一种面向高斯差分图的压缩感知目标跟踪算法
针对压缩感知目标跟踪算法在目标纹理改变、比例缩放、光照变化剧烈时鲁棒性不足,提出一种面向高斯差分图的实时跟踪算法.首先,构建图像的多尺度空间及其对应的高斯差分图,实现高斯差分图的特征提取并获取压缩感知的输入信号;然后,通过压缩降维,目标邻域遍历,参数更新等过程,计算出面向高斯差分图的后续帧的目标最优跟踪窗;最后,将跟踪窗投影到对应的原始图像上,完成面向视频流的目标跟踪.高斯差分图像是单通道灰度图,具有灰度取值范围小、数值低、结构简单、维数少等特点,增强了特征对纹理改变、比例缩放和光照变化的稳健性,且继承了传统算法的实时性.实验证明,该算法能够快速准确地实现复杂环境下的移动目标跟踪任务....
Saved in:
Published in | 红外与毫米波学报 Vol. 34; no. 1; pp. 100 - 105 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
中国科学院合肥智能机械研究所,安徽合肥230031%江南大学轻工过程先进控制教育部重点实验室,江苏无锡,214122%中国科学院合肥智能机械研究所,安徽合肥,230031%西安交通大学机械工程学院,陕西西安,710049
2015
江南大学轻工过程先进控制教育部重点实验室,江苏无锡214122 新疆大学电气工程学院,新疆乌鲁木齐830047 中国科学院合肥智能机械研究所,安徽合肥230031%江南大学轻工过程先进控制教育部重点实验室,江苏无锡214122 |
Subjects | |
Online Access | Get full text |
ISSN | 1001-9014 |
DOI | 10.3724/SP.J.1010.2015.00100 |
Cover
Summary: | 针对压缩感知目标跟踪算法在目标纹理改变、比例缩放、光照变化剧烈时鲁棒性不足,提出一种面向高斯差分图的实时跟踪算法.首先,构建图像的多尺度空间及其对应的高斯差分图,实现高斯差分图的特征提取并获取压缩感知的输入信号;然后,通过压缩降维,目标邻域遍历,参数更新等过程,计算出面向高斯差分图的后续帧的目标最优跟踪窗;最后,将跟踪窗投影到对应的原始图像上,完成面向视频流的目标跟踪.高斯差分图像是单通道灰度图,具有灰度取值范围小、数值低、结构简单、维数少等特点,增强了特征对纹理改变、比例缩放和光照变化的稳健性,且继承了传统算法的实时性.实验证明,该算法能够快速准确地实现复杂环境下的移动目标跟踪任务. |
---|---|
Bibliography: | compressive sensing; multi-scale space; Gaussian differential graph; search window 31-1577/TN KONG Jun ,JIANG Min, TANG Xiao-Wei , SUN Yi-Ning, JIANG Ke , WEN Guang-Rui( Key Laboratory of Advanced Process Control for Light Industry(Jiangnan University) , Ministry of Education, Wuxi 214122, China; 2. College of Electrical Engineering, Xinjiang University, Urumqi 830047, China; 3 Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, China; 4. School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China) As traditional target tracking based on compressive sensing has poor robustness in texture change,scale variation and illumination change,a real-time tracking algorithm using compressing sensing based on Gaussian differential graph was proposed. Firstly,Gaussian differential graph is acquired from multi-scale space of image. The features are extracted from the graph and taken as input signals of impressive sensing. Secondly,by compressing,dimension reduction,target neighb |
ISSN: | 1001-9014 |
DOI: | 10.3724/SP.J.1010.2015.00100 |