Digitally Tunable Microfluidic Bioprinting of Multilayered Cannular Tissues
Despite advances in the bioprinting technology, biofabrication of circumferentially multilayered tubular tissues or organs with cellular heterogeneity, such as blood vessels, trachea, intestine, colon, ureter, and urethra, remains a challenge. Herein, a promising multichannel coaxial extrusion syste...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 43; pp. e1706913 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite advances in the bioprinting technology, biofabrication of circumferentially multilayered tubular tissues or organs with cellular heterogeneity, such as blood vessels, trachea, intestine, colon, ureter, and urethra, remains a challenge. Herein, a promising multichannel coaxial extrusion system (MCCES) for microfluidic bioprinting of circumferentially multilayered tubular tissues in a single step, using customized bioinks constituting gelatin methacryloyl, alginate, and eight‐arm poly(ethylene glycol) acrylate with a tripentaerythritol core, is presented. These perfusable cannular constructs can be continuously tuned up from monolayer to triple layers at regular intervals across the length of a bioprinted tube. Using customized bioink and MCCES, bioprinting of several tubular tissue constructs using relevant cell types with adequate biofunctionality including cell viability, proliferation, and differentiation is demonstrated. Specifically, cannular urothelial tissue constructs are bioprinted, using human urothelial cells and human bladder smooth muscle cells, as well as vascular tissue constructs, using human umbilical vein endothelial cells and human smooth muscle cells. These bioprinted cannular tissues can be actively perfused with fluids and nutrients to promote growth and proliferation of the embedded cell types. The fabrication of such tunable and perfusable circumferentially multilayered tissues represents a fundamental step toward creating human cannular tissues.
A multichannel coaxial extrusion system for microfluidic bioprinting of circumferentially multilayered tubular tissues is presented. The fabrication of such tunable and perfusable circumferentially multilayered tissues represents a fundamental step toward creating human cannular tissues. |
---|---|
AbstractList | Despite advances in the bioprinting technology, biofabrication of circumferentially multilayered tubular tissues or organs with cellular heterogeneity, such as blood vessels, trachea, intestine, colon, ureter, and urethra, remains a challenge. Herein, a promising multichannel coaxial extrusion system (MCCES) for microfluidic bioprinting of circumferentially multilayered tubular tissues in a single step, using customized bioinks constituting gelatin methacryloyl, alginate, and eight‐arm poly(ethylene glycol) acrylate with a tripentaerythritol core, is presented. These perfusable cannular constructs can be continuously tuned up from monolayer to triple layers at regular intervals across the length of a bioprinted tube. Using customized bioink and MCCES, bioprinting of several tubular tissue constructs using relevant cell types with adequate biofunctionality including cell viability, proliferation, and differentiation is demonstrated. Specifically, cannular urothelial tissue constructs are bioprinted, using human urothelial cells and human bladder smooth muscle cells, as well as vascular tissue constructs, using human umbilical vein endothelial cells and human smooth muscle cells. These bioprinted cannular tissues can be actively perfused with fluids and nutrients to promote growth and proliferation of the embedded cell types. The fabrication of such tunable and perfusable circumferentially multilayered tissues represents a fundamental step toward creating human cannular tissues. Despite advances in the bioprinting technology, biofabrication of circumferentially multilayered tubular tissues or organs with cellular heterogeneity, such as blood vessels, trachea, intestine, colon, ureter, and urethra, remains a challenge. Herein, a promising multichannel coaxial extrusion system (MCCES) for microfluidic bioprinting of circumferentially multilayered tubular tissues in a single step, using customized bioinks constituting gelatin methacryloyl, alginate, and eight-arm poly(ethylene glycol) acrylate with a tripentaerythritol core, is presented. These perfusable cannular constructs can be continuously tuned up from monolayer to triple layers at regular intervals across the length of a bioprinted tube. Using customized bioink and MCCES, bioprinting of several tubular tissue constructs using relevant cell types with adequate biofunctionality including cell viability, proliferation, and differentiation is demonstrated. Specifically, cannular urothelial tissue constructs are bioprinted, using human urothelial cells and human bladder smooth muscle cells, as well as vascular tissue constructs, using human umbilical vein endothelial cells and human smooth muscle cells. These bioprinted cannular tissues can be actively perfused with fluids and nutrients to promote growth and proliferation of the embedded cell types. The fabrication of such tunable and perfusable circumferentially multilayered tissues represents a fundamental step toward creating human cannular tissues.Despite advances in the bioprinting technology, biofabrication of circumferentially multilayered tubular tissues or organs with cellular heterogeneity, such as blood vessels, trachea, intestine, colon, ureter, and urethra, remains a challenge. Herein, a promising multichannel coaxial extrusion system (MCCES) for microfluidic bioprinting of circumferentially multilayered tubular tissues in a single step, using customized bioinks constituting gelatin methacryloyl, alginate, and eight-arm poly(ethylene glycol) acrylate with a tripentaerythritol core, is presented. These perfusable cannular constructs can be continuously tuned up from monolayer to triple layers at regular intervals across the length of a bioprinted tube. Using customized bioink and MCCES, bioprinting of several tubular tissue constructs using relevant cell types with adequate biofunctionality including cell viability, proliferation, and differentiation is demonstrated. Specifically, cannular urothelial tissue constructs are bioprinted, using human urothelial cells and human bladder smooth muscle cells, as well as vascular tissue constructs, using human umbilical vein endothelial cells and human smooth muscle cells. These bioprinted cannular tissues can be actively perfused with fluids and nutrients to promote growth and proliferation of the embedded cell types. The fabrication of such tunable and perfusable circumferentially multilayered tissues represents a fundamental step toward creating human cannular tissues. Despite advances in the bioprinting technology, biofabrication of circumferentially multilayered tubular tissues or organs with cellular heterogeneity, such as blood vessels, trachea, intestine, colon, ureter, and urethra, remains a challenge. Herein, a promising multichannel coaxial extrusion system (MCCES) for microfluidic bioprinting of circumferentially multilayered tubular tissues in a single step, using customized bioinks constituting gelatin methacryloyl, alginate, and eight-arm poly(ethylene glycol) acrylate with a tripentaerythritol core, is presented. These perfusable cannular constructs can be continuously tuned up from monolayer to triple layers at regular intervals across the length of a bioprinted tube. Using customized bioink and MCCES, bioprinting of several tubular tissue constructs using relevant cell types with adequate biofunctionality including cell viability, proliferation, and differentiation is demonstrated. Specifically, cannular urothelial tissue constructs are bioprinted, using human urothelial cells and human bladder smooth muscle cells, as well as vascular tissue constructs, using human umbilical vein endothelial cells and human smooth muscle cells. These bioprinted cannular tissues can be actively perfused with fluids and nutrients to promote growth and proliferation of the embedded cell types. The fabrication of such tunable and perfusable circumferentially multilayered tissues represents a fundamental step toward creating human cannular tissues. Despite advances in the bioprinting technology, biofabrication of circumferentially multilayered tubular tissues or organs with cellular heterogeneity, such as blood vessels, trachea, intestine, colon, ureter, and urethra, remains a challenge. Herein, a promising multichannel coaxial extrusion system (MCCES) for microfluidic bioprinting of circumferentially multilayered tubular tissues in a single step, using customized bioinks constituting gelatin methacryloyl, alginate, and eight‐arm poly(ethylene glycol) acrylate with a tripentaerythritol core, is presented. These perfusable cannular constructs can be continuously tuned up from monolayer to triple layers at regular intervals across the length of a bioprinted tube. Using customized bioink and MCCES, bioprinting of several tubular tissue constructs using relevant cell types with adequate biofunctionality including cell viability, proliferation, and differentiation is demonstrated. Specifically, cannular urothelial tissue constructs are bioprinted, using human urothelial cells and human bladder smooth muscle cells, as well as vascular tissue constructs, using human umbilical vein endothelial cells and human smooth muscle cells. These bioprinted cannular tissues can be actively perfused with fluids and nutrients to promote growth and proliferation of the embedded cell types. The fabrication of such tunable and perfusable circumferentially multilayered tissues represents a fundamental step toward creating human cannular tissues. A multichannel coaxial extrusion system for microfluidic bioprinting of circumferentially multilayered tubular tissues is presented. The fabrication of such tunable and perfusable circumferentially multilayered tissues represents a fundamental step toward creating human cannular tissues. |
Author | Maharjan, Sushila Yan, Xiang Cheng, Haibo Genderen, Anne Metje Jia, Weitao Liu, Xiao Parra‐Saldivar, Roberto Robledo‐Padilla, Felipe Khademhosseini, Ali Zhang, Yu Shrike Pi, Qingmeng Xu, Changliang Hou, Xu Singh, Bijay Hassan, Shabir Hu, Ning Kang, Jian |
Author_xml | – sequence: 1 givenname: Qingmeng surname: Pi fullname: Pi, Qingmeng organization: Shanghai Jiao Tong University School of Medicine – sequence: 2 givenname: Sushila surname: Maharjan fullname: Maharjan, Sushila organization: Research Institute for Bioscience and Biotechnology – sequence: 3 givenname: Xiang surname: Yan fullname: Yan, Xiang organization: Nanjing Gulou Hospital Group – sequence: 4 givenname: Xiao surname: Liu fullname: Liu, Xiao organization: Beihang University – sequence: 5 givenname: Bijay surname: Singh fullname: Singh, Bijay organization: Harvard University – sequence: 6 givenname: Anne Metje surname: Genderen fullname: Genderen, Anne Metje organization: Massachusetts Institute of Technology – sequence: 7 givenname: Felipe surname: Robledo‐Padilla fullname: Robledo‐Padilla, Felipe organization: ENCIT – Science Engineering and Technology School Tecnologico de Monterrey – sequence: 8 givenname: Roberto surname: Parra‐Saldivar fullname: Parra‐Saldivar, Roberto organization: ENCIT – Science Engineering and Technology School Tecnologico de Monterrey – sequence: 9 givenname: Ning surname: Hu fullname: Hu, Ning organization: Zhejiang University – sequence: 10 givenname: Weitao surname: Jia fullname: Jia, Weitao organization: Shanghai Jiaotong University – sequence: 11 givenname: Changliang surname: Xu fullname: Xu, Changliang organization: Nanjing University of Chinese Medicine – sequence: 12 givenname: Jian surname: Kang fullname: Kang, Jian organization: Massachusetts Institute of Technology – sequence: 13 givenname: Shabir surname: Hassan fullname: Hassan, Shabir organization: Massachusetts Institute of Technology – sequence: 14 givenname: Haibo surname: Cheng fullname: Cheng, Haibo organization: Nanjing University of Chinese Medicine – sequence: 15 givenname: Xu surname: Hou fullname: Hou, Xu organization: Xiamen University – sequence: 16 givenname: Ali orcidid: 0000-0001-6322-8852 surname: Khademhosseini fullname: Khademhosseini, Ali email: khademh@ucla.edu organization: Konkuk University – sequence: 17 givenname: Yu Shrike surname: Zhang fullname: Zhang, Yu Shrike email: yszhang@research.bwh.harvard.edu organization: Massachusetts Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30136318$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1vEzEYhC3UiqaFK0e0EhcuG15_rdcXpJDSgtqol3C2HK83uHLsYu-C8u_xKm2BSqgnHzwzfjxzio5CDBahNxjmGIB80N1OzwlgAY3E9AWaYU5wzUDyIzQDSXktG9aeoNOcbwFANtC8RCcUMG0obmfo6txt3aC931frMeiNt9XKmRR7P7rOmeqTi3fJhcGFbRX7ajX6wXm9t8l21VKHMHqdqrXLebT5FTrutc_29f15hr5dfF4vv9TXN5dfl4vr2nApaN1pK0EzTUGyTWsKVAua9JgJKgU2FGNjubE9N0xo6KnppBaN5bTAAxGcnqGPh9y7cbOznbFhSNqrwrnTaa-idurfm-C-q238qRrWCNaSEvD-PiDFHwV8UDuXjfVeBxvHrAhIwinFfHrr3RPpbRxTKN9TBBPaiqnGonr7N9EjykPPRcAOglJtzsn2ypTWBxcnQOcVBjXNqaY51eOcxTZ_YntI_q9BHgy_nLf7Z9Rqcb5a_PH-BjpqsnU |
CitedBy_id | crossref_primary_10_1126_sciadv_abq6900 crossref_primary_10_1088_1758_5090_ac5e12 crossref_primary_10_1039_C9TB00185A crossref_primary_10_1088_1758_5090_ab7e74 crossref_primary_10_1002_macp_202100451 crossref_primary_10_1016_j_mtadv_2021_100160 crossref_primary_10_1002_adma_202200352 crossref_primary_10_1109_MNANO_2020_2966065 crossref_primary_10_1002_adhm_202102411 crossref_primary_10_1002_adhm_202304569 crossref_primary_10_1021_acs_chemrev_0c00027 crossref_primary_10_1021_accountsmr_2c00026 crossref_primary_10_1088_1758_5090_ac25ca crossref_primary_10_1088_2516_1091_ac7833 crossref_primary_10_1109_TNB_2019_2940258 crossref_primary_10_1002_cjoc_202300167 crossref_primary_10_1557_s43578_021_00254_x crossref_primary_10_1002_admt_202201778 crossref_primary_10_3389_fbiom_2023_1279061 crossref_primary_10_1016_j_mtbio_2019_100008 crossref_primary_10_2174_1381612824666180416114325 crossref_primary_10_1088_1748_605X_acf25a crossref_primary_10_1063_1_5099306 crossref_primary_10_1002_adhm_202101836 crossref_primary_10_1016_j_matt_2020_10_022 crossref_primary_10_1146_annurev_bioeng_082120_042814 crossref_primary_10_1002_adma_201903975 crossref_primary_10_1007_s42242_018_0028_8 crossref_primary_10_1088_1748_605X_ab99d2 crossref_primary_10_1088_1758_5090_acf61f crossref_primary_10_1093_nsr_nwz188 crossref_primary_10_1088_1758_5090_abec2c crossref_primary_10_1021_acs_chemmater_0c04400 crossref_primary_10_1002_adhm_202402571 crossref_primary_10_1002_adma_202307686 crossref_primary_10_1002_admt_201900043 crossref_primary_10_1111_cpr_13453 crossref_primary_10_1002_smll_202104309 crossref_primary_10_1002_smll_201805510 crossref_primary_10_1063_5_0034901 crossref_primary_10_1002_sstr_202400323 crossref_primary_10_1073_pnas_2206762120 crossref_primary_10_1016_j_mser_2023_100734 crossref_primary_10_1177_09544089241236265 crossref_primary_10_1063_5_0083673 crossref_primary_10_1088_1758_5090_ab2b4d crossref_primary_10_1039_D3BM00159H crossref_primary_10_1088_1758_5090_ad0b3f crossref_primary_10_1002_advs_201903553 crossref_primary_10_1007_s11426_021_1007_6 crossref_primary_10_1080_09205063_2023_2251781 crossref_primary_10_1002_adma_202307051 crossref_primary_10_1002_adfm_202003740 crossref_primary_10_1002_adfm_201906237 crossref_primary_10_1016_j_cobme_2020_03_002 crossref_primary_10_1002_adhm_202301158 crossref_primary_10_1016_j_scib_2020_06_002 crossref_primary_10_1116_6_0002034 crossref_primary_10_1002_adma_202104730 crossref_primary_10_1159_000519207 crossref_primary_10_1021_acsbiomaterials_9b00676 crossref_primary_10_1039_D0BM00973C crossref_primary_10_3390_gels8050297 crossref_primary_10_1016_j_cej_2022_140550 crossref_primary_10_1021_acs_chemrev_9b00789 crossref_primary_10_1002_adfm_202414625 crossref_primary_10_1002_adma_202108931 crossref_primary_10_1088_1758_5090_acad2c crossref_primary_10_1002_dvdy_385 crossref_primary_10_2217_3dp_2019_0004 crossref_primary_10_1002_adfm_201902834 crossref_primary_10_1007_s42247_024_00678_1 crossref_primary_10_1016_j_pmatsci_2023_101091 crossref_primary_10_1208_s12249_022_02279_9 crossref_primary_10_1073_pnas_1921281117 crossref_primary_10_1631_jzus_A2000261 crossref_primary_10_1088_1758_5090_ab5158 crossref_primary_10_1007_s00345_019_02833_4 crossref_primary_10_1039_D4LC00280F crossref_primary_10_1007_s41745_019_00129_5 crossref_primary_10_1039_D4CS00429A crossref_primary_10_1002_smll_201903798 crossref_primary_10_1002_adfm_202105190 crossref_primary_10_1038_s43586_021_00073_8 crossref_primary_10_1016_j_drudis_2019_03_025 crossref_primary_10_1186_s12951_022_01599_z crossref_primary_10_1088_1758_5090_ab84cc crossref_primary_10_3389_fbioe_2021_761861 crossref_primary_10_3390_md19120708 crossref_primary_10_1021_acsabm_9b00134 crossref_primary_10_1088_2516_1091_ac8a2f crossref_primary_10_3390_ijms232214074 crossref_primary_10_1021_acsbiomaterials_9b00926 crossref_primary_10_1002_adma_201904631 crossref_primary_10_1038_s41467_020_14997_4 crossref_primary_10_3390_polym14091722 crossref_primary_10_1002_jbm_a_37352 crossref_primary_10_1016_j_cej_2021_128723 crossref_primary_10_1039_D0TB01819H crossref_primary_10_1063_5_0177386 crossref_primary_10_1088_2752_5724_ac446b crossref_primary_10_1021_acs_chemrev_0c00077 crossref_primary_10_3390_ma12203449 crossref_primary_10_1002_adfm_202009664 crossref_primary_10_1063_5_0033280 crossref_primary_10_1007_s42242_021_00165_0 crossref_primary_10_1039_D4MH01291G crossref_primary_10_3390_bioengineering10091092 crossref_primary_10_69709_CellEngC_2024_111335 crossref_primary_10_1002_adma_202005944 crossref_primary_10_1088_1758_5090_ad22ed crossref_primary_10_1002_smll_202206108 crossref_primary_10_1007_s10856_020_06440_3 crossref_primary_10_1088_1758_5090_abafc6 crossref_primary_10_1002_adma_201905713 crossref_primary_10_1016_j_ijbiomac_2022_12_148 crossref_primary_10_1088_1758_5090_accd23 crossref_primary_10_3390_biomimetics8010094 crossref_primary_10_1021_acs_chemrev_0c00084 crossref_primary_10_1093_rb_rbac079 crossref_primary_10_1007_s42242_020_00121_4 crossref_primary_10_1063_5_0227692 crossref_primary_10_1002_bit_28516 crossref_primary_10_1002_smsc_202400261 crossref_primary_10_3390_cells12040646 crossref_primary_10_3390_biomimetics9070377 crossref_primary_10_1002_adfm_202000187 crossref_primary_10_1088_1758_5090_ad4c09 crossref_primary_10_1186_s12951_021_01091_0 crossref_primary_10_1002_jbm_a_37694 crossref_primary_10_3390_bioengineering9060242 crossref_primary_10_3389_fbioe_2021_685507 crossref_primary_10_1186_s40580_024_00416_7 crossref_primary_10_1016_j_bprint_2019_e00069 crossref_primary_10_1039_C9LC01184F crossref_primary_10_1002_smll_202310444 crossref_primary_10_1088_2631_7990_ad8739 crossref_primary_10_1186_s12951_021_01000_5 crossref_primary_10_1016_j_msec_2020_111858 crossref_primary_10_1039_D1GC01799C crossref_primary_10_1088_1758_5090_acb107 crossref_primary_10_3390_biom11060787 crossref_primary_10_3390_medicina60010040 crossref_primary_10_1021_acsami_0c21573 crossref_primary_10_1002_adfm_202001485 crossref_primary_10_1002_adhm_202100380 crossref_primary_10_1039_D0TB02069A crossref_primary_10_1002_admt_201901044 crossref_primary_10_3390_molecules27113442 crossref_primary_10_1002_adma_202006582 crossref_primary_10_3390_biomedicines9060589 crossref_primary_10_1002_advs_202100798 crossref_primary_10_1016_j_eng_2020_03_019 crossref_primary_10_1088_1758_5090_ac7c90 crossref_primary_10_1002_adhm_202000721 crossref_primary_10_3390_antib13030061 crossref_primary_10_1002_advs_202001379 crossref_primary_10_1007_s12033_024_01163_0 crossref_primary_10_1002_mabi_202300457 crossref_primary_10_1088_2516_1091_ac631c crossref_primary_10_1002_admt_202000683 crossref_primary_10_1089_ten_tec_2022_0214 crossref_primary_10_1021_acs_biomac_3c01271 crossref_primary_10_3390_ijms23158589 crossref_primary_10_1002_adhm_202100884 crossref_primary_10_1088_1758_5090_ab38ef crossref_primary_10_3390_ijms24010891 crossref_primary_10_1002_adfm_201910811 crossref_primary_10_1016_j_msec_2020_110810 crossref_primary_10_1039_C9SM01945F crossref_primary_10_1002_adhm_201901142 crossref_primary_10_3390_bios12121135 crossref_primary_10_1016_j_bioactmat_2020_08_020 crossref_primary_10_1002_adfm_202310369 crossref_primary_10_1021_acscentsci_9b01097 crossref_primary_10_1002_adhm_202203338 crossref_primary_10_1002_mco2_753 crossref_primary_10_1039_D2NA00021K crossref_primary_10_1002_adma_201806899 crossref_primary_10_1002_advs_202300694 crossref_primary_10_1002_mabi_202100141 crossref_primary_10_1007_s10456_024_09928_6 crossref_primary_10_3389_fbioe_2021_721843 |
Cites_doi | 10.1136/pgmj.2005.042945 10.1038/nbt.2958 10.1007/s10439-016-1612-8 10.1016/S0140-6736(10)62354-9 10.1002/adma.201305506 10.1002/adma.201604983 10.1083/jcb.118.6.1511 10.1002/adhm.201500492 10.1016/j.biomaterials.2015.08.045 10.1038/nprot.2016.123 10.1038/natrevmats.2017.16 10.1039/C6LC00380J 10.1002/adma.201503310 10.1182/blood-2014-06-528406 10.1039/b900804g 10.1021/acsbiomaterials.6b00246 10.1002/adhm.201600636 10.1038/nprot.2013.110 10.1109/TBME.2013.2243912 10.1155/2013/154564 10.1007/s00018-008-8281-1 10.1007/s00467-008-0749-6 10.1016/j.biomaterials.2016.07.038 10.1016/j.biomaterials.2009.09.086 10.1016/j.tibtech.2016.01.002 10.1038/nbt.3413 10.1111/j.1600-6135.2004.0343.x 10.1088/1758-5090/7/4/045011 10.1038/srep29977 10.1007/s00441-003-0745-x 10.1002/bit.25501 10.1016/j.biomaterials.2016.09.003 10.1088/0957-4484/25/14/145101 10.1016/j.actbio.2017.01.036 10.1155/2012/956345 10.1074/jbc.M001857200 10.1115/1.3002759 10.1089/biores.2013.0031 10.1007/s11626-011-9473-9 10.1016/j.actbio.2017.01.035 10.1002/term.2112 10.1007/s11626-008-9116-y 10.1002/adhm.201600505 10.1002/adma.201603612 10.1115/1.4024575 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1002/adma.201706913 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | PMC6467482 30136318 10_1002_adma_201706913 ADMA201706913 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Presidential Early Career Award for Scientists and Engineers – fundername: New England Anti‐Vivisection Society – fundername: National Institutes of Health funderid: AR057837; DE021468; AR068258; AR066193; EB022403; EB021148; HL137193; EB021857; EB024403; K99CA201603 – fundername: Tecnologico de Monterrey and MIT Nanotechnology Program – fundername: American Fund for Alternatives to Animal Research (AFAAR) for Postdoctoral Fellowship – fundername: National Natural Science Foundation of China funderid: 31570947; 21673197; 21621091 – fundername: Natural Science Foundation of Fujian Province of China funderid: 2018J06003 – fundername: CONACYT postdoctoral fellowship funderid: 291018‐173853 – fundername: Young Overseas High‐level Talents Introduction Plan – fundername: 111 Project funderid: B16029 – fundername: Young Overseas High-level Talents Introduction Plan – fundername: NIH HHS grantid: EB021857 – fundername: NIBIB NIH HHS grantid: R01 EB021857 – fundername: China Scholarship Council grantid: 201406235036 – fundername: NIBIB NIH HHS grantid: R21 EB021148 – fundername: NCI NIH HHS grantid: K99 CA201603 – fundername: NIBIB NIH HHS grantid: R01 EB024403 – fundername: NIH HHS grantid: EB022403 – fundername: NIDCR NIH HHS grantid: R01 DE021468 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAHHS AANHP AAYOK AAYXX ABEML ACBWZ ACCFJ ACRPL ACSCC ACYXJ ADNMO ADZOD AEEZP AEQDE AETEA AFFNX AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c5973-dae90a4a3094b8c00980a2f1473971c311ce5cef5c47a0f3cd9a76e5396002753 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Aug 21 14:14:27 EDT 2025 Fri Jul 11 07:05:34 EDT 2025 Fri Jul 25 06:16:31 EDT 2025 Thu Apr 03 06:57:36 EDT 2025 Tue Jul 01 00:44:44 EDT 2025 Thu Apr 24 22:59:27 EDT 2025 Wed Aug 20 07:26:10 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Keywords | bioinks cannular tissues microfluidic bioprinting perfusion coaxial extrusion systems |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5973-dae90a4a3094b8c00980a2f1473971c311ce5cef5c47a0f3cd9a76e5396002753 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6322-8852 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.201706913 |
PMID | 30136318 |
PQID | 2123876318 |
PQPubID | 2045203 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6467482 proquest_miscellaneous_2092533155 proquest_journals_2123876318 pubmed_primary_30136318 crossref_citationtrail_10_1002_adma_201706913 crossref_primary_10_1002_adma_201706913 wiley_primary_10_1002_adma_201706913_ADMA201706913 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-Oct |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-Oct |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 377 2010; 31 2017; 2 2012; 2012 2015; 4 2013; 2 2003; 314 2015; 73 2015; 125 2017; 45 2009 2004; 4 2014; 26 2014; 25 2016; 106 2017; 29 2000; 275 2009; 131 2013; 8 2016; 16 2015; 7 2016; 34 2016; 11 2017; 51 2016; 5 2006; 82 2016; 6 2016; 2 2013; 2013 2017; 11 2015; 112 2017; 57 2013; 60 1992; 118 2008; 23 2013; 135 2017 2016; 110 2008; 65 2008; 44 2012; 48 2016; 28 2014; 32 e_1_2_4_40_1 e_1_2_4_41_1 e_1_2_4_21_1 e_1_2_4_44_1 e_1_2_4_45_1 e_1_2_4_23_1 e_1_2_4_42_1 e_1_2_4_22_1 e_1_2_4_43_1 e_1_2_4_25_1 e_1_2_4_24_1 e_1_2_4_27_1 e_1_2_4_46_1 e_1_2_4_26_1 e_1_2_4_29_1 e_1_2_4_28_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_2_1 e_1_2_4_5_1 e_1_2_4_4_1 e_1_2_4_7_1 e_1_2_4_6_1 e_1_2_4_9_1 e_1_2_4_8_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_14_1 Guan X. (e_1_2_4_20_1) 2017 e_1_2_4_35_1 e_1_2_4_15_1 e_1_2_4_16_1 e_1_2_4_38_1 e_1_2_4_37_1 e_1_2_4_18_1 e_1_2_4_17_1 e_1_2_4_39_1 e_1_2_4_19_1 |
References_xml | – volume: 11 start-page: 3 year: 2017 publication-title: J. Tissue Eng. Regener. Med. – volume: 112 start-page: 1047 year: 2015 publication-title: Biotechnol. Bioeng. – volume: 26 start-page: 3124 year: 2014 publication-title: Adv. Mater. – volume: 110 start-page: 45 year: 2016 publication-title: Biomaterials – volume: 2 start-page: 1710 year: 2016 publication-title: ACS Biomater. Sci. Eng. – volume: 65 start-page: 3756 year: 2008 publication-title: Cell. Mol. Life Sci. – volume: 5 start-page: 2174 year: 2016 publication-title: Adv. Healthcare Mater. – volume: 2 start-page: 374 year: 2013 publication-title: Biores. Open Access – volume: 377 start-page: 1175 year: 2011 publication-title: Lancet – volume: 314 start-page: 15 year: 2003 publication-title: Cell Tissue Res. – volume: 29 start-page: 1604983 year: 2017 publication-title: Adv. Mater. – volume: 44 start-page: 261 year: 2008 publication-title: In Vitro Cell. Dev. Biol.: Anim. – volume: 34 start-page: 312 year: 2016 publication-title: Nat. Biotechnol. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 5 start-page: 2488 year: 2016 publication-title: Adv. Healthcare Mater. – volume: 73 start-page: 254 year: 2015 publication-title: Biomaterials – volume: 23 start-page: 913 year: 2008 publication-title: Pediatr. Nephrol. – volume: 32 start-page: 773 year: 2014 publication-title: Nat. Biotechnol. – volume: 125 start-page: 2019 year: 2015 publication-title: Blood – volume: 7 start-page: 045011 year: 2015 publication-title: Biofabrication – start-page: 2730 year: 2009 publication-title: Chem. Commun. – volume: 131 start-page: 035001 year: 2009 publication-title: J. Biomech. Eng. – volume: 60 start-page: 691 year: 2013 publication-title: IEEE Trans Biomed Eng. – volume: 82 start-page: 489 year: 2006 publication-title: Postgrad. Med. J. – year: 2017 publication-title: Biotechnol. J. – volume: 28 start-page: 677 year: 2016 publication-title: Adv. Mater. – volume: 4 start-page: 2146 year: 2015 publication-title: Adv. Healthcare Mater. – volume: 31 start-page: 621 year: 2010 publication-title: Biomaterials – volume: 2 start-page: 17016 year: 2017 publication-title: Nat. Rev. Mater. – volume: 34 start-page: 394 year: 2016 publication-title: Trends Biotechnol. – volume: 45 start-page: 148 year: 2017 publication-title: Ann. Biomed. Eng. – volume: 11 start-page: 1775 year: 2016 publication-title: Nat. Protoc. – volume: 135 start-page: 091011 year: 2013 publication-title: J. Biomech. Eng. – volume: 57 start-page: 1 year: 2017 publication-title: Acta Biomater. – volume: 118 start-page: 1511 year: 1992 publication-title: J. Cell Biol. – volume: 8 start-page: 1820 year: 2013 publication-title: Nat. Protoc. – volume: 25 start-page: 145101 year: 2014 publication-title: Nanotechnology – volume: 51 start-page: 1 year: 2017 publication-title: Acta Biomater. – volume: 275 start-page: 21435 year: 2000 publication-title: J. Biol. Chem. – volume: 106 start-page: 58 year: 2016 publication-title: Biomaterials – volume: 2013 start-page: 13 year: 2013 publication-title: Sci. World J. – volume: 16 start-page: 4097 year: 2016 publication-title: Lab Chip – volume: 48 start-page: 84 year: 2012 publication-title: In Vitro Cell. Dev. Biol.: Anim. – volume: 4 start-page: 36 year: 2004 publication-title: Am. J. Transplant. – volume: 6 start-page: 29977 year: 2016 publication-title: Sci. Rep. – volume: 2012 start-page: 956345 year: 2012 publication-title: J. Biomed. Biotechnol. – ident: e_1_2_4_31_1 doi: 10.1136/pgmj.2005.042945 – ident: e_1_2_4_1_1 doi: 10.1038/nbt.2958 – ident: e_1_2_4_18_1 doi: 10.1007/s10439-016-1612-8 – ident: e_1_2_4_33_1 doi: 10.1016/S0140-6736(10)62354-9 – ident: e_1_2_4_17_1 doi: 10.1002/adma.201305506 – ident: e_1_2_4_15_1 doi: 10.1002/adma.201604983 – ident: e_1_2_4_41_1 doi: 10.1083/jcb.118.6.1511 – ident: e_1_2_4_28_1 doi: 10.1002/adhm.201500492 – ident: e_1_2_4_23_1 doi: 10.1016/j.biomaterials.2015.08.045 – ident: e_1_2_4_2_1 doi: 10.1038/nprot.2016.123 – ident: e_1_2_4_7_1 doi: 10.1038/natrevmats.2017.16 – ident: e_1_2_4_25_1 doi: 10.1039/C6LC00380J – ident: e_1_2_4_27_1 doi: 10.1002/adma.201503310 – ident: e_1_2_4_42_1 doi: 10.1182/blood-2014-06-528406 – ident: e_1_2_4_16_1 doi: 10.1039/b900804g – ident: e_1_2_4_26_1 doi: 10.1021/acsbiomaterials.6b00246 – ident: e_1_2_4_43_1 doi: 10.1002/adhm.201600636 – ident: e_1_2_4_4_1 doi: 10.1038/nprot.2013.110 – ident: e_1_2_4_3_1 doi: 10.1109/TBME.2013.2243912 – ident: e_1_2_4_30_1 doi: 10.1155/2013/154564 – year: 2017 ident: e_1_2_4_20_1 publication-title: Biotechnol. J. – ident: e_1_2_4_35_1 doi: 10.1007/s00018-008-8281-1 – ident: e_1_2_4_45_1 doi: 10.1007/s00467-008-0749-6 – ident: e_1_2_4_5_1 doi: 10.1016/j.biomaterials.2016.07.038 – ident: e_1_2_4_38_1 doi: 10.1016/j.biomaterials.2009.09.086 – ident: e_1_2_4_19_1 doi: 10.1016/j.tibtech.2016.01.002 – ident: e_1_2_4_6_1 doi: 10.1038/nbt.3413 – ident: e_1_2_4_39_1 doi: 10.1111/j.1600-6135.2004.0343.x – ident: e_1_2_4_14_1 doi: 10.1088/1758-5090/7/4/045011 – ident: e_1_2_4_44_1 doi: 10.1038/srep29977 – ident: e_1_2_4_46_1 doi: 10.1007/s00441-003-0745-x – ident: e_1_2_4_12_1 doi: 10.1002/bit.25501 – ident: e_1_2_4_24_1 doi: 10.1016/j.biomaterials.2016.09.003 – ident: e_1_2_4_29_1 doi: 10.1088/0957-4484/25/14/145101 – ident: e_1_2_4_22_1 doi: 10.1016/j.actbio.2017.01.036 – ident: e_1_2_4_37_1 doi: 10.1155/2012/956345 – ident: e_1_2_4_40_1 doi: 10.1074/jbc.M001857200 – ident: e_1_2_4_11_1 doi: 10.1115/1.3002759 – ident: e_1_2_4_13_1 doi: 10.1089/biores.2013.0031 – ident: e_1_2_4_36_1 doi: 10.1007/s11626-011-9473-9 – ident: e_1_2_4_10_1 doi: 10.1016/j.actbio.2017.01.035 – ident: e_1_2_4_32_1 doi: 10.1002/term.2112 – ident: e_1_2_4_34_1 doi: 10.1007/s11626-008-9116-y – ident: e_1_2_4_8_1 doi: 10.1002/adhm.201600505 – ident: e_1_2_4_21_1 doi: 10.1002/adma.201603612 – ident: e_1_2_4_9_1 doi: 10.1115/1.4024575 |
SSID | ssj0009606 |
Score | 2.6494915 |
Snippet | Despite advances in the bioprinting technology, biofabrication of circumferentially multilayered tubular tissues or organs with cellular heterogeneity, such as... Despite advances in the bioprinting technology, biofabrication of circumferentially multilayered tubular tissues or organs with cellular heterogeneity, such as... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1706913 |
SubjectTerms | Alginates Biocompatible Materials Bioengineering bioinks Bioprinting - instrumentation Bioprinting - methods Bladder Blood Vessel Prosthesis Blood vessels cannular tissues Cell Survival Circumferences coaxial extrusion systems Colon Endothelial cells Extrusion Gelatin Human Umbilical Vein Endothelial Cells Humans Hydrogels Materials science Materials Testing microfluidic bioprinting Microfluidics - instrumentation Muscles Myocytes, Smooth Muscle Nutrients Organs perfusion Polyethylene glycol Printing, Three-Dimensional - instrumentation Smooth muscle Three dimensional printing Tissue engineering Tissue Scaffolds Trachea Urinary Bladder Urothelium Vascular tissue Well construction |
Title | Digitally Tunable Microfluidic Bioprinting of Multilayered Cannular Tissues |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201706913 https://www.ncbi.nlm.nih.gov/pubmed/30136318 https://www.proquest.com/docview/2123876318 https://www.proquest.com/docview/2092533155 https://pubmed.ncbi.nlm.nih.gov/PMC6467482 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMcfspMe_P2j_iKC4Klbf6btcTplKPMgE7yVJE20ODpx62H-9ealW7cpIuhtpQldm_ea70tfPg_gXFEnYoHidiidWAcoCbWZ0oErpZkMPEZjynFBv3dPu4_B7VP4tLCLv-JD1Atu6BnmfY0OzvioNYeGssxwgxD_kpiytZiwharoYc6PQnluYHt-aCc0iGfURsdrLXdfnpW-Sc3vGZOLStZMRTcbwGY3UWWgvDbLMW-Kjy98x__c5SasT3UqaVeGtQUrstiGtQV64Q7cdfJnLDkymJB-abZgkR6m96lBmWe5IJf5EFcNMa-aDBUxW30HbILFQckV7lDWQTXpm4Ef7cLjzXX_qmtPazPYQocgvp0xmTgsYL4OD3ksEEvqME-5QaQFjit81xUyFFKFIoiYo3yRJSyiMvQT_BCoY6Q9aBTDQh4AiXnGhPIjLqkIpGBx6KjQ5a62nojHVFlgz8YmFVNwOdbPGKQVctlL8SGl9UOy4KJu_1YhO35seTwb6nTquqMU53LE9LmxBWf1ae10-CWFFXJY6jZO4mmdrLWYBfuVZdSX8pGCZ3pHSzZTN0Cg9_KZIn8xYG9qSr94FnjGJH7592m702vXR4d_6XQEq_p3xfd1j6Exfi_liRZZY35qHOkTt1cfHA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3NbtQwEIBHVTkAh_LfBgoYCcQpbewkTnLgsHSptmy3B7SVegu2Y0NElEXdjdDyVrwKT4TH2aRdKoSE1APHxLbi2DP2jH--AXhpeJCIyEg_1kFqHZSM-8JYx5XzQkdM8JRLXNCfnPDRafT-LD7bgB_dXZiWD9EvuKFmuPEaFRwXpPcvqKGicOAg5L9ktItfPdbLb9Zrm785GtoufsXY4bvpwchfBRbwlbWfQ78QOgtEJELr28hUIVMzEMzQKLGzM1UhpUrHSptYRYkITKiKTCRcx2GGu1gJBoqwo_4NDCOOuP7hhwtiFToEDu8Xxn7Go7TjRAZsf72-6_PgFeP26hnNy7azm_wO78DPrtnaMy9f9pqF3FPffyNK_lftehe2VqY4GbS6cw82dH0fbl8CND6A8bD8hFFVqiWZNu6WGZngCUZTNWVRKvK2nOHCKB4dJzND3G3mSiwx_ik5wEvYlTgnUyfb84dwei1_8wg261mtd4CkshDKhInUXEVaiTQOTEwltQqSyJQbD_xOGHK1YrNjiJAqb6nSLMdOyftO8eB1n_9rSyX5Y87dTrby1eg0z9FcQRIhTT140SfbcQU3i0StZ43NE2TMugLW3PRguxXF_lMhgv5c6WRNSPsMyCxfT6nLz45dzl10G-YBczL4l9rng-Fk0D89_pdCz-HmaDo5zo-PTsZP4JZ93-KM6S5sLs4b_dTalAv5zGkxgY_XLd6_APRgeyo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3NbtQwEIBHVZEQHMo_DS1gJBCntE7iOMmBw9Kwalm2Qmgr9RYcx6ZRo2zV3Qhtn4pX4Y3wOJu0S4WQkHrgmNhWHHvGnvHPNwCvNaeRYDp3Q0Vj46Ak3BXaOK6cF4r5gsc8xwX98SHfP2Ifj8PjNfjR3YVp-RD9ghtqhh2vUcHPCr17CQ0VheUGIf4l8brw1SO1-G6cttm7g9T08BvfH36Y7O27y7gCrjTmc-AWQiVUMBEY1yaPJSI1qfC1xyIzOXsy8DypQql0KFkkqA5kkYiIqzBIcBMrwjgRZtC_xThNMFhE-uUSWIX-gKX7BaGbcBZ3mEjq767Wd3UavGbbXj-iedV0tnPf8B787FqtPfJyutPM8x158RtQ8n9q1vuwsTTEyaDVnAewpuqHcPcKnvERjNLyG8ZUqRZk0tg7ZmSM5xd11ZRFKcn7corLonhwnEw1sXeZK7HA6KdkD69gV-KcTKxkzx7D0Y38zRNYr6e12gQS54WQOohyxSVTUsQh1aGXe0Y9ojzm2gG3k4VMLsnsGCCkylqmtJ9hp2R9pzjwts9_1jJJ_phzuxOtbDk2zTI0VpBD6MUOvOqTzaiCW0WiVtPG5KGJbxwBY2w68LSVxP5TAWL-bOloRUb7DEgsX02pyxNLLuc2to3vgG9F8C-1zwbpeNA_PfuXQi_h9ud0mH06OBxtwR3zumUZe9uwPj9v1HNjUM7zF1aHCXy9aen-Ber3edk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digitally+Tunable+Microfluidic+Bioprinting+of+Multilayered+Cannular+Tissues&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Pi%2C+Qingmeng&rft.au=Maharjan%2C+Sushila&rft.au=Yan%2C+Xiang&rft.au=Liu%2C+Xiao&rft.date=2018-10-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=43&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201706913&rft.externalDBID=10.1002%252Fadma.201706913&rft.externalDocID=ADMA201706913 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |