheng Guo, Bi‐Fan |
AuthorAffiliation | 1 College of Material, Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology of MoE Key Laboratory of Silicone Materials Technology of Zhejiang Province Hangzhou Normal University Hangzhou 311121 China 2 Centre for Future Materials University of Southern Queensland Springfield 4300 Australia 5 School of Agriculture and Environmental Science University of Southern Queensland Springfield 4300 Australia 6 College of Environment and Safety Engineering Fuzhou University Fuzhou 350116 China 3 College of Chemistry and Materials Engineering Zhejiang A&F University Hangzhou 311300 China 4 College of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225002 China |
AuthorAffiliation_xml | – name: 5 School of Agriculture and Environmental Science University of Southern Queensland Springfield 4300 Australia – name: 2 Centre for Future Materials University of Southern Queensland Springfield 4300 Australia – name: 1 College of Material, Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology of MoE Key Laboratory of Silicone Materials Technology of Zhejiang Province Hangzhou Normal University Hangzhou 311121 China – name: 3 College of Chemistry and Materials Engineering Zhejiang A&F University Hangzhou 311300 China – name: 6 College of Environment and Safety Engineering Fuzhou University Fuzhou 350116 China – name: 4 College of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225002 China |
Author_xml | – sequence: 1 givenname: Bi‐Fan surname: Guo fullname: Guo, Bi‐Fan organization: Hangzhou Normal University – sequence: 2 givenname: Ye‐Jun surname: Wang fullname: Wang, Ye‐Jun organization: Hangzhou Normal University – sequence: 3 givenname: Cheng‐Fei surname: Cao fullname: Cao, Cheng‐Fei email: cheng-fei.cao@usq.edu.au organization: University of Southern Queensland – sequence: 4 givenname: Zhang‐Hao surname: Qu fullname: Qu, Zhang‐Hao organization: Hangzhou Normal University – sequence: 5 givenname: Jiang surname: Song fullname: Song, Jiang organization: Hangzhou Normal University – sequence: 6 givenname: Shi‐Neng surname: Li fullname: Li, Shi‐Neng organization: Zhejiang A&F University – sequence: 7 givenname: Jie‐Feng surname: Gao fullname: Gao, Jie‐Feng organization: Yangzhou University – sequence: 8 givenname: Pingan surname: Song fullname: Song, Pingan organization: University of Southern Queensland – sequence: 9 givenname: Guo‐Dong surname: Zhang fullname: Zhang, Guo‐Dong organization: Hangzhou Normal University – sequence: 10 givenname: Yong‐Qian surname: Shi fullname: Shi, Yong‐Qian organization: Fuzhou University – sequence: 11 givenname: Long‐Cheng orcidid: 0000-0002-2382-8850 surname: Tang fullname: Tang, Long‐Cheng email: lctang@hznu.edu.cn organization: Hangzhou Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38403451$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktvEzEQgFeoiJbSK0e0EhcOTfBrvesTCuEVKRVSEiFultc7mzhy7NTeBHLjzoXfyC_BIWnVVkKcbI-_-Twaz9PsxHkHWfYcoz5GiLxWzTb2CSIUCSrIo-yMYFH1aMXYyZ39aXYR4xIhhAtaMlw9yU5TGFFW4LPs51iFOfz-8WuqlYXL_Ar0QjmTDnaXT3y9id1lPvV2C65L1ASiiZ1yKahckw9cZ_x306RAfvUV3F70VkVo8qFfrX00HcS89SGfgDWqtpCPvZsnaAZhlY9cG1RI8LQDZbvFs-xxq2yEi-N6ns0-vJ8NP_XGnz-OhoNxTxei5D3OClJzDhjrlgNCLRc11oiXtW64ZqgBgTnFRUMxpppq0dRVwRsEjLSMU3qejQ7axqulXAezUmEnvTLyb8CHuVShM9qCFBgTzalCbakY4VgpwauiJhWvK9HWbXK9ObjWm3oFjU5dCsrek96_cWYh534rMUZlyQVLhldHQ_DXG4idXJmowVrlwG-iJIIShEtGqoS-fIAu_Sa41CpJUYErWopyT724W9JtLTd_ngB2AHTwMQZopTadSh-5r9BYiZHcT5fcT5e8na6U1n-QdmP-Z8LxnW_Gwu4_tBy8-zItOeX0D6FA5ag |
CitedBy_id | crossref_primary_10_1021_acsabm_4c00255 crossref_primary_10_1021_acsaenm_4c00236 crossref_primary_10_1039_D4DT03422H crossref_primary_10_1002_marc_202400698 crossref_primary_10_1016_j_compscitech_2024_110875 crossref_primary_10_1016_j_nanoms_2024_08_007 crossref_primary_10_1016_j_polymer_2024_127732 crossref_primary_10_1021_acs_nanolett_4c01920 crossref_primary_10_1016_j_cej_2024_158525 crossref_primary_10_1002_adma_202501485 crossref_primary_10_1039_D4NR01328J crossref_primary_10_1002_adfm_202416108 crossref_primary_10_1039_D5NR00322A crossref_primary_10_1021_acssuschemeng_4c03622 crossref_primary_10_1002_pc_29358 crossref_primary_10_1002_marc_202400145 crossref_primary_10_1002_sstr_202400630 crossref_primary_10_1016_j_mtsust_2024_101025 crossref_primary_10_1021_acsaenm_4c00224 crossref_primary_10_1039_D4ME00114A crossref_primary_10_1021_acsami_4c18276 crossref_primary_10_1039_D4NR03233K crossref_primary_10_1039_D4TC02804J crossref_primary_10_1002_pat_6463 crossref_primary_10_1021_acsaelm_4c01350 crossref_primary_10_1007_s11804_025_00648_x crossref_primary_10_1016_j_porgcoat_2024_108622 crossref_primary_10_1021_acs_nanolett_4c04401 crossref_primary_10_1021_acs_iecr_4c01240 crossref_primary_10_1021_acsapm_4c02747 crossref_primary_10_1016_j_nantod_2025_102719 crossref_primary_10_1021_acsaelm_4c01498 crossref_primary_10_1039_D4CE00547C crossref_primary_10_1002_advs_202410364 crossref_primary_10_1007_s10853_024_10303_5 crossref_primary_10_1007_s10934_024_01738_x crossref_primary_10_1007_s40820_024_01450_0 crossref_primary_10_1039_D4QM00286E crossref_primary_10_1080_17480272_2024_2437507 crossref_primary_10_1007_s40820_024_01549_4 crossref_primary_10_1039_D4NR04260C crossref_primary_10_1002_smll_202410283 crossref_primary_10_1039_D4TA02688H crossref_primary_10_1039_D4TC04847D |
Cites_doi | 10.1002/adma.201102306 10.1021/acsnano.3c04650 10.1021/acsnano.2c10103 10.1016/j.matt.2022.04.011 10.1016/j.matt.2019.05.020 10.1038/s41467-022-33280-2 10.1021/acsnano.7b05264 10.1039/D0CS00022A 10.1039/C9NR00084D 10.1021/acsnano.2c07293 10.1002/adom.202101930 10.1021/acsami.1c04663 10.1016/j.nanoen.2021.106502 10.1002/adfm.202007392 10.1002/adfm.202004554 10.1021/acsami.2c11292 10.1098/rstb.2008.0254 10.1016/j.pmatsci.2023.101088 10.1126/science.aag2421 10.1021/acsnano.2c08368 10.1016/j.xcrp.2021.100449 10.1002/adfm.202304927 10.1016/j.mattod.2020.11.013 10.1021/acsnano.1c02254 10.1016/j.compositesa.2023.107907 10.1021/acsnano.2c07084 10.1002/advs.201901954 10.1007/s11998-009-9233-x 10.1098/rstb.2008.0270 10.1021/acsnano.0c01312 10.1007/BF02714952 10.1002/adfm.202000712 10.1002/andp.19033160811 10.1016/j.cej.2021.129342 10.1016/j.carbpol.2020.116021 10.1016/j.apmt.2020.100920 10.1016/j.cej.2021.131615 10.1073/pnas.1410494111 10.1016/j.cub.2007.03.034 10.1002/adfm.202212776 10.1002/admt.202100821 10.1039/D2MH01073A 10.1002/adfm.202000883 10.1016/j.matt.2022.04.031 10.1016/j.cej.2020.124310 10.1002/adma.202108560 10.1002/adfm.202101381 10.1007/s12274-022-4962-6 10.1021/acsnano.0c08357 10.1016/j.fct.2011.07.020 10.1007/s12274-022-4312-8 10.1016/j.colsurfa.2021.126388 10.1021/acsnano.9b06394 10.1021/acsnano.0c02401 10.1126/science.abg2026 10.1002/adfm.202002061 10.1021/acs.nanolett.8b01746 10.1016/S0142-9612(01)00360-X 10.1002/adfm.202214223 10.1016/j.matdes.2018.11.045 10.1002/smtd.202201694 10.1364/OME.6.003716 10.1126/sciadv.aba3494 10.1002/adma.201804779 10.1016/j.matpr.2021.12.038 10.1021/acsnano.1c00903 10.1016/j.cplett.2008.02.091 10.1021/acs.chemmater.7b00745 10.1007/s40820-023-01069-7 10.1016/j.diamond.2022.109587 10.1002/adma.202103054 10.1002/advs.202102502 10.1016/j.carbpol.2021.117663 10.1038/s41467-022-35226-0 |
ContentType | Journal Article |
Copyright | 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH. 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH. – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202309392 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep SciTech Premium Collection Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_9112c63a0f7a4261aa9685b286b89fbf PMC11077694 38403451 10_1002_advs_202309392 ADVS7636 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of China funderid: 52373033; 51973047 – fundername: Science and Technology Key Project of Zhejiang Province funderid: Z22E035302 – fundername: Science and Technology Key Project of Zhejiang Province grantid: Z22E035302 – fundername: Natural Science Foundation of China grantid: 51973047 – fundername: Natural Science Foundation of China grantid: 52373033 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO ITC KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAYXX ADMLS AFPKN CITATION EJD IGS PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5976-6452b66e11cf6e00f69b1c067bcd6c40de916315d3113c3c9db856d0e42f4633 |
IEDL.DBID | BENPR |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 00:48:01 EDT 2025 Thu Aug 21 18:35:00 EDT 2025 Thu Jul 10 16:40:30 EDT 2025 Sat Jul 26 00:19:24 EDT 2025 Mon Jul 21 05:55:20 EDT 2025 Tue Jul 01 04:00:04 EDT 2025 Thu Apr 24 23:07:50 EDT 2025 Wed Jan 22 17:20:44 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | micro‐/nanoarchitecture long‐term anti‐oxidation infrared stealth MXene weather resistance |
Language | English |
License | Attribution 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5976-6452b66e11cf6e00f69b1c067bcd6c40de916315d3113c3c9db856d0e42f4633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2382-8850 |
OpenAccessLink | https://www.proquest.com/docview/3051837978?pq-origsite=%requestingapplication% |
PMID | 38403451 |
PQID | 3051837978 |
PQPubID | 4365299 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9112c63a0f7a4261aa9685b286b89fbf pubmedcentral_primary_oai_pubmedcentral_nih_gov_11077694 proquest_miscellaneous_2932017428 proquest_journals_3051837978 pubmed_primary_38403451 crossref_citationtrail_10_1002_advs_202309392 crossref_primary_10_1002_advs_202309392 wiley_primary_10_1002_advs_202309392_ADVS7636 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2023; 33 2021; 22 2019; 11 2023; 7 2019; 13 2020; 14 2019; 162 2020; 7 2020; 6 2021; 31 2021; 33 2023; 131 2023; 135 2022; 34 2009; 364 2020; 49 2016; 353 2018; 30 2011; 23 2010; 7 2007; 17 2009; 23 2021; 8 2023; 10 2021; 7 2021; 45 2021; 2 2023; 17 2023; 15 2019; 1 1998 2017; 29 1903; 316 2020; 388 2014; 111 2021; 90 2021; 418 2021; 13 2016; 6 2018; 18 2021; 15 2021; 617 2020; 31 1989; 167 2020; 30 2022; 60 2022; 5 2021; 258 2017; 11 2002; 23 2022; 13 2020; 236 2022; 14 2022; 15 2024; 177 2022; 10 2008; 455 2021; 374 2022; 427 2011; 49 2022; 16 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_70_1 Halicka H. D. (e_1_2_9_49_1) 2009; 23 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 455 start-page: 256 year: 2008 publication-title: Chem. Phys. Lett. – volume: 13 start-page: 7340 year: 2022 publication-title: Nat. Commun. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 17 start-page: 2029 year: 2023 publication-title: ACS Nano – volume: 167 start-page: 237 year: 1989 publication-title: Lung – volume: 2 year: 2021 publication-title: Cell Rep. Phys. Sci. – volume: 418 year: 2021 publication-title: Chem. Eng. J. – volume: 14 start-page: 5008 year: 2020 publication-title: ACS Nano – volume: 111 year: 2014 publication-title: Proc. Natl. Acad. Sci. USA – volume: 29 start-page: 4848 year: 2017 publication-title: Chem. Mater. – volume: 15 start-page: 6551 year: 2022 publication-title: Nano Res. – volume: 15 start-page: 6420 year: 2021 publication-title: ACS Nano – volume: 10 year: 2022 publication-title: Adv. Opt. Mater. – volume: 23 start-page: 4248 year: 2011 publication-title: Adv. Mater. – volume: 17 start-page: R400 year: 2007 publication-title: Curr. Biol. – volume: 364 start-page: 429 year: 2009 publication-title: Philos. Trans. R. Soc., B – volume: 617 year: 2021 publication-title: Colloids Surf., A – year: 1998 – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 11 start-page: 8387 year: 2019 publication-title: Nanoscale – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 31 year: 2020 publication-title: Adv. Funct. Mater. – volume: 11 year: 2017 publication-title: ACS Nano – volume: 60 start-page: 1523 year: 2022 publication-title: Mater. Today Proc. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 5 start-page: 1937 year: 2022 publication-title: Matter – volume: 45 start-page: 120 year: 2021 publication-title: Mater. Today – volume: 388 year: 2020 publication-title: Chem. Eng. J. – volume: 16 start-page: 3326 year: 2022 publication-title: Nano Res. – volume: 49 start-page: 2670 year: 2011 publication-title: Food Chem. Toxicol. – volume: 14 start-page: 8368 year: 2020 publication-title: ACS Nano – volume: 13 start-page: 5551 year: 2022 publication-title: Nat. Commun. – volume: 177 year: 2024 publication-title: Compos. Part A Appl. Sci. Manuf. – volume: 15 start-page: 108 year: 2023 publication-title: Nano‐Micro Lett. – volume: 17 start-page: 7229 year: 2023 publication-title: ACS Nano – volume: 23 start-page: 695 year: 2009 publication-title: Int. J. Mol. Med. – volume: 7 start-page: 659 year: 2010 publication-title: J. Coat. Technol. Res. – volume: 18 start-page: 4541 year: 2018 publication-title: Nano Lett. – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 22 year: 2021 publication-title: Appl. Mater. Today – volume: 17 year: 2023 publication-title: ACS Nano – volume: 13 start-page: 8491 year: 2019 publication-title: ACS Nano – volume: 16 year: 2022 publication-title: ACS Nano – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 353 start-page: 1137 year: 2016 publication-title: Science – volume: 364 start-page: 463 year: 2009 publication-title: Philos. Trans. R. Soc., B – volume: 15 year: 2021 publication-title: ACS Nano – volume: 258 year: 2021 publication-title: Carbohydr. Polym. – volume: 427 year: 2022 publication-title: Chem. Eng. J. – volume: 7 year: 2023 publication-title: Small Methods – volume: 6 start-page: 3716 year: 2016 publication-title: Opt. Mater. Express – volume: 90 year: 2021 publication-title: Nano Energy – volume: 135 year: 2023 publication-title: Prog. Mater. Sci. – volume: 374 start-page: 96 year: 2021 publication-title: Science – volume: 162 start-page: 162 year: 2019 publication-title: Mater. Des. – volume: 316 start-page: 873 year: 1903 publication-title: Ann. Phys. – volume: 1 start-page: 513 year: 2019 publication-title: Matter – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 5 start-page: 2265 year: 2022 publication-title: Matter – volume: 10 start-page: 235 year: 2023 publication-title: Mater. Horiz. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 23 start-page: 2255 year: 2002 publication-title: Biomaterials – volume: 131 year: 2023 publication-title: Diamond Relat. Mater. – volume: 7 year: 2021 publication-title: Adv. Mater. Technol. – volume: 49 start-page: 7229 year: 2020 publication-title: Chem. Soc. Rev. – volume: 236 year: 2020 publication-title: Carbohydr. Polym. – ident: e_1_2_9_22_1 doi: 10.1002/adma.201102306 – ident: e_1_2_9_23_1 doi: 10.1021/acsnano.3c04650 – ident: e_1_2_9_34_1 doi: 10.1021/acsnano.2c10103 – ident: e_1_2_9_6_1 doi: 10.1016/j.matt.2022.04.011 – ident: e_1_2_9_61_1 doi: 10.1016/j.matt.2019.05.020 – ident: e_1_2_9_44_1 doi: 10.1038/s41467-022-33280-2 – ident: e_1_2_9_32_1 doi: 10.1021/acsnano.7b05264 – ident: e_1_2_9_26_1 doi: 10.1039/D0CS00022A – ident: e_1_2_9_41_1 doi: 10.1039/C9NR00084D – ident: e_1_2_9_39_1 doi: 10.1021/acsnano.2c07293 – ident: e_1_2_9_15_1 doi: 10.1002/adom.202101930 – ident: e_1_2_9_42_1 doi: 10.1021/acsami.1c04663 – ident: e_1_2_9_25_1 doi: 10.1016/j.nanoen.2021.106502 – ident: e_1_2_9_12_1 doi: 10.1002/adfm.202007392 – ident: e_1_2_9_45_1 doi: 10.1002/adfm.202004554 – ident: e_1_2_9_74_1 doi: 10.1021/acsami.2c11292 – ident: e_1_2_9_4_1 doi: 10.1098/rstb.2008.0254 – ident: e_1_2_9_5_1 – ident: e_1_2_9_8_1 doi: 10.1016/j.pmatsci.2023.101088 – ident: e_1_2_9_50_1 doi: 10.1126/science.aag2421 – ident: e_1_2_9_65_1 doi: 10.1021/acsnano.2c08368 – ident: e_1_2_9_43_1 doi: 10.1016/j.xcrp.2021.100449 – ident: e_1_2_9_75_1 doi: 10.1002/adfm.202304927 – ident: e_1_2_9_9_1 doi: 10.1016/j.mattod.2020.11.013 – ident: e_1_2_9_11_1 doi: 10.1021/acsnano.1c02254 – ident: e_1_2_9_76_1 doi: 10.1016/j.compositesa.2023.107907 – ident: e_1_2_9_48_1 doi: 10.1021/acsnano.2c07084 – ident: e_1_2_9_31_1 doi: 10.1002/advs.201901954 – ident: e_1_2_9_68_1 doi: 10.1007/s11998-009-9233-x – ident: e_1_2_9_3_1 doi: 10.1098/rstb.2008.0270 – ident: e_1_2_9_29_1 doi: 10.1021/acsnano.0c01312 – ident: e_1_2_9_53_1 doi: 10.1007/BF02714952 – ident: e_1_2_9_27_1 doi: 10.1002/adfm.202000712 – ident: e_1_2_9_67_1 doi: 10.1002/andp.19033160811 – volume: 23 start-page: 695 year: 2009 ident: e_1_2_9_49_1 publication-title: Int. J. Mol. Med. – ident: e_1_2_9_59_1 doi: 10.1016/j.cej.2021.129342 – ident: e_1_2_9_55_1 doi: 10.1016/j.carbpol.2020.116021 – ident: e_1_2_9_56_1 doi: 10.1016/j.apmt.2020.100920 – ident: e_1_2_9_24_1 doi: 10.1016/j.cej.2021.131615 – ident: e_1_2_9_1_1 doi: 10.1073/pnas.1410494111 – ident: e_1_2_9_2_1 doi: 10.1016/j.cub.2007.03.034 – ident: e_1_2_9_72_1 doi: 10.1002/adfm.202212776 – ident: e_1_2_9_20_1 doi: 10.1002/admt.202100821 – ident: e_1_2_9_38_1 doi: 10.1039/D2MH01073A – ident: e_1_2_9_33_1 doi: 10.1002/adfm.202000883 – ident: e_1_2_9_13_1 doi: 10.1016/j.matt.2022.04.031 – ident: e_1_2_9_14_1 doi: 10.1016/j.cej.2020.124310 – ident: e_1_2_9_28_1 doi: 10.1002/adma.202108560 – ident: e_1_2_9_36_1 doi: 10.1002/adfm.202101381 – ident: e_1_2_9_37_1 doi: 10.1007/s12274-022-4962-6 – ident: e_1_2_9_60_1 doi: 10.1021/acsnano.0c08357 – ident: e_1_2_9_54_1 doi: 10.1016/j.fct.2011.07.020 – ident: e_1_2_9_46_1 doi: 10.1007/s12274-022-4312-8 – ident: e_1_2_9_63_1 doi: 10.1016/j.colsurfa.2021.126388 – ident: e_1_2_9_21_1 doi: 10.1021/acsnano.9b06394 – ident: e_1_2_9_69_1 doi: 10.1021/acsnano.0c02401 – ident: e_1_2_9_66_1 doi: 10.1126/science.abg2026 – ident: e_1_2_9_17_1 doi: 10.1002/adfm.202002061 – ident: e_1_2_9_18_1 doi: 10.1021/acs.nanolett.8b01746 – ident: e_1_2_9_52_1 doi: 10.1016/S0142-9612(01)00360-X – ident: e_1_2_9_71_1 doi: 10.1002/adfm.202214223 – ident: e_1_2_9_58_1 doi: 10.1016/j.matdes.2018.11.045 – ident: e_1_2_9_62_1 doi: 10.1002/smtd.202201694 – ident: e_1_2_9_7_1 doi: 10.1364/OME.6.003716 – ident: e_1_2_9_16_1 doi: 10.1126/sciadv.aba3494 – ident: e_1_2_9_30_1 doi: 10.1002/adma.201804779 – ident: e_1_2_9_51_1 doi: 10.1016/j.matpr.2021.12.038 – ident: e_1_2_9_19_1 doi: 10.1021/acsnano.1c00903 – ident: e_1_2_9_64_1 doi: 10.1016/j.cplett.2008.02.091 – ident: e_1_2_9_40_1 doi: 10.1021/acs.chemmater.7b00745 – ident: e_1_2_9_47_1 doi: 10.1007/s40820-023-01069-7 – ident: e_1_2_9_70_1 doi: 10.1016/j.diamond.2022.109587 – ident: e_1_2_9_35_1 doi: 10.1002/adma.202103054 – ident: e_1_2_9_10_1 doi: 10.1002/advs.202102502 – ident: e_1_2_9_57_1 doi: 10.1016/j.carbpol.2021.117663 – ident: e_1_2_9_73_1 doi: 10.1038/s41467-022-35226-0 |
SSID | ssj0001537418 |
Score | 2.5291114 |
Snippet | MXene‐based thermal camouflage materials have gained increasing attention due to their low emissivity, however, the poor anti‐oxidation restricts their... MXene-based thermal camouflage materials have gained increasing attention due to their low emissivity, however, the poor anti-oxidation restricts their... Abstract MXene‐based thermal camouflage materials have gained increasing attention due to their low emissivity, however, the poor anti‐oxidation restricts... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2309392 |
SubjectTerms | Aging Antioxidants Aqueous solutions Composite materials Cotton infrared stealth long‐term anti‐oxidation micro‐/nanoarchitecture Molecular weight MXene Nanoparticles Oxidation Radiation Temperature Textiles weather resistance |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp1xK06ebpKhQaAsxkS1Zso9JaUhLtofsFvZm9GwCi1yyu6W55Z5Lf2N_SWZsr9mlLbn0Kg9aoXl9sxp9IuQNU6F0UplUB2tTIQ24VG7LVGmrPNgHYHz8Q3_0RZ5-FZ-nxXTtqS_sCevogbuNOwRnzK3kmgWlEe5rXcmyMHkJ01bBBIy-kPPWiqnufjBHWpYVSyPLD7X7gezcOZ78VflGFmrJ-v-GMP9slFwHsG0GOnlEHvbQkR51S94hD3x8THZ655zTdz2D9Psn5PYM-7t_3_wagwb8AR15vN-L6phd0_PGLOeLAzpuZtjrCFLnfo4oMsKgjo4eYQPkz0sHA3Q0hUlB5BiSnaMYPLDJC34NsC7Fdma8eUXPmvgNhCYQ5emnGK6wqZ1ip_BscfGUTE4-Tj6cpv2rC6mF4kKmeNJppPRZZoP0jAVZmcxCUjPWSSuY84AoeVY4nmXccls5UxbSMS_yICTnz8hWbKJ_QaizNphcBaYrUF0WSi6YKbXy4PPKlSwh6UoJte0ZyfFhjFndcSnnNSqtHpSWkLeD_PeOi-Ofkseo00EKObTbAbCsures-j7LSsjeyiLq3rHnNYRHCIIKau-EvB4-g0viOYuOvlnCMgATQ6CDwi4hzzsDGlbCoaDmosgSUm6Y1sZSN7_Ey4uW9hsrdSUrAdvWWuE9e1ADrhlD9pAv_8dm7JJtmFl0rZ57ZGtxtfT7AMcW5lXreXcboTW1 priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9RAGB6kXryI9TO1ygiCCg2dzEwmybEVS5WuSHeFvYX5bAtLIptdsbfevfgb_SW-b5JNG1TE6-QlGfJ-zzzzDCEvWRZypzIT62BtLJUBl-I2jzNtMw_2ATU-LuhPPqrjz_LDPJ3fOMXf8UMMC27oGW28RgfXptm_Jg3V7ivSbXPcyisgCN_G87UI6uPy0_UqSyqQngVvmIPuOha5lBvmRsb3x68YZaaWwP9PVefv4MmbRW2blY7ukbt9OUkPOv1vk1u-uk-2e4dt6OueVfrNA_L9BDHfP69-TEErfo9OPJ75RRUtLulpbdbNao9O6wXiH0Hq1DdYWVYwqCtHDxAU-e3CwQCdzOGlIHIICdBRDCgI_IKvQf1LEeKMp7HoSV2dgdAMIj99X4UlAt0poocXq_OHZHb0bvb2OO5vYogtNBwqxt1Po5RPEhuUZyyowiQWEp2xTlnJnIcqUySpE0kirLCFM3mqHPOSB6mEeES2qrryTwh11gbDs8B0oSVPQi4kM7nOPMSBzOUsIvFGCaXtWcrxsoxF2fEr8xKVVg5Ki8irQf5Lx8_xV8lD1Okghbza7UC9PCt7Ny0h9HOrhGYh09hcal2oPDU8ByMuggkR2d1YRNk7e1NCyITAmEE_HpEXw2NwU9x70ZWv1zANqJMh-EGzF5HHnQENMwGrZEKmSUTykWmNpjp-Ul2ct1Tg2L1nqpDw21or_Mc_KKHWmUJGUTv_Kf-U3IFB2SE9d8nWarn2z6AaW5nnrcP9Ag2AMgY priority: 102 providerName: Wiley-Blackwell |
Title | Large‐Scale, Mechanically Robust, Solvent‐Resistant, and Antioxidant MXene‐Based Composites for Reliable Long‐Term Infrared Stealth |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202309392 https://www.ncbi.nlm.nih.gov/pubmed/38403451 https://www.proquest.com/docview/3051837978 https://www.proquest.com/docview/2932017428 https://pubmed.ncbi.nlm.nih.gov/PMC11077694 https://doaj.org/article/9112c63a0f7a4261aa9685b286b89fbf |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1JbxMxFLZocuGCKOtAiYyEBEi1OovH4zmhBFoVlFRVEqTeRl7bStFMyYLgzB_nvYmTErFdPU7i-G3fe_7mmZBXceGlFYVmyhvDuNBgUqmRrFCmcKAfgPGxoD86E6ef-aeL_CIU3BaBVrnxia2jto3BGvkR6CVoXwFJz7ubLwxvjcLT1XCFxh7pgguWskO6g-Oz8_FtlSXPsD3LpltjnB4p-xW7dKd4AlimO9Gobdr_J6T5O2HyVyDbRqKT--RegJC0v5b5Prnj6gdkPxjpgr4JnaTfPiQ_hsjzZhOQgzukI4dv-aJQZt_puNGrxfKQTpoZMh7Z2C0QSdYwpGpL-0iC_HZtYYCOLuAL2QDCnaXoPpDmBb8DaJcioRnfvaLDpr5kU_Dy9GPt50hqp8gUni2vHpHpyfH0_SkLty4wA8mFYHjSqYVwSWK8cHHsRakTA0FNGysMj60DRJkluc2SJDOZKa2WubCx46nnIssek07d1O4podYYr9PCx6pUPE28zHispSoc2HxhZRwRttn8yoSO5Hgxxqxa91JOKxRWtRVWRF5v59-se3H8deYAZbmdhT2024FmflkFk6zAzadGZCr2hcJEUqlSyFynEhS29NpH5GCjCVUw7EV1q4YRebl9DCaJ5yyqds0KlgGYGBwdJHYRebJWnO1KMkioM54nEZE7KrWz1N0n9fVV2_YbM_VClBy2rdW-_-xBBbhmAtFDPPv3_3hO7sJn-JrEeUA6y_nKvQCgtdQ9spfy8x7p9j-MhpNesK1eW7b4CbCjKzE |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLam7gFeEOOaMcBIIECatcRJnOQBoRU2taytUFukvkW-bpOqZPQC7Jnfw3_knCTtqLg97dVxE9fn83c-28fHhDz3E5cakSgmndYsEgqGFNcpS6ROLOADND4u6PcHovMp-jCJJ1vkx-osDIZVrjixImpTalwjPwBcAvoSmPS8vfjM8NYo3F1dXaFRw-LEXn6FKdv8Tfc92PcF58dH43cd1twqwDSIZ8FwJ08JYYNAO2F934lMBRpIW2kjdOQbC4opDGITBkGoQ50ZlcbC-DbiLhK4_gmMvx2Fwuctst0-GnwcXi3qxCFmg1klh_T5gTRfMCk4xw3HjG84v-qOgD8J29_jM3_VzZXjO75NbjWKlR7WENshW7a4Q3YaTpjTV03i6td3yfcehpWzEZjd7tO-xUPFiIHpJR2Wajlf7NNROcUASza0cxSuBRTJwtBDjLn8dm6ggPYn8ELWBu9qKLIVRpXBd0BcU4yfxqNetFcWp2wMToV2CzfDGHqKgcnTxdk9Mr4Oc9wnraIs7ENCjdZO8cT5MpMRD1waRr5KZWKBYhKT-h5hq87PdZMAHe_hmOZ16maeo7HytbE88nJd_6JO_fHXmm205boWpuyuCsrZad4wQA5ehWsRSt8lEuetUmYijRVPYXxkTjmP7K2QkDc8Ms-vUO-RZ-vHwAC4rSMLWy6hGSDBgVdhHumRBzVw1i0JYf4eRnHgkXQDUhtN3XxSnJ9VWcZxYSARWQTdVqHvP32Qg4wagbMSu__-H0_Jjc6438t73cHJI3ITfh_V8aN7pLWYLe1j0HgL9aQZWZTk1zyWfwIiEGLE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VqYS4IMrTpcAigQCpVuy1vbYPCDW0UUOTqEqClJu1z7ZSZJc8gJ75Vfw7ZvxIiXiderU3yWb3m2--2Z2dJeSlF9tE81i6wirlhlyCSTGVuLFQsQF8gMbHBf3BkB9_Cj9Oo-kW-dGchcG0yoYTS6LWhcI18jbgEtAXQ9DTtnVaxOlh9_3lZxdvkMKd1uY6jQoiJ-bqK4Rvi3e9Q5jrV4x1jyYfjt36hgFXgZDmLu7qSc6N7yvLjedZnkpfAYFLpbkKPW1APQV-pAPfD1SgUi2TiGvPhMyGHNdCgf23YwyKWmS7czQ8HV0v8EQBVoZpCkV6rC30FywQznDzMWUbjrC8L-BPIvf3XM1fNXTpBLt3yZ1avdKDCm47ZMvk98hOzQ8L-qYuYv32PvnexxRzdwwQMPt0YPCAMeJhdkVHhVwtlvt0XMww2dIdmQWK2BweiVzTA8y__Hah4QEdTOEL3Q54Wk2RuTDDDH4HhDbFXGo89kX7RX7mTsDB0F5u55hPTzFJebY8f0AmNzEdD0krL3LzmFCtlJUstp5IRch8mwShJxMRG6CbWCeeQ9xm8DNVF0PHOzlmWVXGmWU4Wdl6shzyet3-sioD8teWHZzLdSss310-KOZnWc0GGXgYpnggPBsLjGGFSHkSSZaAraRWWofsNUjIak5ZZNcW4JAX69fABrjFI3JTrKAbIMeBYyGmdMijCjjrngQQywdh5Dsk2YDURlc33-QX52XFcVwkiHkawrCV6PvPGGQgqcbguPjuv__Hc3ILbDjr94YnT8ht-HhYpZLukdZyvjJPQe4t5bPasCjJbtiUfwLBrmb5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large%E2%80%90Scale%2C+Mechanically+Robust%2C+Solvent%E2%80%90Resistant%2C+and+Antioxidant+MXene%E2%80%90Based+Composites+for+Reliable+Long%E2%80%90Term+Infrared+Stealth&rft.jtitle=Advanced+science&rft.au=Guo%2C+Bi%E2%80%90Fan&rft.au=Wang%2C+Ye%E2%80%90Jun&rft.au=Cao%2C+Cheng%E2%80%90Fei&rft.au=Qu%2C+Zhang%E2%80%90Hao&rft.date=2024-05-01&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=2198-3844&rft.volume=11&rft.issue=17&rft_id=info:doi/10.1002%2Fadvs.202309392&rft_id=info%3Apmid%2F38403451&rft.externalDocID=PMC11077694 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |