Centrifugal Drive onto Local Inhibitory Interneurons of the Olfactory Bulb
The olfactory bulb is known to receive signals from sensory neurons and to convey them to higher processing centers. However, in addition to relaying sensory information to the cortex, the olfactory bulb is actively involved in sensory information processing. Hence, olfactory sensory inputs generate...
Saved in:
Published in | Annals of the New York Academy of Sciences Vol. 1170; no. 1; pp. 239 - 254 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Malden, USA
Blackwell Publishing Inc
01.07.2009
|
Subjects | |
Online Access | Get full text |
ISSN | 0077-8923 1749-6632 1749-6632 1930-6547 |
DOI | 10.1111/j.1749-6632.2009.03913.x |
Cover
Loading…
Abstract | The olfactory bulb is known to receive signals from sensory neurons and to convey them to higher processing centers. However, in addition to relaying sensory information to the cortex, the olfactory bulb is actively involved in sensory information processing. Hence, olfactory sensory inputs generate a reproducible spatial pattern of restricted activation in the glomerular layer that is subsequently transformed into highly distributed patterns by lateral interactions between output relay neurons and diverse types of local interneurons. Odor representation is thus highly dynamic and temporally orchestrated, right from the first central relay of the olfactory system. This major function of the olfactory bulb is subject to extensive local and extrinsic synaptic influences. The external (or centrifugal) inputs include the dense innervations preferentially targeting the granule cells of the olfactory bulb. The continuous arrival of newly generated neurons in the olfactory bulb of adults provides another source of plasticity influencing the olfactory circuitry. This review deals with the neuromodulation of granule cell activity and of the continuous recruitment of these cells throughout life. |
---|---|
AbstractList | The olfactory bulb is known to receive signals from sensory neurons and to convey them to higher processing centers. However, in addition to relaying sensory information to the cortex, the olfactory bulb is actively involved in sensory information processing. Hence, olfactory sensory inputs generate a reproducible spatial pattern of restricted activation in the glomerular layer that is subsequently transformed into highly distributed patterns by lateral interactions between output relay neurons and diverse types of local interneurons. Odor representation is thus highly dynamic and temporally orchestrated, right from the first central relay of the olfactory system. This major function of the olfactory bulb is subject to extensive local and extrinsic synaptic influences. The external (or centrifugal) inputs include the dense innervations preferentially targeting the granule cells of the olfactory bulb. The continuous arrival of newly generated neurons in the olfactory bulb of adults provides another source of plasticity influencing the olfactory circuitry. This review deals with the neuromodulation of granule cell activity and of the continuous recruitment of these cells throughout life. The olfactory bulb is known to receive signals from sensory neurons and to convey them to higher processing centers. However, in addition to relaying sensory information to the cortex, the olfactory bulb is actively involved in sensory information processing. Hence, olfactory sensory inputs generate a reproducible spatial pattern of restricted activation in the glomerular layer that is subsequently transformed into highly distributed patterns by lateral interactions between output relay neurons and diverse types of local interneurons. Odor representation is thus highly dynamic and temporally orchestrated, right from the first central relay of the olfactory system. This major function of the olfactory bulb is subject to extensive local and extrinsic synaptic influences. The external (or centrifugal) inputs include the dense innervations preferentially targeting the granule cells of the olfactory bulb. The continuous arrival of newly generated neurons in the olfactory bulb of adults provides another source of plasticity influencing the olfactory circuitry. This review deals with the neuromodulation of granule cell activity and of the continuous recruitment of these cells throughout life.The olfactory bulb is known to receive signals from sensory neurons and to convey them to higher processing centers. However, in addition to relaying sensory information to the cortex, the olfactory bulb is actively involved in sensory information processing. Hence, olfactory sensory inputs generate a reproducible spatial pattern of restricted activation in the glomerular layer that is subsequently transformed into highly distributed patterns by lateral interactions between output relay neurons and diverse types of local interneurons. Odor representation is thus highly dynamic and temporally orchestrated, right from the first central relay of the olfactory system. This major function of the olfactory bulb is subject to extensive local and extrinsic synaptic influences. The external (or centrifugal) inputs include the dense innervations preferentially targeting the granule cells of the olfactory bulb. The continuous arrival of newly generated neurons in the olfactory bulb of adults provides another source of plasticity influencing the olfactory circuitry. This review deals with the neuromodulation of granule cell activity and of the continuous recruitment of these cells throughout life. |
Author | Mouret, Aurélie Lledo, Pierre-Marie Murray, Kerren |
Author_xml | – sequence: 1 givenname: Aurélie surname: Mouret fullname: Mouret, Aurélie organization: Laboratory for Perception and Memory, Institut Pasteur, CNRS, Paris, France – sequence: 2 givenname: Kerren surname: Murray fullname: Murray, Kerren organization: Laboratory for Perception and Memory, Institut Pasteur, CNRS, Paris, France – sequence: 3 givenname: Pierre-Marie surname: Lledo fullname: Lledo, Pierre-Marie organization: Laboratory for Perception and Memory, Institut Pasteur, CNRS, Paris, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19686142$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkjtv2zAUhYkgQeKk-QuFpm5S-ZD4WFqkTvOC4Qx9BJ0IiqIaurKYklRj__vQduKhi82FF7zfPSR4zik47F1vAMgQLFBaH2cFYqXIKSW4wBCKAhKBSLE4AKNt4xCMIGQs5wKTE3AawgxChHnJjsEJEpRTVOIRuBubPnrbDr9Vl116-89kro8umzidDm77R1vb6PwyldH43gze9SFzbRYfTXbftUqvu1-Grn4HjlrVBXP-up-BH1dfv49v8sn99e34YpLrSjCSk4qbEjeaNAyXgraMsBZSbtK7oda10q1qoFZ1Q6EwZSmEwophzgSCWAukyRn4sNF98u7vYEKUcxu06TrVGzcESVmVWCp2gqRkBENGdoIJ4pRXcC8w_THeB2SMoiqB71_BoZ6bRj55O1d-Kd8cSsCnDaC9C8GbVmobVbTJJa9sJxGUq0jImVw5L1fOy1Uk5DoScpEE-H8C2zt2j37ejD7bziz3npPTXxff1nVSyDcKNkSz2Coo_yfZRFglH6bX8ioF4ef0kkhBXgAE99tb |
CitedBy_id | crossref_primary_10_1016_j_neuroscience_2009_12_050 crossref_primary_10_1016_j_tics_2010_04_003 crossref_primary_10_1523_JNEUROSCI_2336_13_2014 crossref_primary_10_3389_fncir_2024_1467203 crossref_primary_10_1242_dev_123943 crossref_primary_10_1016_j_neuroscience_2012_12_014 crossref_primary_10_1146_annurev_physiol_030212_183731 crossref_primary_10_1016_j_celrep_2012_10_008 crossref_primary_10_1111_ejn_13490 crossref_primary_10_1152_jn_00090_2018 crossref_primary_10_1152_jn_00988_2015 crossref_primary_10_1016_j_tins_2010_09_006 crossref_primary_10_1007_s00441_010_0964_x crossref_primary_10_1111_j_1460_9568_2011_07605_x crossref_primary_10_1152_jn_00446_2010 crossref_primary_10_3389_fncel_2017_00424 crossref_primary_10_1073_pnas_1404991111 crossref_primary_10_1002_jnr_23054 crossref_primary_10_3389_fnins_2014_00333 crossref_primary_10_1038_nn_3108 crossref_primary_10_1038_nn_3669 crossref_primary_10_4103_NRR_NRR_D_24_00312 crossref_primary_10_1111_nan_12337 crossref_primary_10_1016_j_tria_2020_100074 crossref_primary_10_1016_j_neurobiolaging_2017_09_036 crossref_primary_10_1007_s12035_018_1341_0 crossref_primary_10_1523_JNEUROSCI_3559_17_2018 crossref_primary_10_3389_fnana_2015_00004 crossref_primary_10_1007_s00018_013_1262_z crossref_primary_10_1016_j_expneurol_2013_03_020 |
Cites_doi | 10.1016/0361-9230(84)90143-6 10.1016/j.tins.2005.10.004 10.1523/JNEUROSCI.4746-04.2005 10.1523/JNEUROSCI.01-08-00887.1981 10.1002/cne.21396 10.1007/s10827-007-0063-5 10.1016/S0031-9384(02)00895-8 10.1523/JNEUROSCI.5570-03.2004 10.1037/0735-7044.114.5.957 10.1523/JNEUROSCI.4605-05.2006 10.1146/annurev.ne.14.030191.002321 10.1037/0735-7044.100.4.585 10.1038/nn1048 10.1097/01.wnr.0000134988.51310.c3 10.1002/cne.901370404 10.1016/0006-8993(95)00280-4 10.1002/cne.902260305 10.1016/0006-8993(94)90038-8 10.1126/science.274.5289.976 10.1038/nn1522 10.1523/JNEUROSCI.2961-07.2007 10.1523/JNEUROSCI.23-20-07551.2003 10.1111/j.1471-4159.2006.04229.x 10.1002/cne.901780408 10.1152/jn.00212.2003 10.1073/pnas.0701846104 10.1111/j.1365-2443.2006.01010.x 10.1016/S0361-9230(99)00055-6 10.1523/JNEUROSCI.20-24-09104.2000 10.1016/S0166-2236(03)00228-5 10.1073/pnas.0403361101 10.1523/JNEUROSCI.1419-05.2006 10.1063/1.1596071 10.1111/j.1749-6632.2009.03882.x 10.1016/0306-4522(85)90258-1 10.1038/nn1292 10.1523/JNEUROSCI.2633-06.2006 10.1016/0163-1047(93)90257-I 10.1523/JNEUROSCI.3433-03.2004 10.1016/j.neuroscience.2004.10.034 10.1002/cne.902850305 10.1038/nrn1867 10.1111/j.1460-9568.2006.05212.x 10.1007/BF00442821 10.1111/j.1460-9568.2008.06316.x 10.1111/j.1460-9568.2008.06101.x 10.1016/j.neuron.2006.02.019 10.1101/lm.606407 10.1002/jnr.20116 10.1523/JNEUROSCI.12-10-03985.1992 10.1002/cne.903040310 10.1111/j.1749-6632.2009.04018.x 10.1016/j.expneurol.2005.03.004 10.1113/jphysiol.1982.sp014187 10.1016/S0006-8993(97)01371-1 10.1037/0735-7044.115.2.314 10.1093/acprof:oso/9780195159561.003.0005 10.1016/j.semcdb.2006.04.006 10.1523/JNEUROSCI.23-17-06946.2003 10.1523/JNEUROSCI.11-06-01837.1991 10.1002/cne.902030310 10.1111/j.1460-9568.2008.06170.x 10.1523/JNEUROSCI.22-07-02679.2002 10.1523/JNEUROSCI.4630-06.2007 10.1023/A:1008895429790 10.1101/lm.54803 10.1016/j.semcdb.2006.04.009 10.1037/0735-7044.104.3.464 10.1242/jcs.7.1.125 10.1073/pnas.0503027102 10.1016/S0896-6273(00)81013-2 10.1016/0361-9230(84)90148-5 10.1016/0006-8993(83)90009-4 10.1037/0735-7044.115.4.826 10.1523/JNEUROSCI.12-10-03992.1992 10.1016/j.neuron.2005.11.038 10.1016/0165-3806(88)90202-7 10.1523/JNEUROSCI.0884-06.2006 10.1126/science.286.5440.711 10.1152/jn.01141.2005 10.1037/0735-7044.114.1.32 10.1002/cne.902160305 10.1002/cne.902250404 10.1016/j.semcdb.2006.04.011 10.1101/lm.66404 10.1016/j.brainresrev.2007.03.005 10.1523/JNEUROSCI.22-02-j0005.2002 10.1523/JNEUROSCI.07-10-03016.1987 10.1523/JNEUROSCI.18-17-06790.1998 10.1016/S0893-6080(02)00061-8 10.1111/j.1460-9568.2006.04711.x 10.1152/physrev.00008.2004 10.1126/science.256.5058.833 10.1073/pnas.92.8.3371 10.1002/(SICI)1097-4695(199605)30:1<123::AID-NEU11>3.0.CO;2-N 10.1152/jn.00823.2006 10.1093/chemse/bji055 10.1523/JNEUROSCI.19-21-09180.1999 10.1016/S0306-4522(02)00757-1 10.1152/jn.00887.2002 10.1016/S0896-6273(00)81065-X 10.1146/annurev.neuro.24.1.263 10.1111/j.1749-6632.2009.03881.x 10.1016/j.tins.2005.03.005 10.1016/0361-9230(94)90159-7 10.1093/chemse/bjh137 10.1016/S0306-4522(98)00437-0 10.1038/nrn964 10.1016/0306-4522(83)90206-3 10.1002/cne.902190308 10.1152/jn.1981.46.3.649 10.1046/j.1460-9568.2003.02445.x 10.1002/cne.902030311 10.1073/pnas.021445798 10.1016/0306-4522(94)90396-4 10.1073/pnas.0406082102 10.1242/jcs.7.1.157 10.1016/0014-4886(66)90023-9 10.1016/j.neuron.2005.09.032 10.1038/264705a0 10.1016/S0959-4388(02)00348-3 10.1038/14801 10.1002/cne.902430405 10.1126/science.2147078 10.1111/j.1460-9568.2006.05235.x 10.1523/JNEUROSCI.20-13-05124.2000 10.1037/0735-7044.108.2.317 10.1002/cne.901810202 10.1523/JNEUROSCI.2954-08.2008 10.1002/dneu.20389 10.1523/JNEUROSCI.4768-05.2006 10.1152/jn.2001.86.5.2173 10.1037/0735-7044.107.1.72 10.1523/JNEUROSCI.09-11-03998.1989 10.1016/0306-4522(92)90496-O 10.1016/S0031-9384(98)00238-8 10.1213/01.ane.0000205752.00303.94 10.1523/JNEUROSCI.4578-03.2004 |
ContentType | Journal Article |
Copyright | 2009 New York Academy of Sciences |
Copyright_xml | – notice: 2009 New York Academy of Sciences |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 8FD FR3 P64 7SP 7U5 L7M 7X8 |
DOI | 10.1111/j.1749-6632.2009.03913.x |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Chemoreception Abstracts Engineering Research Database Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts MEDLINE - Academic |
DatabaseTitleList | Chemoreception Abstracts Chemoreception Abstracts Chemoreception Abstracts Solid State and Superconductivity Abstracts MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1749-6632 1930-6547 |
EndPage | 254 |
ExternalDocumentID | 19686142 10_1111_j_1749_6632_2009_03913_x NYAS03913 ark_67375_WNG_F724VND3_9 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --Z -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1CY 1OB 1OC 23M 31~ 33P 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 692 6J9 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAMDK AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOJD ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AELAQ AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFSWV AFZJQ AHBTC AHEFC AHMBA AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG CO8 COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD EMOBN ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IH2 IX1 J0M K48 L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OHT OIG OK1 OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RAG RIWAO RJQFR ROL RX1 S10 SAMSI SJN SUPJJ SV3 TEORI TUS UB1 UPT V8K VH1 W8V W99 WBKPD WH7 WHWMO WIH WIK WOHZO WQJ WRC WUP WVDHM WXSBR X7M XG1 YBU YOC YSK ZGI ZKB ZXP ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADXHL AEYWJ AGHNM AGQPQ AGYGG AHDLI CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QR 7TK 8FD FR3 P64 7SP 7U5 L7M 7X8 |
ID | FETCH-LOGICAL-c5973-358e42dc3d72496f737f068e7490ccbacfad0cabd609e4499a2a72879102c91c3 |
IEDL.DBID | DR2 |
ISSN | 0077-8923 1749-6632 |
IngestDate | Thu Jul 10 18:54:20 EDT 2025 Thu Jul 10 22:54:16 EDT 2025 Fri Jul 11 12:25:44 EDT 2025 Thu Jul 10 16:49:31 EDT 2025 Fri Jul 11 08:51:07 EDT 2025 Mon Jul 21 05:56:25 EDT 2025 Tue Jul 01 03:48:42 EDT 2025 Thu Apr 24 23:09:29 EDT 2025 Wed Jan 22 16:31:52 EST 2025 Wed Oct 30 09:56:15 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5973-358e42dc3d72496f737f068e7490ccbacfad0cabd609e4499a2a72879102c91c3 |
Notes | istex:F22ACF2AC03B3746DF9B1E0BB2F2F40DF5471AEC ArticleID:NYAS03913 ark:/67375/WNG-F724VND3-9 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 ObjectType-Review-3 |
PMID | 19686142 |
PQID | 20777615 |
PQPubID | 23462 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_67591069 proquest_miscellaneous_34732073 proquest_miscellaneous_20786850 proquest_miscellaneous_20781282 proquest_miscellaneous_20777615 pubmed_primary_19686142 crossref_citationtrail_10_1111_j_1749_6632_2009_03913_x crossref_primary_10_1111_j_1749_6632_2009_03913_x wiley_primary_10_1111_j_1749_6632_2009_03913_x_NYAS03913 istex_primary_ark_67375_WNG_F724VND3_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2009 |
PublicationDateYYYYMMDD | 2009-07-01 |
PublicationDate_xml | – month: 07 year: 2009 text: July 2009 |
PublicationDecade | 2000 |
PublicationPlace | Malden, USA |
PublicationPlace_xml | – name: Malden, USA – name: United States |
PublicationTitle | Annals of the New York Academy of Sciences |
PublicationTitleAlternate | Ann N Y Acad Sci |
PublicationYear | 2009 |
Publisher | Blackwell Publishing Inc |
Publisher_xml | – name: Blackwell Publishing Inc |
References | Halabisky, B. & B.W. Strowbridge. 2003. Gamma-frequency excitatory input to granule cells facilitates dendrodendritic inhibition in the rat olfactory bulb. J. Neurophysiol. 90: 644-654. Kaneko, N., H. Okano & K. Sawamoto. 2006. Role of the cholinergic system in regulating survival of newborn neurons in the adult mouse dentate gyrus and olfactory bulb. Genes Cells 11: 1145-1159. Cooper-Kuhn, C.M., J. Winkler & H.G. Kuhn. 2004. Decreased neurogenesis after cholinergic forebrain lesion in the adult rat. J. Neurosci. Res. 77: 155-165. Carson, K.A. 1984. Quantitative localization of neurons projecting to the mouse main olfactory bulb. Brain Res. Bull. 12: 629-634. Veyrac, A., A. Didier, F. Colpaert, et al . 2005. Activation of noradrenergic transmission by α2-adrenoceptor antagonists counteracts deafferentation-induced neuronal death and cell proliferation in the adult mouse olfactory bulb. Exp. Neurol. 194: 444-456. Dennis, T., R. L'Heureux, C. Carter, et al . 1987. Presynaptic α2-adrenoceptors play a major role in the effects of idazoxan on cortical noradrenaline release (as measured by in vivo dialysis) in the rat. J. Pharmacol. Exp. Ther. 241: 642-649. Bathellier, B., S. Lagier, P. Faure, et al . 2006. Circuit properties generating gamma oscillations in a network model of the olfactory bulb. J. Neurophysiol. 95: 2678-2691. Yokoi, M., K. Mori & S. Nakanishi. 1995. Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb. Proc. Natl. Acad. Sci. USA 92: 3371-3375. Tabor, R., E. Yaksi & R.W. Friedrich. 2008. Multiple functions of GABA and GABA receptors during pattern processing in the zebrafish olfactory bulb. Eur. J. Neurosci. 28: 117-127. Sullivan, R., G. Stackenwalt, F. Nasr, et al . 2000. Association of an odor with activation of olfactory bulb noradrenergic β-receptors or locus coeruleus stimulation is sufficient to produce learned approach responses to that odor in neonatal rats. Behav. Neurosci. 114: 957-962. Fletcher, M. & D. Wilson. 2002. Experience modifies olfactory acuity: acetylcholine-dependent learning decreases behavioral generalization between similar odorants. J. Neurosci. 22: RC201. De Rosa, E., M.E. Hasselmo & M.G. Baxter. 2001. Contribution of the cholinergic basal forebrain to proactive interference from stored odor memories during associative learning in rats. Behav. Neurosci. 115: 314-327. Davis, B.J. & F. Macrides. 1981. The organization of centrifugal projections from the anterior olfactory nucleus, ventral hippocampal rudiment, and piriform cortex to the main olfactory bulb in the hamster: an autoradiographic study. J. Comp. Neurol. 203: 475-493. Pager, J. 1983. Unit responses changing with behavioral outcome in the olfactory bulb of unrestrained rats. Brain Res. 289: 87-98. Pressler, R.T., T. Inoue & B.W. Strowbridge. 2007. Muscarinic receptor activation modulates granule cell excitability and potentiates inhibition onto mitral cells in the rat olfactory bulb. J. Neurosci. 27: 10969-10981. Macrides, F., B.J. Davis, W.M. Youngs, et al . 1981. Cholinergic and catecholaminergic afferents to the olfactory bulb in the hamster: a neuroanatomical, biochemical, and histochemical investigation. J. Comp. Neurol. 203: 495-514. Mazor, O. & G. Laurent. 2005. Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons. Neuron 48: 661-673. Zelles, T., J.D. Boyd, A.B. Hardy, et al . 2006. Branch-specific Ca2+ influx from Na+-dependent dendritic spikes in olfactory granule cells. J. Neurosci. 26: 30-40. Rochefort, C., G. Gheusi, J.D. Vincent, et al . 2002. Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. J. Neurosci. 22: 2679-2689. Doty, R.L., R. Bagla & N. Kim. 1999. Physostigmine enhances performance on an odor mixture discrimination test. Physiol. Behav. 65: 801-804. Sullivan, R.M., D.A. Wilson & M. Leon. 1989. Norepinephrine and learning-induced plasticity in infant rat olfactory system. J. Neurosci. 9: 3998-4006. Yamaguchi, M. & K. Mori. 2005. Critical period for sensory experience-dependent survival of newly generated granule cells in the adult mouse olfactory bulb. Proc. Natl. Acad. Sci. USA 102: 9697-9702. Laaris, N., A. Puche & M. Ennis. 2007. Complementary postsynaptic activity patterns elicited in olfactory bulb by stimulation of mitral/tufted and centrifugal fiber inputs to granule cells. J. Neurophysiol. 97: 296-306. Ravel, N., A. Elaagouby & R. Gervais. 1994. Scopolamine injection into the olfactory bulb impairs short-term olfactory memory in rats. Behav. Neurosci. 108: 317-324. Zou, Z., F. Li & L.B. Buck. 2005. Odor maps in the olfactory cortex. Proc. Natl. Acad. Sci. USA 102: 7724-7729. McLean, J.H. & M.T. Shipley. 1991. Postnatal development of the noradrenergic projection from locus coeruleus to the olfactory bulb in the rat. J. Comp. Neurol. 304: 467-477. Rosser, A. & E. Keverne. 1985. The importance of central noradrenergic neurones in the formation of an olfactory memory in the prevention of pregnancy block. Neuroscience 15: 1141-1147. Luskin, M.B. & J.L. Price. 1983. The topographic organization of associational fibers of the olfactory system in the rat, including centrifugal fibers to the olfactory bulb. J. Comp. Neurol. 216: 264-291. Mechawar, N., A. Saghatelyan, R. Grailhe, et al . 2004. Nicotinic receptors regulate the survival of newborn neurons in the adult olfactory bulb. Proc. Natl. Acad. Sci. USA 101: 9822-9826. Lledo, P.M. & A. Saghatelyan. 2005. Integrating new neurons into the adult olfactory bulb: joining the network, life-death decisions, and the effects of sensory experience. Trends Neurosci. 28: 248-254. Mori, K., H. Nagao & Y. Yoshihara. 1999. The olfactory bulb: coding and processing of odor molecule information. Science 286: 711-715. Lledo, P.M., M. Alonso & M.S. Grubb. 2006. Adult neurogenesis and functional plasticity in neuronal circuits. Nat. Rev. Neurosci. 7: 179-193. Korsching, S. 2002. Olfactory maps and odor images. Curr. Opin. Neurobiol. 12: 387-392. Hendin, O., D. Horn & M.V. Tsodyks. 1997. The role of inhibition in an associative memory model of the olfactory bulb. J. Comput. Neurosci. 4: 173-182. Egger, V. 2008. Synaptic sodium spikes trigger long-lasting depolarizations and slow calcium entry in rat olfactory bulb granule cells. Eur. J. Neurosci. 27: 2066-2075. Brennan, P., H. Kaba & E. Keverne. 1990. Olfactory recognition: a simple memory system. Science 250: 1223-1226. Araneda, S., K. Gysling & A. Calas. 1999. Raphe serotonergic neurons projecting to the olfactory bulb contain galanin or somatostatin but not neurotensin. Brain Res. Bull. 49: 209-214. David, F., C. Linster & T.A. Cleland. 2008. Lateral dendritic shunt inhibition can regularize mitral cell spike patterning. J. Comput. Neurosci. 25: 25-38. Price, J.L. & T.P. Powell. 1970. An experimental study of the origin and the course of the centrifugal fibres to the olfactory bulb in the rat. J. Anat. 107: 215-237. Linster, C., P. Garcia, M. Hasselmo, et al . 2001. Selective loss of cholinergic neurons projecting to the olfactory system increases perceptual generalization between similar, but not dissimilar, odorants. Behav. Neurosci. 115: 826-833. Friedman, D. & B.W. Strowbridge. 2003. Both electrical and chemical synapses mediate fast network oscillations in the olfactory bulb. J. Neurophysiol. 89: 2601-2610. Gray, C., W. Freeman & J. Skinner. 1986. Chemical dependencies of learning in the rabbit olfactory bulb: acquisition of the transient spatial pattern change depends on norepinephrine. Behav. Neurosci. 100: 585-596. Hardy, A., B. Palouzier-Paulignan, A. Duchamp, et al . 2005. 5-Hydroxytryptamine action in the rat olfactory bulb: in vitro electrophysiological patch-clamp recordings of juxtaglomerular and mitral cells. Neuroscience 131: 717-731. Friedrich, R.W., C.J. Habermann & G. Laurent. 2004. Multiplexing using synchrony in the zebrafish olfactory bulb. Nat. Neurosci. 7: 862-871. Balu, R., R.T. Pressler & B.W. Strowbridge. 2007. Multiple modes of synaptic excitation of olfactory bulb granule cells. J. Neurosci. 27: 5621-5632. Shipley, M.T. & M. Ennis. 1996. Functional organization of olfactory system. J. Neurobiol. 30: 123-176. Ravel, N., P. Chabaud, C. Martin, et al . 2003. Olfactory learning modifies the expression of odour-induced oscillatory responses in the gamma (60-90 Hz) and beta (15-40 Hz) bands in the rat olfactory bulb. Eur. J. Neurosci. 17: 350-358. Wilson, D.A., M.L. Fletcher & R.M. Sullivan. 2004. Acetylcholine and olfactory perceptual learning. Learn. Mem. 11: 28-34. Trombley, P. 1992. Norepinephrine inhibits calcium currents and EPSPs via a G-protein-coupled mechanism in olfactory bulb neurons. J. Neurosci. 12: 3992-3998. Egger, V., K. Svoboda & Z.F. Mainen. 2003. Mechanisms of lateral inhibition in the olfactory bulb: efficiency and modulation of spike-evoked calcium influx into granule cells. J. Neurosci. 23: 7551-7558. Strowbridge, B.W. 2009. Role of cortical feedback in regulating inhibitory microcircuits. Ann. N. Y. Acad. Sci. International Symposium on Olfaction and Taste. 1170: 270-274. Mouly, A., A. Elaagouby & N. Ravel. 1995. A study of the effects of noradrenaline in the rat olfactory bulb using evoked field potential response. Brain Res. 681: 47-57. Nowycky, M.C., K. Mori & G.M. Shepherd. 1981. Blockade of synaptic inhibition reveals long-lasting synaptic excitation in isolated turtle olfactory bulb. J. Neurophysiol. 46: 649-658. Johnson, B.A. & M. Leon. 2007. Chemotopic odorant coding in a mammalian olfactory system. J. Comp. Neurol. 503: 1-34. Kunze, W.A., A.D. Shafton, R.E. Kem, et al . 1992. Intracellular responses of olfactory bulb granule cells to stimulating the horizontal diagonal band nucleus. Neuroscience 48: 363-369. McLean, J.H., A. Darby-King, R.M. Sullivan, et al . 1993. Serotonergic influence on olfactory learning in the neonate rat. Behav. Neural. Biol. 60: 152-162. McLean, J.H., M.T. Shipley, W.T. Nickell, et al . 1989. Chemoanatomical organization 2007; 104 2002; 15 2007; 503 1991; 14 1990; 104 2002; 12 2004; 7 1999; 49 2007; 100 2004; 24 1999; 286 1983; 10 1994; 61 1997; 4 1998; 18 2006; 23 2006; 24 2005; 102 1986; 100 2008; 27 2006; 26 2008; 28 2008; 25 2006; 29 1992; 48 2007; 67 1985; 15 1976; 264 1993; 107 2005; 194 2000; 114 1981; 203 1982; 326 1981; 1 1984; 226 1989; 9 2002; 77 1984; 225 2005; 85 2002; 3 2007; 97 2001; 24 2007; 14 1986; 243 2006; 49 1992; 256 2005; 8 2003; 26 2009; 1170 1998; 783 2003; 23 2006; 102 1970; 7 1966; 14 2003; 117 2005; 131 1993; 60 1978; 181 1987; 7 1981; 46 1996; 30 2003; 17 1978; 178 2005; 28 1992; 12 2003; 10 2001; 86 2005; 25 2004; 77 2003; 90 1999; 19 2003; 6 1984; 12 2005; 30 1994; 35 2001; 11 1991; 304 1995; 681 1969; 137 1994; 108 1999; 90 2003; 89 2007; 27 2001; 98 1990; 250 1983; 216 2004; 101 1987; 241 1995; 92 2006; 95 2000; 25 2006; 11 2006; 17 2000; 20 2006; 7 1999; 65 2004 1999; 2 1970; 107 2005; 48 2007; 55 1998; 20 1983; 219 2004; 11 1983; 289 1989; 99 1994; 643 1989; 285 2004; 15 2002; 22 1996; 274 1988; 470 2001; 115 e_1_2_11_93_2 e_1_2_11_70_2 Nowycky M.C. (e_1_2_11_73_2) 1981; 46 e_1_2_11_78_2 e_1_2_11_13_2 e_1_2_11_118_2 e_1_2_11_51_2 e_1_2_11_97_2 e_1_2_11_32_2 e_1_2_11_74_2 e_1_2_11_102_2 e_1_2_11_125_2 e_1_2_11_4_2 Woolf T.B. (e_1_2_11_77_2) 2001; 11 e_1_2_11_25_2 e_1_2_11_121_2 e_1_2_11_29_2 e_1_2_11_140_2 Ravel N. (e_1_2_11_49_2) 1994; 108 e_1_2_11_81_2 e_1_2_11_20_2 e_1_2_11_66_2 e_1_2_11_89_2 e_1_2_11_24_2 e_1_2_11_62_2 e_1_2_11_85_2 e_1_2_11_106_2 e_1_2_11_129_2 e_1_2_11_8_2 e_1_2_11_17_2 e_1_2_11_113_2 e_1_2_11_136_2 e_1_2_11_36_2 Trombley P. (e_1_2_11_103_2) 1992; 12 e_1_2_11_132_2 McLean J.H. (e_1_2_11_117_2) 1987; 7 e_1_2_11_92_2 e_1_2_11_31_2 e_1_2_11_54_2 e_1_2_11_35_2 e_1_2_11_50_2 e_1_2_11_96_2 e_1_2_11_12_2 e_1_2_11_119_2 e_1_2_11_28_2 e_1_2_11_5_2 e_1_2_11_126_2 e_1_2_11_47_2 e_1_2_11_122_2 e_1_2_11_141_2 Halabisky B. (e_1_2_11_64_2) 2000; 20 e_1_2_11_80_2 Price J.L. (e_1_2_11_59_2) 1970; 7 e_1_2_11_65_2 e_1_2_11_46_2 e_1_2_11_88_2 e_1_2_11_9_2 e_1_2_11_23_2 e_1_2_11_61_2 e_1_2_11_107_2 e_1_2_11_42_2 e_1_2_11_84_2 e_1_2_11_114_2 e_1_2_11_137_2 e_1_2_11_16_2 e_1_2_11_58_2 e_1_2_11_110_2 Roman F.S. (e_1_2_11_90_2) 1993; 107 e_1_2_11_39_2 e_1_2_11_30_2 Lévy F. (e_1_2_11_48_2) 1990; 104 e_1_2_11_76_2 e_1_2_11_57_2 e_1_2_11_99_2 e_1_2_11_34_2 e_1_2_11_72_2 e_1_2_11_11_2 e_1_2_11_139_2 e_1_2_11_53_2 e_1_2_11_95_2 e_1_2_11_6_2 e_1_2_11_27_2 Fletcher M. (e_1_2_11_91_2) 2002; 22 e_1_2_11_104_2 e_1_2_11_127_2 e_1_2_11_2_2 e_1_2_11_69_2 e_1_2_11_100_2 e_1_2_11_123_2 Price J.L. (e_1_2_11_43_2) 1970; 107 e_1_2_11_45_2 e_1_2_11_68_2 e_1_2_11_87_2 e_1_2_11_22_2 e_1_2_11_41_2 e_1_2_11_83_2 e_1_2_11_108_2 e_1_2_11_138_2 e_1_2_11_15_2 e_1_2_11_115_2 e_1_2_11_134_2 e_1_2_11_19_2 e_1_2_11_38_2 e_1_2_11_111_2 Dennis T. (e_1_2_11_133_2) 1987; 241 e_1_2_11_130_2 e_1_2_11_71_2 e_1_2_11_56_2 e_1_2_11_79_2 e_1_2_11_98_2 e_1_2_11_33_2 e_1_2_11_52_2 e_1_2_11_75_2 e_1_2_11_94_2 e_1_2_11_10_2 e_1_2_11_124_2 e_1_2_11_26_2 e_1_2_11_3_2 e_1_2_11_105_2 e_1_2_11_120_2 e_1_2_11_101_2 Fletcher M. (e_1_2_11_55_2) 2003; 23 e_1_2_11_82_2 e_1_2_11_44_2 e_1_2_11_67_2 e_1_2_11_40_2 e_1_2_11_86_2 e_1_2_11_128_2 e_1_2_11_7_2 e_1_2_11_21_2 e_1_2_11_63_2 e_1_2_11_109_2 e_1_2_11_116_2 e_1_2_11_135_2 e_1_2_11_14_2 e_1_2_11_37_2 e_1_2_11_131_2 Price J.L. (e_1_2_11_60_2) 1970; 7 e_1_2_11_112_2 e_1_2_11_18_2 |
References_xml | – reference: Lagier, S., A. Carleton & P.M. Lledo. 2004. Interplay between local GABAergic interneurons and relay neurons generates gamma oscillations in the rat olfactory bulb. J. Neurosci. 24: 4382-4392. – reference: Wilson, D.A. & M. Leon. 1988. Noradrenergic modulation of olfactory bulb excitability in the postnatal rat. Brain Res. 470: 69-75. – reference: Alonso, M., C. Viollet, M.M. Gabellec, et al . 2006. Olfactory discrimination learning increases the survival of adult-born neurons in the olfactory bulb. J. Neurosci. 26: 10508-10513. – reference: Dennis, T., R. L'Heureux, C. Carter, et al . 1987. Presynaptic α2-adrenoceptors play a major role in the effects of idazoxan on cortical noradrenaline release (as measured by in vivo dialysis) in the rat. J. Pharmacol. Exp. Ther. 241: 642-649. – reference: De Rosa, E., M.E. Hasselmo & M.G. Baxter. 2001. Contribution of the cholinergic basal forebrain to proactive interference from stored odor memories during associative learning in rats. Behav. Neurosci. 115: 314-327. – reference: Rinberg, D. & A. Gelperin. 2006. Olfactory neuronal dynamics in behaving animals. Semin. Cell Dev. Biol. 17: 454-461. – reference: Linster, C., P. Garcia, M. Hasselmo, et al . 2001. Selective loss of cholinergic neurons projecting to the olfactory system increases perceptual generalization between similar, but not dissimilar, odorants. Behav. Neurosci. 115: 826-833. – reference: Yamaguchi, M. & K. Mori. 2005. Critical period for sensory experience-dependent survival of newly generated granule cells in the adult mouse olfactory bulb. Proc. Natl. Acad. Sci. USA 102: 9697-9702. – reference: Friedrich, R.W., C.J. Habermann & G. Laurent. 2004. Multiplexing using synchrony in the zebrafish olfactory bulb. Nat. Neurosci. 7: 862-871. – reference: Okutani, F., H. Kaba, S. Takahashi, et al . 1998. The biphasic effects of locus coeruleus noradrenergic activation on dendrodendritic inhibition in the rat olfactory bulb. Brain Res. 783: 272-279. – reference: McLean, J.H., M.T. Shipley, W.T. Nickell, et al . 1989. Chemoanatomical organization of the noradrenergic input from locus coeruleus to the olfactory bulb of the adult rat. J. Comp. Neurol. 285: 339-349. – reference: Shipley, M.T. & M. Ennis. 1996. Functional organization of olfactory system. J. Neurobiol. 30: 123-176. – reference: Ravel, N., P. Chabaud, C. Martin, et al . 2003. Olfactory learning modifies the expression of odour-induced oscillatory responses in the gamma (60-90 Hz) and beta (15-40 Hz) bands in the rat olfactory bulb. Eur. J. Neurosci. 17: 350-358. – reference: Lévy, F., R. Gervais, U. Kindermann, et al . 1990. Importance of β-noradrenergic receptors in the olfactory bulb of sheep for recognition of lambs. Behav. Neurosci. 104: 464-469. – reference: Moriceau, S. & R. Sullivan. 2004. Unique neural circuitry for neonatal olfactory learning. J. Neurosci. 24: 1182-1189. – reference: Shipley, M.T. & G.D. Adamek. 1984. The connections of the mouse olfactory bulb: a study using orthograde and retrograde transport of wheat germ agglutinin conjugated to horseradish peroxidase. Brain Res. Bull. 12: 669-688. – reference: McLean, J.H., A. Darby-King, R.M. Sullivan, et al . 1993. Serotonergic influence on olfactory learning in the neonate rat. Behav. Neural. Biol. 60: 152-162. – reference: Isaacson, J.S. & B.W. Strowbridge. 1998. Olfactory reciprocal synapses: dendritic signaling in the CNS. Neuron 20: 749-761. – reference: Kay, L. & G. Laurent. 1999. Odor- and context-dependent modulation of mitral cell activity in behaving rats. Nat. Neurosci. 2: 1003-1009. – reference: McLean, J.H. & V.W. Harley. 2004. Olfactory learning in the rat pups: a model that permit visualization of a mammalian memory trace. Neuroreport 15: 1691-1697. – reference: Bathellier, B., S. Lagier, P. Faure, et al . 2006. Circuit properties generating gamma oscillations in a network model of the olfactory bulb. J. Neurophysiol. 95: 2678-2691. – reference: Rosser, A. & E. Keverne. 1985. The importance of central noradrenergic neurones in the formation of an olfactory memory in the prevention of pregnancy block. Neuroscience 15: 1141-1147. – reference: Mandairon, N., S. Peace, A. Karnow, et al . 2008. Noradrenergic modulation in the olfactory bulb influences spontaneous and reward-motivated discrimination, but not the formation of habituation memory. Eur. J. Neurosci. 27: 1210-1219. – reference: Egger, V. 2008. Synaptic sodium spikes trigger long-lasting depolarizations and slow calcium entry in rat olfactory bulb granule cells. Eur. J. Neurosci. 27: 2066-2075. – reference: Halasz, N. & G.M. Shepherd. 1983. Neurochemistry of the vertebrate olfactory bulb. Neuroscience 10: 579-619. – reference: Laaris, N., A. Puche & M. Ennis. 2007. Complementary postsynaptic activity patterns elicited in olfactory bulb by stimulation of mitral/tufted and centrifugal fiber inputs to granule cells. J. Neurophysiol. 97: 296-306. – reference: Galan, R.F., N. Fourcaud-Trocmé, B. Ermentrout, et al . 2006. Correlation-induced synchronization of oscillations in olfactory bulb neurons. J. Neurosci. 26: 3646-3655. – reference: Linster, C. & T. Cleland. 2002. Cholinergic modulation of sensory representations in the olfactory bulb. Neural Netw. 15: 709-717. – reference: Kaneko, N., H. Okano & K. Sawamoto. 2006. Role of the cholinergic system in regulating survival of newborn neurons in the adult mouse dentate gyrus and olfactory bulb. Genes Cells 11: 1145-1159. – reference: Lledo, P.M., M. Alonso & M.S. Grubb. 2006. Adult neurogenesis and functional plasticity in neuronal circuits. Nat. Rev. Neurosci. 7: 179-193. – reference: Rochefort, C., G. Gheusi, J.D. Vincent, et al . 2002. Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. J. Neurosci. 22: 2679-2689. – reference: Wilson, D.A., M.L. Fletcher & R.M. Sullivan. 2004. Acetylcholine and olfactory perceptual learning. Learn. Mem. 11: 28-34. – reference: Pressler, R.T., T. Inoue & B.W. Strowbridge. 2007. Muscarinic receptor activation modulates granule cell excitability and potentiates inhibition onto mitral cells in the rat olfactory bulb. J. Neurosci. 27: 10969-10981. – reference: Chen, W.R., W. Xiong & G.M. Shepherd. 2000. Analysis of relations between NMDA receptors and GABA release at olfactory bulb reciprocal synapses. Neuron 25: 625-633. – reference: Oppenheim, R.W. 1991. Cell death during development of the nervous system. Annu. Rev. Neurosci. 14: 453-501. – reference: Malberg, J.E., A.J. Eisch, E.J. Nestler, et al . 2000. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J. Neurosci. 20: 9104-9110. – reference: Davis, B.J. & F. Macrides. 1981. The organization of centrifugal projections from the anterior olfactory nucleus, ventral hippocampal rudiment, and piriform cortex to the main olfactory bulb in the hamster: an autoradiographic study. J. Comp. Neurol. 203: 475-493. – reference: MacLeod, K. & G. Laurent. 1996. Distinct mechanisms for synchronization and temporal patterning of odor-encoding neural assemblies. Science 274: 976-979. – reference: Lagier, S., P. Panzanelli, R.E. Russo, et al . 2007. GABAergic inhibition at dendrodendritic synapses tunes gamma oscillations in the olfactory bulb. Proc. Natl. Acad. Sci. USA 104: 7259-7264. – reference: Araneda, R. & S. Firestein. 2006. Adrenergic enhancement of inhibitory transmission in the accessory olfactory bulb. J. Neurosci. 26: 3292-3298. – reference: Rinberg, D., A. Koulakov & A. Gelperin. 2006. Sparse odor coding in awake behaving mice. J. Neurosci. 26: 8857-8865. – reference: Lledo, P.M., G. Gheusi & J.D. Vincent. 2005. Information processing in the mammalian olfactory system. Physiol. Rev. 85: 281-317. – reference: Luskin, M.B. & J.L. Price. 1983. The topographic organization of associational fibers of the olfactory system in the rat, including centrifugal fibers to the olfactory bulb. J. Comp. Neurol. 216: 264-291. – reference: Jahr, C.E. & R.A. Nicoll. 1982. An intracellular analysis of dendrodendritic inhibition in the turtle in vitro olfactory bulb. J. Physiol. 326: 213-234. – reference: Nowycky, M.C., K. Mori & G.M. Shepherd. 1981. Blockade of synaptic inhibition reveals long-lasting synaptic excitation in isolated turtle olfactory bulb. J. Neurophysiol. 46: 649-658. – reference: Mouly, A., A. Elaagouby & N. Ravel. 1995. A study of the effects of noradrenaline in the rat olfactory bulb using evoked field potential response. Brain Res. 681: 47-57. – reference: Laurent, G., M. Stopfer, R.W. Friedrich, et al . 2001. Odor encoding as an active dynamical process: experiments, computation, and theory. Annu. Rev. Neurosci. 24: 263-297. – reference: Price, J.L. & T.P. Powell. 1970. An experimental study of the origin and the course of the centrifugal fibres to the olfactory bulb in the rat. J. Anat. 107: 215-237. – reference: Halabisky, B., D. Friedman, M. Radojicic, et al . 2000. Calcium influx through NMDA receptors directly evokes GABA release in olfactory bulb granule cells. J. Neurosci. 20: 5124-5134. – reference: Sullivan, R.M., D.A. Wilson & M. Leon. 1989. Norepinephrine and learning-induced plasticity in infant rat olfactory system. J. Neurosci. 9: 3998-4006. – reference: McLean, J.H. & M.T. Shipley. 1987. Serotonergic afferents to the rat olfactory bulb: I. Origins and laminar specificity of serotonergic inputs in the adult rat. J. Neurosci. 7: 3016-3028. – reference: Gray, C., W. Freeman & J. Skinner. 1986. Chemical dependencies of learning in the rabbit olfactory bulb: acquisition of the transient spatial pattern change depends on norepinephrine. Behav. Neurosci. 100: 585-596. – reference: Mechawar, N., A. Saghatelyan, R. Grailhe, et al . 2004. Nicotinic receptors regulate the survival of newborn neurons in the adult olfactory bulb. Proc. Natl. Acad. Sci. USA 101: 9822-9826. – reference: Kishi, K., K. Mori & H. Ojima. 1984. Distribution of local axon collaterals of mitral, displaced mitral, and tufted cells in the rabbit olfactory bulb. J. Comp. Neurol. 225: 511-526. – reference: Sassoé-Pognetto, M., P. Panzanelli, S. Lagier, et al. 2009. GABAa receptor heterogeneity modulates dendrodendritic inhibition. Ann. N. Y. Acad. Sci. International Symposium on Olfaction and Taste. 1170: 259-263. – reference: Macrides, F., B.J. Davis, W.M. Youngs, et al . 1981. Cholinergic and catecholaminergic afferents to the olfactory bulb in the hamster: a neuroanatomical, biochemical, and histochemical investigation. J. Comp. Neurol. 203: 495-514. – reference: Halabisky, B. & B.W. Strowbridge. 2003. Gamma-frequency excitatory input to granule cells facilitates dendrodendritic inhibition in the rat olfactory bulb. J. Neurophysiol. 90: 644-654. – reference: Carson, K.A. 1984. Quantitative localization of neurons projecting to the mouse main olfactory bulb. Brain Res. Bull. 12: 629-634. – reference: Hunter, A.J. & T.K. Murray. 1989. Cholinergic mechanisms in a simple test of olfactory learning in the rat. Psychopharmacology 99: 270-275. – reference: Veyrac, A., A. Didier, F. Colpaert, et al . 2005. Activation of noradrenergic transmission by α2-adrenoceptor antagonists counteracts deafferentation-induced neuronal death and cell proliferation in the adult mouse olfactory bulb. Exp. Neurol. 194: 444-456. – reference: Mori, K., K. Kishi & H. Ojima. 1983. Distribution of dendrites of mitral, displaced mitral, tufted, and granule cells in the rabbit olfactory bulb. J. Comp. Neurol. 219: 339-355. – reference: Lledo, P.M. & S. Lagier. 2006. Adjusting neurophysiological computations in the adult olfactory bulb. Semin. Cell Dev. Biol. 17: 443-453. – reference: Whitman, M.C. & C. Greer. 2007. Adult-generated neurons exhibit diverse developmental fates. Dev. Neurobiol. 67: 1079-1093. – reference: Balu, R., R.T. Pressler & B.W. Strowbridge. 2007. Multiple modes of synaptic excitation of olfactory bulb granule cells. J. Neurosci. 27: 5621-5632. – reference: Friedrich, R.W. 2006. Mechanisms of odor discrimination: neurophysiological and behavioral approaches. Trends Neurosci. 29: 40-47. – reference: Morrizumi, T., T. Tsukatami, H. Sakashita, et al . 1994. Olfactory disturbance induced by deafferentation of serotonergic fibers in the olfactory bulb. Neuroscience 61: 733-738. – reference: Rall, W., G.M. Shepherd, T.S. Reese, et al . 1966. Dendrodendritic synaptic pathway for inhibition in the olfactory bulb. Exp. Neurol. 14: 44-56. – reference: Lledo, P.M. & A. Saghatelyan. 2005. Integrating new neurons into the adult olfactory bulb: joining the network, life-death decisions, and the effects of sensory experience. Trends Neurosci. 28: 248-254. – reference: Isaacson, J.S. 2001. Mechanisms governing dendritic gamma-aminobutyric acid (GABA) release in the rat olfactory bulb. Proc. Natl. Acad. Sci. USA 98: 337-342. – reference: Yokoi, M., K. Mori & S. Nakanishi. 1995. Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb. Proc. Natl. Acad. Sci. USA 92: 3371-3375. – reference: David, F., C. Linster & T.A. Cleland. 2008. Lateral dendritic shunt inhibition can regularize mitral cell spike patterning. J. Comput. Neurosci. 25: 25-38. – reference: Castillo, P.E., A. Carleton, J.D. Vincent, et al . 1999. Multiple and opposing roles of cholinergic transmission in the main olfactory bulb. J. Neurosci. 19: 9180-9191. – reference: Mouret, A., G. Gheusi, M.M. Gabellec, et al . 2008. Learning and survival of newly generated neurons: when time matters. J. Neurosci. 28: 11511-11516. – reference: Orth, M., E. Bravo, L. Barter, et al . 2006. The differential effects of halothane and isoflurane on electroencephalographic responses to electrical microstimulation of the reticular formation. Anesth. Analg. 102: 1709-1714. – reference: Zou, Z., F. Li & L.B. Buck. 2005. Odor maps in the olfactory cortex. Proc. Natl. Acad. Sci. USA 102: 7724-7729. – reference: Altman, J. 1969. Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J. Comp. Neurol. 137: 433-457. – reference: Aston-Jones, G. & F. Bloom. 1981. Nonrepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. J. Neurosci. 1: 887-900. – reference: Sullivan, R., G. Stackenwalt, F. Nasr, et al . 2000. Association of an odor with activation of olfactory bulb noradrenergic β-receptors or locus coeruleus stimulation is sufficient to produce learned approach responses to that odor in neonatal rats. Behav. Neurosci. 114: 957-962. – reference: Doucette, W., J. Milder & D. Restrepo. 2007. Adrenergic modulation of olfactory bulb circuitry affects odor discrimination. Learn Mem. 14: 539-547. – reference: Hayar, A., P. Heyward, T. Heinbockel, et al . 2001. Direct excitation of mitral cells via activation of α1-noradrenergic receptors in rat olfactory bulb slices. J. Neurophysiol. 86: 2173-2182. – reference: Mandairon, N., J. Sacquet, S. Garcia, et al . 2006. Neurogenic correlates of an olfactory discrimination task in the adult olfactory bulb. Eur. J. Neurosci. 24: 3578-3588. – reference: Salcedo, E., C. Zhang, E. Kronberg, et al . 2005. Analysis of training-induced changes in ethyl acetate odor maps using a new computational tool to map the glomerular layer of the olfactory bulb. Chem. Senses 30: 615-626. – reference: Changeux, J.P. & A. Danchin. 1976. Selective stabilisation of developingsynapses as a mechanism for the specification of neuronal networks. Nature 264: 705-712. – reference: Kosaka, T. & K. Kosaka. 2005. Structural organization of the glomerulus in the main olfactory bulb. Chem. Senses 30(Suppl 1): i107-i108. – reference: Hendin, O., D. Horn & M.V. Tsodyks. 1997. The role of inhibition in an associative memory model of the olfactory bulb. J. Comput. Neurosci. 4: 173-182. – reference: Schoppa, N.E., J.M. Kinzie, Y. Sahara, et al . 1998. Dendrodendritic inhibition in the olfactory bulb is driven by NMDA receptors. J. Neurosci. 18: 6790-6802. – reference: Egger, V., K. Svoboda & Z.F. Mainen. 2003. Mechanisms of lateral inhibition in the olfactory bulb: efficiency and modulation of spike-evoked calcium influx into granule cells. J. Neurosci. 23: 7551-7558. – reference: Doty, R.L., R. Bagla & N. Kim. 1999. Physostigmine enhances performance on an odor mixture discrimination test. Physiol. Behav. 65: 801-804. – reference: Pager, J. 1983. Unit responses changing with behavioral outcome in the olfactory bulb of unrestrained rats. Brain Res. 289: 87-98. – reference: Gómez, C., J.G. Briñón, L. Orio, et al . 2007. Changes in the serotonergic system in the main olfactory bulb of rats unilaterally deprived from birth to adulthood. J. Neurochem. 100: 924-938. – reference: Schoppa, N.E. & N.N. Urban. 2003. Dendritic processing within olfactory bulb circuits. Trends Neurosci. 26: 501-506. – reference: Pressler, R.T. & B.W. Strowbridge. 2006. Blanes cells mediate persistent feedforward inhibition onto granule cells in the olfactory bulb. Neuron 49: 889-904. – reference: Mandairon, N., C.J. Ferretti, C.M. Stack, et al . 2006. Cholinergic modulation in the olfactory bulb influences spontaneous olfactory discrimination in adult rats. Eur. J. Neurosci. 24: 3234-3244. – reference: Woolf, T.B., G.M. Shepherd & C.A. Greer. 2001. Local information processing in dendritic trees: subsets of spines in granule cells of the mammalian olfactory bulb. J. Neurosci. 11: 1837-1854. – reference: Yuan, Q., C.W. Harley & J.H. McLean. 2003. Mitral cell β1 and 5-HT(2A) receptor colocalization and cAMP coregulation: a new model of norepinephrine-induced learning in the olfactory bulb. Learn Mem. 10: 5-15. – reference: Sullivan, R., D. Wilson, C. Lemon, et al . 1994. Bilateral 6-OHDA lesions of the locus coeruleus impair associative olfactory learning in newborn rats. Brain Res. 643: 306-309. – reference: Haberly, L.B. & J.L. Price. 1978. Association and commissural fiber systems of the olfactory cortex of the rat. J. Comp. Neurol. 178: 711-740. – reference: Schoppa, N.E. 2006. Synchronization of olfactory bulb mitral cells by precisely timed inhibitory inputs. Neuron 49: 271-283. – reference: Fletcher, M. & D. Wilson. 2002. Experience modifies olfactory acuity: acetylcholine-dependent learning decreases behavioral generalization between similar odorants. J. Neurosci. 22: RC201. – reference: Trombley, P. 1992. Norepinephrine inhibits calcium currents and EPSPs via a G-protein-coupled mechanism in olfactory bulb neurons. J. Neurosci. 12: 3992-3998. – reference: Kendrick, K.M., F. Lévy & E.B. Keverne. 1992. Changes in the sensory processing of olfactory signals induced by birth in sleep. Science 256: 833-836. – reference: Zaborszky, L., J. Carlsen, H.R. Brashear, et al . 1986. Cholinergic and GABAergic afferents to the olfactory bulb in the rat with special emphasis on the projection neurons in the nucleus of the horizontal limb of the diagonal band. J. Comp. Neurol. 243: 488-509. – reference: Korsching, S. 2002. Olfactory maps and odor images. Curr. Opin. Neurobiol. 12: 387-392. – reference: Bauer, S., E. Moyse, F. Jourdan, et al . 2003. Effects of the α2-adrenoreceptor antagonist dexefaroxan on neurogenesis in the olfactory bulb of the adult rat in vivo: selective protection against neuronal death. Neuroscience 117: 281-291. – reference: Ravel, N., A. Elaagouby & R. Gervais. 1994. Scopolamine injection into the olfactory bulb impairs short-term olfactory memory in rats. Behav. Neurosci. 108: 317-324. – reference: Liu, X., Q. Wang, T.F. Haydar, et al . 2005. Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors. Nat. Neurosci. 8: 1179-1187. – reference: Martin, C., R. Gervais, E. Hugues, et al . 2004. Learning modulation of odor-induced oscillatory responses in the rat olfactory bulb: a correlate of odor recognition? J. Neurosci. 24: 389-397. – reference: Carleton, A., L.T. Petreanu, R. Lansford, et al . 2003. Becoming a new neuron in the adult olfactory bulb. Nat. Neurosci. 6: 507-518. – reference: Strowbridge, B.W. 2009. Role of cortical feedback in regulating inhibitory microcircuits. Ann. N. Y. Acad. Sci. International Symposium on Olfaction and Taste. 1170: 270-274. – reference: Friedman, D. & B.W. Strowbridge. 2003. Both electrical and chemical synapses mediate fast network oscillations in the olfactory bulb. J. Neurophysiol. 89: 2601-2610. – reference: Egger, V. & N. Urban. 2006. Dynamic connectivity in the mitral cell-granule cell microcircuit. Semin. Cell Dev. Biol. 17: 424-432. – reference: Urban, N.N. 2002. Lateral inhibition in the olfactory bulb and in olfaction. Physiol. Behav. 77: 607-612. – reference: Sara, S., A. Vankov & A. Herve. 1994. Locus coeruleus-evoked responses in behaving rats: a clue to the role of noradrenaline in memory. Brain Res. Bull. 35: 457-465. – reference: Nusser, Z., L.M. Kay, G. Laurent, et al . 2001. Disruption of GABA(A) receptors on GABAergic interneurons leads to increased oscillatory power in the olfactory bulb network. J. Neurophysiol. 86: 2823-2833. – reference: Martin, C., R. Gervais, B. Messaoudi, et al . 2006. Learning-induced oscillatory activities correlated to odour recognition: a network activity. Eur. J. Neurosci. 23: 1801-1810. – reference: Price, J.L. & T.P. Powell. 1970. An electron-microscopic study of the termination of the afferent fibres to the olfactory bulb from the cerebral hemisphere. J. Cell Sci. 7: 157-187. – reference: Johnson, B.A. & M. Leon. 2007. Chemotopic odorant coding in a mammalian olfactory system. J. Comp. Neurol. 503: 1-34. – reference: Orona, E., E.C. Rainer & J.W. Scott. 1984. Dendritic and axonal organization of mitral and tufted cells in the rat olfactory bulb. J. Comp. Neurol. 226: 346-356. – reference: Egger, V., K. Svoboda & Z.F. Mainen. 2005. Dendrodendritic synaptic signals in olfactory bulb granule cells: local spine boost and global low-threshold spike. J. Neurosci. 25: 3521-3530. – reference: Trombley, P. & G. Shepherd. 1992. Noradrenergic inhibition of synaptic transmission between mitral and granule cells in mammalian olfactory bulb cultures. J. Neurosci. 12: 3985-3991. – reference: Tabor, R., E. Yaksi & R.W. Friedrich. 2008. Multiple functions of GABA and GABA receptors during pattern processing in the zebrafish olfactory bulb. Eur. J. Neurosci. 28: 117-127. – reference: Laurent, G. 2002. Olfactory network dynamics and the coding of multidimensional signals. Nat. Neurosci. Rev. 3: 884-895. – reference: Price, J.L. & T.P. Powell. 1970. The synaptology of the granule cells of the olfactory bulb. J. Cell Sci. 7: 125-155. – reference: Brennan, P., H. Kaba & E. Keverne. 1990. Olfactory recognition: a simple memory system. Science 250: 1223-1226. – reference: Kunze, W.A., A.D. Shafton, R.E. Kem, et al . 1992. Intracellular responses of olfactory bulb granule cells to stimulating the horizontal diagonal band nucleus. Neuroscience 48: 363-369. – reference: Ciombor, K., M. Ennis & M. Shipley. 1999. Norepinephrine increases rat mitral cell excitatory responses to weak olfactory nerve input via α1 receptors in vitro. Neuroscience 90: 595-606. – reference: Zelles, T., J.D. Boyd, A.B. Hardy, et al . 2006. Branch-specific Ca2+ influx from Na+-dependent dendritic spikes in olfactory granule cells. J. Neurosci. 26: 30-40. – reference: De Rosa, E. & M. Hasselmo. 2000. Muscarinic cholinergic neuromodulation reduces proactive interference between stored odor memories during associative learning in rats. Behav. Neurosci. 114: 32-41. – reference: Mazor, O. & G. Laurent. 2005. Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons. Neuron 48: 661-673. – reference: Cooper-Kuhn, C.M., J. Winkler & H.G. Kuhn. 2004. Decreased neurogenesis after cholinergic forebrain lesion in the adult rat. J. Neurosci. Res. 77: 155-165. – reference: De Olmos, J., H. Hardy & L. Heimer. 1978. The afferent connections of the main and the accessory olfactory bulb formations in the rat: an experimental HRP-study. J. Comp. Neurol. 181: 213-244. – reference: Mori, K., H. Matsumoto, Y. Tsuno, et al. 2009. Dendrodendritic synapses and functional compartmentalization in the olfactory bulb. Ann. N. Y. Acad. Sci. International Symposium on Olfaction and Taste. 1170: 255-258. – reference: Mori, K., H. Nagao & Y. Yoshihara. 1999. The olfactory bulb: coding and processing of odor molecule information. Science 286: 711-715. – reference: McLean, J.H. & M.T. Shipley. 1991. Postnatal development of the noradrenergic projection from locus coeruleus to the olfactory bulb in the rat. J. Comp. Neurol. 304: 467-477. – reference: Shepherd, G.M., W.R. Chen, D. Willhite, et al . 2007. The olfactory granule cell: from classical enigma to central role in olfactory processing. Brain Res. Rev. 55: 373-382. – reference: Fletcher, M. & D. Wilson. 2003. Olfactory bulb mitral-tufted cell plasticity: odorant-specific tuning reflects previous odorant exposure. J. Neurosci. 23: 6946-6955. – reference: Roman, F.S., I. Simonetto & B. Soumireu-Mourat. 1993. Learning and memory of odor-reward association: selective impairment following horizontal diagonal band lesions. Behav. Neurosci. 107: 72-81. – reference: Hardy, A., B. Palouzier-Paulignan, A. Duchamp, et al . 2005. 5-Hydroxytryptamine action in the rat olfactory bulb: in vitro electrophysiological patch-clamp recordings of juxtaglomerular and mitral cells. Neuroscience 131: 717-731. – reference: Araneda, S., K. Gysling & A. Calas. 1999. Raphe serotonergic neurons projecting to the olfactory bulb contain galanin or somatostatin but not neurotensin. Brain Res. Bull. 49: 209-214. – volume: 22 start-page: 2679 year: 2002 end-page: 2689 article-title: Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory publication-title: J. Neurosci. – volume: 1170 start-page: 259 year: 2009 end-page: 263 article-title: GABA receptor heterogeneity modulates dendrodendritic inhibition publication-title: Ann. N. Y. Acad. Sci. International Symposium on Olfaction and Taste – volume: 1170 start-page: 255 year: 2009 end-page: 258 article-title: Dendrodendritic synapses and functional compartmentalization in the olfactory bulb publication-title: Ann. N. Y. Acad. Sci. – volume: 97 start-page: 296 year: 2007 end-page: 306 article-title: Complementary postsynaptic activity patterns elicited in olfactory bulb by stimulation of mitral/tufted and centrifugal fiber inputs to granule cells publication-title: J. Neurophysiol. – volume: 77 start-page: 607 year: 2002 end-page: 612 article-title: Lateral inhibition in the olfactory bulb and in olfaction publication-title: Physiol. Behav. – volume: 4 start-page: 173 year: 1997 end-page: 182 article-title: The role of inhibition in an associative memory model of the olfactory bulb publication-title: J. Comput. Neurosci. – volume: 26 start-page: 30 year: 2006 end-page: 40 article-title: Branch‐specific Ca2+ influx from Na+‐dependent dendritic spikes in olfactory granule cells publication-title: J. Neurosci. – volume: 24 start-page: 389 year: 2004 end-page: 397 article-title: Learning modulation of odor‐induced oscillatory responses in the rat olfactory bulb: a correlate of odor recognition? publication-title: J. Neurosci. – volume: 7 start-page: 3016 year: 1987 end-page: 3028 article-title: Serotonergic afferents to the rat olfactory bulb: I. Origins and laminar specificity of serotonergic inputs in the adult rat publication-title: J. Neurosci. – volume: 194 start-page: 444 year: 2005 end-page: 456 article-title: Activation of noradrenergic transmission by α2‐adrenoceptor antagonists counteracts deafferentation‐induced neuronal death and cell proliferation in the adult mouse olfactory bulb publication-title: Exp. Neurol. – volume: 65 start-page: 801 year: 1999 end-page: 804 article-title: Physostigmine enhances performance on an odor mixture discrimination test publication-title: Physiol. Behav. – volume: 114 start-page: 32 year: 2000 end-page: 41 article-title: Muscarinic cholinergic neuromodulation reduces proactive interference between stored odor memories during associative learning in rats publication-title: Behav. Neurosci. – volume: 14 start-page: 44 year: 1966 end-page: 56 article-title: Dendrodendritic synaptic pathway for inhibition in the olfactory bulb publication-title: Exp. Neurol. – volume: 90 start-page: 595 year: 1999 end-page: 606 article-title: Norepinephrine increases rat mitral cell excitatory responses to weak olfactory nerve input via α1 receptors in vitro publication-title: Neuroscience – volume: 23 start-page: 1801 year: 2006 end-page: 1810 article-title: Learning‐induced oscillatory activities correlated to odour recognition: a network activity publication-title: Eur. J. Neurosci. – volume: 17 start-page: 350 year: 2003 end-page: 358 article-title: Olfactory learning modifies the expression of odour‐induced oscillatory responses in the gamma (60–90 Hz) and beta (15–40 Hz) bands in the rat olfactory bulb publication-title: Eur. J. Neurosci. – volume: 24 start-page: 3234 year: 2006 end-page: 3244 article-title: Cholinergic modulation in the olfactory bulb influences spontaneous olfactory discrimination in adult rats publication-title: Eur. J. Neurosci. – volume: 681 start-page: 47 year: 1995 end-page: 57 article-title: A study of the effects of noradrenaline in the rat olfactory bulb using evoked field potential response publication-title: Brain Res. – volume: 326 start-page: 213 year: 1982 end-page: 234 article-title: An intracellular analysis of dendrodendritic inhibition in the turtle in vitro olfactory bulb publication-title: J. Physiol. – volume: 289 start-page: 87 year: 1983 end-page: 98 article-title: Unit responses changing with behavioral outcome in the olfactory bulb of unrestrained rats publication-title: Brain Res. – volume: 27 start-page: 2066 year: 2008 end-page: 2075 article-title: Synaptic sodium spikes trigger long‐lasting depolarizations and slow calcium entry in rat olfactory bulb granule cells publication-title: Eur. J. Neurosci. – volume: 470 start-page: 69 year: 1988 end-page: 75 article-title: Noradrenergic modulation of olfactory bulb excitability in the postnatal rat publication-title: Brain Res. – volume: 85 start-page: 281 year: 2005 end-page: 317 article-title: Information processing in the mammalian olfactory system publication-title: Physiol. Rev. – volume: 102 start-page: 7724 year: 2005 end-page: 7729 article-title: Odor maps in the olfactory cortex publication-title: Proc. Natl. Acad. Sci. USA – volume: 46 start-page: 649 year: 1981 end-page: 658 article-title: Blockade of synaptic inhibition reveals long‐lasting synaptic excitation in isolated turtle olfactory bulb publication-title: J. Neurophysiol. – volume: 18 start-page: 6790 year: 1998 end-page: 6802 article-title: Dendrodendritic inhibition in the olfactory bulb is driven by NMDA receptors publication-title: J. Neurosci. – volume: 28 start-page: 117 year: 2008 end-page: 127 article-title: Multiple functions of GABA and GABA receptors during pattern processing in the zebrafish olfactory bulb publication-title: Eur. J. Neurosci. – volume: 48 start-page: 363 year: 1992 end-page: 369 article-title: Intracellular responses of olfactory bulb granule cells to stimulating the horizontal diagonal band nucleus publication-title: Neuroscience – volume: 99 start-page: 270 year: 1989 end-page: 275 article-title: Cholinergic mechanisms in a simple test of olfactory learning in the rat publication-title: Psychopharmacology – volume: 15 start-page: 1141 year: 1985 end-page: 1147 article-title: The importance of central noradrenergic neurones in the formation of an olfactory memory in the prevention of pregnancy block publication-title: Neuroscience – volume: 137 start-page: 433 year: 1969 end-page: 457 article-title: Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb publication-title: J. Comp. Neurol. – volume: 22 start-page: RC201 year: 2002 article-title: Experience modifies olfactory acuity: acetylcholine‐dependent learning decreases behavioral generalization between similar odorants publication-title: J. Neurosci. – volume: 86 start-page: 2823 year: 2001 end-page: 2833 article-title: Disruption of GABA(A) receptors on GABAergic interneurons leads to increased oscillatory power in the olfactory bulb network publication-title: J. Neurophysiol. – volume: 104 start-page: 464 year: 1990 end-page: 469 article-title: Importance of β‐noradrenergic receptors in the olfactory bulb of sheep for recognition of lambs publication-title: Behav. Neurosci. – volume: 27 start-page: 5621 year: 2007 end-page: 5632 article-title: Multiple modes of synaptic excitation of olfactory bulb granule cells publication-title: J. Neurosci. – volume: 264 start-page: 705 year: 1976 end-page: 712 article-title: Selective stabilisation of developingsynapses as a mechanism for the specification of neuronal networks publication-title: Nature – volume: 11 start-page: 1837 year: 2001 end-page: 1854 article-title: Local information processing in dendritic trees: subsets of spines in granule cells of the mammalian olfactory bulb publication-title: J. Neurosci. – volume: 24 start-page: 263 year: 2001 end-page: 297 article-title: Odor encoding as an active dynamical process: experiments, computation, and theory publication-title: Annu. Rev. Neurosci. – volume: 256 start-page: 833 year: 1992 end-page: 836 article-title: Changes in the sensory processing of olfactory signals induced by birth in sleep publication-title: Science – volume: 26 start-page: 3646 year: 2006 end-page: 3655 article-title: Correlation‐induced synchronization of oscillations in olfactory bulb neurons publication-title: J. Neurosci. – volume: 12 start-page: 3985 year: 1992 end-page: 3991 article-title: Noradrenergic inhibition of synaptic transmission between mitral and granule cells in mammalian olfactory bulb cultures publication-title: J. Neurosci. – volume: 23 start-page: 6946 year: 2003 end-page: 6955 article-title: Olfactory bulb mitral‐tufted cell plasticity: odorant‐specific tuning reflects previous odorant exposure publication-title: J. Neurosci. – volume: 17 start-page: 424 year: 2006 end-page: 432 article-title: Dynamic connectivity in the mitral cell‐granule cell microcircuit publication-title: Semin. Cell Dev. Biol. – volume: 3 start-page: 884 year: 2002 end-page: 895 article-title: Olfactory network dynamics and the coding of multidimensional signals publication-title: Nat. Neurosci. Rev. – volume: 11 start-page: 1145 year: 2006 end-page: 1159 article-title: Role of the cholinergic system in regulating survival of newborn neurons in the adult mouse dentate gyrus and olfactory bulb publication-title: Genes Cells – volume: 108 start-page: 317 year: 1994 end-page: 324 article-title: Scopolamine injection into the olfactory bulb impairs short‐term olfactory memory in rats publication-title: Behav. Neurosci. – volume: 77 start-page: 155 year: 2004 end-page: 165 article-title: Decreased neurogenesis after cholinergic forebrain lesion in the adult rat publication-title: J. Neurosci. Res. – volume: 225 start-page: 511 year: 1984 end-page: 526 article-title: Distribution of local axon collaterals of mitral, displaced mitral, and tufted cells in the rabbit olfactory bulb publication-title: J. Comp. Neurol. – volume: 26 start-page: 10508 year: 2006 end-page: 10513 article-title: Olfactory discrimination learning increases the survival of adult‐born neurons in the olfactory bulb publication-title: J. Neurosci. – volume: 23 start-page: 7551 year: 2003 end-page: 7558 article-title: Mechanisms of lateral inhibition in the olfactory bulb: efficiency and modulation of spike‐evoked calcium influx into granule cells publication-title: J. Neurosci. – volume: 1 start-page: 887 year: 1981 end-page: 900 article-title: Nonrepinephrine‐containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non‐noxious environmental stimuli publication-title: J. Neurosci. – volume: 7 start-page: 125 year: 1970 end-page: 155 article-title: The synaptology of the granule cells of the olfactory bulb publication-title: J. Cell Sci. – volume: 61 start-page: 733 year: 1994 end-page: 738 article-title: Olfactory disturbance induced by deafferentation of serotonergic fibers in the olfactory bulb publication-title: Neuroscience – volume: 92 start-page: 3371 year: 1995 end-page: 3375 article-title: Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb publication-title: Proc. Natl. Acad. Sci. USA – volume: 49 start-page: 209 year: 1999 end-page: 214 article-title: Raphe serotonergic neurons projecting to the olfactory bulb contain galanin or somatostatin but not neurotensin publication-title: Brain Res. Bull. – volume: 30 start-page: i107 issue: Suppl 1 year: 2005 end-page: i108 article-title: Structural organization of the glomerulus in the main olfactory bulb publication-title: Chem. Senses – volume: 6 start-page: 507 year: 2003 end-page: 518 article-title: Becoming a new neuron in the adult olfactory bulb publication-title: Nat. Neurosci. – volume: 503 start-page: 1 year: 2007 end-page: 34 article-title: Chemotopic odorant coding in a mammalian olfactory system publication-title: J. Comp. Neurol. – volume: 12 start-page: 387 year: 2002 end-page: 392 article-title: Olfactory maps and odor images publication-title: Curr. Opin. Neurobiol. – volume: 14 start-page: 539 year: 2007 end-page: 547 article-title: Adrenergic modulation of olfactory bulb circuitry affects odor discrimination publication-title: Learn Mem. – volume: 102 start-page: 1709 year: 2006 end-page: 1714 article-title: The differential effects of halothane and isoflurane on electroencephalographic responses to electrical microstimulation of the reticular formation publication-title: Anesth. Analg. – volume: 24 start-page: 1182 year: 2004 end-page: 1189 article-title: Unique neural circuitry for neonatal olfactory learning publication-title: J. Neurosci. – volume: 102 start-page: 9697 year: 2005 end-page: 9702 article-title: Critical period for sensory experience‐dependent survival of newly generated granule cells in the adult mouse olfactory bulb publication-title: Proc. Natl. Acad. Sci. USA – volume: 20 start-page: 749 year: 1998 end-page: 761 article-title: Olfactory reciprocal synapses: dendritic signaling in the CNS publication-title: Neuron – volume: 28 start-page: 248 year: 2005 end-page: 254 article-title: Integrating new neurons into the adult olfactory bulb: joining the network, life‐death decisions, and the effects of sensory experience publication-title: Trends Neurosci. – volume: 226 start-page: 346 year: 1984 end-page: 356 article-title: Dendritic and axonal organization of mitral and tufted cells in the rat olfactory bulb publication-title: J. Comp. Neurol. – volume: 285 start-page: 339 year: 1989 end-page: 349 article-title: Chemoanatomical organization of the noradrenergic input from locus coeruleus to the olfactory bulb of the adult rat publication-title: J. Comp. Neurol. – volume: 95 start-page: 2678 year: 2006 end-page: 2691 article-title: Circuit properties generating gamma oscillations in a network model of the olfactory bulb publication-title: J. Neurophysiol. – volume: 17 start-page: 454 year: 2006 end-page: 461 article-title: Olfactory neuronal dynamics in behaving animals publication-title: Semin. Cell Dev. Biol. – volume: 100 start-page: 924 year: 2007 end-page: 938 article-title: Changes in the serotonergic system in the main olfactory bulb of rats unilaterally deprived from birth to adulthood publication-title: J. Neurochem. – volume: 643 start-page: 306 year: 1994 end-page: 309 article-title: Bilateral 6‐OHDA lesions of the locus coeruleus impair associative olfactory learning in newborn rats publication-title: Brain Res. – volume: 12 start-page: 669 year: 1984 end-page: 688 article-title: The connections of the mouse olfactory bulb: a study using orthograde and retrograde transport of wheat germ agglutinin conjugated to horseradish peroxidase publication-title: Brain Res. Bull. – volume: 216 start-page: 264 year: 1983 end-page: 291 article-title: The topographic organization of associational fibers of the olfactory system in the rat, including centrifugal fibers to the olfactory bulb publication-title: J. Comp. Neurol. – volume: 48 start-page: 661 year: 2005 end-page: 673 article-title: Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons publication-title: Neuron – volume: 90 start-page: 644 year: 2003 end-page: 654 article-title: Gamma‐frequency excitatory input to granule cells facilitates dendrodendritic inhibition in the rat olfactory bulb publication-title: J. Neurophysiol. – volume: 12 start-page: 629 year: 1984 end-page: 634 article-title: Quantitative localization of neurons projecting to the mouse main olfactory bulb publication-title: Brain Res. Bull. – volume: 25 start-page: 3521 year: 2005 end-page: 3530 article-title: Dendrodendritic synaptic signals in olfactory bulb granule cells: local spine boost and global low‐threshold spike publication-title: J. Neurosci. – volume: 107 start-page: 72 year: 1993 end-page: 81 article-title: Learning and memory of odor‐reward association: selective impairment following horizontal diagonal band lesions publication-title: Behav. Neurosci. – volume: 9 start-page: 3998 year: 1989 end-page: 4006 article-title: Norepinephrine and learning‐induced plasticity in infant rat olfactory system publication-title: J. Neurosci. – volume: 15 start-page: 709 year: 2002 end-page: 717 article-title: Cholinergic modulation of sensory representations in the olfactory bulb publication-title: Neural Netw. – volume: 286 start-page: 711 year: 1999 end-page: 715 article-title: The olfactory bulb: coding and processing of odor molecule information publication-title: Science – volume: 27 start-page: 1210 year: 2008 end-page: 1219 article-title: Noradrenergic modulation in the olfactory bulb influences spontaneous and reward‐motivated discrimination, but not the formation of habituation memory publication-title: Eur. J. Neurosci. – volume: 30 start-page: 123 year: 1996 end-page: 176 article-title: Functional organization of olfactory system publication-title: J. Neurobiol. – volume: 26 start-page: 8857 year: 2006 end-page: 8865 article-title: Sparse odor coding in awake behaving mice publication-title: J. Neurosci. – volume: 104 start-page: 7259 year: 2007 end-page: 7264 article-title: GABAergic inhibition at dendrodendritic synapses tunes gamma oscillations in the olfactory bulb publication-title: Proc. Natl. Acad. Sci. USA – volume: 203 start-page: 475 year: 1981 end-page: 493 article-title: The organization of centrifugal projections from the anterior olfactory nucleus, ventral hippocampal rudiment, and piriform cortex to the main olfactory bulb in the hamster: an autoradiographic study publication-title: J. Comp. Neurol. – volume: 49 start-page: 271 year: 2006 end-page: 283 article-title: Synchronization of olfactory bulb mitral cells by precisely timed inhibitory inputs publication-title: Neuron – volume: 27 start-page: 10969 year: 2007 end-page: 10981 article-title: Muscarinic receptor activation modulates granule cell excitability and potentiates inhibition onto mitral cells in the rat olfactory bulb publication-title: J. Neurosci. – volume: 35 start-page: 457 year: 1994 end-page: 465 article-title: Locus coeruleus‐evoked responses in behaving rats: a clue to the role of noradrenaline in memory publication-title: Brain Res. Bull. – volume: 250 start-page: 1223 year: 1990 end-page: 1226 article-title: Olfactory recognition: a simple memory system publication-title: Science – volume: 241 start-page: 642 year: 1987 end-page: 649 article-title: Presynaptic α2‐adrenoceptors play a major role in the effects of idazoxan on cortical noradrenaline release (as measured by dialysis) in the rat publication-title: J. Pharmacol. Exp. Ther. – volume: 30 start-page: 615 year: 2005 end-page: 626 article-title: Analysis of training‐induced changes in ethyl acetate odor maps using a new computational tool to map the glomerular layer of the olfactory bulb publication-title: Chem. Senses – volume: 28 start-page: 11511 year: 2008 end-page: 11516 article-title: Learning and survival of newly generated neurons: when time matters publication-title: J. Neurosci. – volume: 24 start-page: 3578 year: 2006 end-page: 3588 article-title: Neurogenic correlates of an olfactory discrimination task in the adult olfactory bulb publication-title: Eur. J. Neurosci. – volume: 20 start-page: 9104 year: 2000 end-page: 9110 article-title: Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus publication-title: J. Neurosci. – volume: 24 start-page: 4382 year: 2004 end-page: 4392 article-title: Interplay between local GABAergic interneurons and relay neurons generates gamma oscillations in the rat olfactory bulb publication-title: J. Neurosci. – start-page: 165 year: 2004 end-page: 216 – volume: 8 start-page: 1179 year: 2005 end-page: 1187 article-title: Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP‐expressing progenitors publication-title: Nat. Neurosci. – volume: 178 start-page: 711 year: 1978 end-page: 740 article-title: Association and commissural fiber systems of the olfactory cortex of the rat publication-title: J. Comp. Neurol. – volume: 783 start-page: 272 year: 1998 end-page: 279 article-title: The biphasic effects of locus coeruleus noradrenergic activation on dendrodendritic inhibition in the rat olfactory bulb publication-title: Brain Res. – volume: 67 start-page: 1079 year: 2007 end-page: 1093 article-title: Adult‐generated neurons exhibit diverse developmental fates publication-title: Dev. Neurobiol. – volume: 203 start-page: 495 year: 1981 end-page: 514 article-title: Cholinergic and catecholaminergic afferents to the olfactory bulb in the hamster: a neuroanatomical, biochemical, and histochemical investigation publication-title: J. Comp. Neurol. – volume: 219 start-page: 339 year: 1983 end-page: 355 article-title: Distribution of dendrites of mitral, displaced mitral, tufted, and granule cells in the rabbit olfactory bulb publication-title: J. Comp. Neurol. – volume: 20 start-page: 5124 year: 2000 end-page: 5134 article-title: Calcium influx through NMDA receptors directly evokes GABA release in olfactory bulb granule cells publication-title: J. Neurosci. – volume: 19 start-page: 9180 year: 1999 end-page: 9191 article-title: Multiple and opposing roles of cholinergic transmission in the main olfactory bulb publication-title: J. Neurosci. – volume: 29 start-page: 40 year: 2006 end-page: 47 article-title: Mechanisms of odor discrimination: neurophysiological and behavioral approaches publication-title: Trends Neurosci. – volume: 114 start-page: 957 year: 2000 end-page: 962 article-title: Association of an odor with activation of olfactory bulb noradrenergic β‐receptors or locus coeruleus stimulation is sufficient to produce learned approach responses to that odor in neonatal rats publication-title: Behav. Neurosci. – volume: 100 start-page: 585 year: 1986 end-page: 596 article-title: Chemical dependencies of learning in the rabbit olfactory bulb: acquisition of the transient spatial pattern change depends on norepinephrine publication-title: Behav. Neurosci. – volume: 10 start-page: 5 year: 2003 end-page: 15 article-title: Mitral cell β1 and 5‐HT(2A) receptor colocalization and cAMP coregulation: a new model of norepinephrine‐induced learning in the olfactory bulb publication-title: Learn Mem. – volume: 98 start-page: 337 year: 2001 end-page: 342 article-title: Mechanisms governing dendritic gamma‐aminobutyric acid (GABA) release in the rat olfactory bulb publication-title: Proc. Natl. Acad. Sci. USA – volume: 17 start-page: 443 year: 2006 end-page: 453 article-title: Adjusting neurophysiological computations in the adult olfactory bulb publication-title: Semin. Cell Dev. Biol. – volume: 117 start-page: 281 year: 2003 end-page: 291 article-title: Effects of the α2‐adrenoreceptor antagonist dexefaroxan on neurogenesis in the olfactory bulb of the adult rat : selective protection against neuronal death publication-title: Neuroscience – volume: 243 start-page: 488 year: 1986 end-page: 509 article-title: Cholinergic and GABAergic afferents to the olfactory bulb in the rat with special emphasis on the projection neurons in the nucleus of the horizontal limb of the diagonal band publication-title: J. Comp. Neurol. – volume: 86 start-page: 2173 year: 2001 end-page: 2182 article-title: Direct excitation of mitral cells via activation of α1‐noradrenergic receptors in rat olfactory bulb slices publication-title: J. Neurophysiol. – volume: 25 start-page: 625 year: 2000 end-page: 633 article-title: Analysis of relations between NMDA receptors and GABA release at olfactory bulb reciprocal synapses publication-title: Neuron – volume: 274 start-page: 976 year: 1996 end-page: 979 article-title: Distinct mechanisms for synchronization and temporal patterning of odor‐encoding neural assemblies publication-title: Science – volume: 1170 start-page: 270 year: 2009 end-page: 274 article-title: Role of cortical feedback in regulating inhibitory microcircuits publication-title: Ann. N. Y. Acad. Sci. – volume: 181 start-page: 213 year: 1978 end-page: 244 article-title: The afferent connections of the main and the accessory olfactory bulb formations in the rat: an experimental HRP‐study publication-title: J. Comp. Neurol. – volume: 304 start-page: 467 year: 1991 end-page: 477 article-title: Postnatal development of the noradrenergic projection from locus coeruleus to the olfactory bulb in the rat publication-title: J. Comp. Neurol. – volume: 26 start-page: 3292 year: 2006 end-page: 3298 article-title: Adrenergic enhancement of inhibitory transmission in the accessory olfactory bulb publication-title: J. Neurosci. – volume: 14 start-page: 453 year: 1991 end-page: 501 article-title: Cell death during development of the nervous system publication-title: Annu. Rev. Neurosci. – volume: 7 start-page: 862 year: 2004 end-page: 871 article-title: Multiplexing using synchrony in the zebrafish olfactory bulb publication-title: Nat. Neurosci. – volume: 55 start-page: 373 year: 2007 end-page: 382 article-title: The olfactory granule cell: from classical enigma to central role in olfactory processing publication-title: Brain Res. Rev. – volume: 115 start-page: 826 year: 2001 end-page: 833 article-title: Selective loss of cholinergic neurons projecting to the olfactory system increases perceptual generalization between similar, but not dissimilar, odorants publication-title: Behav. Neurosci. – volume: 60 start-page: 152 year: 1993 end-page: 162 article-title: Serotonergic influence on olfactory learning in the neonate rat publication-title: Behav. Neural. Biol. – volume: 89 start-page: 2601 year: 2003 end-page: 2610 article-title: Both electrical and chemical synapses mediate fast network oscillations in the olfactory bulb publication-title: J. Neurophysiol. – volume: 7 start-page: 179 year: 2006 end-page: 193 article-title: Adult neurogenesis and functional plasticity in neuronal circuits publication-title: Nat. Rev. Neurosci. – volume: 49 start-page: 889 year: 2006 end-page: 904 article-title: Blanes cells mediate persistent feedforward inhibition onto granule cells in the olfactory bulb publication-title: Neuron – volume: 11 start-page: 28 year: 2004 end-page: 34 article-title: Acetylcholine and olfactory perceptual learning publication-title: Learn. Mem. – volume: 12 start-page: 3992 year: 1992 end-page: 3998 article-title: Norepinephrine inhibits calcium currents and EPSPs via a G‐protein‐coupled mechanism in olfactory bulb neurons publication-title: J. Neurosci. – volume: 101 start-page: 9822 year: 2004 end-page: 9826 article-title: Nicotinic receptors regulate the survival of newborn neurons in the adult olfactory bulb publication-title: Proc. Natl. Acad. Sci. USA – volume: 15 start-page: 1691 year: 2004 end-page: 1697 article-title: Olfactory learning in the rat pups: a model that permit visualization of a mammalian memory trace publication-title: Neuroreport – volume: 107 start-page: 215 year: 1970 end-page: 237 article-title: An experimental study of the origin and the course of the centrifugal fibres to the olfactory bulb in the rat publication-title: J. Anat. – volume: 131 start-page: 717 year: 2005 end-page: 731 article-title: 5‐Hydroxytryptamine action in the rat olfactory bulb: in vitro electrophysiological patch‐clamp recordings of juxtaglomerular and mitral cells publication-title: Neuroscience – volume: 10 start-page: 579 year: 1983 end-page: 619 article-title: Neurochemistry of the vertebrate olfactory bulb publication-title: Neuroscience – volume: 115 start-page: 314 year: 2001 end-page: 327 article-title: Contribution of the cholinergic basal forebrain to proactive interference from stored odor memories during associative learning in rats publication-title: Behav. Neurosci. – volume: 25 start-page: 25 year: 2008 end-page: 38 article-title: Lateral dendritic shunt inhibition can regularize mitral cell spike patterning publication-title: J. Comput. Neurosci. – volume: 7 start-page: 157 year: 1970 end-page: 187 article-title: An electron‐microscopic study of the termination of the afferent fibres to the olfactory bulb from the cerebral hemisphere publication-title: J. Cell Sci. – volume: 2 start-page: 1003 year: 1999 end-page: 1009 article-title: Odor‐ and context‐dependent modulation of mitral cell activity in behaving rats publication-title: Nat. Neurosci. – volume: 26 start-page: 501 year: 2003 end-page: 506 article-title: Dendritic processing within olfactory bulb circuits publication-title: Trends Neurosci. – ident: e_1_2_11_85_2 doi: 10.1016/0361-9230(84)90143-6 – ident: e_1_2_11_23_2 doi: 10.1016/j.tins.2005.10.004 – ident: e_1_2_11_79_2 doi: 10.1523/JNEUROSCI.4746-04.2005 – ident: e_1_2_11_107_2 doi: 10.1523/JNEUROSCI.01-08-00887.1981 – ident: e_1_2_11_3_2 doi: 10.1002/cne.21396 – volume: 107 start-page: 215 year: 1970 ident: e_1_2_11_43_2 article-title: An experimental study of the origin and the course of the centrifugal fibres to the olfactory bulb in the rat publication-title: J. Anat. – ident: e_1_2_11_24_2 doi: 10.1007/s10827-007-0063-5 – ident: e_1_2_11_21_2 doi: 10.1016/S0031-9384(02)00895-8 – ident: e_1_2_11_26_2 doi: 10.1523/JNEUROSCI.5570-03.2004 – ident: e_1_2_11_114_2 doi: 10.1037/0735-7044.114.5.957 – ident: e_1_2_11_28_2 doi: 10.1523/JNEUROSCI.4605-05.2006 – ident: e_1_2_11_137_2 doi: 10.1146/annurev.ne.14.030191.002321 – ident: e_1_2_11_106_2 doi: 10.1037/0735-7044.100.4.585 – ident: e_1_2_11_139_2 doi: 10.1038/nn1048 – ident: e_1_2_11_113_2 doi: 10.1097/01.wnr.0000134988.51310.c3 – ident: e_1_2_11_16_2 doi: 10.1002/cne.901370404 – ident: e_1_2_11_99_2 doi: 10.1016/0006-8993(95)00280-4 – ident: e_1_2_11_7_2 doi: 10.1002/cne.902260305 – ident: e_1_2_11_111_2 doi: 10.1016/0006-8993(94)90038-8 – ident: e_1_2_11_34_2 doi: 10.1126/science.274.5289.976 – ident: e_1_2_11_140_2 doi: 10.1038/nn1522 – ident: e_1_2_11_52_2 doi: 10.1523/JNEUROSCI.2961-07.2007 – ident: e_1_2_11_72_2 doi: 10.1523/JNEUROSCI.23-20-07551.2003 – ident: e_1_2_11_123_2 doi: 10.1111/j.1471-4159.2006.04229.x – ident: e_1_2_11_66_2 doi: 10.1002/cne.901780408 – ident: e_1_2_11_69_2 doi: 10.1152/jn.00212.2003 – ident: e_1_2_11_36_2 doi: 10.1073/pnas.0701846104 – ident: e_1_2_11_128_2 doi: 10.1111/j.1365-2443.2006.01010.x – ident: e_1_2_11_118_2 doi: 10.1016/S0361-9230(99)00055-6 – volume: 241 start-page: 642 year: 1987 ident: e_1_2_11_133_2 article-title: Presynaptic α2‐adrenoceptors play a major role in the effects of idazoxan on cortical noradrenaline release (as measured by in vivo dialysis) in the rat publication-title: J. Pharmacol. Exp. Ther. – ident: e_1_2_11_134_2 doi: 10.1523/JNEUROSCI.20-24-09104.2000 – ident: e_1_2_11_9_2 doi: 10.1016/S0166-2236(03)00228-5 – ident: e_1_2_11_127_2 doi: 10.1073/pnas.0403361101 – ident: e_1_2_11_78_2 doi: 10.1523/JNEUROSCI.1419-05.2006 – ident: e_1_2_11_25_2 doi: 10.1063/1.1596071 – ident: e_1_2_11_15_2 doi: 10.1111/j.1749-6632.2009.03882.x – ident: e_1_2_11_109_2 doi: 10.1016/0306-4522(85)90258-1 – ident: e_1_2_11_39_2 doi: 10.1038/nn1292 – ident: e_1_2_11_126_2 doi: 10.1523/JNEUROSCI.2633-06.2006 – ident: e_1_2_11_122_2 doi: 10.1016/0163-1047(93)90257-I – ident: e_1_2_11_56_2 doi: 10.1523/JNEUROSCI.3433-03.2004 – ident: e_1_2_11_119_2 doi: 10.1016/j.neuroscience.2004.10.034 – ident: e_1_2_11_97_2 doi: 10.1002/cne.902850305 – ident: e_1_2_11_141_2 doi: 10.1038/nrn1867 – ident: e_1_2_11_95_2 doi: 10.1111/j.1460-9568.2006.05212.x – ident: e_1_2_11_89_2 doi: 10.1007/BF00442821 – ident: e_1_2_11_38_2 doi: 10.1111/j.1460-9568.2008.06316.x – ident: e_1_2_11_116_2 doi: 10.1111/j.1460-9568.2008.06101.x – ident: e_1_2_11_14_2 doi: 10.1016/j.neuron.2006.02.019 – ident: e_1_2_11_115_2 doi: 10.1101/lm.606407 – ident: e_1_2_11_129_2 doi: 10.1002/jnr.20116 – ident: e_1_2_11_104_2 doi: 10.1523/JNEUROSCI.12-10-03985.1992 – ident: e_1_2_11_98_2 doi: 10.1002/cne.903040310 – ident: e_1_2_11_71_2 doi: 10.1111/j.1749-6632.2009.04018.x – ident: e_1_2_11_132_2 doi: 10.1016/j.expneurol.2005.03.004 – ident: e_1_2_11_74_2 doi: 10.1113/jphysiol.1982.sp014187 – ident: e_1_2_11_105_2 doi: 10.1016/S0006-8993(97)01371-1 – ident: e_1_2_11_94_2 doi: 10.1037/0735-7044.115.2.314 – ident: e_1_2_11_10_2 doi: 10.1093/acprof:oso/9780195159561.003.0005 – ident: e_1_2_11_31_2 doi: 10.1016/j.semcdb.2006.04.006 – volume: 23 start-page: 6946 year: 2003 ident: e_1_2_11_55_2 article-title: Olfactory bulb mitral‐tufted cell plasticity: odorant‐specific tuning reflects previous odorant exposure publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-17-06946.2003 – volume: 11 start-page: 1837 year: 2001 ident: e_1_2_11_77_2 article-title: Local information processing in dendritic trees: subsets of spines in granule cells of the mammalian olfactory bulb publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.11-06-01837.1991 – ident: e_1_2_11_13_2 doi: 10.1002/cne.902030310 – ident: e_1_2_11_80_2 doi: 10.1111/j.1460-9568.2008.06170.x – ident: e_1_2_11_124_2 doi: 10.1523/JNEUROSCI.22-07-02679.2002 – ident: e_1_2_11_70_2 doi: 10.1523/JNEUROSCI.4630-06.2007 – ident: e_1_2_11_18_2 doi: 10.1023/A:1008895429790 – ident: e_1_2_11_121_2 doi: 10.1101/lm.54803 – ident: e_1_2_11_40_2 doi: 10.1016/j.semcdb.2006.04.009 – volume: 104 start-page: 464 year: 1990 ident: e_1_2_11_48_2 article-title: Importance of β‐noradrenergic receptors in the olfactory bulb of sheep for recognition of lambs publication-title: Behav. Neurosci. doi: 10.1037/0735-7044.104.3.464 – volume: 7 start-page: 125 year: 1970 ident: e_1_2_11_59_2 article-title: The synaptology of the granule cells of the olfactory bulb publication-title: J. Cell Sci. doi: 10.1242/jcs.7.1.125 – ident: e_1_2_11_4_2 doi: 10.1073/pnas.0503027102 – ident: e_1_2_11_61_2 doi: 10.1016/S0896-6273(00)81013-2 – ident: e_1_2_11_67_2 doi: 10.1016/0361-9230(84)90148-5 – ident: e_1_2_11_53_2 doi: 10.1016/0006-8993(83)90009-4 – ident: e_1_2_11_92_2 doi: 10.1037/0735-7044.115.4.826 – volume: 12 start-page: 3992 year: 1992 ident: e_1_2_11_103_2 article-title: Norepinephrine inhibits calcium currents and EPSPs via a G‐protein‐coupled mechanism in olfactory bulb neurons publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.12-10-03992.1992 – ident: e_1_2_11_27_2 doi: 10.1016/j.neuron.2005.11.038 – ident: e_1_2_11_47_2 doi: 10.1016/0165-3806(88)90202-7 – ident: e_1_2_11_82_2 doi: 10.1523/JNEUROSCI.0884-06.2006 – ident: e_1_2_11_29_2 doi: 10.1126/science.286.5440.711 – ident: e_1_2_11_37_2 doi: 10.1152/jn.01141.2005 – ident: e_1_2_11_93_2 doi: 10.1037/0735-7044.114.1.32 – ident: e_1_2_11_42_2 doi: 10.1002/cne.902160305 – ident: e_1_2_11_76_2 doi: 10.1002/cne.902250404 – ident: e_1_2_11_22_2 doi: 10.1016/j.semcdb.2006.04.011 – ident: e_1_2_11_51_2 doi: 10.1101/lm.66404 – ident: e_1_2_11_12_2 doi: 10.1016/j.brainresrev.2007.03.005 – volume: 22 start-page: RC201 year: 2002 ident: e_1_2_11_91_2 article-title: Experience modifies olfactory acuity: acetylcholine‐dependent learning decreases behavioral generalization between similar odorants publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-02-j0005.2002 – volume: 7 start-page: 3016 year: 1987 ident: e_1_2_11_117_2 article-title: Serotonergic afferents to the rat olfactory bulb: I. Origins and laminar specificity of serotonergic inputs in the adult rat publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.07-10-03016.1987 – ident: e_1_2_11_62_2 doi: 10.1523/JNEUROSCI.18-17-06790.1998 – ident: e_1_2_11_50_2 doi: 10.1016/S0893-6080(02)00061-8 – ident: e_1_2_11_33_2 doi: 10.1111/j.1460-9568.2006.04711.x – ident: e_1_2_11_11_2 doi: 10.1152/physrev.00008.2004 – ident: e_1_2_11_17_2 doi: 10.1126/science.256.5058.833 – ident: e_1_2_11_20_2 doi: 10.1073/pnas.92.8.3371 – ident: e_1_2_11_45_2 doi: 10.1002/(SICI)1097-4695(199605)30:1<123::AID-NEU11>3.0.CO;2-N – ident: e_1_2_11_68_2 doi: 10.1152/jn.00823.2006 – ident: e_1_2_11_57_2 doi: 10.1093/chemse/bji055 – ident: e_1_2_11_88_2 doi: 10.1523/JNEUROSCI.19-21-09180.1999 – ident: e_1_2_11_131_2 doi: 10.1016/S0306-4522(02)00757-1 – ident: e_1_2_11_35_2 doi: 10.1152/jn.00887.2002 – ident: e_1_2_11_63_2 doi: 10.1016/S0896-6273(00)81065-X – ident: e_1_2_11_30_2 doi: 10.1146/annurev.neuro.24.1.263 – ident: e_1_2_11_83_2 doi: 10.1111/j.1749-6632.2009.03881.x – ident: e_1_2_11_19_2 doi: 10.1016/j.tins.2005.03.005 – ident: e_1_2_11_108_2 doi: 10.1016/0361-9230(94)90159-7 – ident: e_1_2_11_5_2 doi: 10.1093/chemse/bjh137 – ident: e_1_2_11_101_2 doi: 10.1016/S0306-4522(98)00437-0 – ident: e_1_2_11_8_2 doi: 10.1038/nrn964 – ident: e_1_2_11_44_2 doi: 10.1016/0306-4522(83)90206-3 – ident: e_1_2_11_6_2 doi: 10.1002/cne.902190308 – volume: 46 start-page: 649 year: 1981 ident: e_1_2_11_73_2 article-title: Blockade of synaptic inhibition reveals long‐lasting synaptic excitation in isolated turtle olfactory bulb publication-title: J. Neurophysiol. doi: 10.1152/jn.1981.46.3.649 – ident: e_1_2_11_32_2 doi: 10.1046/j.1460-9568.2003.02445.x – ident: e_1_2_11_41_2 doi: 10.1002/cne.902030311 – ident: e_1_2_11_75_2 doi: 10.1073/pnas.021445798 – ident: e_1_2_11_120_2 doi: 10.1016/0306-4522(94)90396-4 – ident: e_1_2_11_125_2 doi: 10.1073/pnas.0406082102 – volume: 7 start-page: 157 year: 1970 ident: e_1_2_11_60_2 article-title: An electron‐microscopic study of the termination of the afferent fibres to the olfactory bulb from the cerebral hemisphere publication-title: J. Cell Sci. doi: 10.1242/jcs.7.1.157 – ident: e_1_2_11_58_2 doi: 10.1016/0014-4886(66)90023-9 – ident: e_1_2_11_84_2 doi: 10.1016/j.neuron.2005.09.032 – ident: e_1_2_11_138_2 doi: 10.1038/264705a0 – ident: e_1_2_11_2_2 doi: 10.1016/S0959-4388(02)00348-3 – ident: e_1_2_11_54_2 doi: 10.1038/14801 – ident: e_1_2_11_86_2 doi: 10.1002/cne.902430405 – ident: e_1_2_11_110_2 doi: 10.1126/science.2147078 – ident: e_1_2_11_135_2 doi: 10.1111/j.1460-9568.2006.05235.x – volume: 20 start-page: 5124 year: 2000 ident: e_1_2_11_64_2 article-title: Calcium influx through NMDA receptors directly evokes GABA release in olfactory bulb granule cells publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.20-13-05124.2000 – volume: 108 start-page: 317 year: 1994 ident: e_1_2_11_49_2 article-title: Scopolamine injection into the olfactory bulb impairs short‐term olfactory memory in rats publication-title: Behav. Neurosci. doi: 10.1037/0735-7044.108.2.317 – ident: e_1_2_11_65_2 doi: 10.1002/cne.901810202 – ident: e_1_2_11_136_2 doi: 10.1523/JNEUROSCI.2954-08.2008 – ident: e_1_2_11_130_2 doi: 10.1002/dneu.20389 – ident: e_1_2_11_100_2 doi: 10.1523/JNEUROSCI.4768-05.2006 – ident: e_1_2_11_102_2 doi: 10.1152/jn.2001.86.5.2173 – volume: 107 start-page: 72 year: 1993 ident: e_1_2_11_90_2 article-title: Learning and memory of odor‐reward association: selective impairment following horizontal diagonal band lesions publication-title: Behav. Neurosci. doi: 10.1037/0735-7044.107.1.72 – ident: e_1_2_11_46_2 doi: 10.1523/JNEUROSCI.09-11-03998.1989 – ident: e_1_2_11_87_2 doi: 10.1016/0306-4522(92)90496-O – ident: e_1_2_11_96_2 doi: 10.1016/S0031-9384(98)00238-8 – ident: e_1_2_11_81_2 doi: 10.1213/01.ane.0000205752.00303.94 – ident: e_1_2_11_112_2 doi: 10.1523/JNEUROSCI.4578-03.2004 |
SSID | ssj0012847 |
Score | 2.118359 |
SecondaryResourceType | review_article |
Snippet | The olfactory bulb is known to receive signals from sensory neurons and to convey them to higher processing centers. However, in addition to relaying sensory... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 239 |
SubjectTerms | Animals Apoptosis GABA glutamate Humans Interneurons - physiology lateral inhibition learning Neurogenesis Odorants Olfactory Bulb - physiology plasticity Smell - physiology |
Title | Centrifugal Drive onto Local Inhibitory Interneurons of the Olfactory Bulb |
URI | https://api.istex.fr/ark:/67375/WNG-F724VND3-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1749-6632.2009.03913.x https://www.ncbi.nlm.nih.gov/pubmed/19686142 https://www.proquest.com/docview/20777615 https://www.proquest.com/docview/20781282 https://www.proquest.com/docview/20786850 https://www.proquest.com/docview/34732073 https://www.proquest.com/docview/67591069 |
Volume | 1170 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELemTUi8wDa-CgP8gBA8pEpi144fN0bZJigSMBhPlu04omqVoraRtv31u7PTQqdtmhBveTg78eU-fmef7wh55U1WGoFNM1wuE87SKrEuLRLnS-ZL5wQLt1w_DcTBMT866Z20-U94FybWh1huuKFmBHuNCm7sbFXJJVcJeMy8LTvJVMa6iCcxdQvx0ZdlJalghYNRlmCUAdRcTuq5YqIVT7WBTD-9Coauotrglvr3yWixoJiNMuo2c9t155dqPf6fFW-Sey16pbtR3LbImq-3yZ3Yz_Jsm2y1lmJG37TlrN8-IEdhA3lYNeCL6P4UrCvFmgn0I3pRelj_GtohnvTTuDmJxULqGZ1UFKAp_TyODYHO6F4ztg_Jcf_9t3cHSdvBIXEQqLCE9QrP89KxUkKYJyrJZJWKwsMyUuescZUpU2dsKVLlOQRfJjcSYjjAMLlTmWOPyHo9qf0TQi1TBqAbl5Z7DvMUDkKdSvLSKu8ybjpELv6Wdm15c-yyMdZ_hTnwXo3sw-abSgf26dMOyZYjf8cSH7cY8zoIxHKAmY4wRU729I_BB92H5X4f7DOtOuTlQmI0KC6expjaT5oZTCelBDx5IwXAryK_mUIUvfR6Cga8Aip2PQWwEdgt4EsfR4H-wwQlCkBv8P4iiOWtuaMHP3e_huen_z70GbkbT-4wNXqHrM-njX8OAHBuXwTVvgD3tUlK |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT9swFLcm0LRdxmBfhQ18mKbtkCqJXTs-wlhXWMmkDTZ2smzHERVVitpGAv56nu20owgQmnbr4dmpX97H79nO7yH03qqkUMw1zTApjyiJy0ibOIuMLYgtjGHEf-V6kLPeEd0_7hw37YDctzCBH2K-4eY8w8dr5-BuQ3rRyzkVEaTMtOGdJCIhbQCUy67Bt6-vfsy5pHwc9mGZQ1gGWHPzWs8tMy3kqmWn9vPbgOgirvWJqbuChrMlhfsop-16qtvm8gbb439a83P0rAGweDtY3Cp6ZKs19Di0tLxYQ6tNsJjgjw2j9acXaN_vIQ_KGtIR3h1DgMWONgH3XSLFe9XJQA_cYT8O-5OOL6Sa4FGJAZ3i78PQE-gC79RD_RIddb8cfu5FTROHyECtQiLSySxNC0MKDpUeKznhZcwyC8uIjdHKlKqIjdIFi4WlUH-pVHEo4wDGpEYkhrxCS9Wosm8Q1kQoQG-Ua2opzJMZqHZKTgstrEmoaiE-e13SNAznrtHGUF6rdOC50qnP9d8U0qtPnrdQMh95Flg-HjDmg7eI-QA1PnW35HhH_s6_yi4s91e-S6Rooa2ZyUjwXXcgoyo7qicwHeccIOW9EoDAsvR-CZZ14rslCOgKpMjdEqBGUDeDf_o6WPRfJQiWAYCD52feLh-sHZn_2f7pf6__-9At9KR3eNCX_b382wZ6Gg7y3E3pt2hpOq7tO8CDU73p_fwKh55NZQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQKxAXoOWV8qgPCMFho92148exEEJbyoKAQjlZfq0aJdpUSVZq-fWMvZtAqraqELc9jL3r2Xl8Y49nEHrhdeY0C00zbM4TStIyMTYVifWOeGctI_GW68eC7R7S_aPeUZv_FO7CNPUhlhtuQTOivQ4KfuLKVSXnVCbgMfO27CSRGekCnlynLBVBwvtflqWkohmOVpmDVQZUcz6r54KZVlzVeuD66UU4dBXWRr80uItGixU16Sijbj03XfvrXLHH_7Pke-hOC1_xTiNvG-iGrzbRzaah5dkm2mhNxQy_autZv76P9uMO8rCswRnh_hTMKw5FE_BBcKN4rzoemmE46sfN7mSoFlLN8KTEgE3xp3HTEegMv6nH5gE6HLz79nY3aVs4JBYiFZKQnvA0d5Y4DnEeKznhZcqEh2Wk1hptS-1Sq41jqfQUoi-daw5BHICY3MrMkodorZpU_jHChkgN2I1yQz2FeYSFWKfk1BnpbUZ1B_HF31K2rW8e2myM1V9xDrxXBfaF7ptSRfap0w7KliNPmhof1xjzMgrEcoCejkKOHO-pH8V7NYDlfi_6RMkO2l5IjALNDccxuvKTegbTcc4BUF5JAfhL5FdTMNFLL6cgwCugIpdTABuB3Qy-9FEj0H-YIJkA-AbvF1Esr80dVfzc-Rqft_596Da69bk_UAd7xYcn6HZzihfSpJ-itfm09s8ADM7N86jlvwFoV0wd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Centrifugal+Drive+onto+Local+Inhibitory+Interneurons+of+the+Olfactory+Bulb&rft.jtitle=Annals+of+the+New+York+Academy+of+Sciences&rft.au=Mouret%2C+Aur%C3%A9lie&rft.au=Murray%2C+Kerren&rft.au=Lledo%2C+Pierre%E2%80%90Marie&rft.date=2009-07-01&rft.issn=0077-8923&rft.eissn=1749-6632&rft.volume=1170&rft.issue=1&rft.spage=239&rft.epage=254&rft_id=info:doi/10.1111%2Fj.1749-6632.2009.03913.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1749_6632_2009_03913_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0077-8923&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0077-8923&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0077-8923&client=summon |