Tolerant and Rapid Endochondral Bone Regeneration Using Framework‐Enhanced 3D Biomineralized Matrix Hydrogels
Tissue‐engineered bone has emerged as a promising alternative for bone defect repair due to the advantages of regenerative bone healing and physiological functional reconstruction. However, there is very limited breakthrough in achieving favorable bone regeneration due to the harsh osteogenic microe...
Saved in:
Published in | Advanced science Vol. 11; no. 9; pp. e2305580 - n/a |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.03.2024
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tissue‐engineered bone has emerged as a promising alternative for bone defect repair due to the advantages of regenerative bone healing and physiological functional reconstruction. However, there is very limited breakthrough in achieving favorable bone regeneration due to the harsh osteogenic microenvironment after bone injury, especially the avascular and hypoxic conditions. Inspired by the bone developmental mode of endochondral ossification, a novel strategy is proposed for tolerant and rapid endochondral bone regeneration using framework‐enhanced 3D biomineralized matrix hydrogels. First, it is meticulously designed 3D biomimetic hydrogels with both hypoxic and osteoinductive microenvironment, and then integrated 3D‐printed polycaprolactone framework to improve their mechanical strength and structural fidelity. The inherent hypoxic 3D matrix microenvironment effectively activates bone marrow mesenchymal stem cells self‐regulation for early‐stage chondrogenesis via TGFβ/Smad signaling pathway due to the obstacle of aerobic respiration. Meanwhile, the strong biomineralized microenvironment, created by a hybrid formulation of native‐constitute osteogenic inorganic salts, can synergistically regulate both bone mineralization and osteoclastic differentiation, and thus accelerate the late‐stage bone maturation. Furthermore, both in vivo ectopic osteogenesis and in situ skull defect repair successfully verified the high efficiency and mechanical maintenance of endochondral bone regeneration mode, which offers a promising treatment for craniofacial bone defect repair.
In this study, a tolerant and rapid endochondral bone regeneration strategy is proposed using 3D‐printed PCL framework‐enhanced biomineralized matrix hydrogels with both hypoxic and osteoinductive microenvironment, which can effectively regulate BMSC‐based endochondral ossification (ECO) for tissue‐engineered bone construction. The current study eventually realized satisfactory ectopic osteogenesis in nude mice and skull defect repair in rabbits by the high‐efficiency ECO mode. |
---|---|
AbstractList | Abstract Tissue‐engineered bone has emerged as a promising alternative for bone defect repair due to the advantages of regenerative bone healing and physiological functional reconstruction. However, there is very limited breakthrough in achieving favorable bone regeneration due to the harsh osteogenic microenvironment after bone injury, especially the avascular and hypoxic conditions. Inspired by the bone developmental mode of endochondral ossification, a novel strategy is proposed for tolerant and rapid endochondral bone regeneration using framework‐enhanced 3D biomineralized matrix hydrogels. First, it is meticulously designed 3D biomimetic hydrogels with both hypoxic and osteoinductive microenvironment, and then integrated 3D‐printed polycaprolactone framework to improve their mechanical strength and structural fidelity. The inherent hypoxic 3D matrix microenvironment effectively activates bone marrow mesenchymal stem cells self‐regulation for early‐stage chondrogenesis via TGFβ/Smad signaling pathway due to the obstacle of aerobic respiration. Meanwhile, the strong biomineralized microenvironment, created by a hybrid formulation of native‐constitute osteogenic inorganic salts, can synergistically regulate both bone mineralization and osteoclastic differentiation, and thus accelerate the late‐stage bone maturation. Furthermore, both in vivo ectopic osteogenesis and in situ skull defect repair successfully verified the high efficiency and mechanical maintenance of endochondral bone regeneration mode, which offers a promising treatment for craniofacial bone defect repair. Tissue‐engineered bone has emerged as a promising alternative for bone defect repair due to the advantages of regenerative bone healing and physiological functional reconstruction. However, there is very limited breakthrough in achieving favorable bone regeneration due to the harsh osteogenic microenvironment after bone injury, especially the avascular and hypoxic conditions. Inspired by the bone developmental mode of endochondral ossification, a novel strategy is proposed for tolerant and rapid endochondral bone regeneration using framework‐enhanced 3D biomineralized matrix hydrogels. First, it is meticulously designed 3D biomimetic hydrogels with both hypoxic and osteoinductive microenvironment, and then integrated 3D‐printed polycaprolactone framework to improve their mechanical strength and structural fidelity. The inherent hypoxic 3D matrix microenvironment effectively activates bone marrow mesenchymal stem cells self‐regulation for early‐stage chondrogenesis via TGFβ/Smad signaling pathway due to the obstacle of aerobic respiration. Meanwhile, the strong biomineralized microenvironment, created by a hybrid formulation of native‐constitute osteogenic inorganic salts, can synergistically regulate both bone mineralization and osteoclastic differentiation, and thus accelerate the late‐stage bone maturation. Furthermore, both in vivo ectopic osteogenesis and in situ skull defect repair successfully verified the high efficiency and mechanical maintenance of endochondral bone regeneration mode, which offers a promising treatment for craniofacial bone defect repair. In this study, a tolerant and rapid endochondral bone regeneration strategy is proposed using 3D‐printed PCL framework‐enhanced biomineralized matrix hydrogels with both hypoxic and osteoinductive microenvironment, which can effectively regulate BMSC‐based endochondral ossification (ECO) for tissue‐engineered bone construction. The current study eventually realized satisfactory ectopic osteogenesis in nude mice and skull defect repair in rabbits by the high‐efficiency ECO mode. Tissue-engineered bone has emerged as a promising alternative for bone defect repair due to the advantages of regenerative bone healing and physiological functional reconstruction. However, there is very limited breakthrough in achieving favorable bone regeneration due to the harsh osteogenic microenvironment after bone injury, especially the avascular and hypoxic conditions. Inspired by the bone developmental mode of endochondral ossification, a novel strategy is proposed for tolerant and rapid endochondral bone regeneration using framework-enhanced 3D biomineralized matrix hydrogels. First, it is meticulously designed 3D biomimetic hydrogels with both hypoxic and osteoinductive microenvironment, and then integrated 3D-printed polycaprolactone framework to improve their mechanical strength and structural fidelity. The inherent hypoxic 3D matrix microenvironment effectively activates bone marrow mesenchymal stem cells self-regulation for early-stage chondrogenesis via TGFβ/Smad signaling pathway due to the obstacle of aerobic respiration. Meanwhile, the strong biomineralized microenvironment, created by a hybrid formulation of native-constitute osteogenic inorganic salts, can synergistically regulate both bone mineralization and osteoclastic differentiation, and thus accelerate the late-stage bone maturation. Furthermore, both in vivo ectopic osteogenesis and in situ skull defect repair successfully verified the high efficiency and mechanical maintenance of endochondral bone regeneration mode, which offers a promising treatment for craniofacial bone defect repair.Tissue-engineered bone has emerged as a promising alternative for bone defect repair due to the advantages of regenerative bone healing and physiological functional reconstruction. However, there is very limited breakthrough in achieving favorable bone regeneration due to the harsh osteogenic microenvironment after bone injury, especially the avascular and hypoxic conditions. Inspired by the bone developmental mode of endochondral ossification, a novel strategy is proposed for tolerant and rapid endochondral bone regeneration using framework-enhanced 3D biomineralized matrix hydrogels. First, it is meticulously designed 3D biomimetic hydrogels with both hypoxic and osteoinductive microenvironment, and then integrated 3D-printed polycaprolactone framework to improve their mechanical strength and structural fidelity. The inherent hypoxic 3D matrix microenvironment effectively activates bone marrow mesenchymal stem cells self-regulation for early-stage chondrogenesis via TGFβ/Smad signaling pathway due to the obstacle of aerobic respiration. Meanwhile, the strong biomineralized microenvironment, created by a hybrid formulation of native-constitute osteogenic inorganic salts, can synergistically regulate both bone mineralization and osteoclastic differentiation, and thus accelerate the late-stage bone maturation. Furthermore, both in vivo ectopic osteogenesis and in situ skull defect repair successfully verified the high efficiency and mechanical maintenance of endochondral bone regeneration mode, which offers a promising treatment for craniofacial bone defect repair. Tissue-engineered bone has emerged as a promising alternative for bone defect repair due to the advantages of regenerative bone healing and physiological functional reconstruction. However, there is very limited breakthrough in achieving favorable bone regeneration due to the harsh osteogenic microenvironment after bone injury, especially the avascular and hypoxic conditions. Inspired by the bone developmental mode of endochondral ossification, a novel strategy is proposed for tolerant and rapid endochondral bone regeneration using framework-enhanced 3D biomineralized matrix hydrogels. First, it is meticulously designed 3D biomimetic hydrogels with both hypoxic and osteoinductive microenvironment, and then integrated 3D-printed polycaprolactone framework to improve their mechanical strength and structural fidelity. The inherent hypoxic 3D matrix microenvironment effectively activates bone marrow mesenchymal stem cells self-regulation for early-stage chondrogenesis via TGFβ/Smad signaling pathway due to the obstacle of aerobic respiration. Meanwhile, the strong biomineralized microenvironment, created by a hybrid formulation of native-constitute osteogenic inorganic salts, can synergistically regulate both bone mineralization and osteoclastic differentiation, and thus accelerate the late-stage bone maturation. Furthermore, both in vivo ectopic osteogenesis and in situ skull defect repair successfully verified the high efficiency and mechanical maintenance of endochondral bone regeneration mode, which offers a promising treatment for craniofacial bone defect repair. Tissue‐engineered bone has emerged as a promising alternative for bone defect repair due to the advantages of regenerative bone healing and physiological functional reconstruction. However, there is very limited breakthrough in achieving favorable bone regeneration due to the harsh osteogenic microenvironment after bone injury, especially the avascular and hypoxic conditions. Inspired by the bone developmental mode of endochondral ossification, a novel strategy is proposed for tolerant and rapid endochondral bone regeneration using framework‐enhanced 3D biomineralized matrix hydrogels. First, it is meticulously designed 3D biomimetic hydrogels with both hypoxic and osteoinductive microenvironment, and then integrated 3D‐printed polycaprolactone framework to improve their mechanical strength and structural fidelity. The inherent hypoxic 3D matrix microenvironment effectively activates bone marrow mesenchymal stem cells self‐regulation for early‐stage chondrogenesis via TGFβ/Smad signaling pathway due to the obstacle of aerobic respiration. Meanwhile, the strong biomineralized microenvironment, created by a hybrid formulation of native‐constitute osteogenic inorganic salts, can synergistically regulate both bone mineralization and osteoclastic differentiation, and thus accelerate the late‐stage bone maturation. Furthermore, both in vivo ectopic osteogenesis and in situ skull defect repair successfully verified the high efficiency and mechanical maintenance of endochondral bone regeneration mode, which offers a promising treatment for craniofacial bone defect repair. In this study, a tolerant and rapid endochondral bone regeneration strategy is proposed using 3D‐printed PCL framework‐enhanced biomineralized matrix hydrogels with both hypoxic and osteoinductive microenvironment, which can effectively regulate BMSC‐based endochondral ossification ( ECO ) for tissue‐engineered bone construction. The current study eventually realized satisfactory ectopic osteogenesis in nude mice and skull defect repair in rabbits by the high‐efficiency ECO mode. |
Author | Zhou, Guangdong Wang, Sinan Liu, Yu Feng, Shiqing Zhou, Hengxing Hua, Yujie Huo, Yingying Liu, Yanhan Chen, Hongying Huang, Jinyi Bai, Baoshuai |
AuthorAffiliation | 1 Shanghai Key Laboratory of Tissue Engineering Department of Plastic and Reconstructive Surgery of Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200011 P. R. China 5 Department of Ophthalmology Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 P. R. China 4 Department of Orthopaedics Cheeloo College of Medicine The Second Hospital of Shandong University Shandong University Jinan Shandong 250033 P. R. China 2 National Tissue Engineering Center of China Shanghai 200241 P. R. China 3 Department of Orthopaedics Advanced Medical Research Institute Qilu Hospital of Shangdong University Centre for Orthopaedics Shandong University Jinan Shandong 250100 P. R. China |
AuthorAffiliation_xml | – name: 5 Department of Ophthalmology Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 P. R. China – name: 1 Shanghai Key Laboratory of Tissue Engineering Department of Plastic and Reconstructive Surgery of Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200011 P. R. China – name: 2 National Tissue Engineering Center of China Shanghai 200241 P. R. China – name: 3 Department of Orthopaedics Advanced Medical Research Institute Qilu Hospital of Shangdong University Centre for Orthopaedics Shandong University Jinan Shandong 250100 P. R. China – name: 4 Department of Orthopaedics Cheeloo College of Medicine The Second Hospital of Shandong University Shandong University Jinan Shandong 250033 P. R. China |
Author_xml | – sequence: 1 givenname: Baoshuai surname: Bai fullname: Bai, Baoshuai organization: Shandong University – sequence: 2 givenname: Yanhan surname: Liu fullname: Liu, Yanhan organization: Shanghai Jiao Tong University – sequence: 3 givenname: Jinyi surname: Huang fullname: Huang, Jinyi organization: National Tissue Engineering Center of China – sequence: 4 givenname: Sinan surname: Wang fullname: Wang, Sinan organization: National Tissue Engineering Center of China – sequence: 5 givenname: Hongying surname: Chen fullname: Chen, Hongying organization: National Tissue Engineering Center of China – sequence: 6 givenname: Yingying surname: Huo fullname: Huo, Yingying organization: National Tissue Engineering Center of China – sequence: 7 givenname: Hengxing surname: Zhou fullname: Zhou, Hengxing organization: Shandong University – sequence: 8 givenname: Yu surname: Liu fullname: Liu, Yu organization: National Tissue Engineering Center of China – sequence: 9 givenname: Shiqing surname: Feng fullname: Feng, Shiqing email: shiqingfeng@sdu.edu.cn organization: Shandong University – sequence: 10 givenname: Guangdong orcidid: 0000-0003-2488-2733 surname: Zhou fullname: Zhou, Guangdong email: guangdongzhou@126.com organization: National Tissue Engineering Center of China – sequence: 11 givenname: Yujie surname: Hua fullname: Hua, Yujie email: yujiehua@shsmu.edu.cn organization: National Tissue Engineering Center of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38127989$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstuUzEQho9QES2lW5boSGzYJPh-WaFeUlqpCKm0bC0f2ydxOLGDfdKSrvoIPCNPgtOkVVsJsbI1880_vz3zutoKMbiqegvBEAKAPmp7lYcIIAwoFeBFtYOgFAMsCNl6dN-u9nKeAgAgxZxA8araxgIiLoXcqeJF7FzSoa91sPW5nntbj4KNZhKDTbqrD0rL-tyNXShY72OoL7MP4_o46Zm7junHn9vfozDRwThb46P6wMeZX7GdvymRL7pP_ld9srQpjl2X31QvW91lt7c5d6vL49HF4cng7Ovn08P9s4GhktMBbQC2okGtdlwIqAGV0pgWQ46BdM6gxjTU6hZwjBxvNCEGtNYCCoUmRiC8W52udW3UUzVPfqbTUkXt1V0gprHSqfemc0pqwwXFTGPuCOOtdAJbhimTtmWM0KL1aa01XzQzZ40LfXneE9GnmeAnahyvFAQSMkZJUfiwUUjx58LlXs18Nq7rdHBxkRWSZYKQcM4L-v4ZOo2LFMpfFQpzxhiQK-rdY0sPXu4HWwCyBkyKOSfXKuP7u_kVh74r1tRqhdRqhdTDCpWy4bOye-V_Fmz6XPvOLf9Dq_2j7984QBT_BX2a2gg |
CitedBy_id | crossref_primary_10_1016_j_cej_2024_157930 crossref_primary_10_1021_acsnano_4c13562 crossref_primary_10_1002_adfm_202410927 crossref_primary_10_1016_j_tibtech_2024_07_002 crossref_primary_10_1039_D4BM01181C crossref_primary_10_1016_j_ijbiomac_2025_142346 crossref_primary_10_1063_5_0257593 crossref_primary_10_1016_j_compositesb_2024_111976 crossref_primary_10_1016_j_bioactmat_2024_06_016 |
Cites_doi | 10.1136/annrheumdis-2015-207240 10.1016/j.bioactmat.2019.10.005 10.1016/j.biomaterials.2011.03.020 10.1002/adhm.201900065 10.3389/fbioe.2021.766363 10.1002/advs.202202181 10.3389/fbioe.2022.916146 10.3390/ijms22031128 10.1007/s42765-023-00266-8 10.1002/EXP.20210043 10.1038/s41467-021-23827-0 10.1186/s13059-014-0550-8 10.1038/s41422-021-00467-z 10.1016/j.molcel.2022.10.005 10.1002/adfm.202008515 10.1038/s41563-022-01384-1 10.1038/s41419-021-03404-5 10.1039/C9BM01455A 10.1016/j.mtbio.2022.100489 10.1038/s41392-023-01330-w 10.1038/nmeth.1671 10.1126/science.add6220 10.1088/1748-605X/acdb1e 10.1021/acsami.2c08422 10.1126/science.aao2189 10.1002/EXP.20210170 10.1038/nm1409 10.3390/nu14193955 10.1016/j.biomaterials.2021.121242 10.1016/j.biomaterials.2019.05.027 10.1038/s41467-022-32868-y 10.1038/s41422-022-00687-x 10.1016/j.cclet.2022.107825 10.1039/D0CS00877J 10.1002/jcp.21446 10.1038/nrm762 10.1021/acs.chemrev.2c00512 10.1186/s12967-022-03341-7 10.1002/adhm.202102540 10.1136/ard-2022-223227 10.1038/s41563-020-0786-5 10.1016/j.bioactmat.2021.11.007 10.1002/adma.202104829 10.1002/adma.202202044 10.1038/nm.2146 10.1038/nbt.3122 10.1016/j.apmt.2022.101478 10.1016/j.biomaterials.2013.05.040 10.1002/adhm.201800441 10.1016/j.bone.2015.04.044 10.1038/s41467-021-26593-1 10.1016/j.ijbiomac.2021.01.036 10.1016/j.ijbiomac.2022.12.094 10.1016/j.biopha.2021.111839 10.1136/annrheumdis-2019-216911 10.1038/nature01657 10.1002/adfm.202200269 10.1002/advs.202100143 10.1074/jbc.M805242200 10.1016/j.bioactmat.2021.12.013 10.1016/j.bioactmat.2022.08.009 10.1002/adhm.201901239 10.1038/s41467-022-32936-3 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH 2023 The Authors. Advanced Science published by Wiley-VCH GmbH. 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2023 The Authors. Advanced Science published by Wiley-VCH GmbH. – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202305580 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_9ac78536a37e467f9e83d63569df6645 PMC10916654 38127989 10_1002_advs_202305580 ADVS7025 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Key Research and Development Program of China funderid: 2022YFA1207500 – fundername: Major Science and Technology Projects of Xinxiang City funderid: 21ZD006 – fundername: Key Research and Development Program of Henan province funderid: 221111310100 – fundername: National Natural Science Foundation of China funderid: 81871502; 81671837 – fundername: Shanghai Municipal Key Clinical Specialty funderid: shslczdzk06601 – fundername: Biomaterials and Regenerative Medicine Institute Cooperative Research Project of Shanghai Jiaotong University School of Medicine funderid: 2022LHA07 – fundername: Science and Technology Innovation Action Plan Venus Project funderid: 23YF1421400 – fundername: China Postdoctoral Science Foundation funderid: 2023M732294 – fundername: Biomaterials and Regenerative Medicine Institute Cooperative Research Project of Shanghai Jiaotong University School of Medicine grantid: 2022LHA07 – fundername: Key Research and Development Program of Henan province grantid: 221111310100 – fundername: Major Science and Technology Projects of Xinxiang City grantid: 21ZD006 – fundername: Shanghai Municipal Key Clinical Specialty grantid: shslczdzk06601 – fundername: China Postdoctoral Science Foundation grantid: 2023M732294 – fundername: National Key Research and Development Program of China grantid: 2022YFA1207500 – fundername: National Natural Science Foundation of China grantid: 81871502 – fundername: National Natural Science Foundation of China grantid: 81671837 – fundername: Science and Technology Innovation Action Plan Venus Project grantid: 23YF1421400 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO ITC KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAYXX ADMLS AFPKN CITATION EJD IGS PHGZM PHGZT CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY MBDVC PKEHL PQEST PQUKI Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5975-5b03d8b2fae7881a0599ccf317309eec2bcb5daf0732e7ba44c0fdd0518a4c823 |
IEDL.DBID | 24P |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:06:25 EDT 2025 Thu Aug 21 18:35:36 EDT 2025 Thu Jul 10 17:58:28 EDT 2025 Sat Jul 26 00:23:48 EDT 2025 Thu Apr 03 06:57:48 EDT 2025 Tue Jul 01 04:00:02 EDT 2025 Thu Apr 24 23:02:22 EDT 2025 Wed Jan 22 16:14:27 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | hypoxic microenvironment bone regeneration hydrogels endochondral ossification biomineralization |
Language | English |
License | Attribution 2023 The Authors. Advanced Science published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5975-5b03d8b2fae7881a0599ccf317309eec2bcb5daf0732e7ba44c0fdd0518a4c823 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2488-2733 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202305580 |
PMID | 38127989 |
PQID | 2937666097 |
PQPubID | 4365299 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9ac78536a37e467f9e83d63569df6645 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10916654 proquest_miscellaneous_2905514777 proquest_journals_2937666097 pubmed_primary_38127989 crossref_citationtrail_10_1002_advs_202305580 crossref_primary_10_1002_advs_202305580 wiley_primary_10_1002_advs_202305580_ADVS7025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2015; 78 2023; 380 2010; 16 2021; 20 2018; 360 2021; 22 2023; 34 2023; 5 2023; 8 2015; 33 2023; 226 2016; 75 2022; 20 2023; 3 2022; 27 2023; 82 2020; 8 2018; 7 2023; 21 2021; 31 2023; 22 2021; 33 2022; 82 2021; 279 2020; 9 2022; 34 2020; 49 2014; 15 2022; 32 2019; 8 2021; 9 2023; 10 2021; 8 2019; 4 2023; 14 2006; 12 2023; 18 2019; 74 2023; 123 2002; 3 2011; 32 2020; 79 2021; 141 2011; 8 2008; 283 2021; 12 2013; 34 2022; 9 2022; 13 2022; 14 2021; 172 2008; 216 2019; 216 2022; 10 2022; 11 2003; 423 2022; 17 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 Wang X. (e_1_2_9_16_1) 2023; 10 e_1_2_9_26_1 e_1_2_9_49_1 Liu Z. (e_1_2_9_10_1) 2023; 18 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 Zeng H. (e_1_2_9_43_1) 2019; 74 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 172 start-page: 19 year: 2021 publication-title: Int. J. Biol. Macromol. – volume: 380 year: 2023 publication-title: Science – volume: 49 start-page: 7301 year: 2020 publication-title: Chem. Soc. Rev. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 34 start-page: 6695 year: 2013 publication-title: Biomaterials – volume: 9 year: 2020 publication-title: Adv. Healthcare Mater. – volume: 21 start-page: 267 year: 2023 publication-title: Bioact. Mater. – volume: 283 year: 2008 publication-title: J. Biol. Chem. – volume: 8 start-page: 56 year: 2023 publication-title: Signal Transduction Targeted Ther. – volume: 18 year: 2023 publication-title: Asian J. Pharm. – volume: 10 start-page: 1038 year: 2023 publication-title: Nat. Biomed. Eng. – volume: 22 start-page: 1128 year: 2021 publication-title: Int. J. Mol. Sci. – volume: 78 start-page: 34 year: 2015 publication-title: Bone – volume: 14 start-page: 3955 year: 2022 publication-title: Nutrients – volume: 13 start-page: 149 year: 2022 publication-title: Bioact. Mater. – volume: 8 start-page: 682 year: 2020 publication-title: Biomater. Sci. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 8 start-page: 731 year: 2011 publication-title: Nat. Methods – volume: 27 year: 2022 publication-title: Appl. Mater. Today – volume: 7 year: 2018 publication-title: Adv. Healthcare Mater. – volume: 82 start-page: 403 year: 2023 publication-title: Ann. Rheum. Dis. – volume: 16 start-page: 678 year: 2010 publication-title: Nat. Med. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 8 year: 2019 publication-title: Adv. Healthcare Mater. – volume: 12 start-page: 6327 year: 2021 publication-title: Nat. Commun. – volume: 4 start-page: 271 year: 2019 publication-title: Bioact. Mater. – volume: 423 start-page: 332 year: 2003 publication-title: Nature – volume: 82 start-page: 4537 year: 2022 publication-title: Mol. Cell – volume: 10 year: 2022 publication-title: Front. Bioeng. Biotechnol. – volume: 3 year: 2023 publication-title: Exploration – volume: 15 start-page: 550 year: 2014 publication-title: Genome Biol. – volume: 17 year: 2022 publication-title: Mater. Today Bio – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 20 start-page: 108 year: 2021 publication-title: Nat. Mater. – volume: 123 start-page: 2349 year: 2023 publication-title: Chem. Rev. – volume: 3 start-page: 214 year: 2002 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 75 start-page: 1203 year: 2016 publication-title: Ann. Rheum. Dis. – volume: 9 year: 2021 publication-title: Front. Bioeng. Biotechnol. – volume: 32 start-page: 4773 year: 2011 publication-title: Biomaterials – volume: 279 year: 2021 publication-title: Biomaterials – volume: 18 year: 2023 publication-title: Biomed. Mater. – volume: 79 start-page: 1111 year: 2020 publication-title: Ann. Rheum. Dis. – volume: 12 start-page: 147 year: 2021 publication-title: Cell Death Dis. – volume: 226 start-page: 716 year: 2023 publication-title: Int. J. Biol. Macromol. – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 20 start-page: 132 year: 2022 publication-title: J. Transl. Med. – volume: 216 start-page: 708 year: 2008 publication-title: J. Cell. Physiol. – volume: 216 year: 2019 publication-title: Biomaterials – volume: 32 start-page: 814 year: 2022 publication-title: Cell Res. – volume: 12 start-page: 665 year: 2006 publication-title: Nat. Med. – volume: 14 start-page: 97 year: 2022 publication-title: Bioact. Mater. – volume: 141 year: 2021 publication-title: Biomed. Pharmacother. – volume: 14 start-page: 157 year: 2023 publication-title: Nat. Commun. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 3428 year: 2021 publication-title: Nat. Commun. – volume: 34 year: 2023 publication-title: Chin. Chem. Lett. – volume: 31 start-page: 742 year: 2021 publication-title: Cell Res. – volume: 360 year: 2018 publication-title: Science – volume: 74 start-page: 315 year: 2019 publication-title: J. Pharm. Pharmacol. – volume: 11 year: 2022 publication-title: Adv. Healthcare Mater. – volume: 22 start-page: 18 year: 2023 publication-title: Nat. Mater. – volume: 33 start-page: 290 year: 2015 publication-title: Nat. Biotechnol. – volume: 13 start-page: 5211 year: 2022 publication-title: Nat. Commun. – volume: 5 start-page: 1008 year: 2023 publication-title: Adv. Fiber Mater. – ident: e_1_2_9_57_1 doi: 10.1136/annrheumdis-2015-207240 – ident: e_1_2_9_7_1 doi: 10.1016/j.bioactmat.2019.10.005 – ident: e_1_2_9_34_1 doi: 10.1016/j.biomaterials.2011.03.020 – ident: e_1_2_9_60_1 doi: 10.1002/adhm.201900065 – ident: e_1_2_9_62_1 doi: 10.3389/fbioe.2021.766363 – ident: e_1_2_9_63_1 doi: 10.1002/advs.202202181 – ident: e_1_2_9_37_1 doi: 10.3389/fbioe.2022.916146 – ident: e_1_2_9_8_1 doi: 10.3390/ijms22031128 – ident: e_1_2_9_66_1 doi: 10.1007/s42765-023-00266-8 – ident: e_1_2_9_9_1 doi: 10.1002/EXP.20210043 – volume: 18 year: 2023 ident: e_1_2_9_10_1 publication-title: Asian J. Pharm. – ident: e_1_2_9_44_1 doi: 10.1038/s41467-021-23827-0 – ident: e_1_2_9_65_1 doi: 10.1186/s13059-014-0550-8 – ident: e_1_2_9_28_1 doi: 10.1038/s41422-021-00467-z – ident: e_1_2_9_48_1 doi: 10.1016/j.molcel.2022.10.005 – ident: e_1_2_9_25_1 doi: 10.1002/adfm.202008515 – ident: e_1_2_9_12_1 doi: 10.1038/s41563-022-01384-1 – ident: e_1_2_9_53_1 doi: 10.1038/s41419-021-03404-5 – ident: e_1_2_9_5_1 doi: 10.1039/C9BM01455A – ident: e_1_2_9_61_1 doi: 10.1016/j.mtbio.2022.100489 – ident: e_1_2_9_51_1 doi: 10.1038/s41392-023-01330-w – ident: e_1_2_9_22_1 doi: 10.1038/nmeth.1671 – ident: e_1_2_9_4_1 doi: 10.1126/science.add6220 – ident: e_1_2_9_32_1 doi: 10.1088/1748-605X/acdb1e – ident: e_1_2_9_20_1 doi: 10.1021/acsami.2c08422 – ident: e_1_2_9_2_1 doi: 10.1126/science.aao2189 – volume: 10 start-page: 1038 year: 2023 ident: e_1_2_9_16_1 publication-title: Nat. Biomed. Eng. – ident: e_1_2_9_11_1 doi: 10.1002/EXP.20210170 – ident: e_1_2_9_30_1 doi: 10.1038/nm1409 – ident: e_1_2_9_55_1 doi: 10.3390/nu14193955 – ident: e_1_2_9_58_1 doi: 10.1016/j.biomaterials.2021.121242 – ident: e_1_2_9_27_1 doi: 10.1016/j.biomaterials.2019.05.027 – ident: e_1_2_9_13_1 doi: 10.1038/s41467-022-32868-y – ident: e_1_2_9_29_1 doi: 10.1038/s41422-022-00687-x – ident: e_1_2_9_19_1 doi: 10.1016/j.cclet.2022.107825 – ident: e_1_2_9_47_1 doi: 10.1039/D0CS00877J – ident: e_1_2_9_39_1 doi: 10.1002/jcp.21446 – ident: e_1_2_9_45_1 doi: 10.1038/nrm762 – volume: 74 start-page: 315 year: 2019 ident: e_1_2_9_43_1 publication-title: J. Pharm. Pharmacol. – ident: e_1_2_9_3_1 doi: 10.1021/acs.chemrev.2c00512 – ident: e_1_2_9_52_1 doi: 10.1186/s12967-022-03341-7 – ident: e_1_2_9_6_1 doi: 10.1002/adhm.202102540 – ident: e_1_2_9_49_1 doi: 10.1136/ard-2022-223227 – ident: e_1_2_9_1_1 doi: 10.1038/s41563-020-0786-5 – ident: e_1_2_9_59_1 doi: 10.1016/j.bioactmat.2021.11.007 – ident: e_1_2_9_14_1 doi: 10.1002/adma.202104829 – ident: e_1_2_9_18_1 doi: 10.1002/adma.202202044 – ident: e_1_2_9_31_1 doi: 10.1038/nm.2146 – ident: e_1_2_9_64_1 doi: 10.1038/nbt.3122 – ident: e_1_2_9_38_1 doi: 10.1016/j.apmt.2022.101478 – ident: e_1_2_9_35_1 doi: 10.1016/j.biomaterials.2013.05.040 – ident: e_1_2_9_36_1 doi: 10.1002/adhm.201800441 – ident: e_1_2_9_41_1 doi: 10.1016/j.bone.2015.04.044 – ident: e_1_2_9_15_1 doi: 10.1038/s41467-021-26593-1 – ident: e_1_2_9_33_1 doi: 10.1016/j.ijbiomac.2021.01.036 – ident: e_1_2_9_40_1 doi: 10.1016/j.ijbiomac.2022.12.094 – ident: e_1_2_9_46_1 doi: 10.1016/j.biopha.2021.111839 – ident: e_1_2_9_50_1 doi: 10.1136/annrheumdis-2019-216911 – ident: e_1_2_9_23_1 doi: 10.1038/nature01657 – ident: e_1_2_9_17_1 doi: 10.1002/adfm.202200269 – ident: e_1_2_9_24_1 doi: 10.1002/advs.202100143 – ident: e_1_2_9_56_1 doi: 10.1074/jbc.M805242200 – ident: e_1_2_9_21_1 doi: 10.1016/j.bioactmat.2021.12.013 – ident: e_1_2_9_26_1 doi: 10.1016/j.bioactmat.2022.08.009 – ident: e_1_2_9_42_1 doi: 10.1002/adhm.201901239 – ident: e_1_2_9_54_1 doi: 10.1038/s41467-022-32936-3 |
SSID | ssj0001537418 |
Score | 2.3903797 |
Snippet | Tissue‐engineered bone has emerged as a promising alternative for bone defect repair due to the advantages of regenerative bone healing and physiological... Tissue-engineered bone has emerged as a promising alternative for bone defect repair due to the advantages of regenerative bone healing and physiological... Abstract Tissue‐engineered bone has emerged as a promising alternative for bone defect repair due to the advantages of regenerative bone healing and... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2305580 |
SubjectTerms | biomineralization Bone and Bones Bone marrow Bone Regeneration endochondral ossification Fourier transforms Hydrogels Hydroxyapatite Hypoxia hypoxic microenvironment Magnesium Mineralization Osteogenesis Scanning electron microscopy Stem cells Tissue Engineering Zinc |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NbtQwEMct1BMXRPkMFGQkJOAQNdhxbB9Z2NUKqRxKK_UW-bONVJyqbBFw4hF4Rp6EGScb7QpQL9yiZJJY4xnN38rkZ0Ke-1pFEZ0olZUcFyi6NDaGsuGvHUSAU7HGn5MPPjTL4_r9iTjZ2OoLe8IGPPDguH1tnISS0hguAyR11EFxj1A17WPT1JleCjVvYzE1_B_MEcuypjRWbN_4L0jnZki4QgbkRhXKsP6_Kcw_GyU3BWyuQIvb5NYoHembYci75EZId8jumJyf6cuRIP3qLumP-nM4TCtqkqeH5qLzdJ4QBd4nDyZ01qdAD8NpvgOnhubWAbpYt2r9-vFzns5ydwDl7-is6z91-enddzhzgFz_r3T5zV_2p1Bc75Hjxfzo7bIcd1YoHSwgRClsxb2yLJqAOHmDkBbnImgJXukQHLPOCm8i5D8L0pq6dlX0HhJYmdopxu-TnQQjfUgoCAoduTXCOoNfUUHecN1YJyoWvHCsIOXa060bseO4-8V5OwCTWYsz004zU5AXk_3FANz4p-UMJ26yQlB2PgHh047h014XPgXZW097O2YvvAI0GyzrKi0L8my6DHmHH1NMCv0V2lQoNqUEmwdDlEwjARXEpFa6IGorfraGun0ldWeZ7Y2cVtwQGtyWQ-0aH7QgXj5K0K2P_oczHpOb8OR6aLHbIzury6vwBDTXyj7N6fUbRUYpPA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagvXBBlGegICMhAYeowY7j5IRY2NUKqRVaWqm3yM9tpDZZtlsE_HpmHCd0xesWJZPE8cx4PtuTbwh5YfPSC29EWmrJcYJSpUp7lxb8jQELMKXP8efkw6NifpJ_PBWnccHtMqZVDmNiGKhtZ3CN_ADCkgSonVXy7epLilWjcHc1ltC4SXZhCC5h8rU7mR59WvxaZREc6VkGtsaMHSj7FVm6GTJdIRfktWgUSPv_hDR_T5i8DmRDJJrdIbcjhKTvep3vkRuuvUv2opNe0leRSfr1PXJx3J3DYbuhqrV0oVaNpdMWKcG71oIInXStowu3DHegimhIIaCzIWUrnbZnIUeA8g900nQXTXh28wPOHCK7_zc6_27X3RJC7H1yMpsev5-nsb5CamAaIVKhM25LzbxySCqvkKrFGA-IgmeVc4Zpo4VVHkYB5qRWeW4yby24calyUzL-gOy00M5HhAKsqDzXSmijcC8VQA6vCm1ExpwVhiUkHfq5NpF8HGtgnNc9bTKrUS_1qJeEvBzlVz3txl8lJ6i2UQrpssOJbr2so_fVlTIScEmhuHQQGXzlSm6Rma-yvihykZD9Qel19GF4xWhxCXk-Xgbvwy0V1bruCmUyhJxSgszD3kbGlgAWYrIqq4SUW9az1dTtK21zFhi-ka0Vy0JDtwVD-08f1ABhPktAr4___R1PyC24J-9T6PbJzmZ95Z4CptroZ9FxfgJLqiEs priority: 102 providerName: ProQuest |
Title | Tolerant and Rapid Endochondral Bone Regeneration Using Framework‐Enhanced 3D Biomineralized Matrix Hydrogels |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202305580 https://www.ncbi.nlm.nih.gov/pubmed/38127989 https://www.proquest.com/docview/2937666097 https://www.proquest.com/docview/2905514777 https://pubmed.ncbi.nlm.nih.gov/PMC10916654 https://doaj.org/article/9ac78536a37e467f9e83d63569df6645 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1bb9MwFMcttL3wghjXwqiMhAQ8RAu-JM7jylpViE5Tt0l7i3ztIo1k6joEPPER-Ix8Es5x0mwVIMRTK-c0tXx84v9x7J8JeeWECjJYmSiTc0xQikSb4JOMv7PQA6wKAjcnzw6z6an4cCbPbu3ib_kQ_YQbRkZ8XmOAa3O1dwMN1e4z4rYZIqsUJO3buL8W6flMHN3MskiOeBY8YQ6y64QrIdbkxpTtbd5iY2SKAP8_qc7fF0_eFrVxVJrcJ_c6OUn3W__vkDu-fkB2uoC9om86qvTbh6Q5aS7ga72iunZ0ri8rR8c14sGb2oEJHTW1p3O_iL9Ad9G4nIBO1su3fn7_Ma7P44oByg_oqGo-VfHu1TcomSHr_wudfnXLZgED7iNyOhmfvJ8m3WkLiYWkQibSpNwpw4L2iJjXCG6xNoC-4GnhvWXGGul0gGcC87nRQtg0OAdBrbSwivHHZKuGmj4lFERGEbjR0liNb1ZB8vAiM1amzDtp2YAk65YubYcixxMxLsoWosxK9EzZe2ZAXvf2ly2E46-WI3Rcb4Xw7FjQLBdlF4tloW0OKiXTPPcwToTCK-6Q01e4kGVCDsju2u1lF9HwF6DjINVLi3xAXvaXIRbxBYuufXONNikK0DwHmydtL-lrAsqI5YUqBkRt9J-Nqm5eqavzyPtGdiseEg3NFrvaP9qgBEFznIOWffaf9s_JXSgU7Qq7XbK1Wl77FyC5VmYYo2pItvcPZh-P4XM0PjyaD-MExi_TrioV |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V6QEuiPI0tLBIIOBg1ex6_TggRGiilDYRCqnUm7vPNFJrp2kKlB_Fb2TGLxrxOvVm2eN4s_Ptzrfe8TeEPDdh4oTTwk9UzHGBkvpSOetH_I0GBOjEhfhx8nAUDQ7Cj4ficI38aL6FwbTKZk4sJ2pTaHxHvg1hKQaqHaTxu_mZj1WjcHe1KaFRwWLPXn6FJdv5290d8O8Lxvq9yYeBX1cV8DWQZ-ELFXCTKOakRSl1iQIlWjuIozxIrdVMaSWMdIB9ZmMlw1AHzhgAbyJDnaDQAUz56yGHpUyHrHd7o0_jX291BEc5mEYdMmDb0nxBVXCGylqoPXkl-pVFAv7EbH9P0LxKnMvI179NbtWUlb6vMLZB1mx-h2zUk8I5fVUrV7--S04nxQkc5ksqc0PHcj4ztJejBHmRGzCh3SK3dGyn5R0ICVqmLNB-kyLm9_LjMieB8h3anRWns_K3Z9_hzBCrCXyjg0uzKKYQ0u-Rg2vp-fukk0M7HxIKNCZ1XEmhtMS9WyBVPI2UFgGzRmjmEb_p50zXYudYc-Mkq2SaWYZ-yVq_eORlaz-vZD7-atlFt7VWKM9dnigW06we7VkqdQw8KJI8thCJXGoTblAJMDUuikLhkc3G6Vk9Z8AjWoR75Fl7GUY7buHI3BYXaBMgxY1jsHlQYaRtCXAvFqdJ6pFkBT0rTV29ks-OS0VxVIfFMtTQbSXQ_tMHGVCmzzGw5Uf__h9PyY3BZLif7e-O9h6Tm3B_WKXvbZLOcnFht4DPLdWTehBRcnTd4_YnZElevw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB5VqYS4IMpqKDBIIOBg1Yw9Xg4IEZIopTSqQiv15s6aWmrHIU2B8tP4dbznjUZsp94s-zmezNu-8Tx_j5BnOkott4r7qUxCXKBkvpDW-HH4WoEFqNRG-HHy7iQeH0QfDvnhGvnRfguDZZVtTKwCtS4VviPfgrSUANRGwkXblEXsDUZv55997CCFO61tO43aRHbMxVdYvp292R6Arp8zNhruvx_7TYcBXwGQ5j6XQahTyawwSKsukKxEKQs5NQwyYxSTSnItLPgBM4kUUaQCqzUYcioilSLpAYT_9QRWRUGPrPeHk73przc8PERqmJYpMmBbQn9BhnCGLFvIQ3kpE1YNA_6Ecn8v1rwMoqssOLpJbjTwlb6r7W2DrBl3i2w0AeKMvmxYrF_dJqf75QkcuiUVTtOpmBeaDh3SkZdOgwjtl87QqZlVd6B50Kp8gY7acjF_6I6r-gQaDmi_KE-L6reL73BmFzsLfKPjC70oZ5De75CDK5n5u6TnYJz3CQVIk9lQCi6VwH1cAFhhFkvFA2Y0V8wjfjvPuWqIz7H_xkleUzazHPWSd3rxyItOfl5TfvxVso9q66SQqrs6US5meeP5eSZUApgoFmFiICvZzKShRlbATNs4jrhHNlul5038gEd01u6Rp91l8HzczhHOlOcoEyDcTRKQuVfbSDcSwGEsydLMI-mK9awMdfWKK44rdnFkisWW1DBtlaH9Zw5ygE-fEkDOD_79P56Qa-Cv-cftyc5Dch1uj-pKvk3SWy7OzSOAdkv5uPEhSo6u2m1_ArNnYvQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tolerant+and+Rapid+Endochondral+Bone+Regeneration+Using+Framework-Enhanced+3D+Biomineralized+Matrix+Hydrogels&rft.jtitle=Advanced+science&rft.au=Bai%2C+Baoshuai&rft.au=Liu%2C+Yanhan&rft.au=Huang%2C+Jinyi&rft.au=Wang%2C+Sinan&rft.date=2024-03-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=11&rft.issue=9&rft.spage=e2305580&rft_id=info:doi/10.1002%2Fadvs.202305580&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |