基于分层弹性运动分析的非刚体跟踪方法

采用时一空分层的弹性运动跟踪策略,提出了一种分析长时运动稳定结构与短时运动局部变化的非刚体运动跟踪方法.首先,基于序贯形状聚类的分段弹性运动跟踪模型,将整段图像序列分割成若干子段,并利用弹性运动分析方法得到子段内各帧边缘点的对应关系和各类的平均形状,获取短时局部运动变化细节.然后,通过基于贝叶斯网的整体搜索算法寻找时序上相邻聚类平均形状之间的对应关系,进而得到整段运动的公共形状,用于表示长时运动稳定结构.通过计算公共形状与各类平均形状之间的变形关系,可以建立各聚类平均形状之间的对应关系,实现分段运动的连接.本方法的特点是不依赖先验模型、通用性好、目标的描述能力强.实验表明,本方法与现有不依赖模...

Full description

Saved in:
Bibliographic Details
Published in自动化学报 Vol. 41; no. 2; pp. 295 - 303
Main Author 吕峰 邸慧军 陆耀 徐光祜
Format Journal Article
LanguageChinese
Published 智能信息技术北京市重点实验室 北京 100081%清华大学计算机科学与技术系 北京100084 2015
北京理工大学计算机学院 北京 100081
Subjects
Online AccessGet full text
ISSN0254-4156
1874-1029
DOI10.16383/j.aas.2015.c140375

Cover

Abstract 采用时一空分层的弹性运动跟踪策略,提出了一种分析长时运动稳定结构与短时运动局部变化的非刚体运动跟踪方法.首先,基于序贯形状聚类的分段弹性运动跟踪模型,将整段图像序列分割成若干子段,并利用弹性运动分析方法得到子段内各帧边缘点的对应关系和各类的平均形状,获取短时局部运动变化细节.然后,通过基于贝叶斯网的整体搜索算法寻找时序上相邻聚类平均形状之间的对应关系,进而得到整段运动的公共形状,用于表示长时运动稳定结构.通过计算公共形状与各类平均形状之间的变形关系,可以建立各聚类平均形状之间的对应关系,实现分段运动的连接.本方法的特点是不依赖先验模型、通用性好、目标的描述能力强.实验表明,本方法与现有不依赖模型的方法相比,具有更好的长时稳定性和更高的跟踪精确度.
AbstractList 采用时–空分层的弹性运动跟踪策略,提出了一种分析长时运动稳定结构与短时运动局部变化的非刚体运动跟踪方法。首先,基于序贯形状聚类的分段弹性运动跟踪模型,将整段图像序列分割成若干子段,并利用弹性运动分析方法得到子段内各帧边缘点的对应关系和各类的平均形状,获取短时局部运动变化细节。然后,通过基于贝叶斯网的整体搜索算法寻找时序上相邻聚类平均形状之间的对应关系,进而得到整段运动的公共形状,用于表示长时运动稳定结构。通过计算公共形状与各类平均形状之间的变形关系,可以建立各聚类平均形状之间的对应关系,实现分段运动的连接。本方法的特点是不依赖先验模型、通用性好、目标的描述能力强。实验表明,本方法与现有不依赖模型的方法相比,具有更好的长时稳定性和更高的跟踪精确度。
采用时一空分层的弹性运动跟踪策略,提出了一种分析长时运动稳定结构与短时运动局部变化的非刚体运动跟踪方法.首先,基于序贯形状聚类的分段弹性运动跟踪模型,将整段图像序列分割成若干子段,并利用弹性运动分析方法得到子段内各帧边缘点的对应关系和各类的平均形状,获取短时局部运动变化细节.然后,通过基于贝叶斯网的整体搜索算法寻找时序上相邻聚类平均形状之间的对应关系,进而得到整段运动的公共形状,用于表示长时运动稳定结构.通过计算公共形状与各类平均形状之间的变形关系,可以建立各聚类平均形状之间的对应关系,实现分段运动的连接.本方法的特点是不依赖先验模型、通用性好、目标的描述能力强.实验表明,本方法与现有不依赖模型的方法相比,具有更好的长时稳定性和更高的跟踪精确度.
Abstract_FL In this paper, we present a spatial-temporal layered elastic motion tracking method to estimate long-term stable structures and short-term local motions for non-rigid targets. First, the sequence is segmented into several pieces by sequential shape clustering based a piece-wise elastic motion tracking model, the correspondence among frames in the same segment and the mean shape of all clusters are calculated by piece-wise elastic motion tracking. Then, we use a Bayesian network based global search method to find the correspondence of mean shapes of adjoining clusters and extract the common shape of the entire sequence. The proposed method, which does not require prior shape models, is adaptive to and descriptive for general objects. The experiments on non-rigid targets validate both the long-term stability and the detailed accuracy of our proposed method.
Author 吕峰 邸慧军 陆耀 徐光祜
AuthorAffiliation 北京理工大学计算机学院,北京100081 智能信息技术北京市重点实验室,北京100081 清华大学计算机科学与技术系,北京100084
AuthorAffiliation_xml – name: 北京理工大学计算机学院 北京 100081; 智能信息技术北京市重点实验室 北京 100081%清华大学计算机科学与技术系 北京100084
Author_FL LV Feng
LU Yao
XU Guang-You
DI Hui-Jun
Author_FL_xml – sequence: 1
  fullname: LV Feng
– sequence: 2
  fullname: DI Hui-Jun
– sequence: 3
  fullname: LU Yao
– sequence: 4
  fullname: XU Guang-You
Author_xml – sequence: 1
  fullname: 吕峰 邸慧军 陆耀 徐光祜
BookMark eNotkDtLw1AcxS9SwVr7CdxcnBL_95ncUYovKLh0L_8kvX2giTaIj0lEpDhIQXQo2I6Kmzhoi-KXaWL8FkbqdODw4xzOWSSFMAobhCxTsKniLl_r2IixzYBK26cCuCPnSJG6jrAoMF0gRWBSWIJKtUDKcdz2gDrC0YxDkahkNJlObpLeVfJykXyM0_PH7KufXD_lTjrsfw8ufx6GSW8w_bzN3kbZ-3N6P05f75bIvMG9uFH-1xKpbW7UKttWdXdrp7JetXypHUsDgJCGMuZKF71AcKqVMopzCLQWKJWWSI3RDFC7aBrKGOSBx30El2qPl8jqLPYYQ4Nhs96JjrphXlg_C1on3t9kYHmJk5MrM9JvRWHzsJ2zB932PnZP6yo_CbQSjP8C5UVpfw
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16383/j.aas.2015.c140375
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Non-rigid Tracking Method Based on Layered Elastic Motion Analysis
DocumentTitle_FL Non-rigid Tracking Method Based on Layered Elastic Motion Analysis
EISSN 1874-1029
EndPage 303
ExternalDocumentID zdhxb2015020007
663809642
GrantInformation_xml – fundername: 国家自然科学基金; 高等学校博士学科点专项科研基金; 北京市教育委员会共建项目资助@@@@Supported by National Natural Science Foundation of China; Research Fund for the Doctoral Program of Higher Education of China; Specialized Fund for Joint Building Project of Beijing Municipal Education Commission
  funderid: (61273273,61003098); (2012110110034); (61273273,61003098); (2012110110034); Specialized Fund for Joint Building Project of Beijing Municipal Education Commission
GroupedDBID --K
-0Y
.~1
0R~
1B1
1~.
1~5
2B.
2C0
2RA
4.4
457
4G.
5GY
5VS
5XA
5XJ
7-5
71M
8P~
92H
92I
92L
AAIKJ
AALRI
AAQFI
AAXUO
ACGFS
ADEZE
ADTZH
AECPX
AEKER
AFTJW
AGHFR
AGYEJ
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
BLXMC
CCEZO
CQIGP
CS3
CUBFJ
CW9
EBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FNPLU
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
ABWVN
ACRPL
ADNMO
PSX
ID FETCH-LOGICAL-c597-900045f122858abd431966f6330d994a5695a1ff920a98afe6ffa3db3ca0819b3
ISSN 0254-4156
IngestDate Thu May 29 04:10:30 EDT 2025
Wed Feb 14 10:37:46 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 贝叶斯网络
序贯形状聚类
运动分段
运动连接
motion segmentation
sequential shape clustering
分层弹性运动跟踪
Bayesian network
Layered elastic motion tracking
motion connection
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c597-900045f122858abd431966f6330d994a5695a1ff920a98afe6ffa3db3ca0819b3
Notes LV Feng DI Hui-Jun LU Yao XU Guang-You (1. School of Computer Science, Beijing Institute of Technology, Beijing 100081 2. Beijing Laboratory of Intelligent Informa- tion Technology, Beijing 100081 3. Department of Computer Science and Technology, Tsinghua University, Beijing 100084)
Layered elastic motion tracking, sequential shape clustering, motion segmentation, motion connection,Bayesian network
In this paper, we present a spatial-temporal layered elastic motion tracking method to estimate long-term stable structures and short-term local motions for non-rigid targets. First, the sequence is segmented into several pieces by sequential shape clustering based a piece-wise elastic motion tracking model, the correspondence among frames in the same segment and the mean shape of all clusters are calculated by piece-wise elastic motion tracking. Then, we use a Bayesian network based global search method to find the correspondence of mean shapes of adjoining clusters and extract the common shape of the entire sequenc
PageCount 9
ParticipantIDs wanfang_journals_zdhxb2015020007
chongqing_primary_663809642
PublicationCentury 2000
PublicationDate 2015
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationTitle 自动化学报
PublicationTitleAlternate Acta Automatica Sinica
PublicationTitle_FL Acta Automatica Sinica
PublicationYear 2015
Publisher 智能信息技术北京市重点实验室 北京 100081%清华大学计算机科学与技术系 北京100084
北京理工大学计算机学院 北京 100081
Publisher_xml – name: 北京理工大学计算机学院 北京 100081
– name: 智能信息技术北京市重点实验室 北京 100081%清华大学计算机科学与技术系 北京100084
SSID ssib017479230
ssib001102911
ssib006576350
ssib051375349
ssib007293330
ssj0059721
ssib007290157
ssib023646446
ssib005904210
Score 2.0836048
Snippet ...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 295
SubjectTerms 分层弹性运动跟踪
序贯形状聚类
贝叶斯网络
运动分段
运动连接
Title 基于分层弹性运动分析的非刚体跟踪方法
URI http://lib.cqvip.com/qk/90250X/201502/663809642.html
https://d.wanfangdata.com.cn/periodical/zdhxb2015020007
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKe4ED4ilKAfWAT9WWJLYTz9HZzVIh4FRQb6tk07SnLY9WQj0hhFDFAVVCcKhEewRxQxygFYg_013Kib-AZ-J2LVqJh7SKnMl4PN-ME4-98YSxq4EqrVtV0NDzOm5ImeT2nou6DSmSUoFSZUh5tm_djmfuyBtzam7k2E_vraWV5WK6u3rkvpL_8aqlWb_iLtl_8OyBUEuwZetfe7Qetse_8jHPFIc2Tw3PJB51hhStuY6xkIZcR1Ro8hR4FuNrDSbhmeZpm0NAzIYb7dWKOWR0KeFgBUqeAYcWEmseqNuyFEFyElQAC5obQ9Vj11YqeP1hy_3YF9l0Qmx-u02sYgumxQ0pgJfUfkcgiIGVRDgET4PhFUB4tmGsowiYQgyQ-iwAhEsjdh34YtNs3wb2B4jYYFv-Oki9B5T6LGEDsrWVJdAEaIg2NyEpEHLTdtrblpC5SZQaYeI8ZJrUsibHAJpDt7BlBAJkhYxsDWgm3XQUI6cOC5oKKdLikSJra4SBTC3XDYx0JnGG1SQpJJwZCSIdEVCCnBB6zJIEZkcBSsgN6REakULSG1oiJRs4dffu8Mgfxlz_qCMiQVkoDg-29tEtaLTNc0x8H6rpLmZ_TNQwtjh443O1XHxUIE-Ae8OSY2wsSpJQjbKx6-nNu2YYwduAF7whR4EdVbwINVaYQXF4nuB7AN4f9_ZciOGMGD-PEHsrHiq06glccaiDNYXJq2gZ1hnEJSZDaNcOA8MELItLvYX7NqykXX69Ku8teAHp7Cl20s0kJ039WDjNRlYXz7ATXn7Rsyzub-3s7rzorz3rf3jS_7I9ePx279t6__k7Sxlsrn_fePrjzWZ_bWP368u9T1t7n98PXm8PPr46x2bb2WxzpuE-lNLoWgANoIlZFUaRVjovSonDalzF1g4lgMxVDCoPqwqiIAedV_NxVeWiLEQ3xwlBIc6z0d5Sb_4CmxR5kQgoi6CQoczzLoAuorjCVYqqkKUeZxMHBujcq_PhdOykRQdgWcbZpDNJxz0lH3Z-c_zFP7NMsON4Uq9zXmKjyw9W5i_byH-5uOJ6yy9n67jg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%88%86%E5%B1%82%E5%BC%B9%E6%80%A7%E8%BF%90%E5%8A%A8%E5%88%86%E6%9E%90%E7%9A%84%E9%9D%9E%E5%88%9A%E4%BD%93%E8%B7%9F%E8%B8%AA%E6%96%B9%E6%B3%95&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E5%90%95%E5%B3%B0&rft.au=%E9%82%B8%E6%85%A7%E5%86%9B&rft.au=%E9%99%86%E8%80%80&rft.au=%E5%BE%90%E5%85%89%E7%A5%90&rft.date=2015&rft.pub=%E6%99%BA%E8%83%BD%E4%BF%A1%E6%81%AF%E6%8A%80%E6%9C%AF%E5%8C%97%E4%BA%AC%E5%B8%82%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4+%E5%8C%97%E4%BA%AC+100081%25%E6%B8%85%E5%8D%8E%E5%A4%A7%E5%AD%A6%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E7%B3%BB+%E5%8C%97%E4%BA%AC100084&rft.issn=0254-4156&rft.issue=2&rft.spage=295&rft.epage=303&rft_id=info:doi/10.16383%2Fj.aas.2015.c140375&rft.externalDocID=zdhxb2015020007
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90250X%2F90250X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg