Centrifugal Drive onto Local Inhibitory Interneurons of the Olfactory Bulb

The olfactory bulb is known to receive signals from sensory neurons and to convey them to higher processing centers. However, in addition to relaying sensory information to the cortex, the olfactory bulb is actively involved in sensory information processing. Hence, olfactory sensory inputs generate...

Full description

Saved in:
Bibliographic Details
Published inAnnals of the New York Academy of Sciences Vol. 1170; no. 1; pp. 239 - 254
Main Authors Mouret, Aurélie, Murray, Kerren, Lledo, Pierre-Marie
Format Journal Article
LanguageEnglish
Published Malden, USA Blackwell Publishing Inc 01.07.2009
Subjects
Online AccessGet full text
ISSN0077-8923
1749-6632
1749-6632
1930-6547
DOI10.1111/j.1749-6632.2009.03913.x

Cover

Loading…
Abstract The olfactory bulb is known to receive signals from sensory neurons and to convey them to higher processing centers. However, in addition to relaying sensory information to the cortex, the olfactory bulb is actively involved in sensory information processing. Hence, olfactory sensory inputs generate a reproducible spatial pattern of restricted activation in the glomerular layer that is subsequently transformed into highly distributed patterns by lateral interactions between output relay neurons and diverse types of local interneurons. Odor representation is thus highly dynamic and temporally orchestrated, right from the first central relay of the olfactory system. This major function of the olfactory bulb is subject to extensive local and extrinsic synaptic influences. The external (or centrifugal) inputs include the dense innervations preferentially targeting the granule cells of the olfactory bulb. The continuous arrival of newly generated neurons in the olfactory bulb of adults provides another source of plasticity influencing the olfactory circuitry. This review deals with the neuromodulation of granule cell activity and of the continuous recruitment of these cells throughout life.
AbstractList The olfactory bulb is known to receive signals from sensory neurons and to convey them to higher processing centers. However, in addition to relaying sensory information to the cortex, the olfactory bulb is actively involved in sensory information processing. Hence, olfactory sensory inputs generate a reproducible spatial pattern of restricted activation in the glomerular layer that is subsequently transformed into highly distributed patterns by lateral interactions between output relay neurons and diverse types of local interneurons. Odor representation is thus highly dynamic and temporally orchestrated, right from the first central relay of the olfactory system. This major function of the olfactory bulb is subject to extensive local and extrinsic synaptic influences. The external (or centrifugal) inputs include the dense innervations preferentially targeting the granule cells of the olfactory bulb. The continuous arrival of newly generated neurons in the olfactory bulb of adults provides another source of plasticity influencing the olfactory circuitry. This review deals with the neuromodulation of granule cell activity and of the continuous recruitment of these cells throughout life.
The olfactory bulb is known to receive signals from sensory neurons and to convey them to higher processing centers. However, in addition to relaying sensory information to the cortex, the olfactory bulb is actively involved in sensory information processing. Hence, olfactory sensory inputs generate a reproducible spatial pattern of restricted activation in the glomerular layer that is subsequently transformed into highly distributed patterns by lateral interactions between output relay neurons and diverse types of local interneurons. Odor representation is thus highly dynamic and temporally orchestrated, right from the first central relay of the olfactory system. This major function of the olfactory bulb is subject to extensive local and extrinsic synaptic influences. The external (or centrifugal) inputs include the dense innervations preferentially targeting the granule cells of the olfactory bulb. The continuous arrival of newly generated neurons in the olfactory bulb of adults provides another source of plasticity influencing the olfactory circuitry. This review deals with the neuromodulation of granule cell activity and of the continuous recruitment of these cells throughout life.The olfactory bulb is known to receive signals from sensory neurons and to convey them to higher processing centers. However, in addition to relaying sensory information to the cortex, the olfactory bulb is actively involved in sensory information processing. Hence, olfactory sensory inputs generate a reproducible spatial pattern of restricted activation in the glomerular layer that is subsequently transformed into highly distributed patterns by lateral interactions between output relay neurons and diverse types of local interneurons. Odor representation is thus highly dynamic and temporally orchestrated, right from the first central relay of the olfactory system. This major function of the olfactory bulb is subject to extensive local and extrinsic synaptic influences. The external (or centrifugal) inputs include the dense innervations preferentially targeting the granule cells of the olfactory bulb. The continuous arrival of newly generated neurons in the olfactory bulb of adults provides another source of plasticity influencing the olfactory circuitry. This review deals with the neuromodulation of granule cell activity and of the continuous recruitment of these cells throughout life.
Author Mouret, Aurélie
Lledo, Pierre-Marie
Murray, Kerren
Author_xml – sequence: 1
  givenname: Aurélie
  surname: Mouret
  fullname: Mouret, Aurélie
  organization: Laboratory for Perception and Memory, Institut Pasteur, CNRS, Paris, France
– sequence: 2
  givenname: Kerren
  surname: Murray
  fullname: Murray, Kerren
  organization: Laboratory for Perception and Memory, Institut Pasteur, CNRS, Paris, France
– sequence: 3
  givenname: Pierre-Marie
  surname: Lledo
  fullname: Lledo, Pierre-Marie
  organization: Laboratory for Perception and Memory, Institut Pasteur, CNRS, Paris, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19686142$$D View this record in MEDLINE/PubMed
BookMark eNqNkjtv2zAUhYkgQeKk-QuFpm5S-ZD4WFqkTvOC4Qx9BJ0IiqIaurKYklRj__vQduKhi82FF7zfPSR4zik47F1vAMgQLFBaH2cFYqXIKSW4wBCKAhKBSLE4AKNt4xCMIGQs5wKTE3AawgxChHnJjsEJEpRTVOIRuBubPnrbDr9Vl116-89kro8umzidDm77R1vb6PwyldH43gze9SFzbRYfTXbftUqvu1-Grn4HjlrVBXP-up-BH1dfv49v8sn99e34YpLrSjCSk4qbEjeaNAyXgraMsBZSbtK7oda10q1qoFZ1Q6EwZSmEwophzgSCWAukyRn4sNF98u7vYEKUcxu06TrVGzcESVmVWCp2gqRkBENGdoIJ4pRXcC8w_THeB2SMoiqB71_BoZ6bRj55O1d-Kd8cSsCnDaC9C8GbVmobVbTJJa9sJxGUq0jImVw5L1fOy1Uk5DoScpEE-H8C2zt2j37ejD7bziz3npPTXxff1nVSyDcKNkSz2Coo_yfZRFglH6bX8ioF4ef0kkhBXgAE99tb
CitedBy_id crossref_primary_10_1016_j_neuroscience_2009_12_050
crossref_primary_10_1016_j_tics_2010_04_003
crossref_primary_10_1523_JNEUROSCI_2336_13_2014
crossref_primary_10_3389_fncir_2024_1467203
crossref_primary_10_1242_dev_123943
crossref_primary_10_1016_j_neuroscience_2012_12_014
crossref_primary_10_1146_annurev_physiol_030212_183731
crossref_primary_10_1016_j_celrep_2012_10_008
crossref_primary_10_1111_ejn_13490
crossref_primary_10_1152_jn_00090_2018
crossref_primary_10_1152_jn_00988_2015
crossref_primary_10_1016_j_tins_2010_09_006
crossref_primary_10_1007_s00441_010_0964_x
crossref_primary_10_1111_j_1460_9568_2011_07605_x
crossref_primary_10_1152_jn_00446_2010
crossref_primary_10_3389_fncel_2017_00424
crossref_primary_10_1073_pnas_1404991111
crossref_primary_10_1002_jnr_23054
crossref_primary_10_3389_fnins_2014_00333
crossref_primary_10_1038_nn_3108
crossref_primary_10_1038_nn_3669
crossref_primary_10_4103_NRR_NRR_D_24_00312
crossref_primary_10_1111_nan_12337
crossref_primary_10_1016_j_tria_2020_100074
crossref_primary_10_1016_j_neurobiolaging_2017_09_036
crossref_primary_10_1007_s12035_018_1341_0
crossref_primary_10_1523_JNEUROSCI_3559_17_2018
crossref_primary_10_3389_fnana_2015_00004
crossref_primary_10_1007_s00018_013_1262_z
crossref_primary_10_1016_j_expneurol_2013_03_020
Cites_doi 10.1016/0361-9230(84)90143-6
10.1016/j.tins.2005.10.004
10.1523/JNEUROSCI.4746-04.2005
10.1523/JNEUROSCI.01-08-00887.1981
10.1002/cne.21396
10.1007/s10827-007-0063-5
10.1016/S0031-9384(02)00895-8
10.1523/JNEUROSCI.5570-03.2004
10.1037/0735-7044.114.5.957
10.1523/JNEUROSCI.4605-05.2006
10.1146/annurev.ne.14.030191.002321
10.1037/0735-7044.100.4.585
10.1038/nn1048
10.1097/01.wnr.0000134988.51310.c3
10.1002/cne.901370404
10.1016/0006-8993(95)00280-4
10.1002/cne.902260305
10.1016/0006-8993(94)90038-8
10.1126/science.274.5289.976
10.1038/nn1522
10.1523/JNEUROSCI.2961-07.2007
10.1523/JNEUROSCI.23-20-07551.2003
10.1111/j.1471-4159.2006.04229.x
10.1002/cne.901780408
10.1152/jn.00212.2003
10.1073/pnas.0701846104
10.1111/j.1365-2443.2006.01010.x
10.1016/S0361-9230(99)00055-6
10.1523/JNEUROSCI.20-24-09104.2000
10.1016/S0166-2236(03)00228-5
10.1073/pnas.0403361101
10.1523/JNEUROSCI.1419-05.2006
10.1063/1.1596071
10.1111/j.1749-6632.2009.03882.x
10.1016/0306-4522(85)90258-1
10.1038/nn1292
10.1523/JNEUROSCI.2633-06.2006
10.1016/0163-1047(93)90257-I
10.1523/JNEUROSCI.3433-03.2004
10.1016/j.neuroscience.2004.10.034
10.1002/cne.902850305
10.1038/nrn1867
10.1111/j.1460-9568.2006.05212.x
10.1007/BF00442821
10.1111/j.1460-9568.2008.06316.x
10.1111/j.1460-9568.2008.06101.x
10.1016/j.neuron.2006.02.019
10.1101/lm.606407
10.1002/jnr.20116
10.1523/JNEUROSCI.12-10-03985.1992
10.1002/cne.903040310
10.1111/j.1749-6632.2009.04018.x
10.1016/j.expneurol.2005.03.004
10.1113/jphysiol.1982.sp014187
10.1016/S0006-8993(97)01371-1
10.1037/0735-7044.115.2.314
10.1093/acprof:oso/9780195159561.003.0005
10.1016/j.semcdb.2006.04.006
10.1523/JNEUROSCI.23-17-06946.2003
10.1523/JNEUROSCI.11-06-01837.1991
10.1002/cne.902030310
10.1111/j.1460-9568.2008.06170.x
10.1523/JNEUROSCI.22-07-02679.2002
10.1523/JNEUROSCI.4630-06.2007
10.1023/A:1008895429790
10.1101/lm.54803
10.1016/j.semcdb.2006.04.009
10.1037/0735-7044.104.3.464
10.1242/jcs.7.1.125
10.1073/pnas.0503027102
10.1016/S0896-6273(00)81013-2
10.1016/0361-9230(84)90148-5
10.1016/0006-8993(83)90009-4
10.1037/0735-7044.115.4.826
10.1523/JNEUROSCI.12-10-03992.1992
10.1016/j.neuron.2005.11.038
10.1016/0165-3806(88)90202-7
10.1523/JNEUROSCI.0884-06.2006
10.1126/science.286.5440.711
10.1152/jn.01141.2005
10.1037/0735-7044.114.1.32
10.1002/cne.902160305
10.1002/cne.902250404
10.1016/j.semcdb.2006.04.011
10.1101/lm.66404
10.1016/j.brainresrev.2007.03.005
10.1523/JNEUROSCI.22-02-j0005.2002
10.1523/JNEUROSCI.07-10-03016.1987
10.1523/JNEUROSCI.18-17-06790.1998
10.1016/S0893-6080(02)00061-8
10.1111/j.1460-9568.2006.04711.x
10.1152/physrev.00008.2004
10.1126/science.256.5058.833
10.1073/pnas.92.8.3371
10.1002/(SICI)1097-4695(199605)30:1<123::AID-NEU11>3.0.CO;2-N
10.1152/jn.00823.2006
10.1093/chemse/bji055
10.1523/JNEUROSCI.19-21-09180.1999
10.1016/S0306-4522(02)00757-1
10.1152/jn.00887.2002
10.1016/S0896-6273(00)81065-X
10.1146/annurev.neuro.24.1.263
10.1111/j.1749-6632.2009.03881.x
10.1016/j.tins.2005.03.005
10.1016/0361-9230(94)90159-7
10.1093/chemse/bjh137
10.1016/S0306-4522(98)00437-0
10.1038/nrn964
10.1016/0306-4522(83)90206-3
10.1002/cne.902190308
10.1152/jn.1981.46.3.649
10.1046/j.1460-9568.2003.02445.x
10.1002/cne.902030311
10.1073/pnas.021445798
10.1016/0306-4522(94)90396-4
10.1073/pnas.0406082102
10.1242/jcs.7.1.157
10.1016/0014-4886(66)90023-9
10.1016/j.neuron.2005.09.032
10.1038/264705a0
10.1016/S0959-4388(02)00348-3
10.1038/14801
10.1002/cne.902430405
10.1126/science.2147078
10.1111/j.1460-9568.2006.05235.x
10.1523/JNEUROSCI.20-13-05124.2000
10.1037/0735-7044.108.2.317
10.1002/cne.901810202
10.1523/JNEUROSCI.2954-08.2008
10.1002/dneu.20389
10.1523/JNEUROSCI.4768-05.2006
10.1152/jn.2001.86.5.2173
10.1037/0735-7044.107.1.72
10.1523/JNEUROSCI.09-11-03998.1989
10.1016/0306-4522(92)90496-O
10.1016/S0031-9384(98)00238-8
10.1213/01.ane.0000205752.00303.94
10.1523/JNEUROSCI.4578-03.2004
ContentType Journal Article
Copyright 2009 New York Academy of Sciences
Copyright_xml – notice: 2009 New York Academy of Sciences
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
8FD
FR3
P64
7SP
7U5
L7M
7X8
DOI 10.1111/j.1749-6632.2009.03913.x
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Chemoreception Abstracts
Engineering Research Database
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
MEDLINE - Academic
DatabaseTitleList Chemoreception Abstracts
Chemoreception Abstracts
Chemoreception Abstracts
Solid State and Superconductivity Abstracts
MEDLINE

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1749-6632
1930-6547
EndPage 254
ExternalDocumentID 19686142
10_1111_j_1749_6632_2009_03913_x
NYAS03913
ark_67375_WNG_F724VND3_9
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--Z
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1CY
1OB
1OC
23M
31~
33P
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
692
6J9
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAMDK
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOJD
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AELAQ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFSWV
AFZJQ
AHBTC
AHEFC
AHMBA
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
CO8
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IH2
IX1
J0M
K48
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OHT
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RAG
RIWAO
RJQFR
ROL
RX1
S10
SAMSI
SJN
SUPJJ
SV3
TEORI
TUS
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIK
WOHZO
WQJ
WRC
WUP
WVDHM
WXSBR
X7M
XG1
YBU
YOC
YSK
ZGI
ZKB
ZXP
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADXHL
AEYWJ
AGHNM
AGQPQ
AGYGG
AHDLI
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
8FD
FR3
P64
7SP
7U5
L7M
7X8
ID FETCH-LOGICAL-c5973-358e42dc3d72496f737f068e7490ccbacfad0cabd609e4499a2a72879102c91c3
IEDL.DBID DR2
ISSN 0077-8923
1749-6632
IngestDate Thu Jul 10 18:54:20 EDT 2025
Thu Jul 10 22:54:16 EDT 2025
Fri Jul 11 12:25:44 EDT 2025
Thu Jul 10 16:49:31 EDT 2025
Fri Jul 11 08:51:07 EDT 2025
Mon Jul 21 05:56:25 EDT 2025
Tue Jul 01 03:48:42 EDT 2025
Thu Apr 24 23:09:29 EDT 2025
Wed Jan 22 16:31:52 EST 2025
Wed Oct 30 09:56:15 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5973-358e42dc3d72496f737f068e7490ccbacfad0cabd609e4499a2a72879102c91c3
Notes istex:F22ACF2AC03B3746DF9B1E0BB2F2F40DF5471AEC
ArticleID:NYAS03913
ark:/67375/WNG-F724VND3-9
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ObjectType-Review-3
PMID 19686142
PQID 20777615
PQPubID 23462
PageCount 16
ParticipantIDs proquest_miscellaneous_67591069
proquest_miscellaneous_34732073
proquest_miscellaneous_20786850
proquest_miscellaneous_20781282
proquest_miscellaneous_20777615
pubmed_primary_19686142
crossref_citationtrail_10_1111_j_1749_6632_2009_03913_x
crossref_primary_10_1111_j_1749_6632_2009_03913_x
wiley_primary_10_1111_j_1749_6632_2009_03913_x_NYAS03913
istex_primary_ark_67375_WNG_F724VND3_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2009
PublicationDateYYYYMMDD 2009-07-01
PublicationDate_xml – month: 07
  year: 2009
  text: July 2009
PublicationDecade 2000
PublicationPlace Malden, USA
PublicationPlace_xml – name: Malden, USA
– name: United States
PublicationTitle Annals of the New York Academy of Sciences
PublicationTitleAlternate Ann N Y Acad Sci
PublicationYear 2009
Publisher Blackwell Publishing Inc
Publisher_xml – name: Blackwell Publishing Inc
References Halabisky, B. & B.W. Strowbridge. 2003. Gamma-frequency excitatory input to granule cells facilitates dendrodendritic inhibition in the rat olfactory bulb. J. Neurophysiol. 90: 644-654.
Kaneko, N., H. Okano & K. Sawamoto. 2006. Role of the cholinergic system in regulating survival of newborn neurons in the adult mouse dentate gyrus and olfactory bulb. Genes Cells 11: 1145-1159.
Cooper-Kuhn, C.M., J. Winkler & H.G. Kuhn. 2004. Decreased neurogenesis after cholinergic forebrain lesion in the adult rat. J. Neurosci. Res. 77: 155-165.
Carson, K.A. 1984. Quantitative localization of neurons projecting to the mouse main olfactory bulb. Brain Res. Bull. 12: 629-634.
Veyrac, A., A. Didier, F. Colpaert, et al . 2005. Activation of noradrenergic transmission by α2-adrenoceptor antagonists counteracts deafferentation-induced neuronal death and cell proliferation in the adult mouse olfactory bulb. Exp. Neurol. 194: 444-456.
Dennis, T., R. L'Heureux, C. Carter, et al . 1987. Presynaptic α2-adrenoceptors play a major role in the effects of idazoxan on cortical noradrenaline release (as measured by in vivo dialysis) in the rat. J. Pharmacol. Exp. Ther. 241: 642-649.
Bathellier, B., S. Lagier, P. Faure, et al . 2006. Circuit properties generating gamma oscillations in a network model of the olfactory bulb. J. Neurophysiol. 95: 2678-2691.
Yokoi, M., K. Mori & S. Nakanishi. 1995. Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb. Proc. Natl. Acad. Sci. USA 92: 3371-3375.
Tabor, R., E. Yaksi & R.W. Friedrich. 2008. Multiple functions of GABA and GABA receptors during pattern processing in the zebrafish olfactory bulb. Eur. J. Neurosci. 28: 117-127.
Sullivan, R., G. Stackenwalt, F. Nasr, et al . 2000. Association of an odor with activation of olfactory bulb noradrenergic β-receptors or locus coeruleus stimulation is sufficient to produce learned approach responses to that odor in neonatal rats. Behav. Neurosci. 114: 957-962.
Fletcher, M. & D. Wilson. 2002. Experience modifies olfactory acuity: acetylcholine-dependent learning decreases behavioral generalization between similar odorants. J. Neurosci. 22: RC201.
De Rosa, E., M.E. Hasselmo & M.G. Baxter. 2001. Contribution of the cholinergic basal forebrain to proactive interference from stored odor memories during associative learning in rats. Behav. Neurosci. 115: 314-327.
Davis, B.J. & F. Macrides. 1981. The organization of centrifugal projections from the anterior olfactory nucleus, ventral hippocampal rudiment, and piriform cortex to the main olfactory bulb in the hamster: an autoradiographic study. J. Comp. Neurol. 203: 475-493.
Pager, J. 1983. Unit responses changing with behavioral outcome in the olfactory bulb of unrestrained rats. Brain Res. 289: 87-98.
Pressler, R.T., T. Inoue & B.W. Strowbridge. 2007. Muscarinic receptor activation modulates granule cell excitability and potentiates inhibition onto mitral cells in the rat olfactory bulb. J. Neurosci. 27: 10969-10981.
Macrides, F., B.J. Davis, W.M. Youngs, et al . 1981. Cholinergic and catecholaminergic afferents to the olfactory bulb in the hamster: a neuroanatomical, biochemical, and histochemical investigation. J. Comp. Neurol. 203: 495-514.
Mazor, O. & G. Laurent. 2005. Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons. Neuron 48: 661-673.
Zelles, T., J.D. Boyd, A.B. Hardy, et al . 2006. Branch-specific Ca2+ influx from Na+-dependent dendritic spikes in olfactory granule cells. J. Neurosci. 26: 30-40.
Rochefort, C., G. Gheusi, J.D. Vincent, et al . 2002. Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. J. Neurosci. 22: 2679-2689.
Doty, R.L., R. Bagla & N. Kim. 1999. Physostigmine enhances performance on an odor mixture discrimination test. Physiol. Behav. 65: 801-804.
Sullivan, R.M., D.A. Wilson & M. Leon. 1989. Norepinephrine and learning-induced plasticity in infant rat olfactory system. J. Neurosci. 9: 3998-4006.
Yamaguchi, M. & K. Mori. 2005. Critical period for sensory experience-dependent survival of newly generated granule cells in the adult mouse olfactory bulb. Proc. Natl. Acad. Sci. USA 102: 9697-9702.
Laaris, N., A. Puche & M. Ennis. 2007. Complementary postsynaptic activity patterns elicited in olfactory bulb by stimulation of mitral/tufted and centrifugal fiber inputs to granule cells. J. Neurophysiol. 97: 296-306.
Ravel, N., A. Elaagouby & R. Gervais. 1994. Scopolamine injection into the olfactory bulb impairs short-term olfactory memory in rats. Behav. Neurosci. 108: 317-324.
Zou, Z., F. Li & L.B. Buck. 2005. Odor maps in the olfactory cortex. Proc. Natl. Acad. Sci. USA 102: 7724-7729.
McLean, J.H. & M.T. Shipley. 1991. Postnatal development of the noradrenergic projection from locus coeruleus to the olfactory bulb in the rat. J. Comp. Neurol. 304: 467-477.
Rosser, A. & E. Keverne. 1985. The importance of central noradrenergic neurones in the formation of an olfactory memory in the prevention of pregnancy block. Neuroscience 15: 1141-1147.
Luskin, M.B. & J.L. Price. 1983. The topographic organization of associational fibers of the olfactory system in the rat, including centrifugal fibers to the olfactory bulb. J. Comp. Neurol. 216: 264-291.
Mechawar, N., A. Saghatelyan, R. Grailhe, et al . 2004. Nicotinic receptors regulate the survival of newborn neurons in the adult olfactory bulb. Proc. Natl. Acad. Sci. USA 101: 9822-9826.
Lledo, P.M. & A. Saghatelyan. 2005. Integrating new neurons into the adult olfactory bulb: joining the network, life-death decisions, and the effects of sensory experience. Trends Neurosci. 28: 248-254.
Mori, K., H. Nagao & Y. Yoshihara. 1999. The olfactory bulb: coding and processing of odor molecule information. Science 286: 711-715.
Lledo, P.M., M. Alonso & M.S. Grubb. 2006. Adult neurogenesis and functional plasticity in neuronal circuits. Nat. Rev. Neurosci. 7: 179-193.
Korsching, S. 2002. Olfactory maps and odor images. Curr. Opin. Neurobiol. 12: 387-392.
Hendin, O., D. Horn & M.V. Tsodyks. 1997. The role of inhibition in an associative memory model of the olfactory bulb. J. Comput. Neurosci. 4: 173-182.
Egger, V. 2008. Synaptic sodium spikes trigger long-lasting depolarizations and slow calcium entry in rat olfactory bulb granule cells. Eur. J. Neurosci. 27: 2066-2075.
Brennan, P., H. Kaba & E. Keverne. 1990. Olfactory recognition: a simple memory system. Science 250: 1223-1226.
Araneda, S., K. Gysling & A. Calas. 1999. Raphe serotonergic neurons projecting to the olfactory bulb contain galanin or somatostatin but not neurotensin. Brain Res. Bull. 49: 209-214.
David, F., C. Linster & T.A. Cleland. 2008. Lateral dendritic shunt inhibition can regularize mitral cell spike patterning. J. Comput. Neurosci. 25: 25-38.
Price, J.L. & T.P. Powell. 1970. An experimental study of the origin and the course of the centrifugal fibres to the olfactory bulb in the rat. J. Anat. 107: 215-237.
Linster, C., P. Garcia, M. Hasselmo, et al . 2001. Selective loss of cholinergic neurons projecting to the olfactory system increases perceptual generalization between similar, but not dissimilar, odorants. Behav. Neurosci. 115: 826-833.
Friedman, D. & B.W. Strowbridge. 2003. Both electrical and chemical synapses mediate fast network oscillations in the olfactory bulb. J. Neurophysiol. 89: 2601-2610.
Gray, C., W. Freeman & J. Skinner. 1986. Chemical dependencies of learning in the rabbit olfactory bulb: acquisition of the transient spatial pattern change depends on norepinephrine. Behav. Neurosci. 100: 585-596.
Hardy, A., B. Palouzier-Paulignan, A. Duchamp, et al . 2005. 5-Hydroxytryptamine action in the rat olfactory bulb: in vitro electrophysiological patch-clamp recordings of juxtaglomerular and mitral cells. Neuroscience 131: 717-731.
Friedrich, R.W., C.J. Habermann & G. Laurent. 2004. Multiplexing using synchrony in the zebrafish olfactory bulb. Nat. Neurosci. 7: 862-871.
Balu, R., R.T. Pressler & B.W. Strowbridge. 2007. Multiple modes of synaptic excitation of olfactory bulb granule cells. J. Neurosci. 27: 5621-5632.
Shipley, M.T. & M. Ennis. 1996. Functional organization of olfactory system. J. Neurobiol. 30: 123-176.
Ravel, N., P. Chabaud, C. Martin, et al . 2003. Olfactory learning modifies the expression of odour-induced oscillatory responses in the gamma (60-90 Hz) and beta (15-40 Hz) bands in the rat olfactory bulb. Eur. J. Neurosci. 17: 350-358.
Wilson, D.A., M.L. Fletcher & R.M. Sullivan. 2004. Acetylcholine and olfactory perceptual learning. Learn. Mem. 11: 28-34.
Trombley, P. 1992. Norepinephrine inhibits calcium currents and EPSPs via a G-protein-coupled mechanism in olfactory bulb neurons. J. Neurosci. 12: 3992-3998.
Egger, V., K. Svoboda & Z.F. Mainen. 2003. Mechanisms of lateral inhibition in the olfactory bulb: efficiency and modulation of spike-evoked calcium influx into granule cells. J. Neurosci. 23: 7551-7558.
Strowbridge, B.W. 2009. Role of cortical feedback in regulating inhibitory microcircuits. Ann. N. Y. Acad. Sci. International Symposium on Olfaction and Taste. 1170: 270-274.
Mouly, A., A. Elaagouby & N. Ravel. 1995. A study of the effects of noradrenaline in the rat olfactory bulb using evoked field potential response. Brain Res. 681: 47-57.
Nowycky, M.C., K. Mori & G.M. Shepherd. 1981. Blockade of synaptic inhibition reveals long-lasting synaptic excitation in isolated turtle olfactory bulb. J. Neurophysiol. 46: 649-658.
Johnson, B.A. & M. Leon. 2007. Chemotopic odorant coding in a mammalian olfactory system. J. Comp. Neurol. 503: 1-34.
Kunze, W.A., A.D. Shafton, R.E. Kem, et al . 1992. Intracellular responses of olfactory bulb granule cells to stimulating the horizontal diagonal band nucleus. Neuroscience 48: 363-369.
McLean, J.H., A. Darby-King, R.M. Sullivan, et al . 1993. Serotonergic influence on olfactory learning in the neonate rat. Behav. Neural. Biol. 60: 152-162.
McLean, J.H., M.T. Shipley, W.T. Nickell, et al . 1989. Chemoanatomical organization
2007; 104
2002; 15
2007; 503
1991; 14
1990; 104
2002; 12
2004; 7
1999; 49
2007; 100
2004; 24
1999; 286
1983; 10
1994; 61
1997; 4
1998; 18
2006; 23
2006; 24
2005; 102
1986; 100
2008; 27
2006; 26
2008; 28
2008; 25
2006; 29
1992; 48
2007; 67
1985; 15
1976; 264
1993; 107
2005; 194
2000; 114
1981; 203
1982; 326
1981; 1
1984; 226
1989; 9
2002; 77
1984; 225
2005; 85
2002; 3
2007; 97
2001; 24
2007; 14
1986; 243
2006; 49
1992; 256
2005; 8
2003; 26
2009; 1170
1998; 783
2003; 23
2006; 102
1970; 7
1966; 14
2003; 117
2005; 131
1993; 60
1978; 181
1987; 7
1981; 46
1996; 30
2003; 17
1978; 178
2005; 28
1992; 12
2003; 10
2001; 86
2005; 25
2004; 77
2003; 90
1999; 19
2003; 6
1984; 12
2005; 30
1994; 35
2001; 11
1991; 304
1995; 681
1969; 137
1994; 108
1999; 90
2003; 89
2007; 27
2001; 98
1990; 250
1983; 216
2004; 101
1987; 241
1995; 92
2006; 95
2000; 25
2006; 11
2006; 17
2000; 20
2006; 7
1999; 65
2004
1999; 2
1970; 107
2005; 48
2007; 55
1998; 20
1983; 219
2004; 11
1983; 289
1989; 99
1994; 643
1989; 285
2004; 15
2002; 22
1996; 274
1988; 470
2001; 115
e_1_2_11_93_2
e_1_2_11_70_2
Nowycky M.C. (e_1_2_11_73_2) 1981; 46
e_1_2_11_78_2
e_1_2_11_13_2
e_1_2_11_118_2
e_1_2_11_51_2
e_1_2_11_97_2
e_1_2_11_32_2
e_1_2_11_74_2
e_1_2_11_102_2
e_1_2_11_125_2
e_1_2_11_4_2
Woolf T.B. (e_1_2_11_77_2) 2001; 11
e_1_2_11_25_2
e_1_2_11_121_2
e_1_2_11_29_2
e_1_2_11_140_2
Ravel N. (e_1_2_11_49_2) 1994; 108
e_1_2_11_81_2
e_1_2_11_20_2
e_1_2_11_66_2
e_1_2_11_89_2
e_1_2_11_24_2
e_1_2_11_62_2
e_1_2_11_85_2
e_1_2_11_106_2
e_1_2_11_129_2
e_1_2_11_8_2
e_1_2_11_17_2
e_1_2_11_113_2
e_1_2_11_136_2
e_1_2_11_36_2
Trombley P. (e_1_2_11_103_2) 1992; 12
e_1_2_11_132_2
McLean J.H. (e_1_2_11_117_2) 1987; 7
e_1_2_11_92_2
e_1_2_11_31_2
e_1_2_11_54_2
e_1_2_11_35_2
e_1_2_11_50_2
e_1_2_11_96_2
e_1_2_11_12_2
e_1_2_11_119_2
e_1_2_11_28_2
e_1_2_11_5_2
e_1_2_11_126_2
e_1_2_11_47_2
e_1_2_11_122_2
e_1_2_11_141_2
Halabisky B. (e_1_2_11_64_2) 2000; 20
e_1_2_11_80_2
Price J.L. (e_1_2_11_59_2) 1970; 7
e_1_2_11_65_2
e_1_2_11_46_2
e_1_2_11_88_2
e_1_2_11_9_2
e_1_2_11_23_2
e_1_2_11_61_2
e_1_2_11_107_2
e_1_2_11_42_2
e_1_2_11_84_2
e_1_2_11_114_2
e_1_2_11_137_2
e_1_2_11_16_2
e_1_2_11_58_2
e_1_2_11_110_2
Roman F.S. (e_1_2_11_90_2) 1993; 107
e_1_2_11_39_2
e_1_2_11_30_2
Lévy F. (e_1_2_11_48_2) 1990; 104
e_1_2_11_76_2
e_1_2_11_57_2
e_1_2_11_99_2
e_1_2_11_34_2
e_1_2_11_72_2
e_1_2_11_11_2
e_1_2_11_139_2
e_1_2_11_53_2
e_1_2_11_95_2
e_1_2_11_6_2
e_1_2_11_27_2
Fletcher M. (e_1_2_11_91_2) 2002; 22
e_1_2_11_104_2
e_1_2_11_127_2
e_1_2_11_2_2
e_1_2_11_69_2
e_1_2_11_100_2
e_1_2_11_123_2
Price J.L. (e_1_2_11_43_2) 1970; 107
e_1_2_11_45_2
e_1_2_11_68_2
e_1_2_11_87_2
e_1_2_11_22_2
e_1_2_11_41_2
e_1_2_11_83_2
e_1_2_11_108_2
e_1_2_11_138_2
e_1_2_11_15_2
e_1_2_11_115_2
e_1_2_11_134_2
e_1_2_11_19_2
e_1_2_11_38_2
e_1_2_11_111_2
Dennis T. (e_1_2_11_133_2) 1987; 241
e_1_2_11_130_2
e_1_2_11_71_2
e_1_2_11_56_2
e_1_2_11_79_2
e_1_2_11_98_2
e_1_2_11_33_2
e_1_2_11_52_2
e_1_2_11_75_2
e_1_2_11_94_2
e_1_2_11_10_2
e_1_2_11_124_2
e_1_2_11_26_2
e_1_2_11_3_2
e_1_2_11_105_2
e_1_2_11_120_2
e_1_2_11_101_2
Fletcher M. (e_1_2_11_55_2) 2003; 23
e_1_2_11_82_2
e_1_2_11_44_2
e_1_2_11_67_2
e_1_2_11_40_2
e_1_2_11_86_2
e_1_2_11_128_2
e_1_2_11_7_2
e_1_2_11_21_2
e_1_2_11_63_2
e_1_2_11_109_2
e_1_2_11_116_2
e_1_2_11_135_2
e_1_2_11_14_2
e_1_2_11_37_2
e_1_2_11_131_2
Price J.L. (e_1_2_11_60_2) 1970; 7
e_1_2_11_112_2
e_1_2_11_18_2
References_xml – reference: Lagier, S., A. Carleton & P.M. Lledo. 2004. Interplay between local GABAergic interneurons and relay neurons generates gamma oscillations in the rat olfactory bulb. J. Neurosci. 24: 4382-4392.
– reference: Wilson, D.A. & M. Leon. 1988. Noradrenergic modulation of olfactory bulb excitability in the postnatal rat. Brain Res. 470: 69-75.
– reference: Alonso, M., C. Viollet, M.M. Gabellec, et al . 2006. Olfactory discrimination learning increases the survival of adult-born neurons in the olfactory bulb. J. Neurosci. 26: 10508-10513.
– reference: Dennis, T., R. L'Heureux, C. Carter, et al . 1987. Presynaptic α2-adrenoceptors play a major role in the effects of idazoxan on cortical noradrenaline release (as measured by in vivo dialysis) in the rat. J. Pharmacol. Exp. Ther. 241: 642-649.
– reference: De Rosa, E., M.E. Hasselmo & M.G. Baxter. 2001. Contribution of the cholinergic basal forebrain to proactive interference from stored odor memories during associative learning in rats. Behav. Neurosci. 115: 314-327.
– reference: Rinberg, D. & A. Gelperin. 2006. Olfactory neuronal dynamics in behaving animals. Semin. Cell Dev. Biol. 17: 454-461.
– reference: Linster, C., P. Garcia, M. Hasselmo, et al . 2001. Selective loss of cholinergic neurons projecting to the olfactory system increases perceptual generalization between similar, but not dissimilar, odorants. Behav. Neurosci. 115: 826-833.
– reference: Yamaguchi, M. & K. Mori. 2005. Critical period for sensory experience-dependent survival of newly generated granule cells in the adult mouse olfactory bulb. Proc. Natl. Acad. Sci. USA 102: 9697-9702.
– reference: Friedrich, R.W., C.J. Habermann & G. Laurent. 2004. Multiplexing using synchrony in the zebrafish olfactory bulb. Nat. Neurosci. 7: 862-871.
– reference: Okutani, F., H. Kaba, S. Takahashi, et al . 1998. The biphasic effects of locus coeruleus noradrenergic activation on dendrodendritic inhibition in the rat olfactory bulb. Brain Res. 783: 272-279.
– reference: McLean, J.H., M.T. Shipley, W.T. Nickell, et al . 1989. Chemoanatomical organization of the noradrenergic input from locus coeruleus to the olfactory bulb of the adult rat. J. Comp. Neurol. 285: 339-349.
– reference: Shipley, M.T. & M. Ennis. 1996. Functional organization of olfactory system. J. Neurobiol. 30: 123-176.
– reference: Ravel, N., P. Chabaud, C. Martin, et al . 2003. Olfactory learning modifies the expression of odour-induced oscillatory responses in the gamma (60-90 Hz) and beta (15-40 Hz) bands in the rat olfactory bulb. Eur. J. Neurosci. 17: 350-358.
– reference: Lévy, F., R. Gervais, U. Kindermann, et al . 1990. Importance of β-noradrenergic receptors in the olfactory bulb of sheep for recognition of lambs. Behav. Neurosci. 104: 464-469.
– reference: Moriceau, S. & R. Sullivan. 2004. Unique neural circuitry for neonatal olfactory learning. J. Neurosci. 24: 1182-1189.
– reference: Shipley, M.T. & G.D. Adamek. 1984. The connections of the mouse olfactory bulb: a study using orthograde and retrograde transport of wheat germ agglutinin conjugated to horseradish peroxidase. Brain Res. Bull. 12: 669-688.
– reference: McLean, J.H., A. Darby-King, R.M. Sullivan, et al . 1993. Serotonergic influence on olfactory learning in the neonate rat. Behav. Neural. Biol. 60: 152-162.
– reference: Isaacson, J.S. & B.W. Strowbridge. 1998. Olfactory reciprocal synapses: dendritic signaling in the CNS. Neuron 20: 749-761.
– reference: Kay, L. & G. Laurent. 1999. Odor- and context-dependent modulation of mitral cell activity in behaving rats. Nat. Neurosci. 2: 1003-1009.
– reference: McLean, J.H. & V.W. Harley. 2004. Olfactory learning in the rat pups: a model that permit visualization of a mammalian memory trace. Neuroreport 15: 1691-1697.
– reference: Bathellier, B., S. Lagier, P. Faure, et al . 2006. Circuit properties generating gamma oscillations in a network model of the olfactory bulb. J. Neurophysiol. 95: 2678-2691.
– reference: Rosser, A. & E. Keverne. 1985. The importance of central noradrenergic neurones in the formation of an olfactory memory in the prevention of pregnancy block. Neuroscience 15: 1141-1147.
– reference: Mandairon, N., S. Peace, A. Karnow, et al . 2008. Noradrenergic modulation in the olfactory bulb influences spontaneous and reward-motivated discrimination, but not the formation of habituation memory. Eur. J. Neurosci. 27: 1210-1219.
– reference: Egger, V. 2008. Synaptic sodium spikes trigger long-lasting depolarizations and slow calcium entry in rat olfactory bulb granule cells. Eur. J. Neurosci. 27: 2066-2075.
– reference: Halasz, N. & G.M. Shepherd. 1983. Neurochemistry of the vertebrate olfactory bulb. Neuroscience 10: 579-619.
– reference: Laaris, N., A. Puche & M. Ennis. 2007. Complementary postsynaptic activity patterns elicited in olfactory bulb by stimulation of mitral/tufted and centrifugal fiber inputs to granule cells. J. Neurophysiol. 97: 296-306.
– reference: Galan, R.F., N. Fourcaud-Trocmé, B. Ermentrout, et al . 2006. Correlation-induced synchronization of oscillations in olfactory bulb neurons. J. Neurosci. 26: 3646-3655.
– reference: Linster, C. & T. Cleland. 2002. Cholinergic modulation of sensory representations in the olfactory bulb. Neural Netw. 15: 709-717.
– reference: Kaneko, N., H. Okano & K. Sawamoto. 2006. Role of the cholinergic system in regulating survival of newborn neurons in the adult mouse dentate gyrus and olfactory bulb. Genes Cells 11: 1145-1159.
– reference: Lledo, P.M., M. Alonso & M.S. Grubb. 2006. Adult neurogenesis and functional plasticity in neuronal circuits. Nat. Rev. Neurosci. 7: 179-193.
– reference: Rochefort, C., G. Gheusi, J.D. Vincent, et al . 2002. Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. J. Neurosci. 22: 2679-2689.
– reference: Wilson, D.A., M.L. Fletcher & R.M. Sullivan. 2004. Acetylcholine and olfactory perceptual learning. Learn. Mem. 11: 28-34.
– reference: Pressler, R.T., T. Inoue & B.W. Strowbridge. 2007. Muscarinic receptor activation modulates granule cell excitability and potentiates inhibition onto mitral cells in the rat olfactory bulb. J. Neurosci. 27: 10969-10981.
– reference: Chen, W.R., W. Xiong & G.M. Shepherd. 2000. Analysis of relations between NMDA receptors and GABA release at olfactory bulb reciprocal synapses. Neuron 25: 625-633.
– reference: Oppenheim, R.W. 1991. Cell death during development of the nervous system. Annu. Rev. Neurosci. 14: 453-501.
– reference: Malberg, J.E., A.J. Eisch, E.J. Nestler, et al . 2000. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J. Neurosci. 20: 9104-9110.
– reference: Davis, B.J. & F. Macrides. 1981. The organization of centrifugal projections from the anterior olfactory nucleus, ventral hippocampal rudiment, and piriform cortex to the main olfactory bulb in the hamster: an autoradiographic study. J. Comp. Neurol. 203: 475-493.
– reference: MacLeod, K. & G. Laurent. 1996. Distinct mechanisms for synchronization and temporal patterning of odor-encoding neural assemblies. Science 274: 976-979.
– reference: Lagier, S., P. Panzanelli, R.E. Russo, et al . 2007. GABAergic inhibition at dendrodendritic synapses tunes gamma oscillations in the olfactory bulb. Proc. Natl. Acad. Sci. USA 104: 7259-7264.
– reference: Araneda, R. & S. Firestein. 2006. Adrenergic enhancement of inhibitory transmission in the accessory olfactory bulb. J. Neurosci. 26: 3292-3298.
– reference: Rinberg, D., A. Koulakov & A. Gelperin. 2006. Sparse odor coding in awake behaving mice. J. Neurosci. 26: 8857-8865.
– reference: Lledo, P.M., G. Gheusi & J.D. Vincent. 2005. Information processing in the mammalian olfactory system. Physiol. Rev. 85: 281-317.
– reference: Luskin, M.B. & J.L. Price. 1983. The topographic organization of associational fibers of the olfactory system in the rat, including centrifugal fibers to the olfactory bulb. J. Comp. Neurol. 216: 264-291.
– reference: Jahr, C.E. & R.A. Nicoll. 1982. An intracellular analysis of dendrodendritic inhibition in the turtle in vitro olfactory bulb. J. Physiol. 326: 213-234.
– reference: Nowycky, M.C., K. Mori & G.M. Shepherd. 1981. Blockade of synaptic inhibition reveals long-lasting synaptic excitation in isolated turtle olfactory bulb. J. Neurophysiol. 46: 649-658.
– reference: Mouly, A., A. Elaagouby & N. Ravel. 1995. A study of the effects of noradrenaline in the rat olfactory bulb using evoked field potential response. Brain Res. 681: 47-57.
– reference: Laurent, G., M. Stopfer, R.W. Friedrich, et al . 2001. Odor encoding as an active dynamical process: experiments, computation, and theory. Annu. Rev. Neurosci. 24: 263-297.
– reference: Price, J.L. & T.P. Powell. 1970. An experimental study of the origin and the course of the centrifugal fibres to the olfactory bulb in the rat. J. Anat. 107: 215-237.
– reference: Halabisky, B., D. Friedman, M. Radojicic, et al . 2000. Calcium influx through NMDA receptors directly evokes GABA release in olfactory bulb granule cells. J. Neurosci. 20: 5124-5134.
– reference: Sullivan, R.M., D.A. Wilson & M. Leon. 1989. Norepinephrine and learning-induced plasticity in infant rat olfactory system. J. Neurosci. 9: 3998-4006.
– reference: McLean, J.H. & M.T. Shipley. 1987. Serotonergic afferents to the rat olfactory bulb: I. Origins and laminar specificity of serotonergic inputs in the adult rat. J. Neurosci. 7: 3016-3028.
– reference: Gray, C., W. Freeman & J. Skinner. 1986. Chemical dependencies of learning in the rabbit olfactory bulb: acquisition of the transient spatial pattern change depends on norepinephrine. Behav. Neurosci. 100: 585-596.
– reference: Mechawar, N., A. Saghatelyan, R. Grailhe, et al . 2004. Nicotinic receptors regulate the survival of newborn neurons in the adult olfactory bulb. Proc. Natl. Acad. Sci. USA 101: 9822-9826.
– reference: Kishi, K., K. Mori & H. Ojima. 1984. Distribution of local axon collaterals of mitral, displaced mitral, and tufted cells in the rabbit olfactory bulb. J. Comp. Neurol. 225: 511-526.
– reference: Sassoé-Pognetto, M., P. Panzanelli, S. Lagier, et al. 2009. GABAa receptor heterogeneity modulates dendrodendritic inhibition. Ann. N. Y. Acad. Sci. International Symposium on Olfaction and Taste. 1170: 259-263.
– reference: Macrides, F., B.J. Davis, W.M. Youngs, et al . 1981. Cholinergic and catecholaminergic afferents to the olfactory bulb in the hamster: a neuroanatomical, biochemical, and histochemical investigation. J. Comp. Neurol. 203: 495-514.
– reference: Halabisky, B. & B.W. Strowbridge. 2003. Gamma-frequency excitatory input to granule cells facilitates dendrodendritic inhibition in the rat olfactory bulb. J. Neurophysiol. 90: 644-654.
– reference: Carson, K.A. 1984. Quantitative localization of neurons projecting to the mouse main olfactory bulb. Brain Res. Bull. 12: 629-634.
– reference: Hunter, A.J. & T.K. Murray. 1989. Cholinergic mechanisms in a simple test of olfactory learning in the rat. Psychopharmacology 99: 270-275.
– reference: Veyrac, A., A. Didier, F. Colpaert, et al . 2005. Activation of noradrenergic transmission by α2-adrenoceptor antagonists counteracts deafferentation-induced neuronal death and cell proliferation in the adult mouse olfactory bulb. Exp. Neurol. 194: 444-456.
– reference: Mori, K., K. Kishi & H. Ojima. 1983. Distribution of dendrites of mitral, displaced mitral, tufted, and granule cells in the rabbit olfactory bulb. J. Comp. Neurol. 219: 339-355.
– reference: Lledo, P.M. & S. Lagier. 2006. Adjusting neurophysiological computations in the adult olfactory bulb. Semin. Cell Dev. Biol. 17: 443-453.
– reference: Whitman, M.C. & C. Greer. 2007. Adult-generated neurons exhibit diverse developmental fates. Dev. Neurobiol. 67: 1079-1093.
– reference: Balu, R., R.T. Pressler & B.W. Strowbridge. 2007. Multiple modes of synaptic excitation of olfactory bulb granule cells. J. Neurosci. 27: 5621-5632.
– reference: Friedrich, R.W. 2006. Mechanisms of odor discrimination: neurophysiological and behavioral approaches. Trends Neurosci. 29: 40-47.
– reference: Morrizumi, T., T. Tsukatami, H. Sakashita, et al . 1994. Olfactory disturbance induced by deafferentation of serotonergic fibers in the olfactory bulb. Neuroscience 61: 733-738.
– reference: Rall, W., G.M. Shepherd, T.S. Reese, et al . 1966. Dendrodendritic synaptic pathway for inhibition in the olfactory bulb. Exp. Neurol. 14: 44-56.
– reference: Lledo, P.M. & A. Saghatelyan. 2005. Integrating new neurons into the adult olfactory bulb: joining the network, life-death decisions, and the effects of sensory experience. Trends Neurosci. 28: 248-254.
– reference: Isaacson, J.S. 2001. Mechanisms governing dendritic gamma-aminobutyric acid (GABA) release in the rat olfactory bulb. Proc. Natl. Acad. Sci. USA 98: 337-342.
– reference: Yokoi, M., K. Mori & S. Nakanishi. 1995. Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb. Proc. Natl. Acad. Sci. USA 92: 3371-3375.
– reference: David, F., C. Linster & T.A. Cleland. 2008. Lateral dendritic shunt inhibition can regularize mitral cell spike patterning. J. Comput. Neurosci. 25: 25-38.
– reference: Castillo, P.E., A. Carleton, J.D. Vincent, et al . 1999. Multiple and opposing roles of cholinergic transmission in the main olfactory bulb. J. Neurosci. 19: 9180-9191.
– reference: Mouret, A., G. Gheusi, M.M. Gabellec, et al . 2008. Learning and survival of newly generated neurons: when time matters. J. Neurosci. 28: 11511-11516.
– reference: Orth, M., E. Bravo, L. Barter, et al . 2006. The differential effects of halothane and isoflurane on electroencephalographic responses to electrical microstimulation of the reticular formation. Anesth. Analg. 102: 1709-1714.
– reference: Zou, Z., F. Li & L.B. Buck. 2005. Odor maps in the olfactory cortex. Proc. Natl. Acad. Sci. USA 102: 7724-7729.
– reference: Altman, J. 1969. Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J. Comp. Neurol. 137: 433-457.
– reference: Aston-Jones, G. & F. Bloom. 1981. Nonrepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. J. Neurosci. 1: 887-900.
– reference: Sullivan, R., G. Stackenwalt, F. Nasr, et al . 2000. Association of an odor with activation of olfactory bulb noradrenergic β-receptors or locus coeruleus stimulation is sufficient to produce learned approach responses to that odor in neonatal rats. Behav. Neurosci. 114: 957-962.
– reference: Doucette, W., J. Milder & D. Restrepo. 2007. Adrenergic modulation of olfactory bulb circuitry affects odor discrimination. Learn Mem. 14: 539-547.
– reference: Hayar, A., P. Heyward, T. Heinbockel, et al . 2001. Direct excitation of mitral cells via activation of α1-noradrenergic receptors in rat olfactory bulb slices. J. Neurophysiol. 86: 2173-2182.
– reference: Mandairon, N., J. Sacquet, S. Garcia, et al . 2006. Neurogenic correlates of an olfactory discrimination task in the adult olfactory bulb. Eur. J. Neurosci. 24: 3578-3588.
– reference: Salcedo, E., C. Zhang, E. Kronberg, et al . 2005. Analysis of training-induced changes in ethyl acetate odor maps using a new computational tool to map the glomerular layer of the olfactory bulb. Chem. Senses 30: 615-626.
– reference: Changeux, J.P. & A. Danchin. 1976. Selective stabilisation of developingsynapses as a mechanism for the specification of neuronal networks. Nature 264: 705-712.
– reference: Kosaka, T. & K. Kosaka. 2005. Structural organization of the glomerulus in the main olfactory bulb. Chem. Senses 30(Suppl 1): i107-i108.
– reference: Hendin, O., D. Horn & M.V. Tsodyks. 1997. The role of inhibition in an associative memory model of the olfactory bulb. J. Comput. Neurosci. 4: 173-182.
– reference: Schoppa, N.E., J.M. Kinzie, Y. Sahara, et al . 1998. Dendrodendritic inhibition in the olfactory bulb is driven by NMDA receptors. J. Neurosci. 18: 6790-6802.
– reference: Egger, V., K. Svoboda & Z.F. Mainen. 2003. Mechanisms of lateral inhibition in the olfactory bulb: efficiency and modulation of spike-evoked calcium influx into granule cells. J. Neurosci. 23: 7551-7558.
– reference: Doty, R.L., R. Bagla & N. Kim. 1999. Physostigmine enhances performance on an odor mixture discrimination test. Physiol. Behav. 65: 801-804.
– reference: Pager, J. 1983. Unit responses changing with behavioral outcome in the olfactory bulb of unrestrained rats. Brain Res. 289: 87-98.
– reference: Gómez, C., J.G. Briñón, L. Orio, et al . 2007. Changes in the serotonergic system in the main olfactory bulb of rats unilaterally deprived from birth to adulthood. J. Neurochem. 100: 924-938.
– reference: Schoppa, N.E. & N.N. Urban. 2003. Dendritic processing within olfactory bulb circuits. Trends Neurosci. 26: 501-506.
– reference: Pressler, R.T. & B.W. Strowbridge. 2006. Blanes cells mediate persistent feedforward inhibition onto granule cells in the olfactory bulb. Neuron 49: 889-904.
– reference: Mandairon, N., C.J. Ferretti, C.M. Stack, et al . 2006. Cholinergic modulation in the olfactory bulb influences spontaneous olfactory discrimination in adult rats. Eur. J. Neurosci. 24: 3234-3244.
– reference: Woolf, T.B., G.M. Shepherd & C.A. Greer. 2001. Local information processing in dendritic trees: subsets of spines in granule cells of the mammalian olfactory bulb. J. Neurosci. 11: 1837-1854.
– reference: Yuan, Q., C.W. Harley & J.H. McLean. 2003. Mitral cell β1 and 5-HT(2A) receptor colocalization and cAMP coregulation: a new model of norepinephrine-induced learning in the olfactory bulb. Learn Mem. 10: 5-15.
– reference: Sullivan, R., D. Wilson, C. Lemon, et al . 1994. Bilateral 6-OHDA lesions of the locus coeruleus impair associative olfactory learning in newborn rats. Brain Res. 643: 306-309.
– reference: Haberly, L.B. & J.L. Price. 1978. Association and commissural fiber systems of the olfactory cortex of the rat. J. Comp. Neurol. 178: 711-740.
– reference: Schoppa, N.E. 2006. Synchronization of olfactory bulb mitral cells by precisely timed inhibitory inputs. Neuron 49: 271-283.
– reference: Fletcher, M. & D. Wilson. 2002. Experience modifies olfactory acuity: acetylcholine-dependent learning decreases behavioral generalization between similar odorants. J. Neurosci. 22: RC201.
– reference: Trombley, P. 1992. Norepinephrine inhibits calcium currents and EPSPs via a G-protein-coupled mechanism in olfactory bulb neurons. J. Neurosci. 12: 3992-3998.
– reference: Kendrick, K.M., F. Lévy & E.B. Keverne. 1992. Changes in the sensory processing of olfactory signals induced by birth in sleep. Science 256: 833-836.
– reference: Zaborszky, L., J. Carlsen, H.R. Brashear, et al . 1986. Cholinergic and GABAergic afferents to the olfactory bulb in the rat with special emphasis on the projection neurons in the nucleus of the horizontal limb of the diagonal band. J. Comp. Neurol. 243: 488-509.
– reference: Korsching, S. 2002. Olfactory maps and odor images. Curr. Opin. Neurobiol. 12: 387-392.
– reference: Bauer, S., E. Moyse, F. Jourdan, et al . 2003. Effects of the α2-adrenoreceptor antagonist dexefaroxan on neurogenesis in the olfactory bulb of the adult rat in vivo: selective protection against neuronal death. Neuroscience 117: 281-291.
– reference: Ravel, N., A. Elaagouby & R. Gervais. 1994. Scopolamine injection into the olfactory bulb impairs short-term olfactory memory in rats. Behav. Neurosci. 108: 317-324.
– reference: Liu, X., Q. Wang, T.F. Haydar, et al . 2005. Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors. Nat. Neurosci. 8: 1179-1187.
– reference: Martin, C., R. Gervais, E. Hugues, et al . 2004. Learning modulation of odor-induced oscillatory responses in the rat olfactory bulb: a correlate of odor recognition? J. Neurosci. 24: 389-397.
– reference: Carleton, A., L.T. Petreanu, R. Lansford, et al . 2003. Becoming a new neuron in the adult olfactory bulb. Nat. Neurosci. 6: 507-518.
– reference: Strowbridge, B.W. 2009. Role of cortical feedback in regulating inhibitory microcircuits. Ann. N. Y. Acad. Sci. International Symposium on Olfaction and Taste. 1170: 270-274.
– reference: Friedman, D. & B.W. Strowbridge. 2003. Both electrical and chemical synapses mediate fast network oscillations in the olfactory bulb. J. Neurophysiol. 89: 2601-2610.
– reference: Egger, V. & N. Urban. 2006. Dynamic connectivity in the mitral cell-granule cell microcircuit. Semin. Cell Dev. Biol. 17: 424-432.
– reference: Urban, N.N. 2002. Lateral inhibition in the olfactory bulb and in olfaction. Physiol. Behav. 77: 607-612.
– reference: Sara, S., A. Vankov & A. Herve. 1994. Locus coeruleus-evoked responses in behaving rats: a clue to the role of noradrenaline in memory. Brain Res. Bull. 35: 457-465.
– reference: Nusser, Z., L.M. Kay, G. Laurent, et al . 2001. Disruption of GABA(A) receptors on GABAergic interneurons leads to increased oscillatory power in the olfactory bulb network. J. Neurophysiol. 86: 2823-2833.
– reference: Martin, C., R. Gervais, B. Messaoudi, et al . 2006. Learning-induced oscillatory activities correlated to odour recognition: a network activity. Eur. J. Neurosci. 23: 1801-1810.
– reference: Price, J.L. & T.P. Powell. 1970. An electron-microscopic study of the termination of the afferent fibres to the olfactory bulb from the cerebral hemisphere. J. Cell Sci. 7: 157-187.
– reference: Johnson, B.A. & M. Leon. 2007. Chemotopic odorant coding in a mammalian olfactory system. J. Comp. Neurol. 503: 1-34.
– reference: Orona, E., E.C. Rainer & J.W. Scott. 1984. Dendritic and axonal organization of mitral and tufted cells in the rat olfactory bulb. J. Comp. Neurol. 226: 346-356.
– reference: Egger, V., K. Svoboda & Z.F. Mainen. 2005. Dendrodendritic synaptic signals in olfactory bulb granule cells: local spine boost and global low-threshold spike. J. Neurosci. 25: 3521-3530.
– reference: Trombley, P. & G. Shepherd. 1992. Noradrenergic inhibition of synaptic transmission between mitral and granule cells in mammalian olfactory bulb cultures. J. Neurosci. 12: 3985-3991.
– reference: Tabor, R., E. Yaksi & R.W. Friedrich. 2008. Multiple functions of GABA and GABA receptors during pattern processing in the zebrafish olfactory bulb. Eur. J. Neurosci. 28: 117-127.
– reference: Laurent, G. 2002. Olfactory network dynamics and the coding of multidimensional signals. Nat. Neurosci. Rev. 3: 884-895.
– reference: Price, J.L. & T.P. Powell. 1970. The synaptology of the granule cells of the olfactory bulb. J. Cell Sci. 7: 125-155.
– reference: Brennan, P., H. Kaba & E. Keverne. 1990. Olfactory recognition: a simple memory system. Science 250: 1223-1226.
– reference: Kunze, W.A., A.D. Shafton, R.E. Kem, et al . 1992. Intracellular responses of olfactory bulb granule cells to stimulating the horizontal diagonal band nucleus. Neuroscience 48: 363-369.
– reference: Ciombor, K., M. Ennis & M. Shipley. 1999. Norepinephrine increases rat mitral cell excitatory responses to weak olfactory nerve input via α1 receptors in vitro. Neuroscience 90: 595-606.
– reference: Zelles, T., J.D. Boyd, A.B. Hardy, et al . 2006. Branch-specific Ca2+ influx from Na+-dependent dendritic spikes in olfactory granule cells. J. Neurosci. 26: 30-40.
– reference: De Rosa, E. & M. Hasselmo. 2000. Muscarinic cholinergic neuromodulation reduces proactive interference between stored odor memories during associative learning in rats. Behav. Neurosci. 114: 32-41.
– reference: Mazor, O. & G. Laurent. 2005. Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons. Neuron 48: 661-673.
– reference: Cooper-Kuhn, C.M., J. Winkler & H.G. Kuhn. 2004. Decreased neurogenesis after cholinergic forebrain lesion in the adult rat. J. Neurosci. Res. 77: 155-165.
– reference: De Olmos, J., H. Hardy & L. Heimer. 1978. The afferent connections of the main and the accessory olfactory bulb formations in the rat: an experimental HRP-study. J. Comp. Neurol. 181: 213-244.
– reference: Mori, K., H. Matsumoto, Y. Tsuno, et al. 2009. Dendrodendritic synapses and functional compartmentalization in the olfactory bulb. Ann. N. Y. Acad. Sci. International Symposium on Olfaction and Taste. 1170: 255-258.
– reference: Mori, K., H. Nagao & Y. Yoshihara. 1999. The olfactory bulb: coding and processing of odor molecule information. Science 286: 711-715.
– reference: McLean, J.H. & M.T. Shipley. 1991. Postnatal development of the noradrenergic projection from locus coeruleus to the olfactory bulb in the rat. J. Comp. Neurol. 304: 467-477.
– reference: Shepherd, G.M., W.R. Chen, D. Willhite, et al . 2007. The olfactory granule cell: from classical enigma to central role in olfactory processing. Brain Res. Rev. 55: 373-382.
– reference: Fletcher, M. & D. Wilson. 2003. Olfactory bulb mitral-tufted cell plasticity: odorant-specific tuning reflects previous odorant exposure. J. Neurosci. 23: 6946-6955.
– reference: Roman, F.S., I. Simonetto & B. Soumireu-Mourat. 1993. Learning and memory of odor-reward association: selective impairment following horizontal diagonal band lesions. Behav. Neurosci. 107: 72-81.
– reference: Hardy, A., B. Palouzier-Paulignan, A. Duchamp, et al . 2005. 5-Hydroxytryptamine action in the rat olfactory bulb: in vitro electrophysiological patch-clamp recordings of juxtaglomerular and mitral cells. Neuroscience 131: 717-731.
– reference: Araneda, S., K. Gysling & A. Calas. 1999. Raphe serotonergic neurons projecting to the olfactory bulb contain galanin or somatostatin but not neurotensin. Brain Res. Bull. 49: 209-214.
– volume: 22
  start-page: 2679
  year: 2002
  end-page: 2689
  article-title: Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory
  publication-title: J. Neurosci.
– volume: 1170
  start-page: 259
  year: 2009
  end-page: 263
  article-title: GABA receptor heterogeneity modulates dendrodendritic inhibition
  publication-title: Ann. N. Y. Acad. Sci. International Symposium on Olfaction and Taste
– volume: 1170
  start-page: 255
  year: 2009
  end-page: 258
  article-title: Dendrodendritic synapses and functional compartmentalization in the olfactory bulb
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 97
  start-page: 296
  year: 2007
  end-page: 306
  article-title: Complementary postsynaptic activity patterns elicited in olfactory bulb by stimulation of mitral/tufted and centrifugal fiber inputs to granule cells
  publication-title: J. Neurophysiol.
– volume: 77
  start-page: 607
  year: 2002
  end-page: 612
  article-title: Lateral inhibition in the olfactory bulb and in olfaction
  publication-title: Physiol. Behav.
– volume: 4
  start-page: 173
  year: 1997
  end-page: 182
  article-title: The role of inhibition in an associative memory model of the olfactory bulb
  publication-title: J. Comput. Neurosci.
– volume: 26
  start-page: 30
  year: 2006
  end-page: 40
  article-title: Branch‐specific Ca2+ influx from Na+‐dependent dendritic spikes in olfactory granule cells
  publication-title: J. Neurosci.
– volume: 24
  start-page: 389
  year: 2004
  end-page: 397
  article-title: Learning modulation of odor‐induced oscillatory responses in the rat olfactory bulb: a correlate of odor recognition?
  publication-title: J. Neurosci.
– volume: 7
  start-page: 3016
  year: 1987
  end-page: 3028
  article-title: Serotonergic afferents to the rat olfactory bulb: I. Origins and laminar specificity of serotonergic inputs in the adult rat
  publication-title: J. Neurosci.
– volume: 194
  start-page: 444
  year: 2005
  end-page: 456
  article-title: Activation of noradrenergic transmission by α2‐adrenoceptor antagonists counteracts deafferentation‐induced neuronal death and cell proliferation in the adult mouse olfactory bulb
  publication-title: Exp. Neurol.
– volume: 65
  start-page: 801
  year: 1999
  end-page: 804
  article-title: Physostigmine enhances performance on an odor mixture discrimination test
  publication-title: Physiol. Behav.
– volume: 114
  start-page: 32
  year: 2000
  end-page: 41
  article-title: Muscarinic cholinergic neuromodulation reduces proactive interference between stored odor memories during associative learning in rats
  publication-title: Behav. Neurosci.
– volume: 14
  start-page: 44
  year: 1966
  end-page: 56
  article-title: Dendrodendritic synaptic pathway for inhibition in the olfactory bulb
  publication-title: Exp. Neurol.
– volume: 90
  start-page: 595
  year: 1999
  end-page: 606
  article-title: Norepinephrine increases rat mitral cell excitatory responses to weak olfactory nerve input via α1 receptors in vitro
  publication-title: Neuroscience
– volume: 23
  start-page: 1801
  year: 2006
  end-page: 1810
  article-title: Learning‐induced oscillatory activities correlated to odour recognition: a network activity
  publication-title: Eur. J. Neurosci.
– volume: 17
  start-page: 350
  year: 2003
  end-page: 358
  article-title: Olfactory learning modifies the expression of odour‐induced oscillatory responses in the gamma (60–90 Hz) and beta (15–40 Hz) bands in the rat olfactory bulb
  publication-title: Eur. J. Neurosci.
– volume: 24
  start-page: 3234
  year: 2006
  end-page: 3244
  article-title: Cholinergic modulation in the olfactory bulb influences spontaneous olfactory discrimination in adult rats
  publication-title: Eur. J. Neurosci.
– volume: 681
  start-page: 47
  year: 1995
  end-page: 57
  article-title: A study of the effects of noradrenaline in the rat olfactory bulb using evoked field potential response
  publication-title: Brain Res.
– volume: 326
  start-page: 213
  year: 1982
  end-page: 234
  article-title: An intracellular analysis of dendrodendritic inhibition in the turtle in vitro olfactory bulb
  publication-title: J. Physiol.
– volume: 289
  start-page: 87
  year: 1983
  end-page: 98
  article-title: Unit responses changing with behavioral outcome in the olfactory bulb of unrestrained rats
  publication-title: Brain Res.
– volume: 27
  start-page: 2066
  year: 2008
  end-page: 2075
  article-title: Synaptic sodium spikes trigger long‐lasting depolarizations and slow calcium entry in rat olfactory bulb granule cells
  publication-title: Eur. J. Neurosci.
– volume: 470
  start-page: 69
  year: 1988
  end-page: 75
  article-title: Noradrenergic modulation of olfactory bulb excitability in the postnatal rat
  publication-title: Brain Res.
– volume: 85
  start-page: 281
  year: 2005
  end-page: 317
  article-title: Information processing in the mammalian olfactory system
  publication-title: Physiol. Rev.
– volume: 102
  start-page: 7724
  year: 2005
  end-page: 7729
  article-title: Odor maps in the olfactory cortex
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 46
  start-page: 649
  year: 1981
  end-page: 658
  article-title: Blockade of synaptic inhibition reveals long‐lasting synaptic excitation in isolated turtle olfactory bulb
  publication-title: J. Neurophysiol.
– volume: 18
  start-page: 6790
  year: 1998
  end-page: 6802
  article-title: Dendrodendritic inhibition in the olfactory bulb is driven by NMDA receptors
  publication-title: J. Neurosci.
– volume: 28
  start-page: 117
  year: 2008
  end-page: 127
  article-title: Multiple functions of GABA and GABA receptors during pattern processing in the zebrafish olfactory bulb
  publication-title: Eur. J. Neurosci.
– volume: 48
  start-page: 363
  year: 1992
  end-page: 369
  article-title: Intracellular responses of olfactory bulb granule cells to stimulating the horizontal diagonal band nucleus
  publication-title: Neuroscience
– volume: 99
  start-page: 270
  year: 1989
  end-page: 275
  article-title: Cholinergic mechanisms in a simple test of olfactory learning in the rat
  publication-title: Psychopharmacology
– volume: 15
  start-page: 1141
  year: 1985
  end-page: 1147
  article-title: The importance of central noradrenergic neurones in the formation of an olfactory memory in the prevention of pregnancy block
  publication-title: Neuroscience
– volume: 137
  start-page: 433
  year: 1969
  end-page: 457
  article-title: Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb
  publication-title: J. Comp. Neurol.
– volume: 22
  start-page: RC201
  year: 2002
  article-title: Experience modifies olfactory acuity: acetylcholine‐dependent learning decreases behavioral generalization between similar odorants
  publication-title: J. Neurosci.
– volume: 86
  start-page: 2823
  year: 2001
  end-page: 2833
  article-title: Disruption of GABA(A) receptors on GABAergic interneurons leads to increased oscillatory power in the olfactory bulb network
  publication-title: J. Neurophysiol.
– volume: 104
  start-page: 464
  year: 1990
  end-page: 469
  article-title: Importance of β‐noradrenergic receptors in the olfactory bulb of sheep for recognition of lambs
  publication-title: Behav. Neurosci.
– volume: 27
  start-page: 5621
  year: 2007
  end-page: 5632
  article-title: Multiple modes of synaptic excitation of olfactory bulb granule cells
  publication-title: J. Neurosci.
– volume: 264
  start-page: 705
  year: 1976
  end-page: 712
  article-title: Selective stabilisation of developingsynapses as a mechanism for the specification of neuronal networks
  publication-title: Nature
– volume: 11
  start-page: 1837
  year: 2001
  end-page: 1854
  article-title: Local information processing in dendritic trees: subsets of spines in granule cells of the mammalian olfactory bulb
  publication-title: J. Neurosci.
– volume: 24
  start-page: 263
  year: 2001
  end-page: 297
  article-title: Odor encoding as an active dynamical process: experiments, computation, and theory
  publication-title: Annu. Rev. Neurosci.
– volume: 256
  start-page: 833
  year: 1992
  end-page: 836
  article-title: Changes in the sensory processing of olfactory signals induced by birth in sleep
  publication-title: Science
– volume: 26
  start-page: 3646
  year: 2006
  end-page: 3655
  article-title: Correlation‐induced synchronization of oscillations in olfactory bulb neurons
  publication-title: J. Neurosci.
– volume: 12
  start-page: 3985
  year: 1992
  end-page: 3991
  article-title: Noradrenergic inhibition of synaptic transmission between mitral and granule cells in mammalian olfactory bulb cultures
  publication-title: J. Neurosci.
– volume: 23
  start-page: 6946
  year: 2003
  end-page: 6955
  article-title: Olfactory bulb mitral‐tufted cell plasticity: odorant‐specific tuning reflects previous odorant exposure
  publication-title: J. Neurosci.
– volume: 17
  start-page: 424
  year: 2006
  end-page: 432
  article-title: Dynamic connectivity in the mitral cell‐granule cell microcircuit
  publication-title: Semin. Cell Dev. Biol.
– volume: 3
  start-page: 884
  year: 2002
  end-page: 895
  article-title: Olfactory network dynamics and the coding of multidimensional signals
  publication-title: Nat. Neurosci. Rev.
– volume: 11
  start-page: 1145
  year: 2006
  end-page: 1159
  article-title: Role of the cholinergic system in regulating survival of newborn neurons in the adult mouse dentate gyrus and olfactory bulb
  publication-title: Genes Cells
– volume: 108
  start-page: 317
  year: 1994
  end-page: 324
  article-title: Scopolamine injection into the olfactory bulb impairs short‐term olfactory memory in rats
  publication-title: Behav. Neurosci.
– volume: 77
  start-page: 155
  year: 2004
  end-page: 165
  article-title: Decreased neurogenesis after cholinergic forebrain lesion in the adult rat
  publication-title: J. Neurosci. Res.
– volume: 225
  start-page: 511
  year: 1984
  end-page: 526
  article-title: Distribution of local axon collaterals of mitral, displaced mitral, and tufted cells in the rabbit olfactory bulb
  publication-title: J. Comp. Neurol.
– volume: 26
  start-page: 10508
  year: 2006
  end-page: 10513
  article-title: Olfactory discrimination learning increases the survival of adult‐born neurons in the olfactory bulb
  publication-title: J. Neurosci.
– volume: 23
  start-page: 7551
  year: 2003
  end-page: 7558
  article-title: Mechanisms of lateral inhibition in the olfactory bulb: efficiency and modulation of spike‐evoked calcium influx into granule cells
  publication-title: J. Neurosci.
– volume: 1
  start-page: 887
  year: 1981
  end-page: 900
  article-title: Nonrepinephrine‐containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non‐noxious environmental stimuli
  publication-title: J. Neurosci.
– volume: 7
  start-page: 125
  year: 1970
  end-page: 155
  article-title: The synaptology of the granule cells of the olfactory bulb
  publication-title: J. Cell Sci.
– volume: 61
  start-page: 733
  year: 1994
  end-page: 738
  article-title: Olfactory disturbance induced by deafferentation of serotonergic fibers in the olfactory bulb
  publication-title: Neuroscience
– volume: 92
  start-page: 3371
  year: 1995
  end-page: 3375
  article-title: Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 49
  start-page: 209
  year: 1999
  end-page: 214
  article-title: Raphe serotonergic neurons projecting to the olfactory bulb contain galanin or somatostatin but not neurotensin
  publication-title: Brain Res. Bull.
– volume: 30
  start-page: i107
  issue: Suppl 1
  year: 2005
  end-page: i108
  article-title: Structural organization of the glomerulus in the main olfactory bulb
  publication-title: Chem. Senses
– volume: 6
  start-page: 507
  year: 2003
  end-page: 518
  article-title: Becoming a new neuron in the adult olfactory bulb
  publication-title: Nat. Neurosci.
– volume: 503
  start-page: 1
  year: 2007
  end-page: 34
  article-title: Chemotopic odorant coding in a mammalian olfactory system
  publication-title: J. Comp. Neurol.
– volume: 12
  start-page: 387
  year: 2002
  end-page: 392
  article-title: Olfactory maps and odor images
  publication-title: Curr. Opin. Neurobiol.
– volume: 14
  start-page: 539
  year: 2007
  end-page: 547
  article-title: Adrenergic modulation of olfactory bulb circuitry affects odor discrimination
  publication-title: Learn Mem.
– volume: 102
  start-page: 1709
  year: 2006
  end-page: 1714
  article-title: The differential effects of halothane and isoflurane on electroencephalographic responses to electrical microstimulation of the reticular formation
  publication-title: Anesth. Analg.
– volume: 24
  start-page: 1182
  year: 2004
  end-page: 1189
  article-title: Unique neural circuitry for neonatal olfactory learning
  publication-title: J. Neurosci.
– volume: 102
  start-page: 9697
  year: 2005
  end-page: 9702
  article-title: Critical period for sensory experience‐dependent survival of newly generated granule cells in the adult mouse olfactory bulb
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 20
  start-page: 749
  year: 1998
  end-page: 761
  article-title: Olfactory reciprocal synapses: dendritic signaling in the CNS
  publication-title: Neuron
– volume: 28
  start-page: 248
  year: 2005
  end-page: 254
  article-title: Integrating new neurons into the adult olfactory bulb: joining the network, life‐death decisions, and the effects of sensory experience
  publication-title: Trends Neurosci.
– volume: 226
  start-page: 346
  year: 1984
  end-page: 356
  article-title: Dendritic and axonal organization of mitral and tufted cells in the rat olfactory bulb
  publication-title: J. Comp. Neurol.
– volume: 285
  start-page: 339
  year: 1989
  end-page: 349
  article-title: Chemoanatomical organization of the noradrenergic input from locus coeruleus to the olfactory bulb of the adult rat
  publication-title: J. Comp. Neurol.
– volume: 95
  start-page: 2678
  year: 2006
  end-page: 2691
  article-title: Circuit properties generating gamma oscillations in a network model of the olfactory bulb
  publication-title: J. Neurophysiol.
– volume: 17
  start-page: 454
  year: 2006
  end-page: 461
  article-title: Olfactory neuronal dynamics in behaving animals
  publication-title: Semin. Cell Dev. Biol.
– volume: 100
  start-page: 924
  year: 2007
  end-page: 938
  article-title: Changes in the serotonergic system in the main olfactory bulb of rats unilaterally deprived from birth to adulthood
  publication-title: J. Neurochem.
– volume: 643
  start-page: 306
  year: 1994
  end-page: 309
  article-title: Bilateral 6‐OHDA lesions of the locus coeruleus impair associative olfactory learning in newborn rats
  publication-title: Brain Res.
– volume: 12
  start-page: 669
  year: 1984
  end-page: 688
  article-title: The connections of the mouse olfactory bulb: a study using orthograde and retrograde transport of wheat germ agglutinin conjugated to horseradish peroxidase
  publication-title: Brain Res. Bull.
– volume: 216
  start-page: 264
  year: 1983
  end-page: 291
  article-title: The topographic organization of associational fibers of the olfactory system in the rat, including centrifugal fibers to the olfactory bulb
  publication-title: J. Comp. Neurol.
– volume: 48
  start-page: 661
  year: 2005
  end-page: 673
  article-title: Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons
  publication-title: Neuron
– volume: 90
  start-page: 644
  year: 2003
  end-page: 654
  article-title: Gamma‐frequency excitatory input to granule cells facilitates dendrodendritic inhibition in the rat olfactory bulb
  publication-title: J. Neurophysiol.
– volume: 12
  start-page: 629
  year: 1984
  end-page: 634
  article-title: Quantitative localization of neurons projecting to the mouse main olfactory bulb
  publication-title: Brain Res. Bull.
– volume: 25
  start-page: 3521
  year: 2005
  end-page: 3530
  article-title: Dendrodendritic synaptic signals in olfactory bulb granule cells: local spine boost and global low‐threshold spike
  publication-title: J. Neurosci.
– volume: 107
  start-page: 72
  year: 1993
  end-page: 81
  article-title: Learning and memory of odor‐reward association: selective impairment following horizontal diagonal band lesions
  publication-title: Behav. Neurosci.
– volume: 9
  start-page: 3998
  year: 1989
  end-page: 4006
  article-title: Norepinephrine and learning‐induced plasticity in infant rat olfactory system
  publication-title: J. Neurosci.
– volume: 15
  start-page: 709
  year: 2002
  end-page: 717
  article-title: Cholinergic modulation of sensory representations in the olfactory bulb
  publication-title: Neural Netw.
– volume: 286
  start-page: 711
  year: 1999
  end-page: 715
  article-title: The olfactory bulb: coding and processing of odor molecule information
  publication-title: Science
– volume: 27
  start-page: 1210
  year: 2008
  end-page: 1219
  article-title: Noradrenergic modulation in the olfactory bulb influences spontaneous and reward‐motivated discrimination, but not the formation of habituation memory
  publication-title: Eur. J. Neurosci.
– volume: 30
  start-page: 123
  year: 1996
  end-page: 176
  article-title: Functional organization of olfactory system
  publication-title: J. Neurobiol.
– volume: 26
  start-page: 8857
  year: 2006
  end-page: 8865
  article-title: Sparse odor coding in awake behaving mice
  publication-title: J. Neurosci.
– volume: 104
  start-page: 7259
  year: 2007
  end-page: 7264
  article-title: GABAergic inhibition at dendrodendritic synapses tunes gamma oscillations in the olfactory bulb
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 203
  start-page: 475
  year: 1981
  end-page: 493
  article-title: The organization of centrifugal projections from the anterior olfactory nucleus, ventral hippocampal rudiment, and piriform cortex to the main olfactory bulb in the hamster: an autoradiographic study
  publication-title: J. Comp. Neurol.
– volume: 49
  start-page: 271
  year: 2006
  end-page: 283
  article-title: Synchronization of olfactory bulb mitral cells by precisely timed inhibitory inputs
  publication-title: Neuron
– volume: 27
  start-page: 10969
  year: 2007
  end-page: 10981
  article-title: Muscarinic receptor activation modulates granule cell excitability and potentiates inhibition onto mitral cells in the rat olfactory bulb
  publication-title: J. Neurosci.
– volume: 35
  start-page: 457
  year: 1994
  end-page: 465
  article-title: Locus coeruleus‐evoked responses in behaving rats: a clue to the role of noradrenaline in memory
  publication-title: Brain Res. Bull.
– volume: 250
  start-page: 1223
  year: 1990
  end-page: 1226
  article-title: Olfactory recognition: a simple memory system
  publication-title: Science
– volume: 241
  start-page: 642
  year: 1987
  end-page: 649
  article-title: Presynaptic α2‐adrenoceptors play a major role in the effects of idazoxan on cortical noradrenaline release (as measured by dialysis) in the rat
  publication-title: J. Pharmacol. Exp. Ther.
– volume: 30
  start-page: 615
  year: 2005
  end-page: 626
  article-title: Analysis of training‐induced changes in ethyl acetate odor maps using a new computational tool to map the glomerular layer of the olfactory bulb
  publication-title: Chem. Senses
– volume: 28
  start-page: 11511
  year: 2008
  end-page: 11516
  article-title: Learning and survival of newly generated neurons: when time matters
  publication-title: J. Neurosci.
– volume: 24
  start-page: 3578
  year: 2006
  end-page: 3588
  article-title: Neurogenic correlates of an olfactory discrimination task in the adult olfactory bulb
  publication-title: Eur. J. Neurosci.
– volume: 20
  start-page: 9104
  year: 2000
  end-page: 9110
  article-title: Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus
  publication-title: J. Neurosci.
– volume: 24
  start-page: 4382
  year: 2004
  end-page: 4392
  article-title: Interplay between local GABAergic interneurons and relay neurons generates gamma oscillations in the rat olfactory bulb
  publication-title: J. Neurosci.
– start-page: 165
  year: 2004
  end-page: 216
– volume: 8
  start-page: 1179
  year: 2005
  end-page: 1187
  article-title: Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP‐expressing progenitors
  publication-title: Nat. Neurosci.
– volume: 178
  start-page: 711
  year: 1978
  end-page: 740
  article-title: Association and commissural fiber systems of the olfactory cortex of the rat
  publication-title: J. Comp. Neurol.
– volume: 783
  start-page: 272
  year: 1998
  end-page: 279
  article-title: The biphasic effects of locus coeruleus noradrenergic activation on dendrodendritic inhibition in the rat olfactory bulb
  publication-title: Brain Res.
– volume: 67
  start-page: 1079
  year: 2007
  end-page: 1093
  article-title: Adult‐generated neurons exhibit diverse developmental fates
  publication-title: Dev. Neurobiol.
– volume: 203
  start-page: 495
  year: 1981
  end-page: 514
  article-title: Cholinergic and catecholaminergic afferents to the olfactory bulb in the hamster: a neuroanatomical, biochemical, and histochemical investigation
  publication-title: J. Comp. Neurol.
– volume: 219
  start-page: 339
  year: 1983
  end-page: 355
  article-title: Distribution of dendrites of mitral, displaced mitral, tufted, and granule cells in the rabbit olfactory bulb
  publication-title: J. Comp. Neurol.
– volume: 20
  start-page: 5124
  year: 2000
  end-page: 5134
  article-title: Calcium influx through NMDA receptors directly evokes GABA release in olfactory bulb granule cells
  publication-title: J. Neurosci.
– volume: 19
  start-page: 9180
  year: 1999
  end-page: 9191
  article-title: Multiple and opposing roles of cholinergic transmission in the main olfactory bulb
  publication-title: J. Neurosci.
– volume: 29
  start-page: 40
  year: 2006
  end-page: 47
  article-title: Mechanisms of odor discrimination: neurophysiological and behavioral approaches
  publication-title: Trends Neurosci.
– volume: 114
  start-page: 957
  year: 2000
  end-page: 962
  article-title: Association of an odor with activation of olfactory bulb noradrenergic β‐receptors or locus coeruleus stimulation is sufficient to produce learned approach responses to that odor in neonatal rats
  publication-title: Behav. Neurosci.
– volume: 100
  start-page: 585
  year: 1986
  end-page: 596
  article-title: Chemical dependencies of learning in the rabbit olfactory bulb: acquisition of the transient spatial pattern change depends on norepinephrine
  publication-title: Behav. Neurosci.
– volume: 10
  start-page: 5
  year: 2003
  end-page: 15
  article-title: Mitral cell β1 and 5‐HT(2A) receptor colocalization and cAMP coregulation: a new model of norepinephrine‐induced learning in the olfactory bulb
  publication-title: Learn Mem.
– volume: 98
  start-page: 337
  year: 2001
  end-page: 342
  article-title: Mechanisms governing dendritic gamma‐aminobutyric acid (GABA) release in the rat olfactory bulb
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 17
  start-page: 443
  year: 2006
  end-page: 453
  article-title: Adjusting neurophysiological computations in the adult olfactory bulb
  publication-title: Semin. Cell Dev. Biol.
– volume: 117
  start-page: 281
  year: 2003
  end-page: 291
  article-title: Effects of the α2‐adrenoreceptor antagonist dexefaroxan on neurogenesis in the olfactory bulb of the adult rat : selective protection against neuronal death
  publication-title: Neuroscience
– volume: 243
  start-page: 488
  year: 1986
  end-page: 509
  article-title: Cholinergic and GABAergic afferents to the olfactory bulb in the rat with special emphasis on the projection neurons in the nucleus of the horizontal limb of the diagonal band
  publication-title: J. Comp. Neurol.
– volume: 86
  start-page: 2173
  year: 2001
  end-page: 2182
  article-title: Direct excitation of mitral cells via activation of α1‐noradrenergic receptors in rat olfactory bulb slices
  publication-title: J. Neurophysiol.
– volume: 25
  start-page: 625
  year: 2000
  end-page: 633
  article-title: Analysis of relations between NMDA receptors and GABA release at olfactory bulb reciprocal synapses
  publication-title: Neuron
– volume: 274
  start-page: 976
  year: 1996
  end-page: 979
  article-title: Distinct mechanisms for synchronization and temporal patterning of odor‐encoding neural assemblies
  publication-title: Science
– volume: 1170
  start-page: 270
  year: 2009
  end-page: 274
  article-title: Role of cortical feedback in regulating inhibitory microcircuits
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 181
  start-page: 213
  year: 1978
  end-page: 244
  article-title: The afferent connections of the main and the accessory olfactory bulb formations in the rat: an experimental HRP‐study
  publication-title: J. Comp. Neurol.
– volume: 304
  start-page: 467
  year: 1991
  end-page: 477
  article-title: Postnatal development of the noradrenergic projection from locus coeruleus to the olfactory bulb in the rat
  publication-title: J. Comp. Neurol.
– volume: 26
  start-page: 3292
  year: 2006
  end-page: 3298
  article-title: Adrenergic enhancement of inhibitory transmission in the accessory olfactory bulb
  publication-title: J. Neurosci.
– volume: 14
  start-page: 453
  year: 1991
  end-page: 501
  article-title: Cell death during development of the nervous system
  publication-title: Annu. Rev. Neurosci.
– volume: 7
  start-page: 862
  year: 2004
  end-page: 871
  article-title: Multiplexing using synchrony in the zebrafish olfactory bulb
  publication-title: Nat. Neurosci.
– volume: 55
  start-page: 373
  year: 2007
  end-page: 382
  article-title: The olfactory granule cell: from classical enigma to central role in olfactory processing
  publication-title: Brain Res. Rev.
– volume: 115
  start-page: 826
  year: 2001
  end-page: 833
  article-title: Selective loss of cholinergic neurons projecting to the olfactory system increases perceptual generalization between similar, but not dissimilar, odorants
  publication-title: Behav. Neurosci.
– volume: 60
  start-page: 152
  year: 1993
  end-page: 162
  article-title: Serotonergic influence on olfactory learning in the neonate rat
  publication-title: Behav. Neural. Biol.
– volume: 89
  start-page: 2601
  year: 2003
  end-page: 2610
  article-title: Both electrical and chemical synapses mediate fast network oscillations in the olfactory bulb
  publication-title: J. Neurophysiol.
– volume: 7
  start-page: 179
  year: 2006
  end-page: 193
  article-title: Adult neurogenesis and functional plasticity in neuronal circuits
  publication-title: Nat. Rev. Neurosci.
– volume: 49
  start-page: 889
  year: 2006
  end-page: 904
  article-title: Blanes cells mediate persistent feedforward inhibition onto granule cells in the olfactory bulb
  publication-title: Neuron
– volume: 11
  start-page: 28
  year: 2004
  end-page: 34
  article-title: Acetylcholine and olfactory perceptual learning
  publication-title: Learn. Mem.
– volume: 12
  start-page: 3992
  year: 1992
  end-page: 3998
  article-title: Norepinephrine inhibits calcium currents and EPSPs via a G‐protein‐coupled mechanism in olfactory bulb neurons
  publication-title: J. Neurosci.
– volume: 101
  start-page: 9822
  year: 2004
  end-page: 9826
  article-title: Nicotinic receptors regulate the survival of newborn neurons in the adult olfactory bulb
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 15
  start-page: 1691
  year: 2004
  end-page: 1697
  article-title: Olfactory learning in the rat pups: a model that permit visualization of a mammalian memory trace
  publication-title: Neuroreport
– volume: 107
  start-page: 215
  year: 1970
  end-page: 237
  article-title: An experimental study of the origin and the course of the centrifugal fibres to the olfactory bulb in the rat
  publication-title: J. Anat.
– volume: 131
  start-page: 717
  year: 2005
  end-page: 731
  article-title: 5‐Hydroxytryptamine action in the rat olfactory bulb: in vitro electrophysiological patch‐clamp recordings of juxtaglomerular and mitral cells
  publication-title: Neuroscience
– volume: 10
  start-page: 579
  year: 1983
  end-page: 619
  article-title: Neurochemistry of the vertebrate olfactory bulb
  publication-title: Neuroscience
– volume: 115
  start-page: 314
  year: 2001
  end-page: 327
  article-title: Contribution of the cholinergic basal forebrain to proactive interference from stored odor memories during associative learning in rats
  publication-title: Behav. Neurosci.
– volume: 25
  start-page: 25
  year: 2008
  end-page: 38
  article-title: Lateral dendritic shunt inhibition can regularize mitral cell spike patterning
  publication-title: J. Comput. Neurosci.
– volume: 7
  start-page: 157
  year: 1970
  end-page: 187
  article-title: An electron‐microscopic study of the termination of the afferent fibres to the olfactory bulb from the cerebral hemisphere
  publication-title: J. Cell Sci.
– volume: 2
  start-page: 1003
  year: 1999
  end-page: 1009
  article-title: Odor‐ and context‐dependent modulation of mitral cell activity in behaving rats
  publication-title: Nat. Neurosci.
– volume: 26
  start-page: 501
  year: 2003
  end-page: 506
  article-title: Dendritic processing within olfactory bulb circuits
  publication-title: Trends Neurosci.
– ident: e_1_2_11_85_2
  doi: 10.1016/0361-9230(84)90143-6
– ident: e_1_2_11_23_2
  doi: 10.1016/j.tins.2005.10.004
– ident: e_1_2_11_79_2
  doi: 10.1523/JNEUROSCI.4746-04.2005
– ident: e_1_2_11_107_2
  doi: 10.1523/JNEUROSCI.01-08-00887.1981
– ident: e_1_2_11_3_2
  doi: 10.1002/cne.21396
– volume: 107
  start-page: 215
  year: 1970
  ident: e_1_2_11_43_2
  article-title: An experimental study of the origin and the course of the centrifugal fibres to the olfactory bulb in the rat
  publication-title: J. Anat.
– ident: e_1_2_11_24_2
  doi: 10.1007/s10827-007-0063-5
– ident: e_1_2_11_21_2
  doi: 10.1016/S0031-9384(02)00895-8
– ident: e_1_2_11_26_2
  doi: 10.1523/JNEUROSCI.5570-03.2004
– ident: e_1_2_11_114_2
  doi: 10.1037/0735-7044.114.5.957
– ident: e_1_2_11_28_2
  doi: 10.1523/JNEUROSCI.4605-05.2006
– ident: e_1_2_11_137_2
  doi: 10.1146/annurev.ne.14.030191.002321
– ident: e_1_2_11_106_2
  doi: 10.1037/0735-7044.100.4.585
– ident: e_1_2_11_139_2
  doi: 10.1038/nn1048
– ident: e_1_2_11_113_2
  doi: 10.1097/01.wnr.0000134988.51310.c3
– ident: e_1_2_11_16_2
  doi: 10.1002/cne.901370404
– ident: e_1_2_11_99_2
  doi: 10.1016/0006-8993(95)00280-4
– ident: e_1_2_11_7_2
  doi: 10.1002/cne.902260305
– ident: e_1_2_11_111_2
  doi: 10.1016/0006-8993(94)90038-8
– ident: e_1_2_11_34_2
  doi: 10.1126/science.274.5289.976
– ident: e_1_2_11_140_2
  doi: 10.1038/nn1522
– ident: e_1_2_11_52_2
  doi: 10.1523/JNEUROSCI.2961-07.2007
– ident: e_1_2_11_72_2
  doi: 10.1523/JNEUROSCI.23-20-07551.2003
– ident: e_1_2_11_123_2
  doi: 10.1111/j.1471-4159.2006.04229.x
– ident: e_1_2_11_66_2
  doi: 10.1002/cne.901780408
– ident: e_1_2_11_69_2
  doi: 10.1152/jn.00212.2003
– ident: e_1_2_11_36_2
  doi: 10.1073/pnas.0701846104
– ident: e_1_2_11_128_2
  doi: 10.1111/j.1365-2443.2006.01010.x
– ident: e_1_2_11_118_2
  doi: 10.1016/S0361-9230(99)00055-6
– volume: 241
  start-page: 642
  year: 1987
  ident: e_1_2_11_133_2
  article-title: Presynaptic α2‐adrenoceptors play a major role in the effects of idazoxan on cortical noradrenaline release (as measured by in vivo dialysis) in the rat
  publication-title: J. Pharmacol. Exp. Ther.
– ident: e_1_2_11_134_2
  doi: 10.1523/JNEUROSCI.20-24-09104.2000
– ident: e_1_2_11_9_2
  doi: 10.1016/S0166-2236(03)00228-5
– ident: e_1_2_11_127_2
  doi: 10.1073/pnas.0403361101
– ident: e_1_2_11_78_2
  doi: 10.1523/JNEUROSCI.1419-05.2006
– ident: e_1_2_11_25_2
  doi: 10.1063/1.1596071
– ident: e_1_2_11_15_2
  doi: 10.1111/j.1749-6632.2009.03882.x
– ident: e_1_2_11_109_2
  doi: 10.1016/0306-4522(85)90258-1
– ident: e_1_2_11_39_2
  doi: 10.1038/nn1292
– ident: e_1_2_11_126_2
  doi: 10.1523/JNEUROSCI.2633-06.2006
– ident: e_1_2_11_122_2
  doi: 10.1016/0163-1047(93)90257-I
– ident: e_1_2_11_56_2
  doi: 10.1523/JNEUROSCI.3433-03.2004
– ident: e_1_2_11_119_2
  doi: 10.1016/j.neuroscience.2004.10.034
– ident: e_1_2_11_97_2
  doi: 10.1002/cne.902850305
– ident: e_1_2_11_141_2
  doi: 10.1038/nrn1867
– ident: e_1_2_11_95_2
  doi: 10.1111/j.1460-9568.2006.05212.x
– ident: e_1_2_11_89_2
  doi: 10.1007/BF00442821
– ident: e_1_2_11_38_2
  doi: 10.1111/j.1460-9568.2008.06316.x
– ident: e_1_2_11_116_2
  doi: 10.1111/j.1460-9568.2008.06101.x
– ident: e_1_2_11_14_2
  doi: 10.1016/j.neuron.2006.02.019
– ident: e_1_2_11_115_2
  doi: 10.1101/lm.606407
– ident: e_1_2_11_129_2
  doi: 10.1002/jnr.20116
– ident: e_1_2_11_104_2
  doi: 10.1523/JNEUROSCI.12-10-03985.1992
– ident: e_1_2_11_98_2
  doi: 10.1002/cne.903040310
– ident: e_1_2_11_71_2
  doi: 10.1111/j.1749-6632.2009.04018.x
– ident: e_1_2_11_132_2
  doi: 10.1016/j.expneurol.2005.03.004
– ident: e_1_2_11_74_2
  doi: 10.1113/jphysiol.1982.sp014187
– ident: e_1_2_11_105_2
  doi: 10.1016/S0006-8993(97)01371-1
– ident: e_1_2_11_94_2
  doi: 10.1037/0735-7044.115.2.314
– ident: e_1_2_11_10_2
  doi: 10.1093/acprof:oso/9780195159561.003.0005
– ident: e_1_2_11_31_2
  doi: 10.1016/j.semcdb.2006.04.006
– volume: 23
  start-page: 6946
  year: 2003
  ident: e_1_2_11_55_2
  article-title: Olfactory bulb mitral‐tufted cell plasticity: odorant‐specific tuning reflects previous odorant exposure
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.23-17-06946.2003
– volume: 11
  start-page: 1837
  year: 2001
  ident: e_1_2_11_77_2
  article-title: Local information processing in dendritic trees: subsets of spines in granule cells of the mammalian olfactory bulb
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.11-06-01837.1991
– ident: e_1_2_11_13_2
  doi: 10.1002/cne.902030310
– ident: e_1_2_11_80_2
  doi: 10.1111/j.1460-9568.2008.06170.x
– ident: e_1_2_11_124_2
  doi: 10.1523/JNEUROSCI.22-07-02679.2002
– ident: e_1_2_11_70_2
  doi: 10.1523/JNEUROSCI.4630-06.2007
– ident: e_1_2_11_18_2
  doi: 10.1023/A:1008895429790
– ident: e_1_2_11_121_2
  doi: 10.1101/lm.54803
– ident: e_1_2_11_40_2
  doi: 10.1016/j.semcdb.2006.04.009
– volume: 104
  start-page: 464
  year: 1990
  ident: e_1_2_11_48_2
  article-title: Importance of β‐noradrenergic receptors in the olfactory bulb of sheep for recognition of lambs
  publication-title: Behav. Neurosci.
  doi: 10.1037/0735-7044.104.3.464
– volume: 7
  start-page: 125
  year: 1970
  ident: e_1_2_11_59_2
  article-title: The synaptology of the granule cells of the olfactory bulb
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.7.1.125
– ident: e_1_2_11_4_2
  doi: 10.1073/pnas.0503027102
– ident: e_1_2_11_61_2
  doi: 10.1016/S0896-6273(00)81013-2
– ident: e_1_2_11_67_2
  doi: 10.1016/0361-9230(84)90148-5
– ident: e_1_2_11_53_2
  doi: 10.1016/0006-8993(83)90009-4
– ident: e_1_2_11_92_2
  doi: 10.1037/0735-7044.115.4.826
– volume: 12
  start-page: 3992
  year: 1992
  ident: e_1_2_11_103_2
  article-title: Norepinephrine inhibits calcium currents and EPSPs via a G‐protein‐coupled mechanism in olfactory bulb neurons
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.12-10-03992.1992
– ident: e_1_2_11_27_2
  doi: 10.1016/j.neuron.2005.11.038
– ident: e_1_2_11_47_2
  doi: 10.1016/0165-3806(88)90202-7
– ident: e_1_2_11_82_2
  doi: 10.1523/JNEUROSCI.0884-06.2006
– ident: e_1_2_11_29_2
  doi: 10.1126/science.286.5440.711
– ident: e_1_2_11_37_2
  doi: 10.1152/jn.01141.2005
– ident: e_1_2_11_93_2
  doi: 10.1037/0735-7044.114.1.32
– ident: e_1_2_11_42_2
  doi: 10.1002/cne.902160305
– ident: e_1_2_11_76_2
  doi: 10.1002/cne.902250404
– ident: e_1_2_11_22_2
  doi: 10.1016/j.semcdb.2006.04.011
– ident: e_1_2_11_51_2
  doi: 10.1101/lm.66404
– ident: e_1_2_11_12_2
  doi: 10.1016/j.brainresrev.2007.03.005
– volume: 22
  start-page: RC201
  year: 2002
  ident: e_1_2_11_91_2
  article-title: Experience modifies olfactory acuity: acetylcholine‐dependent learning decreases behavioral generalization between similar odorants
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.22-02-j0005.2002
– volume: 7
  start-page: 3016
  year: 1987
  ident: e_1_2_11_117_2
  article-title: Serotonergic afferents to the rat olfactory bulb: I. Origins and laminar specificity of serotonergic inputs in the adult rat
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.07-10-03016.1987
– ident: e_1_2_11_62_2
  doi: 10.1523/JNEUROSCI.18-17-06790.1998
– ident: e_1_2_11_50_2
  doi: 10.1016/S0893-6080(02)00061-8
– ident: e_1_2_11_33_2
  doi: 10.1111/j.1460-9568.2006.04711.x
– ident: e_1_2_11_11_2
  doi: 10.1152/physrev.00008.2004
– ident: e_1_2_11_17_2
  doi: 10.1126/science.256.5058.833
– ident: e_1_2_11_20_2
  doi: 10.1073/pnas.92.8.3371
– ident: e_1_2_11_45_2
  doi: 10.1002/(SICI)1097-4695(199605)30:1<123::AID-NEU11>3.0.CO;2-N
– ident: e_1_2_11_68_2
  doi: 10.1152/jn.00823.2006
– ident: e_1_2_11_57_2
  doi: 10.1093/chemse/bji055
– ident: e_1_2_11_88_2
  doi: 10.1523/JNEUROSCI.19-21-09180.1999
– ident: e_1_2_11_131_2
  doi: 10.1016/S0306-4522(02)00757-1
– ident: e_1_2_11_35_2
  doi: 10.1152/jn.00887.2002
– ident: e_1_2_11_63_2
  doi: 10.1016/S0896-6273(00)81065-X
– ident: e_1_2_11_30_2
  doi: 10.1146/annurev.neuro.24.1.263
– ident: e_1_2_11_83_2
  doi: 10.1111/j.1749-6632.2009.03881.x
– ident: e_1_2_11_19_2
  doi: 10.1016/j.tins.2005.03.005
– ident: e_1_2_11_108_2
  doi: 10.1016/0361-9230(94)90159-7
– ident: e_1_2_11_5_2
  doi: 10.1093/chemse/bjh137
– ident: e_1_2_11_101_2
  doi: 10.1016/S0306-4522(98)00437-0
– ident: e_1_2_11_8_2
  doi: 10.1038/nrn964
– ident: e_1_2_11_44_2
  doi: 10.1016/0306-4522(83)90206-3
– ident: e_1_2_11_6_2
  doi: 10.1002/cne.902190308
– volume: 46
  start-page: 649
  year: 1981
  ident: e_1_2_11_73_2
  article-title: Blockade of synaptic inhibition reveals long‐lasting synaptic excitation in isolated turtle olfactory bulb
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1981.46.3.649
– ident: e_1_2_11_32_2
  doi: 10.1046/j.1460-9568.2003.02445.x
– ident: e_1_2_11_41_2
  doi: 10.1002/cne.902030311
– ident: e_1_2_11_75_2
  doi: 10.1073/pnas.021445798
– ident: e_1_2_11_120_2
  doi: 10.1016/0306-4522(94)90396-4
– ident: e_1_2_11_125_2
  doi: 10.1073/pnas.0406082102
– volume: 7
  start-page: 157
  year: 1970
  ident: e_1_2_11_60_2
  article-title: An electron‐microscopic study of the termination of the afferent fibres to the olfactory bulb from the cerebral hemisphere
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.7.1.157
– ident: e_1_2_11_58_2
  doi: 10.1016/0014-4886(66)90023-9
– ident: e_1_2_11_84_2
  doi: 10.1016/j.neuron.2005.09.032
– ident: e_1_2_11_138_2
  doi: 10.1038/264705a0
– ident: e_1_2_11_2_2
  doi: 10.1016/S0959-4388(02)00348-3
– ident: e_1_2_11_54_2
  doi: 10.1038/14801
– ident: e_1_2_11_86_2
  doi: 10.1002/cne.902430405
– ident: e_1_2_11_110_2
  doi: 10.1126/science.2147078
– ident: e_1_2_11_135_2
  doi: 10.1111/j.1460-9568.2006.05235.x
– volume: 20
  start-page: 5124
  year: 2000
  ident: e_1_2_11_64_2
  article-title: Calcium influx through NMDA receptors directly evokes GABA release in olfactory bulb granule cells
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.20-13-05124.2000
– volume: 108
  start-page: 317
  year: 1994
  ident: e_1_2_11_49_2
  article-title: Scopolamine injection into the olfactory bulb impairs short‐term olfactory memory in rats
  publication-title: Behav. Neurosci.
  doi: 10.1037/0735-7044.108.2.317
– ident: e_1_2_11_65_2
  doi: 10.1002/cne.901810202
– ident: e_1_2_11_136_2
  doi: 10.1523/JNEUROSCI.2954-08.2008
– ident: e_1_2_11_130_2
  doi: 10.1002/dneu.20389
– ident: e_1_2_11_100_2
  doi: 10.1523/JNEUROSCI.4768-05.2006
– ident: e_1_2_11_102_2
  doi: 10.1152/jn.2001.86.5.2173
– volume: 107
  start-page: 72
  year: 1993
  ident: e_1_2_11_90_2
  article-title: Learning and memory of odor‐reward association: selective impairment following horizontal diagonal band lesions
  publication-title: Behav. Neurosci.
  doi: 10.1037/0735-7044.107.1.72
– ident: e_1_2_11_46_2
  doi: 10.1523/JNEUROSCI.09-11-03998.1989
– ident: e_1_2_11_87_2
  doi: 10.1016/0306-4522(92)90496-O
– ident: e_1_2_11_96_2
  doi: 10.1016/S0031-9384(98)00238-8
– ident: e_1_2_11_81_2
  doi: 10.1213/01.ane.0000205752.00303.94
– ident: e_1_2_11_112_2
  doi: 10.1523/JNEUROSCI.4578-03.2004
SSID ssj0012847
Score 2.118359
SecondaryResourceType review_article
Snippet The olfactory bulb is known to receive signals from sensory neurons and to convey them to higher processing centers. However, in addition to relaying sensory...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 239
SubjectTerms Animals
Apoptosis
GABA
glutamate
Humans
Interneurons - physiology
lateral inhibition
learning
Neurogenesis
Odorants
Olfactory Bulb - physiology
plasticity
Smell - physiology
Title Centrifugal Drive onto Local Inhibitory Interneurons of the Olfactory Bulb
URI https://api.istex.fr/ark:/67375/WNG-F724VND3-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1749-6632.2009.03913.x
https://www.ncbi.nlm.nih.gov/pubmed/19686142
https://www.proquest.com/docview/20777615
https://www.proquest.com/docview/20781282
https://www.proquest.com/docview/20786850
https://www.proquest.com/docview/34732073
https://www.proquest.com/docview/67591069
Volume 1170
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELemTUi8wDa-CgP8gBA8pEpi144fN0bZJigSMBhPlu04omqVoraRtv31u7PTQqdtmhBveTg78eU-fmef7wh55U1WGoFNM1wuE87SKrEuLRLnS-ZL5wQLt1w_DcTBMT866Z20-U94FybWh1huuKFmBHuNCm7sbFXJJVcJeMy8LTvJVMa6iCcxdQvx0ZdlJalghYNRlmCUAdRcTuq5YqIVT7WBTD-9Coauotrglvr3yWixoJiNMuo2c9t155dqPf6fFW-Sey16pbtR3LbImq-3yZ3Yz_Jsm2y1lmJG37TlrN8-IEdhA3lYNeCL6P4UrCvFmgn0I3pRelj_GtohnvTTuDmJxULqGZ1UFKAp_TyODYHO6F4ztg_Jcf_9t3cHSdvBIXEQqLCE9QrP89KxUkKYJyrJZJWKwsMyUuescZUpU2dsKVLlOQRfJjcSYjjAMLlTmWOPyHo9qf0TQi1TBqAbl5Z7DvMUDkKdSvLSKu8ybjpELv6Wdm15c-yyMdZ_hTnwXo3sw-abSgf26dMOyZYjf8cSH7cY8zoIxHKAmY4wRU729I_BB92H5X4f7DOtOuTlQmI0KC6expjaT5oZTCelBDx5IwXAryK_mUIUvfR6Cga8Aip2PQWwEdgt4EsfR4H-wwQlCkBv8P4iiOWtuaMHP3e_huen_z70GbkbT-4wNXqHrM-njX8OAHBuXwTVvgD3tUlK
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT9swFLcm0LRdxmBfhQ18mKbtkCqJXTs-wlhXWMmkDTZ2smzHERVVitpGAv56nu20owgQmnbr4dmpX97H79nO7yH03qqkUMw1zTApjyiJy0ibOIuMLYgtjGHEf-V6kLPeEd0_7hw37YDctzCBH2K-4eY8w8dr5-BuQ3rRyzkVEaTMtOGdJCIhbQCUy67Bt6-vfsy5pHwc9mGZQ1gGWHPzWs8tMy3kqmWn9vPbgOgirvWJqbuChrMlhfsop-16qtvm8gbb439a83P0rAGweDtY3Cp6ZKs19Di0tLxYQ6tNsJjgjw2j9acXaN_vIQ_KGtIR3h1DgMWONgH3XSLFe9XJQA_cYT8O-5OOL6Sa4FGJAZ3i78PQE-gC79RD_RIddb8cfu5FTROHyECtQiLSySxNC0MKDpUeKznhZcwyC8uIjdHKlKqIjdIFi4WlUH-pVHEo4wDGpEYkhrxCS9Wosm8Q1kQoQG-Ua2opzJMZqHZKTgstrEmoaiE-e13SNAznrtHGUF6rdOC50qnP9d8U0qtPnrdQMh95Flg-HjDmg7eI-QA1PnW35HhH_s6_yi4s91e-S6Rooa2ZyUjwXXcgoyo7qicwHeccIOW9EoDAsvR-CZZ14rslCOgKpMjdEqBGUDeDf_o6WPRfJQiWAYCD52feLh-sHZn_2f7pf6__-9At9KR3eNCX_b382wZ6Gg7y3E3pt2hpOq7tO8CDU73p_fwKh55NZQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQKxAXoOWV8qgPCMFho92148exEEJbyoKAQjlZfq0aJdpUSVZq-fWMvZtAqraqELc9jL3r2Xl8Y49nEHrhdeY0C00zbM4TStIyMTYVifWOeGctI_GW68eC7R7S_aPeUZv_FO7CNPUhlhtuQTOivQ4KfuLKVSXnVCbgMfO27CSRGekCnlynLBVBwvtflqWkohmOVpmDVQZUcz6r54KZVlzVeuD66UU4dBXWRr80uItGixU16Sijbj03XfvrXLHH_7Pke-hOC1_xTiNvG-iGrzbRzaah5dkm2mhNxQy_autZv76P9uMO8rCswRnh_hTMKw5FE_BBcKN4rzoemmE46sfN7mSoFlLN8KTEgE3xp3HTEegMv6nH5gE6HLz79nY3aVs4JBYiFZKQnvA0d5Y4DnEeKznhZcqEh2Wk1hptS-1Sq41jqfQUoi-daw5BHICY3MrMkodorZpU_jHChkgN2I1yQz2FeYSFWKfk1BnpbUZ1B_HF31K2rW8e2myM1V9xDrxXBfaF7ptSRfap0w7KliNPmhof1xjzMgrEcoCejkKOHO-pH8V7NYDlfi_6RMkO2l5IjALNDccxuvKTegbTcc4BUF5JAfhL5FdTMNFLL6cgwCugIpdTABuB3Qy-9FEj0H-YIJkA-AbvF1Esr80dVfzc-Rqft_596Da69bk_UAd7xYcn6HZzihfSpJ-itfm09s8ADM7N86jlvwFoV0wd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Centrifugal+Drive+onto+Local+Inhibitory+Interneurons+of+the+Olfactory+Bulb&rft.jtitle=Annals+of+the+New+York+Academy+of+Sciences&rft.au=Mouret%2C+Aur%C3%A9lie&rft.au=Murray%2C+Kerren&rft.au=Lledo%2C+Pierre%E2%80%90Marie&rft.date=2009-07-01&rft.issn=0077-8923&rft.eissn=1749-6632&rft.volume=1170&rft.issue=1&rft.spage=239&rft.epage=254&rft_id=info:doi/10.1111%2Fj.1749-6632.2009.03913.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1749_6632_2009_03913_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0077-8923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0077-8923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0077-8923&client=summon