Digitally Tunable Microfluidic Bioprinting of Multilayered Cannular Tissues

Despite advances in the bioprinting technology, biofabrication of circumferentially multilayered tubular tissues or organs with cellular heterogeneity, such as blood vessels, trachea, intestine, colon, ureter, and urethra, remains a challenge. Herein, a promising multichannel coaxial extrusion syste...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 30; no. 43; pp. e1706913 - n/a
Main Authors Pi, Qingmeng, Maharjan, Sushila, Yan, Xiang, Liu, Xiao, Singh, Bijay, Genderen, Anne Metje, Robledo‐Padilla, Felipe, Parra‐Saldivar, Roberto, Hu, Ning, Jia, Weitao, Xu, Changliang, Kang, Jian, Hassan, Shabir, Cheng, Haibo, Hou, Xu, Khademhosseini, Ali, Zhang, Yu Shrike
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite advances in the bioprinting technology, biofabrication of circumferentially multilayered tubular tissues or organs with cellular heterogeneity, such as blood vessels, trachea, intestine, colon, ureter, and urethra, remains a challenge. Herein, a promising multichannel coaxial extrusion system (MCCES) for microfluidic bioprinting of circumferentially multilayered tubular tissues in a single step, using customized bioinks constituting gelatin methacryloyl, alginate, and eight‐arm poly(ethylene glycol) acrylate with a tripentaerythritol core, is presented. These perfusable cannular constructs can be continuously tuned up from monolayer to triple layers at regular intervals across the length of a bioprinted tube. Using customized bioink and MCCES, bioprinting of several tubular tissue constructs using relevant cell types with adequate biofunctionality including cell viability, proliferation, and differentiation is demonstrated. Specifically, cannular urothelial tissue constructs are bioprinted, using human urothelial cells and human bladder smooth muscle cells, as well as vascular tissue constructs, using human umbilical vein endothelial cells and human smooth muscle cells. These bioprinted cannular tissues can be actively perfused with fluids and nutrients to promote growth and proliferation of the embedded cell types. The fabrication of such tunable and perfusable circumferentially multilayered tissues represents a fundamental step toward creating human cannular tissues. A multichannel coaxial extrusion system for microfluidic bioprinting of circumferentially multilayered tubular tissues is presented. The fabrication of such tunable and perfusable circumferentially multilayered tissues represents a fundamental step toward creating human cannular tissues.
AbstractList Despite advances in the bioprinting technology, biofabrication of circumferentially multilayered tubular tissues or organs with cellular heterogeneity, such as blood vessels, trachea, intestine, colon, ureter, and urethra, remains a challenge. Herein, a promising multichannel coaxial extrusion system (MCCES) for microfluidic bioprinting of circumferentially multilayered tubular tissues in a single step, using customized bioinks constituting gelatin methacryloyl, alginate, and eight‐arm poly(ethylene glycol) acrylate with a tripentaerythritol core, is presented. These perfusable cannular constructs can be continuously tuned up from monolayer to triple layers at regular intervals across the length of a bioprinted tube. Using customized bioink and MCCES, bioprinting of several tubular tissue constructs using relevant cell types with adequate biofunctionality including cell viability, proliferation, and differentiation is demonstrated. Specifically, cannular urothelial tissue constructs are bioprinted, using human urothelial cells and human bladder smooth muscle cells, as well as vascular tissue constructs, using human umbilical vein endothelial cells and human smooth muscle cells. These bioprinted cannular tissues can be actively perfused with fluids and nutrients to promote growth and proliferation of the embedded cell types. The fabrication of such tunable and perfusable circumferentially multilayered tissues represents a fundamental step toward creating human cannular tissues.
Despite advances in the bioprinting technology, biofabrication of circumferentially multilayered tubular tissues or organs with cellular heterogeneity, such as blood vessels, trachea, intestine, colon, ureter, and urethra, remains a challenge. Herein, a promising multichannel coaxial extrusion system (MCCES) for microfluidic bioprinting of circumferentially multilayered tubular tissues in a single step, using customized bioinks constituting gelatin methacryloyl, alginate, and eight-arm poly(ethylene glycol) acrylate with a tripentaerythritol core, is presented. These perfusable cannular constructs can be continuously tuned up from monolayer to triple layers at regular intervals across the length of a bioprinted tube. Using customized bioink and MCCES, bioprinting of several tubular tissue constructs using relevant cell types with adequate biofunctionality including cell viability, proliferation, and differentiation is demonstrated. Specifically, cannular urothelial tissue constructs are bioprinted, using human urothelial cells and human bladder smooth muscle cells, as well as vascular tissue constructs, using human umbilical vein endothelial cells and human smooth muscle cells. These bioprinted cannular tissues can be actively perfused with fluids and nutrients to promote growth and proliferation of the embedded cell types. The fabrication of such tunable and perfusable circumferentially multilayered tissues represents a fundamental step toward creating human cannular tissues.Despite advances in the bioprinting technology, biofabrication of circumferentially multilayered tubular tissues or organs with cellular heterogeneity, such as blood vessels, trachea, intestine, colon, ureter, and urethra, remains a challenge. Herein, a promising multichannel coaxial extrusion system (MCCES) for microfluidic bioprinting of circumferentially multilayered tubular tissues in a single step, using customized bioinks constituting gelatin methacryloyl, alginate, and eight-arm poly(ethylene glycol) acrylate with a tripentaerythritol core, is presented. These perfusable cannular constructs can be continuously tuned up from monolayer to triple layers at regular intervals across the length of a bioprinted tube. Using customized bioink and MCCES, bioprinting of several tubular tissue constructs using relevant cell types with adequate biofunctionality including cell viability, proliferation, and differentiation is demonstrated. Specifically, cannular urothelial tissue constructs are bioprinted, using human urothelial cells and human bladder smooth muscle cells, as well as vascular tissue constructs, using human umbilical vein endothelial cells and human smooth muscle cells. These bioprinted cannular tissues can be actively perfused with fluids and nutrients to promote growth and proliferation of the embedded cell types. The fabrication of such tunable and perfusable circumferentially multilayered tissues represents a fundamental step toward creating human cannular tissues.
Despite advances in the bioprinting technology, biofabrication of circumferentially multilayered tubular tissues or organs with cellular heterogeneity, such as blood vessels, trachea, intestine, colon, ureter, and urethra, remains a challenge. Herein, a promising multichannel coaxial extrusion system (MCCES) for microfluidic bioprinting of circumferentially multilayered tubular tissues in a single step, using customized bioinks constituting gelatin methacryloyl, alginate, and eight-arm poly(ethylene glycol) acrylate with a tripentaerythritol core, is presented. These perfusable cannular constructs can be continuously tuned up from monolayer to triple layers at regular intervals across the length of a bioprinted tube. Using customized bioink and MCCES, bioprinting of several tubular tissue constructs using relevant cell types with adequate biofunctionality including cell viability, proliferation, and differentiation is demonstrated. Specifically, cannular urothelial tissue constructs are bioprinted, using human urothelial cells and human bladder smooth muscle cells, as well as vascular tissue constructs, using human umbilical vein endothelial cells and human smooth muscle cells. These bioprinted cannular tissues can be actively perfused with fluids and nutrients to promote growth and proliferation of the embedded cell types. The fabrication of such tunable and perfusable circumferentially multilayered tissues represents a fundamental step toward creating human cannular tissues.
Despite advances in the bioprinting technology, biofabrication of circumferentially multilayered tubular tissues or organs with cellular heterogeneity, such as blood vessels, trachea, intestine, colon, ureter, and urethra, remains a challenge. Herein, a promising multichannel coaxial extrusion system (MCCES) for microfluidic bioprinting of circumferentially multilayered tubular tissues in a single step, using customized bioinks constituting gelatin methacryloyl, alginate, and eight‐arm poly(ethylene glycol) acrylate with a tripentaerythritol core, is presented. These perfusable cannular constructs can be continuously tuned up from monolayer to triple layers at regular intervals across the length of a bioprinted tube. Using customized bioink and MCCES, bioprinting of several tubular tissue constructs using relevant cell types with adequate biofunctionality including cell viability, proliferation, and differentiation is demonstrated. Specifically, cannular urothelial tissue constructs are bioprinted, using human urothelial cells and human bladder smooth muscle cells, as well as vascular tissue constructs, using human umbilical vein endothelial cells and human smooth muscle cells. These bioprinted cannular tissues can be actively perfused with fluids and nutrients to promote growth and proliferation of the embedded cell types. The fabrication of such tunable and perfusable circumferentially multilayered tissues represents a fundamental step toward creating human cannular tissues. A multichannel coaxial extrusion system for microfluidic bioprinting of circumferentially multilayered tubular tissues is presented. The fabrication of such tunable and perfusable circumferentially multilayered tissues represents a fundamental step toward creating human cannular tissues.
Author Maharjan, Sushila
Yan, Xiang
Cheng, Haibo
Genderen, Anne Metje
Jia, Weitao
Liu, Xiao
Parra‐Saldivar, Roberto
Robledo‐Padilla, Felipe
Khademhosseini, Ali
Zhang, Yu Shrike
Pi, Qingmeng
Xu, Changliang
Hou, Xu
Singh, Bijay
Hassan, Shabir
Hu, Ning
Kang, Jian
Author_xml – sequence: 1
  givenname: Qingmeng
  surname: Pi
  fullname: Pi, Qingmeng
  organization: Shanghai Jiao Tong University School of Medicine
– sequence: 2
  givenname: Sushila
  surname: Maharjan
  fullname: Maharjan, Sushila
  organization: Research Institute for Bioscience and Biotechnology
– sequence: 3
  givenname: Xiang
  surname: Yan
  fullname: Yan, Xiang
  organization: Nanjing Gulou Hospital Group
– sequence: 4
  givenname: Xiao
  surname: Liu
  fullname: Liu, Xiao
  organization: Beihang University
– sequence: 5
  givenname: Bijay
  surname: Singh
  fullname: Singh, Bijay
  organization: Harvard University
– sequence: 6
  givenname: Anne Metje
  surname: Genderen
  fullname: Genderen, Anne Metje
  organization: Massachusetts Institute of Technology
– sequence: 7
  givenname: Felipe
  surname: Robledo‐Padilla
  fullname: Robledo‐Padilla, Felipe
  organization: ENCIT – Science Engineering and Technology School Tecnologico de Monterrey
– sequence: 8
  givenname: Roberto
  surname: Parra‐Saldivar
  fullname: Parra‐Saldivar, Roberto
  organization: ENCIT – Science Engineering and Technology School Tecnologico de Monterrey
– sequence: 9
  givenname: Ning
  surname: Hu
  fullname: Hu, Ning
  organization: Zhejiang University
– sequence: 10
  givenname: Weitao
  surname: Jia
  fullname: Jia, Weitao
  organization: Shanghai Jiaotong University
– sequence: 11
  givenname: Changliang
  surname: Xu
  fullname: Xu, Changliang
  organization: Nanjing University of Chinese Medicine
– sequence: 12
  givenname: Jian
  surname: Kang
  fullname: Kang, Jian
  organization: Massachusetts Institute of Technology
– sequence: 13
  givenname: Shabir
  surname: Hassan
  fullname: Hassan, Shabir
  organization: Massachusetts Institute of Technology
– sequence: 14
  givenname: Haibo
  surname: Cheng
  fullname: Cheng, Haibo
  organization: Nanjing University of Chinese Medicine
– sequence: 15
  givenname: Xu
  surname: Hou
  fullname: Hou, Xu
  organization: Xiamen University
– sequence: 16
  givenname: Ali
  orcidid: 0000-0001-6322-8852
  surname: Khademhosseini
  fullname: Khademhosseini, Ali
  email: khademh@ucla.edu
  organization: Konkuk University
– sequence: 17
  givenname: Yu Shrike
  surname: Zhang
  fullname: Zhang, Yu Shrike
  email: yszhang@research.bwh.harvard.edu
  organization: Massachusetts Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30136318$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vEzEYhC3UiqaFK0e0EhcuG15_rdcXpJDSgtqol3C2HK83uHLsYu-C8u_xKm2BSqgnHzwzfjxzio5CDBahNxjmGIB80N1OzwlgAY3E9AWaYU5wzUDyIzQDSXktG9aeoNOcbwFANtC8RCcUMG0obmfo6txt3aC931frMeiNt9XKmRR7P7rOmeqTi3fJhcGFbRX7ajX6wXm9t8l21VKHMHqdqrXLebT5FTrutc_29f15hr5dfF4vv9TXN5dfl4vr2nApaN1pK0EzTUGyTWsKVAua9JgJKgU2FGNjubE9N0xo6KnppBaN5bTAAxGcnqGPh9y7cbOznbFhSNqrwrnTaa-idurfm-C-q238qRrWCNaSEvD-PiDFHwV8UDuXjfVeBxvHrAhIwinFfHrr3RPpbRxTKN9TBBPaiqnGonr7N9EjykPPRcAOglJtzsn2ypTWBxcnQOcVBjXNqaY51eOcxTZ_YntI_q9BHgy_nLf7Z9Rqcb5a_PH-BjpqsnU
CitedBy_id crossref_primary_10_1126_sciadv_abq6900
crossref_primary_10_1088_1758_5090_ac5e12
crossref_primary_10_1039_C9TB00185A
crossref_primary_10_1088_1758_5090_ab7e74
crossref_primary_10_1002_macp_202100451
crossref_primary_10_1016_j_mtadv_2021_100160
crossref_primary_10_1002_adma_202200352
crossref_primary_10_1109_MNANO_2020_2966065
crossref_primary_10_1002_adhm_202102411
crossref_primary_10_1002_adhm_202304569
crossref_primary_10_1021_acs_chemrev_0c00027
crossref_primary_10_1021_accountsmr_2c00026
crossref_primary_10_1088_1758_5090_ac25ca
crossref_primary_10_1088_2516_1091_ac7833
crossref_primary_10_1109_TNB_2019_2940258
crossref_primary_10_1002_cjoc_202300167
crossref_primary_10_1557_s43578_021_00254_x
crossref_primary_10_1002_admt_202201778
crossref_primary_10_3389_fbiom_2023_1279061
crossref_primary_10_1016_j_mtbio_2019_100008
crossref_primary_10_2174_1381612824666180416114325
crossref_primary_10_1088_1748_605X_acf25a
crossref_primary_10_1063_1_5099306
crossref_primary_10_1002_adhm_202101836
crossref_primary_10_1016_j_matt_2020_10_022
crossref_primary_10_1146_annurev_bioeng_082120_042814
crossref_primary_10_1002_adma_201903975
crossref_primary_10_1007_s42242_018_0028_8
crossref_primary_10_1088_1748_605X_ab99d2
crossref_primary_10_1088_1758_5090_acf61f
crossref_primary_10_1093_nsr_nwz188
crossref_primary_10_1088_1758_5090_abec2c
crossref_primary_10_1021_acs_chemmater_0c04400
crossref_primary_10_1002_adhm_202402571
crossref_primary_10_1002_adma_202307686
crossref_primary_10_1002_admt_201900043
crossref_primary_10_1111_cpr_13453
crossref_primary_10_1002_smll_202104309
crossref_primary_10_1002_smll_201805510
crossref_primary_10_1063_5_0034901
crossref_primary_10_1002_sstr_202400323
crossref_primary_10_1073_pnas_2206762120
crossref_primary_10_1016_j_mser_2023_100734
crossref_primary_10_1177_09544089241236265
crossref_primary_10_1063_5_0083673
crossref_primary_10_1088_1758_5090_ab2b4d
crossref_primary_10_1039_D3BM00159H
crossref_primary_10_1088_1758_5090_ad0b3f
crossref_primary_10_1002_advs_201903553
crossref_primary_10_1007_s11426_021_1007_6
crossref_primary_10_1080_09205063_2023_2251781
crossref_primary_10_1002_adma_202307051
crossref_primary_10_1002_adfm_202003740
crossref_primary_10_1002_adfm_201906237
crossref_primary_10_1016_j_cobme_2020_03_002
crossref_primary_10_1002_adhm_202301158
crossref_primary_10_1016_j_scib_2020_06_002
crossref_primary_10_1116_6_0002034
crossref_primary_10_1002_adma_202104730
crossref_primary_10_1159_000519207
crossref_primary_10_1021_acsbiomaterials_9b00676
crossref_primary_10_1039_D0BM00973C
crossref_primary_10_3390_gels8050297
crossref_primary_10_1016_j_cej_2022_140550
crossref_primary_10_1021_acs_chemrev_9b00789
crossref_primary_10_1002_adfm_202414625
crossref_primary_10_1002_adma_202108931
crossref_primary_10_1088_1758_5090_acad2c
crossref_primary_10_1002_dvdy_385
crossref_primary_10_2217_3dp_2019_0004
crossref_primary_10_1002_adfm_201902834
crossref_primary_10_1007_s42247_024_00678_1
crossref_primary_10_1016_j_pmatsci_2023_101091
crossref_primary_10_1208_s12249_022_02279_9
crossref_primary_10_1073_pnas_1921281117
crossref_primary_10_1631_jzus_A2000261
crossref_primary_10_1088_1758_5090_ab5158
crossref_primary_10_1007_s00345_019_02833_4
crossref_primary_10_1039_D4LC00280F
crossref_primary_10_1007_s41745_019_00129_5
crossref_primary_10_1039_D4CS00429A
crossref_primary_10_1002_smll_201903798
crossref_primary_10_1002_adfm_202105190
crossref_primary_10_1038_s43586_021_00073_8
crossref_primary_10_1016_j_drudis_2019_03_025
crossref_primary_10_1186_s12951_022_01599_z
crossref_primary_10_1088_1758_5090_ab84cc
crossref_primary_10_3389_fbioe_2021_761861
crossref_primary_10_3390_md19120708
crossref_primary_10_1021_acsabm_9b00134
crossref_primary_10_1088_2516_1091_ac8a2f
crossref_primary_10_3390_ijms232214074
crossref_primary_10_1021_acsbiomaterials_9b00926
crossref_primary_10_1002_adma_201904631
crossref_primary_10_1038_s41467_020_14997_4
crossref_primary_10_3390_polym14091722
crossref_primary_10_1002_jbm_a_37352
crossref_primary_10_1016_j_cej_2021_128723
crossref_primary_10_1039_D0TB01819H
crossref_primary_10_1063_5_0177386
crossref_primary_10_1088_2752_5724_ac446b
crossref_primary_10_1021_acs_chemrev_0c00077
crossref_primary_10_3390_ma12203449
crossref_primary_10_1002_adfm_202009664
crossref_primary_10_1063_5_0033280
crossref_primary_10_1007_s42242_021_00165_0
crossref_primary_10_1039_D4MH01291G
crossref_primary_10_3390_bioengineering10091092
crossref_primary_10_69709_CellEngC_2024_111335
crossref_primary_10_1002_adma_202005944
crossref_primary_10_1088_1758_5090_ad22ed
crossref_primary_10_1002_smll_202206108
crossref_primary_10_1007_s10856_020_06440_3
crossref_primary_10_1088_1758_5090_abafc6
crossref_primary_10_1002_adma_201905713
crossref_primary_10_1016_j_ijbiomac_2022_12_148
crossref_primary_10_1088_1758_5090_accd23
crossref_primary_10_3390_biomimetics8010094
crossref_primary_10_1021_acs_chemrev_0c00084
crossref_primary_10_1093_rb_rbac079
crossref_primary_10_1007_s42242_020_00121_4
crossref_primary_10_1063_5_0227692
crossref_primary_10_1002_bit_28516
crossref_primary_10_1002_smsc_202400261
crossref_primary_10_3390_cells12040646
crossref_primary_10_3390_biomimetics9070377
crossref_primary_10_1002_adfm_202000187
crossref_primary_10_1088_1758_5090_ad4c09
crossref_primary_10_1186_s12951_021_01091_0
crossref_primary_10_1002_jbm_a_37694
crossref_primary_10_3390_bioengineering9060242
crossref_primary_10_3389_fbioe_2021_685507
crossref_primary_10_1186_s40580_024_00416_7
crossref_primary_10_1016_j_bprint_2019_e00069
crossref_primary_10_1039_C9LC01184F
crossref_primary_10_1002_smll_202310444
crossref_primary_10_1088_2631_7990_ad8739
crossref_primary_10_1186_s12951_021_01000_5
crossref_primary_10_1016_j_msec_2020_111858
crossref_primary_10_1039_D1GC01799C
crossref_primary_10_1088_1758_5090_acb107
crossref_primary_10_3390_biom11060787
crossref_primary_10_3390_medicina60010040
crossref_primary_10_1021_acsami_0c21573
crossref_primary_10_1002_adfm_202001485
crossref_primary_10_1002_adhm_202100380
crossref_primary_10_1039_D0TB02069A
crossref_primary_10_1002_admt_201901044
crossref_primary_10_3390_molecules27113442
crossref_primary_10_1002_adma_202006582
crossref_primary_10_3390_biomedicines9060589
crossref_primary_10_1002_advs_202100798
crossref_primary_10_1016_j_eng_2020_03_019
crossref_primary_10_1088_1758_5090_ac7c90
crossref_primary_10_1002_adhm_202000721
crossref_primary_10_3390_antib13030061
crossref_primary_10_1002_advs_202001379
crossref_primary_10_1007_s12033_024_01163_0
crossref_primary_10_1002_mabi_202300457
crossref_primary_10_1088_2516_1091_ac631c
crossref_primary_10_1002_admt_202000683
crossref_primary_10_1089_ten_tec_2022_0214
crossref_primary_10_1021_acs_biomac_3c01271
crossref_primary_10_3390_ijms23158589
crossref_primary_10_1002_adhm_202100884
crossref_primary_10_1088_1758_5090_ab38ef
crossref_primary_10_3390_ijms24010891
crossref_primary_10_1002_adfm_201910811
crossref_primary_10_1016_j_msec_2020_110810
crossref_primary_10_1039_C9SM01945F
crossref_primary_10_1002_adhm_201901142
crossref_primary_10_3390_bios12121135
crossref_primary_10_1016_j_bioactmat_2020_08_020
crossref_primary_10_1002_adfm_202310369
crossref_primary_10_1021_acscentsci_9b01097
crossref_primary_10_1002_adhm_202203338
crossref_primary_10_1002_mco2_753
crossref_primary_10_1039_D2NA00021K
crossref_primary_10_1002_adma_201806899
crossref_primary_10_1002_advs_202300694
crossref_primary_10_1002_mabi_202100141
crossref_primary_10_1007_s10456_024_09928_6
crossref_primary_10_3389_fbioe_2021_721843
Cites_doi 10.1136/pgmj.2005.042945
10.1038/nbt.2958
10.1007/s10439-016-1612-8
10.1016/S0140-6736(10)62354-9
10.1002/adma.201305506
10.1002/adma.201604983
10.1083/jcb.118.6.1511
10.1002/adhm.201500492
10.1016/j.biomaterials.2015.08.045
10.1038/nprot.2016.123
10.1038/natrevmats.2017.16
10.1039/C6LC00380J
10.1002/adma.201503310
10.1182/blood-2014-06-528406
10.1039/b900804g
10.1021/acsbiomaterials.6b00246
10.1002/adhm.201600636
10.1038/nprot.2013.110
10.1109/TBME.2013.2243912
10.1155/2013/154564
10.1007/s00018-008-8281-1
10.1007/s00467-008-0749-6
10.1016/j.biomaterials.2016.07.038
10.1016/j.biomaterials.2009.09.086
10.1016/j.tibtech.2016.01.002
10.1038/nbt.3413
10.1111/j.1600-6135.2004.0343.x
10.1088/1758-5090/7/4/045011
10.1038/srep29977
10.1007/s00441-003-0745-x
10.1002/bit.25501
10.1016/j.biomaterials.2016.09.003
10.1088/0957-4484/25/14/145101
10.1016/j.actbio.2017.01.036
10.1155/2012/956345
10.1074/jbc.M001857200
10.1115/1.3002759
10.1089/biores.2013.0031
10.1007/s11626-011-9473-9
10.1016/j.actbio.2017.01.035
10.1002/term.2112
10.1007/s11626-008-9116-y
10.1002/adhm.201600505
10.1002/adma.201603612
10.1115/1.4024575
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1002/adma.201706913
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE
CrossRef
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID PMC6467482
30136318
10_1002_adma_201706913
ADMA201706913
Genre article
Journal Article
GrantInformation_xml – fundername: Presidential Early Career Award for Scientists and Engineers
– fundername: New England Anti‐Vivisection Society
– fundername: National Institutes of Health
  funderid: AR057837; DE021468; AR068258; AR066193; EB022403; EB021148; HL137193; EB021857; EB024403; K99CA201603
– fundername: Tecnologico de Monterrey and MIT Nanotechnology Program
– fundername: American Fund for Alternatives to Animal Research (AFAAR) for Postdoctoral Fellowship
– fundername: National Natural Science Foundation of China
  funderid: 31570947; 21673197; 21621091
– fundername: Natural Science Foundation of Fujian Province of China
  funderid: 2018J06003
– fundername: CONACYT postdoctoral fellowship
  funderid: 291018‐173853
– fundername: Young Overseas High‐level Talents Introduction Plan
– fundername: 111 Project
  funderid: B16029
– fundername: Young Overseas High-level Talents Introduction Plan
– fundername: NIH HHS
  grantid: EB021857
– fundername: NIBIB NIH HHS
  grantid: R01 EB021857
– fundername: China Scholarship Council
  grantid: 201406235036
– fundername: NIBIB NIH HHS
  grantid: R21 EB021148
– fundername: NCI NIH HHS
  grantid: K99 CA201603
– fundername: NIBIB NIH HHS
  grantid: R01 EB024403
– fundername: NIH HHS
  grantid: EB022403
– fundername: NIDCR NIH HHS
  grantid: R01 DE021468
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAHHS
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACCFJ
ACRPL
ACSCC
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AETEA
AFFNX
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c5973-dae90a4a3094b8c00980a2f1473971c311ce5cef5c47a0f3cd9a76e5396002753
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Aug 21 14:14:27 EDT 2025
Fri Jul 11 07:05:34 EDT 2025
Fri Jul 25 06:16:31 EDT 2025
Thu Apr 03 06:57:36 EDT 2025
Tue Jul 01 00:44:44 EDT 2025
Thu Apr 24 22:59:27 EDT 2025
Wed Aug 20 07:26:10 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 43
Keywords bioinks
cannular tissues
microfluidic bioprinting
perfusion
coaxial extrusion systems
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5973-dae90a4a3094b8c00980a2f1473971c311ce5cef5c47a0f3cd9a76e5396002753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6322-8852
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.201706913
PMID 30136318
PQID 2123876318
PQPubID 2045203
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6467482
proquest_miscellaneous_2092533155
proquest_journals_2123876318
pubmed_primary_30136318
crossref_citationtrail_10_1002_adma_201706913
crossref_primary_10_1002_adma_201706913
wiley_primary_10_1002_adma_201706913_ADMA201706913
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-Oct
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-Oct
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 377
2010; 31
2017; 2
2012; 2012
2015; 4
2013; 2
2003; 314
2015; 73
2015; 125
2017; 45
2009
2004; 4
2014; 26
2014; 25
2016; 106
2017; 29
2000; 275
2009; 131
2013; 8
2016; 16
2015; 7
2016; 34
2016; 11
2017; 51
2016; 5
2006; 82
2016; 6
2016; 2
2013; 2013
2017; 11
2015; 112
2017; 57
2013; 60
1992; 118
2008; 23
2013; 135
2017
2016; 110
2008; 65
2008; 44
2012; 48
2016; 28
2014; 32
e_1_2_4_40_1
e_1_2_4_41_1
e_1_2_4_21_1
e_1_2_4_44_1
e_1_2_4_45_1
e_1_2_4_23_1
e_1_2_4_42_1
e_1_2_4_22_1
e_1_2_4_43_1
e_1_2_4_25_1
e_1_2_4_24_1
e_1_2_4_27_1
e_1_2_4_46_1
e_1_2_4_26_1
e_1_2_4_29_1
e_1_2_4_28_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_2_1
e_1_2_4_5_1
e_1_2_4_4_1
e_1_2_4_7_1
e_1_2_4_6_1
e_1_2_4_9_1
e_1_2_4_8_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_14_1
Guan X. (e_1_2_4_20_1) 2017
e_1_2_4_35_1
e_1_2_4_15_1
e_1_2_4_16_1
e_1_2_4_38_1
e_1_2_4_37_1
e_1_2_4_18_1
e_1_2_4_17_1
e_1_2_4_39_1
e_1_2_4_19_1
References_xml – volume: 11
  start-page: 3
  year: 2017
  publication-title: J. Tissue Eng. Regener. Med.
– volume: 112
  start-page: 1047
  year: 2015
  publication-title: Biotechnol. Bioeng.
– volume: 26
  start-page: 3124
  year: 2014
  publication-title: Adv. Mater.
– volume: 110
  start-page: 45
  year: 2016
  publication-title: Biomaterials
– volume: 2
  start-page: 1710
  year: 2016
  publication-title: ACS Biomater. Sci. Eng.
– volume: 65
  start-page: 3756
  year: 2008
  publication-title: Cell. Mol. Life Sci.
– volume: 5
  start-page: 2174
  year: 2016
  publication-title: Adv. Healthcare Mater.
– volume: 2
  start-page: 374
  year: 2013
  publication-title: Biores. Open Access
– volume: 377
  start-page: 1175
  year: 2011
  publication-title: Lancet
– volume: 314
  start-page: 15
  year: 2003
  publication-title: Cell Tissue Res.
– volume: 29
  start-page: 1604983
  year: 2017
  publication-title: Adv. Mater.
– volume: 44
  start-page: 261
  year: 2008
  publication-title: In Vitro Cell. Dev. Biol.: Anim.
– volume: 34
  start-page: 312
  year: 2016
  publication-title: Nat. Biotechnol.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 5
  start-page: 2488
  year: 2016
  publication-title: Adv. Healthcare Mater.
– volume: 73
  start-page: 254
  year: 2015
  publication-title: Biomaterials
– volume: 23
  start-page: 913
  year: 2008
  publication-title: Pediatr. Nephrol.
– volume: 32
  start-page: 773
  year: 2014
  publication-title: Nat. Biotechnol.
– volume: 125
  start-page: 2019
  year: 2015
  publication-title: Blood
– volume: 7
  start-page: 045011
  year: 2015
  publication-title: Biofabrication
– start-page: 2730
  year: 2009
  publication-title: Chem. Commun.
– volume: 131
  start-page: 035001
  year: 2009
  publication-title: J. Biomech. Eng.
– volume: 60
  start-page: 691
  year: 2013
  publication-title: IEEE Trans Biomed Eng.
– volume: 82
  start-page: 489
  year: 2006
  publication-title: Postgrad. Med. J.
– year: 2017
  publication-title: Biotechnol. J.
– volume: 28
  start-page: 677
  year: 2016
  publication-title: Adv. Mater.
– volume: 4
  start-page: 2146
  year: 2015
  publication-title: Adv. Healthcare Mater.
– volume: 31
  start-page: 621
  year: 2010
  publication-title: Biomaterials
– volume: 2
  start-page: 17016
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 34
  start-page: 394
  year: 2016
  publication-title: Trends Biotechnol.
– volume: 45
  start-page: 148
  year: 2017
  publication-title: Ann. Biomed. Eng.
– volume: 11
  start-page: 1775
  year: 2016
  publication-title: Nat. Protoc.
– volume: 135
  start-page: 091011
  year: 2013
  publication-title: J. Biomech. Eng.
– volume: 57
  start-page: 1
  year: 2017
  publication-title: Acta Biomater.
– volume: 118
  start-page: 1511
  year: 1992
  publication-title: J. Cell Biol.
– volume: 8
  start-page: 1820
  year: 2013
  publication-title: Nat. Protoc.
– volume: 25
  start-page: 145101
  year: 2014
  publication-title: Nanotechnology
– volume: 51
  start-page: 1
  year: 2017
  publication-title: Acta Biomater.
– volume: 275
  start-page: 21435
  year: 2000
  publication-title: J. Biol. Chem.
– volume: 106
  start-page: 58
  year: 2016
  publication-title: Biomaterials
– volume: 2013
  start-page: 13
  year: 2013
  publication-title: Sci. World J.
– volume: 16
  start-page: 4097
  year: 2016
  publication-title: Lab Chip
– volume: 48
  start-page: 84
  year: 2012
  publication-title: In Vitro Cell. Dev. Biol.: Anim.
– volume: 4
  start-page: 36
  year: 2004
  publication-title: Am. J. Transplant.
– volume: 6
  start-page: 29977
  year: 2016
  publication-title: Sci. Rep.
– volume: 2012
  start-page: 956345
  year: 2012
  publication-title: J. Biomed. Biotechnol.
– ident: e_1_2_4_31_1
  doi: 10.1136/pgmj.2005.042945
– ident: e_1_2_4_1_1
  doi: 10.1038/nbt.2958
– ident: e_1_2_4_18_1
  doi: 10.1007/s10439-016-1612-8
– ident: e_1_2_4_33_1
  doi: 10.1016/S0140-6736(10)62354-9
– ident: e_1_2_4_17_1
  doi: 10.1002/adma.201305506
– ident: e_1_2_4_15_1
  doi: 10.1002/adma.201604983
– ident: e_1_2_4_41_1
  doi: 10.1083/jcb.118.6.1511
– ident: e_1_2_4_28_1
  doi: 10.1002/adhm.201500492
– ident: e_1_2_4_23_1
  doi: 10.1016/j.biomaterials.2015.08.045
– ident: e_1_2_4_2_1
  doi: 10.1038/nprot.2016.123
– ident: e_1_2_4_7_1
  doi: 10.1038/natrevmats.2017.16
– ident: e_1_2_4_25_1
  doi: 10.1039/C6LC00380J
– ident: e_1_2_4_27_1
  doi: 10.1002/adma.201503310
– ident: e_1_2_4_42_1
  doi: 10.1182/blood-2014-06-528406
– ident: e_1_2_4_16_1
  doi: 10.1039/b900804g
– ident: e_1_2_4_26_1
  doi: 10.1021/acsbiomaterials.6b00246
– ident: e_1_2_4_43_1
  doi: 10.1002/adhm.201600636
– ident: e_1_2_4_4_1
  doi: 10.1038/nprot.2013.110
– ident: e_1_2_4_3_1
  doi: 10.1109/TBME.2013.2243912
– ident: e_1_2_4_30_1
  doi: 10.1155/2013/154564
– year: 2017
  ident: e_1_2_4_20_1
  publication-title: Biotechnol. J.
– ident: e_1_2_4_35_1
  doi: 10.1007/s00018-008-8281-1
– ident: e_1_2_4_45_1
  doi: 10.1007/s00467-008-0749-6
– ident: e_1_2_4_5_1
  doi: 10.1016/j.biomaterials.2016.07.038
– ident: e_1_2_4_38_1
  doi: 10.1016/j.biomaterials.2009.09.086
– ident: e_1_2_4_19_1
  doi: 10.1016/j.tibtech.2016.01.002
– ident: e_1_2_4_6_1
  doi: 10.1038/nbt.3413
– ident: e_1_2_4_39_1
  doi: 10.1111/j.1600-6135.2004.0343.x
– ident: e_1_2_4_14_1
  doi: 10.1088/1758-5090/7/4/045011
– ident: e_1_2_4_44_1
  doi: 10.1038/srep29977
– ident: e_1_2_4_46_1
  doi: 10.1007/s00441-003-0745-x
– ident: e_1_2_4_12_1
  doi: 10.1002/bit.25501
– ident: e_1_2_4_24_1
  doi: 10.1016/j.biomaterials.2016.09.003
– ident: e_1_2_4_29_1
  doi: 10.1088/0957-4484/25/14/145101
– ident: e_1_2_4_22_1
  doi: 10.1016/j.actbio.2017.01.036
– ident: e_1_2_4_37_1
  doi: 10.1155/2012/956345
– ident: e_1_2_4_40_1
  doi: 10.1074/jbc.M001857200
– ident: e_1_2_4_11_1
  doi: 10.1115/1.3002759
– ident: e_1_2_4_13_1
  doi: 10.1089/biores.2013.0031
– ident: e_1_2_4_36_1
  doi: 10.1007/s11626-011-9473-9
– ident: e_1_2_4_10_1
  doi: 10.1016/j.actbio.2017.01.035
– ident: e_1_2_4_32_1
  doi: 10.1002/term.2112
– ident: e_1_2_4_34_1
  doi: 10.1007/s11626-008-9116-y
– ident: e_1_2_4_8_1
  doi: 10.1002/adhm.201600505
– ident: e_1_2_4_21_1
  doi: 10.1002/adma.201603612
– ident: e_1_2_4_9_1
  doi: 10.1115/1.4024575
SSID ssj0009606
Score 2.6494915
Snippet Despite advances in the bioprinting technology, biofabrication of circumferentially multilayered tubular tissues or organs with cellular heterogeneity, such as...
Despite advances in the bioprinting technology, biofabrication of circumferentially multilayered tubular tissues or organs with cellular heterogeneity, such as...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1706913
SubjectTerms Alginates
Biocompatible Materials
Bioengineering
bioinks
Bioprinting - instrumentation
Bioprinting - methods
Bladder
Blood Vessel Prosthesis
Blood vessels
cannular tissues
Cell Survival
Circumferences
coaxial extrusion systems
Colon
Endothelial cells
Extrusion
Gelatin
Human Umbilical Vein Endothelial Cells
Humans
Hydrogels
Materials science
Materials Testing
microfluidic bioprinting
Microfluidics - instrumentation
Muscles
Myocytes, Smooth Muscle
Nutrients
Organs
perfusion
Polyethylene glycol
Printing, Three-Dimensional - instrumentation
Smooth muscle
Three dimensional printing
Tissue engineering
Tissue Scaffolds
Trachea
Urinary Bladder
Urothelium
Vascular tissue
Well construction
Title Digitally Tunable Microfluidic Bioprinting of Multilayered Cannular Tissues
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201706913
https://www.ncbi.nlm.nih.gov/pubmed/30136318
https://www.proquest.com/docview/2123876318
https://www.proquest.com/docview/2092533155
https://pubmed.ncbi.nlm.nih.gov/PMC6467482
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMcfspMe_P2j_iKC4Klbf6btcTplKPMgE7yVJE20ODpx62H-9ealW7cpIuhtpQldm_ea70tfPg_gXFEnYoHidiidWAcoCbWZ0oErpZkMPEZjynFBv3dPu4_B7VP4tLCLv-JD1Atu6BnmfY0OzvioNYeGssxwgxD_kpiytZiwharoYc6PQnluYHt-aCc0iGfURsdrLXdfnpW-Sc3vGZOLStZMRTcbwGY3UWWgvDbLMW-Kjy98x__c5SasT3UqaVeGtQUrstiGtQV64Q7cdfJnLDkymJB-abZgkR6m96lBmWe5IJf5EFcNMa-aDBUxW30HbILFQckV7lDWQTXpm4Ef7cLjzXX_qmtPazPYQocgvp0xmTgsYL4OD3ksEEvqME-5QaQFjit81xUyFFKFIoiYo3yRJSyiMvQT_BCoY6Q9aBTDQh4AiXnGhPIjLqkIpGBx6KjQ5a62nojHVFlgz8YmFVNwOdbPGKQVctlL8SGl9UOy4KJu_1YhO35seTwb6nTquqMU53LE9LmxBWf1ae10-CWFFXJY6jZO4mmdrLWYBfuVZdSX8pGCZ3pHSzZTN0Cg9_KZIn8xYG9qSr94FnjGJH7592m702vXR4d_6XQEq_p3xfd1j6Exfi_liRZZY35qHOkTt1cfHA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3NbtQwEIBHVTkAh_LfBgoYCcQpbewkTnLgsHSptmy3B7SVegu2Y0NElEXdjdDyVrwKT4TH2aRdKoSE1APHxLbi2DP2jH--AXhpeJCIyEg_1kFqHZSM-8JYx5XzQkdM8JRLXNCfnPDRafT-LD7bgB_dXZiWD9EvuKFmuPEaFRwXpPcvqKGicOAg5L9ktItfPdbLb9Zrm785GtoufsXY4bvpwchfBRbwlbWfQ78QOgtEJELr28hUIVMzEMzQKLGzM1UhpUrHSptYRYkITKiKTCRcx2GGu1gJBoqwo_4NDCOOuP7hhwtiFToEDu8Xxn7Go7TjRAZsf72-6_PgFeP26hnNy7azm_wO78DPrtnaMy9f9pqF3FPffyNK_lftehe2VqY4GbS6cw82dH0fbl8CND6A8bD8hFFVqiWZNu6WGZngCUZTNWVRKvK2nOHCKB4dJzND3G3mSiwx_ik5wEvYlTgnUyfb84dwei1_8wg261mtd4CkshDKhInUXEVaiTQOTEwltQqSyJQbD_xOGHK1YrNjiJAqb6nSLMdOyftO8eB1n_9rSyX5Y87dTrby1eg0z9FcQRIhTT140SfbcQU3i0StZ43NE2TMugLW3PRguxXF_lMhgv5c6WRNSPsMyCxfT6nLz45dzl10G-YBczL4l9rng-Fk0D89_pdCz-HmaDo5zo-PTsZP4JZ93-KM6S5sLs4b_dTalAv5zGkxgY_XLd6_APRgeyo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3NbtQwEIBHVZEQHMo_DS1gJBCntE7iOMmBw9Kwalm2Qmgr9RYcx6ZRo2zV3Qhtn4pX4Y3wOJu0S4WQkHrgmNhWHHvGnvHPNwCvNaeRYDp3Q0Vj46Ak3BXaOK6cF4r5gsc8xwX98SHfP2Ifj8PjNfjR3YVp-RD9ghtqhh2vUcHPCr17CQ0VheUGIf4l8brw1SO1-G6cttm7g9T08BvfH36Y7O27y7gCrjTmc-AWQiVUMBEY1yaPJSI1qfC1xyIzOXsy8DypQql0KFkkqA5kkYiIqzBIcBMrwjgRZtC_xThNMFhE-uUSWIX-gKX7BaGbcBZ3mEjq767Wd3UavGbbXj-iedV0tnPf8B787FqtPfJyutPM8x158RtQ8n9q1vuwsTTEyaDVnAewpuqHcPcKnvERjNLyG8ZUqRZk0tg7ZmSM5xd11ZRFKcn7corLonhwnEw1sXeZK7HA6KdkD69gV-KcTKxkzx7D0Y38zRNYr6e12gQS54WQOohyxSVTUsQh1aGXe0Y9ojzm2gG3k4VMLsnsGCCkylqmtJ9hp2R9pzjwts9_1jJJ_phzuxOtbDk2zTI0VpBD6MUOvOqTzaiCW0WiVtPG5KGJbxwBY2w68LSVxP5TAWL-bOloRUb7DEgsX02pyxNLLuc2to3vgG9F8C-1zwbpeNA_PfuXQi_h9ud0mH06OBxtwR3zumUZe9uwPj9v1HNjUM7zF1aHCXy9aen-Ber3edk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digitally+Tunable+Microfluidic+Bioprinting+of+Multilayered+Cannular+Tissues&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Pi%2C+Qingmeng&rft.au=Maharjan%2C+Sushila&rft.au=Yan%2C+Xiang&rft.au=Liu%2C+Xiao&rft.date=2018-10-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=43&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201706913&rft.externalDBID=10.1002%252Fadma.201706913&rft.externalDocID=ADMA201706913
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon