基于声信号特征加权的设施养殖羊行为分类识别

中国西部地区正在发展集约化和规模化的设施养羊业,通过监测羊舍内的声信号可以判别羊只的行为状态,从而为设施养羊的福利化水平评估提取基础依据。梅尔频率倒谱系数(mel frequency cepstrum coefficient,MFCC)模拟了人耳对语音的处理特点且抗噪音性强,被广泛用于畜禽发声信号的特征提取,但其没有考虑各个特征分量表征声信号的能力。该研究构建羊舍无线声音数据采集系统,采集20只羊在设施羊舍内的打斗、饥饿、咳嗽、啃咬和寻伴共5种行为下的声信号,并通过Audacity音频处理软件选出720个清晰且不重叠的声音样本数据。根据MFCC各分量对羊舍声信号表征能力,特征参数提取采用一种熵...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 32; no. 19; pp. 195 - 202
Main Author 宣传忠 马彦华 武佩 张丽娜 郝敏 张曦宇
Format Journal Article
LanguageChinese
Published 内蒙古农业大学机电工程学院,呼和浩特,010018 2016
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2016.19.027

Cover

Abstract 中国西部地区正在发展集约化和规模化的设施养羊业,通过监测羊舍内的声信号可以判别羊只的行为状态,从而为设施养羊的福利化水平评估提取基础依据。梅尔频率倒谱系数(mel frequency cepstrum coefficient,MFCC)模拟了人耳对语音的处理特点且抗噪音性强,被广泛用于畜禽发声信号的特征提取,但其没有考虑各个特征分量表征声信号的能力。该研究构建羊舍无线声音数据采集系统,采集20只羊在设施羊舍内的打斗、饥饿、咳嗽、啃咬和寻伴共5种行为下的声信号,并通过Audacity音频处理软件选出720个清晰且不重叠的声音样本数据。根据MFCC各分量对羊舍声信号表征能力,特征参数提取采用一种熵值加权的MFCC参数,再求其一、二阶差分并进行主成分分析降维,得到优化的19维特征参数。通过对羊舍声信号的声谱图分析,设计了支持向量机二叉树识别模型,并对模型内的4个分类器参数进行网格化寻优测试,该识别模型对羊只5种行为下的声信号进行分类识别,用改进的特征参数与传统MFCC和线性预测倒谱系数(linear predictive cepstrum coefficient,LPCC)进行对比分析。结果表明,该特征参数对5种行为的识别率平均可达83.6%,分别高于MFCC和LPCC参数14.1%和26.8%,羊只打斗和咳嗽行为的声信号属于相似的短时爆发类声音,其识别率分别仅为80.6%和79.5%,啃咬声特征显著不易混淆,其查全率可达到为92.5%,改进特征参数更好的表征了羊舍声信号的特征,提高了羊只不同行为的识别率,为羊只健康和福利状况的监测提供理论依据。
AbstractList 中国西部地区正在发展集约化和规模化的设施养羊业,通过监测羊舍内的声信号可以判别羊只的行为状态,从而为设施养羊的福利化水平评估提取基础依据。梅尔频率倒谱系数(mel frequency cepstrum coefficient,MFCC)模拟了人耳对语音的处理特点且抗噪音性强,被广泛用于畜禽发声信号的特征提取,但其没有考虑各个特征分量表征声信号的能力。该研究构建羊舍无线声音数据采集系统,采集20只羊在设施羊舍内的打斗、饥饿、咳嗽、啃咬和寻伴共5种行为下的声信号,并通过Audacity音频处理软件选出720个清晰且不重叠的声音样本数据。根据MFCC各分量对羊舍声信号表征能力,特征参数提取采用一种熵值加权的MFCC参数,再求其一、二阶差分并进行主成分分析降维,得到优化的19维特征参数。通过对羊舍声信号的声谱图分析,设计了支持向量机二叉树识别模型,并对模型内的4个分类器参数进行网格化寻优测试,该识别模型对羊只5种行为下的声信号进行分类识别,用改进的特征参数与传统MFCC和线性预测倒谱系数(linear predictive cepstrum coefficient,LPCC)进行对比分析。结果表明,该特征参数对5种行为的识别率平均可达83.6%,分别高于MFCC和LPCC参数14.1%和26.8%,羊只打斗和咳嗽行为的声信号属于相似的短时爆发类声音,其识别率分别仅为80.6%和79.5%,啃咬声特征显著不易混淆,其查全率可达到为92.5%,改进特征参数更好的表征了羊舍声信号的特征,提高了羊只不同行为的识别率,为羊只健康和福利状况的监测提供理论依据。
TN713; 中国西部地区正在发展集约化和规模化的设施养羊业,通过监测羊舍内的声信号可以判别羊只的行为状态,从而为设施养羊的福利化水平评估提取基础依据。梅尔频率倒谱系数(mel frequency cepstrum coefficient,MFCC)模拟了人耳对语音的处理特点且抗噪音性强,被广泛用于畜禽发声信号的特征提取,但其没有考虑各个特征分量表征声信号的能力。该研究构建羊舍无线声音数据采集系统,采集20只羊在设施羊舍内的打斗、饥饿、咳嗽、啃咬和寻伴共5种行为下的声信号,并通过Audacity音频处理软件选出720个清晰且不重叠的声音样本数据。根据MFCC各分量对羊舍声信号表征能力,特征参数提取采用一种熵值加权的MFCC参数,再求其一、二阶差分并进行主成分分析降维,得到优化的19维特征参数。通过对羊舍声信号的声谱图分析,设计了支持向量机二叉树识别模型,并对模型内的4个分类器参数进行网格化寻优测试,该识别模型对羊只5种行为下的声信号进行分类识别,用改进的特征参数与传统MFCC和线性预测倒谱系数(linear predictive cepstrum coefficient,LPCC)进行对比分析。结果表明,该特征参数对5种行为的识别率平均可达83.6%,分别高于MFCC和LPCC参数14.1%和26.8%,羊只打斗和咳嗽行为的声信号属于相似的短时爆发类声音,其识别率分别仅为80.6%和79.5%,啃咬声特征显著不易混淆,其查全率可达到为92.5%,改进特征参数更好的表征了羊舍声信号的特征,提高了羊只不同行为的识别率,为羊只健康和福利状况的监测提供理论依据。
Abstract_FL Sheep farming husbandry in western region of China has been developing in the manner of intensive and large-scale facility production. Due to the high density of sheep in house, any unusual behavior, such as sheep fighting, will cause a great loss if the sheep farmer is not aware of its happening and takes measures in time. Since the sound from sheep can not only reflect the status of sheep’s health status but also can reflect its response to environment, the behaviors of sheep can be determined by monitoring the sound from the sheep house. This will provide a theoretical basis on evaluation of the welfare level of sheep raising and breeding. In this study, by establishing an audio signal acquisition system for sheep house based on wireless network, the sound signals from 20 sheep under 5 kinds of behaviors (fight, hunger, cough, bite, and search companions) were collected, and then these signals were processed and 720 clear and non-overlapping sound samples were selected in software of Audacity. Although Mel Frequency Cepstrum Coefficients (MFCC) has been widely used for feature extraction of animal sound signals due to its capacities of simulating the processing of speech by human ear and its better noise resistance, it neglects the different contribution of each feature component in characterizing the sound signals from the sheep house. Therefore, in this study, a weighted MFCC method was proposed based on the entropy value method to improve the recognition rate of sheep’s sounds. The weighted MFCC with its first and second order differential was optimized to obtain a 19-dimension feature parameter via principal component analysis. The recognition model of support vector machine binary tree, in which parameters of four classifiers were worked out through grid optimization test, was completed according to the sonograms rendering of five different sheep behaviors. And then, these behaviors were recognized and classified respectively with improved MFCC, traditional MFCC and Linear Prediction Cepstrum Coefficient (LPCC). The results demonstrated that the average recognition rate with the improved MFCC for five different sheep behaviors was up to 83.6%, which was 14.0% and 26.7% higher respectively than MFCC and LPCC. The recognition rate of sheep fight and sheep cough were only 80.6% and 79.5%, respectively, because fight sound and cough sound had similar short outbreak characteristics. The bite sound recall rate was reached to 92.5%, showing that the bite sound was with distinguished feature and uneasy to be confused with other sounds. So, the improved MFCC showed the better performance in characterizing the sounds from sheep house, and in raising the recognition rate of sheep behaviors. Modern techniques of sound analysis have provided tools for analyzing and classifying animal sounds. Taking advantage of this, future bioacoustical research on welfare assessment should focus on comprehensive studies of a broad spectrum of animal specific distress vocalizations. Increasing precise attributions of such utterances to environments, behavioral contexts and relevant physiological parameters will lead to a deeper understanding of their meaning and significance with respect to well-being of farm animals.
Author 宣传忠 马彦华 武佩 张丽娜 郝敏 张曦宇
AuthorAffiliation 内蒙古农业大学机电工程学院,呼和浩特010018
AuthorAffiliation_xml – name: 内蒙古农业大学机电工程学院,呼和浩特,010018
Author_FL Xuan Chuanzhong
Ma Yanhua
Hao Min
Wu Pei
Zhang Lina
Zhang Xiyu
Author_FL_xml – sequence: 1
  fullname: Xuan Chuanzhong
– sequence: 2
  fullname: Ma Yanhua
– sequence: 3
  fullname: Wu Pei
– sequence: 4
  fullname: Zhang Lina
– sequence: 5
  fullname: Hao Min
– sequence: 6
  fullname: Zhang Xiyu
Author_xml – sequence: 1
  fullname: 宣传忠 马彦华 武佩 张丽娜 郝敏 张曦宇
BookMark eNo9j09LwzAAxXOY4Jz7EoJ4ak3apklOIsN_MPCye2nSZHZopiuiO4o65hC97SCIDo_C1JO64fwyy7qPYWXi6QePH-_xFkBO17UEYBlBGyFG8GrNjpNE2whCx_IpYrYDkW9nhA7Jgfx_Pg-KSRJziJFLIPRQHqyZh8F4cGOeXsffPXP7nl59mtGZ6TxO7s_Tu4tpfzTpfpnL4aTfTUedae96_DEw7Vb6Npy-tEz7eRHMqXA_kcU_FkBlc6NS2rbKu1s7pfWyJTAjFiceE4x7yKEh4RJLTv2QSsgohCRiSiqlBKYR813KsZ9Z2BM8ciIVSd8R1C2AlVntSahVqKtBrX7c0NlgoJtVccp__yKWvc3MpZkp9uq6ehRn7mEjPggbzcAn0GWuB4n7A-mbcjU
ClassificationCodes TN713
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.2016.19.027
DatabaseName 中文科技期刊数据库
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Behavior classification and recognition for facility breeding sheep based on acoustic signal weighted feature
DocumentTitle_FL Behavior classification and recognition for facility breeding sheep based on acoustic signal weighted feature
EndPage 202
ExternalDocumentID nygcxb201619027
670393407
GrantInformation_xml – fundername: “十二五”国家科技支撑项目; 国家自然科学基金项目; 内蒙古“草原英才”产业创新人才团队项目; 内蒙古农业大学科技创新团队项目
  funderid: (2014BAD08B05); (11364029,61461042); (内组通字[2014]27号); (NDTD2013-6)
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c597-b749c9b4128a7be5eb86a8e098007d9fefffc58d9638b5628a54cbd2dfde62c83
ISSN 1002-6819
IngestDate Thu May 29 04:04:20 EDT 2025
Wed Feb 14 10:12:51 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 19
Keywords 支持向量机
声信号处理
动物
SVM
设施
特征提取
梅尔频率倒谱系数
feature extraction
behavior recognition
行为识别
animals
facilities
MFCC
acoustic signal processing
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c597-b749c9b4128a7be5eb86a8e098007d9fefffc58d9638b5628a54cbd2dfde62c83
Notes animals;facilities;acoustic signal processing;MFCC;feature extraction;SVM;behavior recognition
11-2047/S
Sheep farming husbandry in western region of China has been developing in the manner of intensive and large-scale facility production. Due to the high density of sheep in house, any unusual behavior, such as sheep fighting, will cause a great loss if the sheep farmer is not aware of its happening and takes measures in time. Since the sound from sheep can not only reflect the status of sheep’s health status but also can reflect its response to environment, the behaviors of sheep can be determined by monitoring the sound from the sheep house. This will provide a theoretical basis on evaluation of the welfare level of sheep raising and breeding. In this study, by establishing an audio signal acquisition system for sheep house based on wireless network, the sound signals from 20 sheep under 5 kinds of behaviors (fight, hunger, cough, bite, and search companions) were collected, and then these signals were proces
PageCount 8
ParticipantIDs wanfang_journals_nygcxb201619027
chongqing_primary_670393407
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2016
Publisher 内蒙古农业大学机电工程学院,呼和浩特,010018
Publisher_xml – name: 内蒙古农业大学机电工程学院,呼和浩特,010018
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.1126878
Snippet 中国西部地区正在发展集约化和规模化的设施养羊业,通过监测羊舍内的声信号可以判别羊只的行为状态,从而为设施养羊的福利化水平评估提取基础依据。梅尔频率倒谱系数(mel frequency cepstrum...
TN713; 中国西部地区正在发展集约化和规模化的设施养羊业,通过监测羊舍内的声信号可以判别羊只的行为状态,从而为设施养羊的福利化水平评估提取基础依据。梅尔频率倒谱系数(mel frequency cepstrum...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 195
SubjectTerms 动物
声信号处理
支持向量机
梅尔频率倒谱系数
特征提取
行为识别
设施
Title 基于声信号特征加权的设施养殖羊行为分类识别
URI http://lib.cqvip.com/qk/90712X/201619/670393407.html
https://d.wanfangdata.com.cn/periodical/nygcxb201619027
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEG7yANGD-MQYlRzs48aZ3unXSXp2ZwmCniLktsxzc9rEmIDmJmqIQfSWgyAaPArRnNQE1z-TyeZnWNUz-0gI8QHL7FD9dXVVV_dUddMPQm4znmlXCacSQbxbwQC-EnEJH0MWSoiWRZrZ1e73H4iZh969OT43MroztGppZTmajldP3FfyP1YFGtgVd8n-g2X7TIEA72BfeIKF4flXNqYBp7pBfUMDD58qQIqpUt-xlAY1LlIUYCQNJFWa-hopfgAhpE0y1ABYUF2nqooYDXw8GihqAoRhkqB-3YIho48USAIigJGPsWCXqpotVFl5AKyoKjCuzQWYhqXYJOMPh8WWCAX1OGjLAWQ2HDkYYOVb1erUCBQAxea9xmJTAtQbc9esQtxq7wwgmhr41WxKwQWKBJ2DAUT0-HsWoof5l2wL_WxlgFC6NjxpUuzmtA281AfqC9TWjGpdmsF4J6sKdCOPaAgArEewB8D4qdWhkb9h0Ftsg3BRWHxh1iQCs4PuffPbm9adI_4IHZZQpVcpHdZgQhg7ph5yP25xYWkZyTC7l_0EJ6klt14Si5juF4HrHMU0_DvFaQ3HziFvP23FTyLEQAzJ5CgZZ1K6fIyMG7_uNwYxuIvTDH0nwfCoBTEY03K3ijcq9Ndh4SoEbpcklGKcIbQn5J3TRMTDUOYX2q1HEOLZHXftLGy3hoLD2QvkfDmqmzJFF71IRlbnL5FzprVUnmyTXiZ38w-7-7tv8k9f939t5W-_dV_9yDvP8o2PB--fd9-9ONzuHGz-zF_uHWxvdjsbh1uv97_v5utr3Z29wy9r-frnK2S2EczWZirl7SWVGAbplUh6OtaRB_FfKKOUp5ESoUodDSM0megszbIs5ipBBxjBIESF3IujhCVZkgoWq-pVMtZeaKfXyJSjQhzX85glVY-zJAQTQBkhUypxWKQnyGS_JpqLxSE1TSFx173nyAkyVdZNs_x0PW4es-X1P0MmyVl8LyYfb5Cx5aWV9CaE48vRrbIB_AYPGaq7
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%A3%B0%E4%BF%A1%E5%8F%B7%E7%89%B9%E5%BE%81%E5%8A%A0%E6%9D%83%E7%9A%84%E8%AE%BE%E6%96%BD%E5%85%BB%E6%AE%96%E7%BE%8A%E8%A1%8C%E4%B8%BA%E5%88%86%E7%B1%BB%E8%AF%86%E5%88%AB&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%AE%A3%E4%BC%A0%E5%BF%A0&rft.au=%E9%A9%AC%E5%BD%A6%E5%8D%8E&rft.au=%E6%AD%A6%E4%BD%A9&rft.au=%E5%BC%A0%E4%B8%BD%E5%A8%9C&rft.date=2016&rft.pub=%E5%86%85%E8%92%99%E5%8F%A4%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%E6%9C%BA%E7%94%B5%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%91%BC%E5%92%8C%E6%B5%A9%E7%89%B9%2C010018&rft.issn=1002-6819&rft.volume=32&rft.issue=19&rft.spage=195&rft.epage=202&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2016.19.027&rft.externalDocID=nygcxb201619027
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg