Tolerant and Rapid Endochondral Bone Regeneration Using Framework‐Enhanced 3D Biomineralized Matrix Hydrogels

Tissue‐engineered bone has emerged as a promising alternative for bone defect repair due to the advantages of regenerative bone healing and physiological functional reconstruction. However, there is very limited breakthrough in achieving favorable bone regeneration due to the harsh osteogenic microe...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 11; no. 9; pp. e2305580 - n/a
Main Authors Bai, Baoshuai, Liu, Yanhan, Huang, Jinyi, Wang, Sinan, Chen, Hongying, Huo, Yingying, Zhou, Hengxing, Liu, Yu, Feng, Shiqing, Zhou, Guangdong, Hua, Yujie
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.03.2024
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tissue‐engineered bone has emerged as a promising alternative for bone defect repair due to the advantages of regenerative bone healing and physiological functional reconstruction. However, there is very limited breakthrough in achieving favorable bone regeneration due to the harsh osteogenic microenvironment after bone injury, especially the avascular and hypoxic conditions. Inspired by the bone developmental mode of endochondral ossification, a novel strategy is proposed for tolerant and rapid endochondral bone regeneration using framework‐enhanced 3D biomineralized matrix hydrogels. First, it is meticulously designed 3D biomimetic hydrogels with both hypoxic and osteoinductive microenvironment, and then integrated 3D‐printed polycaprolactone framework to improve their mechanical strength and structural fidelity. The inherent hypoxic 3D matrix microenvironment effectively activates bone marrow mesenchymal stem cells self‐regulation for early‐stage chondrogenesis via TGFβ/Smad signaling pathway due to the obstacle of aerobic respiration. Meanwhile, the strong biomineralized microenvironment, created by a hybrid formulation of native‐constitute osteogenic inorganic salts, can synergistically regulate both bone mineralization and osteoclastic differentiation, and thus accelerate the late‐stage bone maturation. Furthermore, both in vivo ectopic osteogenesis and in situ skull defect repair successfully verified the high efficiency and mechanical maintenance of endochondral bone regeneration mode, which offers a promising treatment for craniofacial bone defect repair. In this study, a tolerant and rapid endochondral bone regeneration strategy is proposed using 3D‐printed PCL framework‐enhanced biomineralized matrix hydrogels with both hypoxic and osteoinductive microenvironment, which can effectively regulate BMSC‐based endochondral ossification (ECO) for tissue‐engineered bone construction. The current study eventually realized satisfactory ectopic osteogenesis in nude mice and skull defect repair in rabbits by the high‐efficiency ECO mode.
AbstractList Abstract Tissue‐engineered bone has emerged as a promising alternative for bone defect repair due to the advantages of regenerative bone healing and physiological functional reconstruction. However, there is very limited breakthrough in achieving favorable bone regeneration due to the harsh osteogenic microenvironment after bone injury, especially the avascular and hypoxic conditions. Inspired by the bone developmental mode of endochondral ossification, a novel strategy is proposed for tolerant and rapid endochondral bone regeneration using framework‐enhanced 3D biomineralized matrix hydrogels. First, it is meticulously designed 3D biomimetic hydrogels with both hypoxic and osteoinductive microenvironment, and then integrated 3D‐printed polycaprolactone framework to improve their mechanical strength and structural fidelity. The inherent hypoxic 3D matrix microenvironment effectively activates bone marrow mesenchymal stem cells self‐regulation for early‐stage chondrogenesis via TGFβ/Smad signaling pathway due to the obstacle of aerobic respiration. Meanwhile, the strong biomineralized microenvironment, created by a hybrid formulation of native‐constitute osteogenic inorganic salts, can synergistically regulate both bone mineralization and osteoclastic differentiation, and thus accelerate the late‐stage bone maturation. Furthermore, both in vivo ectopic osteogenesis and in situ skull defect repair successfully verified the high efficiency and mechanical maintenance of endochondral bone regeneration mode, which offers a promising treatment for craniofacial bone defect repair.
Tissue‐engineered bone has emerged as a promising alternative for bone defect repair due to the advantages of regenerative bone healing and physiological functional reconstruction. However, there is very limited breakthrough in achieving favorable bone regeneration due to the harsh osteogenic microenvironment after bone injury, especially the avascular and hypoxic conditions. Inspired by the bone developmental mode of endochondral ossification, a novel strategy is proposed for tolerant and rapid endochondral bone regeneration using framework‐enhanced 3D biomineralized matrix hydrogels. First, it is meticulously designed 3D biomimetic hydrogels with both hypoxic and osteoinductive microenvironment, and then integrated 3D‐printed polycaprolactone framework to improve their mechanical strength and structural fidelity. The inherent hypoxic 3D matrix microenvironment effectively activates bone marrow mesenchymal stem cells self‐regulation for early‐stage chondrogenesis via TGFβ/Smad signaling pathway due to the obstacle of aerobic respiration. Meanwhile, the strong biomineralized microenvironment, created by a hybrid formulation of native‐constitute osteogenic inorganic salts, can synergistically regulate both bone mineralization and osteoclastic differentiation, and thus accelerate the late‐stage bone maturation. Furthermore, both in vivo ectopic osteogenesis and in situ skull defect repair successfully verified the high efficiency and mechanical maintenance of endochondral bone regeneration mode, which offers a promising treatment for craniofacial bone defect repair. In this study, a tolerant and rapid endochondral bone regeneration strategy is proposed using 3D‐printed PCL framework‐enhanced biomineralized matrix hydrogels with both hypoxic and osteoinductive microenvironment, which can effectively regulate BMSC‐based endochondral ossification (ECO) for tissue‐engineered bone construction. The current study eventually realized satisfactory ectopic osteogenesis in nude mice and skull defect repair in rabbits by the high‐efficiency ECO mode.
Tissue-engineered bone has emerged as a promising alternative for bone defect repair due to the advantages of regenerative bone healing and physiological functional reconstruction. However, there is very limited breakthrough in achieving favorable bone regeneration due to the harsh osteogenic microenvironment after bone injury, especially the avascular and hypoxic conditions. Inspired by the bone developmental mode of endochondral ossification, a novel strategy is proposed for tolerant and rapid endochondral bone regeneration using framework-enhanced 3D biomineralized matrix hydrogels. First, it is meticulously designed 3D biomimetic hydrogels with both hypoxic and osteoinductive microenvironment, and then integrated 3D-printed polycaprolactone framework to improve their mechanical strength and structural fidelity. The inherent hypoxic 3D matrix microenvironment effectively activates bone marrow mesenchymal stem cells self-regulation for early-stage chondrogenesis via TGFβ/Smad signaling pathway due to the obstacle of aerobic respiration. Meanwhile, the strong biomineralized microenvironment, created by a hybrid formulation of native-constitute osteogenic inorganic salts, can synergistically regulate both bone mineralization and osteoclastic differentiation, and thus accelerate the late-stage bone maturation. Furthermore, both in vivo ectopic osteogenesis and in situ skull defect repair successfully verified the high efficiency and mechanical maintenance of endochondral bone regeneration mode, which offers a promising treatment for craniofacial bone defect repair.Tissue-engineered bone has emerged as a promising alternative for bone defect repair due to the advantages of regenerative bone healing and physiological functional reconstruction. However, there is very limited breakthrough in achieving favorable bone regeneration due to the harsh osteogenic microenvironment after bone injury, especially the avascular and hypoxic conditions. Inspired by the bone developmental mode of endochondral ossification, a novel strategy is proposed for tolerant and rapid endochondral bone regeneration using framework-enhanced 3D biomineralized matrix hydrogels. First, it is meticulously designed 3D biomimetic hydrogels with both hypoxic and osteoinductive microenvironment, and then integrated 3D-printed polycaprolactone framework to improve their mechanical strength and structural fidelity. The inherent hypoxic 3D matrix microenvironment effectively activates bone marrow mesenchymal stem cells self-regulation for early-stage chondrogenesis via TGFβ/Smad signaling pathway due to the obstacle of aerobic respiration. Meanwhile, the strong biomineralized microenvironment, created by a hybrid formulation of native-constitute osteogenic inorganic salts, can synergistically regulate both bone mineralization and osteoclastic differentiation, and thus accelerate the late-stage bone maturation. Furthermore, both in vivo ectopic osteogenesis and in situ skull defect repair successfully verified the high efficiency and mechanical maintenance of endochondral bone regeneration mode, which offers a promising treatment for craniofacial bone defect repair.
Tissue-engineered bone has emerged as a promising alternative for bone defect repair due to the advantages of regenerative bone healing and physiological functional reconstruction. However, there is very limited breakthrough in achieving favorable bone regeneration due to the harsh osteogenic microenvironment after bone injury, especially the avascular and hypoxic conditions. Inspired by the bone developmental mode of endochondral ossification, a novel strategy is proposed for tolerant and rapid endochondral bone regeneration using framework-enhanced 3D biomineralized matrix hydrogels. First, it is meticulously designed 3D biomimetic hydrogels with both hypoxic and osteoinductive microenvironment, and then integrated 3D-printed polycaprolactone framework to improve their mechanical strength and structural fidelity. The inherent hypoxic 3D matrix microenvironment effectively activates bone marrow mesenchymal stem cells self-regulation for early-stage chondrogenesis via TGFβ/Smad signaling pathway due to the obstacle of aerobic respiration. Meanwhile, the strong biomineralized microenvironment, created by a hybrid formulation of native-constitute osteogenic inorganic salts, can synergistically regulate both bone mineralization and osteoclastic differentiation, and thus accelerate the late-stage bone maturation. Furthermore, both in vivo ectopic osteogenesis and in situ skull defect repair successfully verified the high efficiency and mechanical maintenance of endochondral bone regeneration mode, which offers a promising treatment for craniofacial bone defect repair.
Tissue‐engineered bone has emerged as a promising alternative for bone defect repair due to the advantages of regenerative bone healing and physiological functional reconstruction. However, there is very limited breakthrough in achieving favorable bone regeneration due to the harsh osteogenic microenvironment after bone injury, especially the avascular and hypoxic conditions. Inspired by the bone developmental mode of endochondral ossification, a novel strategy is proposed for tolerant and rapid endochondral bone regeneration using framework‐enhanced 3D biomineralized matrix hydrogels. First, it is meticulously designed 3D biomimetic hydrogels with both hypoxic and osteoinductive microenvironment, and then integrated 3D‐printed polycaprolactone framework to improve their mechanical strength and structural fidelity. The inherent hypoxic 3D matrix microenvironment effectively activates bone marrow mesenchymal stem cells self‐regulation for early‐stage chondrogenesis via TGFβ/Smad signaling pathway due to the obstacle of aerobic respiration. Meanwhile, the strong biomineralized microenvironment, created by a hybrid formulation of native‐constitute osteogenic inorganic salts, can synergistically regulate both bone mineralization and osteoclastic differentiation, and thus accelerate the late‐stage bone maturation. Furthermore, both in vivo ectopic osteogenesis and in situ skull defect repair successfully verified the high efficiency and mechanical maintenance of endochondral bone regeneration mode, which offers a promising treatment for craniofacial bone defect repair. In this study, a tolerant and rapid endochondral bone regeneration strategy is proposed using 3D‐printed PCL framework‐enhanced biomineralized matrix hydrogels with both hypoxic and osteoinductive microenvironment, which can effectively regulate BMSC‐based endochondral ossification ( ECO ) for tissue‐engineered bone construction. The current study eventually realized satisfactory ectopic osteogenesis in nude mice and skull defect repair in rabbits by the high‐efficiency ECO mode.
Author Zhou, Guangdong
Wang, Sinan
Liu, Yu
Feng, Shiqing
Zhou, Hengxing
Hua, Yujie
Huo, Yingying
Liu, Yanhan
Chen, Hongying
Huang, Jinyi
Bai, Baoshuai
AuthorAffiliation 1 Shanghai Key Laboratory of Tissue Engineering Department of Plastic and Reconstructive Surgery of Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200011 P. R. China
5 Department of Ophthalmology Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 P. R. China
4 Department of Orthopaedics Cheeloo College of Medicine The Second Hospital of Shandong University Shandong University Jinan Shandong 250033 P. R. China
2 National Tissue Engineering Center of China Shanghai 200241 P. R. China
3 Department of Orthopaedics Advanced Medical Research Institute Qilu Hospital of Shangdong University Centre for Orthopaedics Shandong University Jinan Shandong 250100 P. R. China
AuthorAffiliation_xml – name: 5 Department of Ophthalmology Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 P. R. China
– name: 1 Shanghai Key Laboratory of Tissue Engineering Department of Plastic and Reconstructive Surgery of Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200011 P. R. China
– name: 2 National Tissue Engineering Center of China Shanghai 200241 P. R. China
– name: 3 Department of Orthopaedics Advanced Medical Research Institute Qilu Hospital of Shangdong University Centre for Orthopaedics Shandong University Jinan Shandong 250100 P. R. China
– name: 4 Department of Orthopaedics Cheeloo College of Medicine The Second Hospital of Shandong University Shandong University Jinan Shandong 250033 P. R. China
Author_xml – sequence: 1
  givenname: Baoshuai
  surname: Bai
  fullname: Bai, Baoshuai
  organization: Shandong University
– sequence: 2
  givenname: Yanhan
  surname: Liu
  fullname: Liu, Yanhan
  organization: Shanghai Jiao Tong University
– sequence: 3
  givenname: Jinyi
  surname: Huang
  fullname: Huang, Jinyi
  organization: National Tissue Engineering Center of China
– sequence: 4
  givenname: Sinan
  surname: Wang
  fullname: Wang, Sinan
  organization: National Tissue Engineering Center of China
– sequence: 5
  givenname: Hongying
  surname: Chen
  fullname: Chen, Hongying
  organization: National Tissue Engineering Center of China
– sequence: 6
  givenname: Yingying
  surname: Huo
  fullname: Huo, Yingying
  organization: National Tissue Engineering Center of China
– sequence: 7
  givenname: Hengxing
  surname: Zhou
  fullname: Zhou, Hengxing
  organization: Shandong University
– sequence: 8
  givenname: Yu
  surname: Liu
  fullname: Liu, Yu
  organization: National Tissue Engineering Center of China
– sequence: 9
  givenname: Shiqing
  surname: Feng
  fullname: Feng, Shiqing
  email: shiqingfeng@sdu.edu.cn
  organization: Shandong University
– sequence: 10
  givenname: Guangdong
  orcidid: 0000-0003-2488-2733
  surname: Zhou
  fullname: Zhou, Guangdong
  email: guangdongzhou@126.com
  organization: National Tissue Engineering Center of China
– sequence: 11
  givenname: Yujie
  surname: Hua
  fullname: Hua, Yujie
  email: yujiehua@shsmu.edu.cn
  organization: National Tissue Engineering Center of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38127989$$D View this record in MEDLINE/PubMed
BookMark eNqFkstuUzEQho9QES2lW5boSGzYJPh-WaFeUlqpCKm0bC0f2ydxOLGDfdKSrvoIPCNPgtOkVVsJsbI1880_vz3zutoKMbiqegvBEAKAPmp7lYcIIAwoFeBFtYOgFAMsCNl6dN-u9nKeAgAgxZxA8araxgIiLoXcqeJF7FzSoa91sPW5nntbj4KNZhKDTbqrD0rL-tyNXShY72OoL7MP4_o46Zm7junHn9vfozDRwThb46P6wMeZX7GdvymRL7pP_ld9srQpjl2X31QvW91lt7c5d6vL49HF4cng7Ovn08P9s4GhktMBbQC2okGtdlwIqAGV0pgWQ46BdM6gxjTU6hZwjBxvNCEGtNYCCoUmRiC8W52udW3UUzVPfqbTUkXt1V0gprHSqfemc0pqwwXFTGPuCOOtdAJbhimTtmWM0KL1aa01XzQzZ40LfXneE9GnmeAnahyvFAQSMkZJUfiwUUjx58LlXs18Nq7rdHBxkRWSZYKQcM4L-v4ZOo2LFMpfFQpzxhiQK-rdY0sPXu4HWwCyBkyKOSfXKuP7u_kVh74r1tRqhdRqhdTDCpWy4bOye-V_Fmz6XPvOLf9Dq_2j7984QBT_BX2a2gg
CitedBy_id crossref_primary_10_1016_j_cej_2024_157930
crossref_primary_10_1021_acsnano_4c13562
crossref_primary_10_1002_adfm_202410927
crossref_primary_10_1016_j_tibtech_2024_07_002
crossref_primary_10_1039_D4BM01181C
crossref_primary_10_1016_j_ijbiomac_2025_142346
crossref_primary_10_1063_5_0257593
crossref_primary_10_1016_j_compositesb_2024_111976
crossref_primary_10_1016_j_bioactmat_2024_06_016
Cites_doi 10.1136/annrheumdis-2015-207240
10.1016/j.bioactmat.2019.10.005
10.1016/j.biomaterials.2011.03.020
10.1002/adhm.201900065
10.3389/fbioe.2021.766363
10.1002/advs.202202181
10.3389/fbioe.2022.916146
10.3390/ijms22031128
10.1007/s42765-023-00266-8
10.1002/EXP.20210043
10.1038/s41467-021-23827-0
10.1186/s13059-014-0550-8
10.1038/s41422-021-00467-z
10.1016/j.molcel.2022.10.005
10.1002/adfm.202008515
10.1038/s41563-022-01384-1
10.1038/s41419-021-03404-5
10.1039/C9BM01455A
10.1016/j.mtbio.2022.100489
10.1038/s41392-023-01330-w
10.1038/nmeth.1671
10.1126/science.add6220
10.1088/1748-605X/acdb1e
10.1021/acsami.2c08422
10.1126/science.aao2189
10.1002/EXP.20210170
10.1038/nm1409
10.3390/nu14193955
10.1016/j.biomaterials.2021.121242
10.1016/j.biomaterials.2019.05.027
10.1038/s41467-022-32868-y
10.1038/s41422-022-00687-x
10.1016/j.cclet.2022.107825
10.1039/D0CS00877J
10.1002/jcp.21446
10.1038/nrm762
10.1021/acs.chemrev.2c00512
10.1186/s12967-022-03341-7
10.1002/adhm.202102540
10.1136/ard-2022-223227
10.1038/s41563-020-0786-5
10.1016/j.bioactmat.2021.11.007
10.1002/adma.202104829
10.1002/adma.202202044
10.1038/nm.2146
10.1038/nbt.3122
10.1016/j.apmt.2022.101478
10.1016/j.biomaterials.2013.05.040
10.1002/adhm.201800441
10.1016/j.bone.2015.04.044
10.1038/s41467-021-26593-1
10.1016/j.ijbiomac.2021.01.036
10.1016/j.ijbiomac.2022.12.094
10.1016/j.biopha.2021.111839
10.1136/annrheumdis-2019-216911
10.1038/nature01657
10.1002/adfm.202200269
10.1002/advs.202100143
10.1074/jbc.M805242200
10.1016/j.bioactmat.2021.12.013
10.1016/j.bioactmat.2022.08.009
10.1002/adhm.201901239
10.1038/s41467-022-32936-3
ContentType Journal Article
Copyright 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH
2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH
– notice: 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202305580
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Publicly Available Content Database
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_9ac78536a37e467f9e83d63569df6645
PMC10916654
38127989
10_1002_advs_202305580
ADVS7025
Genre article
Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: 2022YFA1207500
– fundername: Major Science and Technology Projects of Xinxiang City
  funderid: 21ZD006
– fundername: Key Research and Development Program of Henan province
  funderid: 221111310100
– fundername: National Natural Science Foundation of China
  funderid: 81871502; 81671837
– fundername: Shanghai Municipal Key Clinical Specialty
  funderid: shslczdzk06601
– fundername: Biomaterials and Regenerative Medicine Institute Cooperative Research Project of Shanghai Jiaotong University School of Medicine
  funderid: 2022LHA07
– fundername: Science and Technology Innovation Action Plan Venus Project
  funderid: 23YF1421400
– fundername: China Postdoctoral Science Foundation
  funderid: 2023M732294
– fundername: Biomaterials and Regenerative Medicine Institute Cooperative Research Project of Shanghai Jiaotong University School of Medicine
  grantid: 2022LHA07
– fundername: Key Research and Development Program of Henan province
  grantid: 221111310100
– fundername: Major Science and Technology Projects of Xinxiang City
  grantid: 21ZD006
– fundername: Shanghai Municipal Key Clinical Specialty
  grantid: shslczdzk06601
– fundername: China Postdoctoral Science Foundation
  grantid: 2023M732294
– fundername: National Key Research and Development Program of China
  grantid: 2022YFA1207500
– fundername: National Natural Science Foundation of China
  grantid: 81871502
– fundername: National Natural Science Foundation of China
  grantid: 81671837
– fundername: Science and Technology Innovation Action Plan Venus Project
  grantid: 23YF1421400
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
ITC
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAYXX
ADMLS
AFPKN
CITATION
EJD
IGS
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
MBDVC
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5975-5b03d8b2fae7881a0599ccf317309eec2bcb5daf0732e7ba44c0fdd0518a4c823
IEDL.DBID 24P
ISSN 2198-3844
IngestDate Wed Aug 27 01:06:25 EDT 2025
Thu Aug 21 18:35:36 EDT 2025
Thu Jul 10 17:58:28 EDT 2025
Sat Jul 26 00:23:48 EDT 2025
Thu Apr 03 06:57:48 EDT 2025
Tue Jul 01 04:00:02 EDT 2025
Thu Apr 24 23:02:22 EDT 2025
Wed Jan 22 16:14:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords hypoxic microenvironment
bone regeneration
hydrogels
endochondral ossification
biomineralization
Language English
License Attribution
2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5975-5b03d8b2fae7881a0599ccf317309eec2bcb5daf0732e7ba44c0fdd0518a4c823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2488-2733
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202305580
PMID 38127989
PQID 2937666097
PQPubID 4365299
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_9ac78536a37e467f9e83d63569df6645
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10916654
proquest_miscellaneous_2905514777
proquest_journals_2937666097
pubmed_primary_38127989
crossref_citationtrail_10_1002_advs_202305580
crossref_primary_10_1002_advs_202305580
wiley_primary_10_1002_advs_202305580_ADVS7025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2024
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2015; 78
2023; 380
2010; 16
2021; 20
2018; 360
2021; 22
2023; 34
2023; 5
2023; 8
2015; 33
2023; 226
2016; 75
2022; 20
2023; 3
2022; 27
2023; 82
2020; 8
2018; 7
2023; 21
2021; 31
2023; 22
2021; 33
2022; 82
2021; 279
2020; 9
2022; 34
2020; 49
2014; 15
2022; 32
2019; 8
2021; 9
2023; 10
2021; 8
2019; 4
2023; 14
2006; 12
2023; 18
2019; 74
2023; 123
2002; 3
2011; 32
2020; 79
2021; 141
2011; 8
2008; 283
2021; 12
2013; 34
2022; 9
2022; 13
2022; 14
2021; 172
2008; 216
2019; 216
2022; 10
2022; 11
2003; 423
2022; 17
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
Wang X. (e_1_2_9_16_1) 2023; 10
e_1_2_9_26_1
e_1_2_9_49_1
Liu Z. (e_1_2_9_10_1) 2023; 18
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
Zeng H. (e_1_2_9_43_1) 2019; 74
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 172
  start-page: 19
  year: 2021
  publication-title: Int. J. Biol. Macromol.
– volume: 380
  year: 2023
  publication-title: Science
– volume: 49
  start-page: 7301
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 34
  start-page: 6695
  year: 2013
  publication-title: Biomaterials
– volume: 9
  year: 2020
  publication-title: Adv. Healthcare Mater.
– volume: 21
  start-page: 267
  year: 2023
  publication-title: Bioact. Mater.
– volume: 283
  year: 2008
  publication-title: J. Biol. Chem.
– volume: 8
  start-page: 56
  year: 2023
  publication-title: Signal Transduction Targeted Ther.
– volume: 18
  year: 2023
  publication-title: Asian J. Pharm.
– volume: 10
  start-page: 1038
  year: 2023
  publication-title: Nat. Biomed. Eng.
– volume: 22
  start-page: 1128
  year: 2021
  publication-title: Int. J. Mol. Sci.
– volume: 78
  start-page: 34
  year: 2015
  publication-title: Bone
– volume: 14
  start-page: 3955
  year: 2022
  publication-title: Nutrients
– volume: 13
  start-page: 149
  year: 2022
  publication-title: Bioact. Mater.
– volume: 8
  start-page: 682
  year: 2020
  publication-title: Biomater. Sci.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 8
  start-page: 731
  year: 2011
  publication-title: Nat. Methods
– volume: 27
  year: 2022
  publication-title: Appl. Mater. Today
– volume: 7
  year: 2018
  publication-title: Adv. Healthcare Mater.
– volume: 82
  start-page: 403
  year: 2023
  publication-title: Ann. Rheum. Dis.
– volume: 16
  start-page: 678
  year: 2010
  publication-title: Nat. Med.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 8
  year: 2019
  publication-title: Adv. Healthcare Mater.
– volume: 12
  start-page: 6327
  year: 2021
  publication-title: Nat. Commun.
– volume: 4
  start-page: 271
  year: 2019
  publication-title: Bioact. Mater.
– volume: 423
  start-page: 332
  year: 2003
  publication-title: Nature
– volume: 82
  start-page: 4537
  year: 2022
  publication-title: Mol. Cell
– volume: 10
  year: 2022
  publication-title: Front. Bioeng. Biotechnol.
– volume: 3
  year: 2023
  publication-title: Exploration
– volume: 15
  start-page: 550
  year: 2014
  publication-title: Genome Biol.
– volume: 17
  year: 2022
  publication-title: Mater. Today Bio
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 20
  start-page: 108
  year: 2021
  publication-title: Nat. Mater.
– volume: 123
  start-page: 2349
  year: 2023
  publication-title: Chem. Rev.
– volume: 3
  start-page: 214
  year: 2002
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 75
  start-page: 1203
  year: 2016
  publication-title: Ann. Rheum. Dis.
– volume: 9
  year: 2021
  publication-title: Front. Bioeng. Biotechnol.
– volume: 32
  start-page: 4773
  year: 2011
  publication-title: Biomaterials
– volume: 279
  year: 2021
  publication-title: Biomaterials
– volume: 18
  year: 2023
  publication-title: Biomed. Mater.
– volume: 79
  start-page: 1111
  year: 2020
  publication-title: Ann. Rheum. Dis.
– volume: 12
  start-page: 147
  year: 2021
  publication-title: Cell Death Dis.
– volume: 226
  start-page: 716
  year: 2023
  publication-title: Int. J. Biol. Macromol.
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 20
  start-page: 132
  year: 2022
  publication-title: J. Transl. Med.
– volume: 216
  start-page: 708
  year: 2008
  publication-title: J. Cell. Physiol.
– volume: 216
  year: 2019
  publication-title: Biomaterials
– volume: 32
  start-page: 814
  year: 2022
  publication-title: Cell Res.
– volume: 12
  start-page: 665
  year: 2006
  publication-title: Nat. Med.
– volume: 14
  start-page: 97
  year: 2022
  publication-title: Bioact. Mater.
– volume: 141
  year: 2021
  publication-title: Biomed. Pharmacother.
– volume: 14
  start-page: 157
  year: 2023
  publication-title: Nat. Commun.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 3428
  year: 2021
  publication-title: Nat. Commun.
– volume: 34
  year: 2023
  publication-title: Chin. Chem. Lett.
– volume: 31
  start-page: 742
  year: 2021
  publication-title: Cell Res.
– volume: 360
  year: 2018
  publication-title: Science
– volume: 74
  start-page: 315
  year: 2019
  publication-title: J. Pharm. Pharmacol.
– volume: 11
  year: 2022
  publication-title: Adv. Healthcare Mater.
– volume: 22
  start-page: 18
  year: 2023
  publication-title: Nat. Mater.
– volume: 33
  start-page: 290
  year: 2015
  publication-title: Nat. Biotechnol.
– volume: 13
  start-page: 5211
  year: 2022
  publication-title: Nat. Commun.
– volume: 5
  start-page: 1008
  year: 2023
  publication-title: Adv. Fiber Mater.
– ident: e_1_2_9_57_1
  doi: 10.1136/annrheumdis-2015-207240
– ident: e_1_2_9_7_1
  doi: 10.1016/j.bioactmat.2019.10.005
– ident: e_1_2_9_34_1
  doi: 10.1016/j.biomaterials.2011.03.020
– ident: e_1_2_9_60_1
  doi: 10.1002/adhm.201900065
– ident: e_1_2_9_62_1
  doi: 10.3389/fbioe.2021.766363
– ident: e_1_2_9_63_1
  doi: 10.1002/advs.202202181
– ident: e_1_2_9_37_1
  doi: 10.3389/fbioe.2022.916146
– ident: e_1_2_9_8_1
  doi: 10.3390/ijms22031128
– ident: e_1_2_9_66_1
  doi: 10.1007/s42765-023-00266-8
– ident: e_1_2_9_9_1
  doi: 10.1002/EXP.20210043
– volume: 18
  year: 2023
  ident: e_1_2_9_10_1
  publication-title: Asian J. Pharm.
– ident: e_1_2_9_44_1
  doi: 10.1038/s41467-021-23827-0
– ident: e_1_2_9_65_1
  doi: 10.1186/s13059-014-0550-8
– ident: e_1_2_9_28_1
  doi: 10.1038/s41422-021-00467-z
– ident: e_1_2_9_48_1
  doi: 10.1016/j.molcel.2022.10.005
– ident: e_1_2_9_25_1
  doi: 10.1002/adfm.202008515
– ident: e_1_2_9_12_1
  doi: 10.1038/s41563-022-01384-1
– ident: e_1_2_9_53_1
  doi: 10.1038/s41419-021-03404-5
– ident: e_1_2_9_5_1
  doi: 10.1039/C9BM01455A
– ident: e_1_2_9_61_1
  doi: 10.1016/j.mtbio.2022.100489
– ident: e_1_2_9_51_1
  doi: 10.1038/s41392-023-01330-w
– ident: e_1_2_9_22_1
  doi: 10.1038/nmeth.1671
– ident: e_1_2_9_4_1
  doi: 10.1126/science.add6220
– ident: e_1_2_9_32_1
  doi: 10.1088/1748-605X/acdb1e
– ident: e_1_2_9_20_1
  doi: 10.1021/acsami.2c08422
– ident: e_1_2_9_2_1
  doi: 10.1126/science.aao2189
– volume: 10
  start-page: 1038
  year: 2023
  ident: e_1_2_9_16_1
  publication-title: Nat. Biomed. Eng.
– ident: e_1_2_9_11_1
  doi: 10.1002/EXP.20210170
– ident: e_1_2_9_30_1
  doi: 10.1038/nm1409
– ident: e_1_2_9_55_1
  doi: 10.3390/nu14193955
– ident: e_1_2_9_58_1
  doi: 10.1016/j.biomaterials.2021.121242
– ident: e_1_2_9_27_1
  doi: 10.1016/j.biomaterials.2019.05.027
– ident: e_1_2_9_13_1
  doi: 10.1038/s41467-022-32868-y
– ident: e_1_2_9_29_1
  doi: 10.1038/s41422-022-00687-x
– ident: e_1_2_9_19_1
  doi: 10.1016/j.cclet.2022.107825
– ident: e_1_2_9_47_1
  doi: 10.1039/D0CS00877J
– ident: e_1_2_9_39_1
  doi: 10.1002/jcp.21446
– ident: e_1_2_9_45_1
  doi: 10.1038/nrm762
– volume: 74
  start-page: 315
  year: 2019
  ident: e_1_2_9_43_1
  publication-title: J. Pharm. Pharmacol.
– ident: e_1_2_9_3_1
  doi: 10.1021/acs.chemrev.2c00512
– ident: e_1_2_9_52_1
  doi: 10.1186/s12967-022-03341-7
– ident: e_1_2_9_6_1
  doi: 10.1002/adhm.202102540
– ident: e_1_2_9_49_1
  doi: 10.1136/ard-2022-223227
– ident: e_1_2_9_1_1
  doi: 10.1038/s41563-020-0786-5
– ident: e_1_2_9_59_1
  doi: 10.1016/j.bioactmat.2021.11.007
– ident: e_1_2_9_14_1
  doi: 10.1002/adma.202104829
– ident: e_1_2_9_18_1
  doi: 10.1002/adma.202202044
– ident: e_1_2_9_31_1
  doi: 10.1038/nm.2146
– ident: e_1_2_9_64_1
  doi: 10.1038/nbt.3122
– ident: e_1_2_9_38_1
  doi: 10.1016/j.apmt.2022.101478
– ident: e_1_2_9_35_1
  doi: 10.1016/j.biomaterials.2013.05.040
– ident: e_1_2_9_36_1
  doi: 10.1002/adhm.201800441
– ident: e_1_2_9_41_1
  doi: 10.1016/j.bone.2015.04.044
– ident: e_1_2_9_15_1
  doi: 10.1038/s41467-021-26593-1
– ident: e_1_2_9_33_1
  doi: 10.1016/j.ijbiomac.2021.01.036
– ident: e_1_2_9_40_1
  doi: 10.1016/j.ijbiomac.2022.12.094
– ident: e_1_2_9_46_1
  doi: 10.1016/j.biopha.2021.111839
– ident: e_1_2_9_50_1
  doi: 10.1136/annrheumdis-2019-216911
– ident: e_1_2_9_23_1
  doi: 10.1038/nature01657
– ident: e_1_2_9_17_1
  doi: 10.1002/adfm.202200269
– ident: e_1_2_9_24_1
  doi: 10.1002/advs.202100143
– ident: e_1_2_9_56_1
  doi: 10.1074/jbc.M805242200
– ident: e_1_2_9_21_1
  doi: 10.1016/j.bioactmat.2021.12.013
– ident: e_1_2_9_26_1
  doi: 10.1016/j.bioactmat.2022.08.009
– ident: e_1_2_9_42_1
  doi: 10.1002/adhm.201901239
– ident: e_1_2_9_54_1
  doi: 10.1038/s41467-022-32936-3
SSID ssj0001537418
Score 2.3903797
Snippet Tissue‐engineered bone has emerged as a promising alternative for bone defect repair due to the advantages of regenerative bone healing and physiological...
Tissue-engineered bone has emerged as a promising alternative for bone defect repair due to the advantages of regenerative bone healing and physiological...
Abstract Tissue‐engineered bone has emerged as a promising alternative for bone defect repair due to the advantages of regenerative bone healing and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2305580
SubjectTerms biomineralization
Bone and Bones
Bone marrow
Bone Regeneration
endochondral ossification
Fourier transforms
Hydrogels
Hydroxyapatite
Hypoxia
hypoxic microenvironment
Magnesium
Mineralization
Osteogenesis
Scanning electron microscopy
Stem cells
Tissue Engineering
Zinc
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NbtQwEMct1BMXRPkMFGQkJOAQNdhxbB9Z2NUKqRxKK_UW-bONVJyqbBFw4hF4Rp6EGScb7QpQL9yiZJJY4xnN38rkZ0Ke-1pFEZ0olZUcFyi6NDaGsuGvHUSAU7HGn5MPPjTL4_r9iTjZ2OoLe8IGPPDguH1tnISS0hguAyR11EFxj1A17WPT1JleCjVvYzE1_B_MEcuypjRWbN_4L0jnZki4QgbkRhXKsP6_Kcw_GyU3BWyuQIvb5NYoHembYci75EZId8jumJyf6cuRIP3qLumP-nM4TCtqkqeH5qLzdJ4QBd4nDyZ01qdAD8NpvgOnhubWAbpYt2r9-vFzns5ydwDl7-is6z91-enddzhzgFz_r3T5zV_2p1Bc75Hjxfzo7bIcd1YoHSwgRClsxb2yLJqAOHmDkBbnImgJXukQHLPOCm8i5D8L0pq6dlX0HhJYmdopxu-TnQQjfUgoCAoduTXCOoNfUUHecN1YJyoWvHCsIOXa060bseO4-8V5OwCTWYsz004zU5AXk_3FANz4p-UMJ26yQlB2PgHh047h014XPgXZW097O2YvvAI0GyzrKi0L8my6DHmHH1NMCv0V2lQoNqUEmwdDlEwjARXEpFa6IGorfraGun0ldWeZ7Y2cVtwQGtyWQ-0aH7QgXj5K0K2P_oczHpOb8OR6aLHbIzury6vwBDTXyj7N6fUbRUYpPA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagvXBBlGegICMhAYeowY7j5IRY2NUKqRVaWqm3yM9tpDZZtlsE_HpmHCd0xesWJZPE8cx4PtuTbwh5YfPSC29EWmrJcYJSpUp7lxb8jQELMKXP8efkw6NifpJ_PBWnccHtMqZVDmNiGKhtZ3CN_ADCkgSonVXy7epLilWjcHc1ltC4SXZhCC5h8rU7mR59WvxaZREc6VkGtsaMHSj7FVm6GTJdIRfktWgUSPv_hDR_T5i8DmRDJJrdIbcjhKTvep3vkRuuvUv2opNe0leRSfr1PXJx3J3DYbuhqrV0oVaNpdMWKcG71oIInXStowu3DHegimhIIaCzIWUrnbZnIUeA8g900nQXTXh28wPOHCK7_zc6_27X3RJC7H1yMpsev5-nsb5CamAaIVKhM25LzbxySCqvkKrFGA-IgmeVc4Zpo4VVHkYB5qRWeW4yby24calyUzL-gOy00M5HhAKsqDzXSmijcC8VQA6vCm1ExpwVhiUkHfq5NpF8HGtgnNc9bTKrUS_1qJeEvBzlVz3txl8lJ6i2UQrpssOJbr2so_fVlTIScEmhuHQQGXzlSm6Rma-yvihykZD9Qel19GF4xWhxCXk-Xgbvwy0V1bruCmUyhJxSgszD3kbGlgAWYrIqq4SUW9az1dTtK21zFhi-ka0Vy0JDtwVD-08f1ABhPktAr4___R1PyC24J-9T6PbJzmZ95Z4CptroZ9FxfgJLqiEs
  priority: 102
  providerName: ProQuest
Title Tolerant and Rapid Endochondral Bone Regeneration Using Framework‐Enhanced 3D Biomineralized Matrix Hydrogels
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202305580
https://www.ncbi.nlm.nih.gov/pubmed/38127989
https://www.proquest.com/docview/2937666097
https://www.proquest.com/docview/2905514777
https://pubmed.ncbi.nlm.nih.gov/PMC10916654
https://doaj.org/article/9ac78536a37e467f9e83d63569df6645
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1bb9MwFMcttL3wghjXwqiMhAQ8RAu-JM7jylpViE5Tt0l7i3ztIo1k6joEPPER-Ix8Es5x0mwVIMRTK-c0tXx84v9x7J8JeeWECjJYmSiTc0xQikSb4JOMv7PQA6wKAjcnzw6z6an4cCbPbu3ib_kQ_YQbRkZ8XmOAa3O1dwMN1e4z4rYZIqsUJO3buL8W6flMHN3MskiOeBY8YQ6y64QrIdbkxpTtbd5iY2SKAP8_qc7fF0_eFrVxVJrcJ_c6OUn3W__vkDu-fkB2uoC9om86qvTbh6Q5aS7ga72iunZ0ri8rR8c14sGb2oEJHTW1p3O_iL9Ad9G4nIBO1su3fn7_Ma7P44oByg_oqGo-VfHu1TcomSHr_wudfnXLZgED7iNyOhmfvJ8m3WkLiYWkQibSpNwpw4L2iJjXCG6xNoC-4GnhvWXGGul0gGcC87nRQtg0OAdBrbSwivHHZKuGmj4lFERGEbjR0liNb1ZB8vAiM1amzDtp2YAk65YubYcixxMxLsoWosxK9EzZe2ZAXvf2ly2E46-WI3Rcb4Xw7FjQLBdlF4tloW0OKiXTPPcwToTCK-6Q01e4kGVCDsju2u1lF9HwF6DjINVLi3xAXvaXIRbxBYuufXONNikK0DwHmydtL-lrAsqI5YUqBkRt9J-Nqm5eqavzyPtGdiseEg3NFrvaP9qgBEFznIOWffaf9s_JXSgU7Qq7XbK1Wl77FyC5VmYYo2pItvcPZh-P4XM0PjyaD-MExi_TrioV
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V6QEuiPI0tLBIIOBg1ex6_TggRGiilDYRCqnUm7vPNFJrp2kKlB_Fb2TGLxrxOvVm2eN4s_Ptzrfe8TeEPDdh4oTTwk9UzHGBkvpSOetH_I0GBOjEhfhx8nAUDQ7Cj4ficI38aL6FwbTKZk4sJ2pTaHxHvg1hKQaqHaTxu_mZj1WjcHe1KaFRwWLPXn6FJdv5290d8O8Lxvq9yYeBX1cV8DWQZ-ELFXCTKOakRSl1iQIlWjuIozxIrdVMaSWMdIB9ZmMlw1AHzhgAbyJDnaDQAUz56yGHpUyHrHd7o0_jX291BEc5mEYdMmDb0nxBVXCGylqoPXkl-pVFAv7EbH9P0LxKnMvI179NbtWUlb6vMLZB1mx-h2zUk8I5fVUrV7--S04nxQkc5ksqc0PHcj4ztJejBHmRGzCh3SK3dGyn5R0ICVqmLNB-kyLm9_LjMieB8h3anRWns_K3Z9_hzBCrCXyjg0uzKKYQ0u-Rg2vp-fukk0M7HxIKNCZ1XEmhtMS9WyBVPI2UFgGzRmjmEb_p50zXYudYc-Mkq2SaWYZ-yVq_eORlaz-vZD7-atlFt7VWKM9dnigW06we7VkqdQw8KJI8thCJXGoTblAJMDUuikLhkc3G6Vk9Z8AjWoR75Fl7GUY7buHI3BYXaBMgxY1jsHlQYaRtCXAvFqdJ6pFkBT0rTV29ks-OS0VxVIfFMtTQbSXQ_tMHGVCmzzGw5Uf__h9PyY3BZLif7e-O9h6Tm3B_WKXvbZLOcnFht4DPLdWTehBRcnTd4_YnZElevw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB5VqYS4IMpqKDBIIOBg1Yw9Xg4IEZIopTSqQiv15s6aWmrHIU2B8tP4dbznjUZsp94s-zmezNu-8Tx_j5BnOkott4r7qUxCXKBkvpDW-HH4WoEFqNRG-HHy7iQeH0QfDvnhGvnRfguDZZVtTKwCtS4VviPfgrSUANRGwkXblEXsDUZv55997CCFO61tO43aRHbMxVdYvp292R6Arp8zNhruvx_7TYcBXwGQ5j6XQahTyawwSKsukKxEKQs5NQwyYxSTSnItLPgBM4kUUaQCqzUYcioilSLpAYT_9QRWRUGPrPeHk73przc8PERqmJYpMmBbQn9BhnCGLFvIQ3kpE1YNA_6Ecn8v1rwMoqssOLpJbjTwlb6r7W2DrBl3i2w0AeKMvmxYrF_dJqf75QkcuiUVTtOpmBeaDh3SkZdOgwjtl87QqZlVd6B50Kp8gY7acjF_6I6r-gQaDmi_KE-L6reL73BmFzsLfKPjC70oZ5De75CDK5n5u6TnYJz3CQVIk9lQCi6VwH1cAFhhFkvFA2Y0V8wjfjvPuWqIz7H_xkleUzazHPWSd3rxyItOfl5TfvxVso9q66SQqrs6US5meeP5eSZUApgoFmFiICvZzKShRlbATNs4jrhHNlul5038gEd01u6Rp91l8HzczhHOlOcoEyDcTRKQuVfbSDcSwGEsydLMI-mK9awMdfWKK44rdnFkisWW1DBtlaH9Zw5ygE-fEkDOD_79P56Qa-Cv-cftyc5Dch1uj-pKvk3SWy7OzSOAdkv5uPEhSo6u2m1_ArNnYvQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tolerant+and+Rapid+Endochondral+Bone+Regeneration+Using+Framework-Enhanced+3D+Biomineralized+Matrix+Hydrogels&rft.jtitle=Advanced+science&rft.au=Bai%2C+Baoshuai&rft.au=Liu%2C+Yanhan&rft.au=Huang%2C+Jinyi&rft.au=Wang%2C+Sinan&rft.date=2024-03-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=11&rft.issue=9&rft.spage=e2305580&rft_id=info:doi/10.1002%2Fadvs.202305580&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon